JP2005223997A - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JP2005223997A
JP2005223997A JP2004028549A JP2004028549A JP2005223997A JP 2005223997 A JP2005223997 A JP 2005223997A JP 2004028549 A JP2004028549 A JP 2004028549A JP 2004028549 A JP2004028549 A JP 2004028549A JP 2005223997 A JP2005223997 A JP 2005223997A
Authority
JP
Japan
Prior art keywords
permanent magnet
pole teeth
inclined surface
surface portion
linear motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004028549A
Other languages
Japanese (ja)
Other versions
JP4522106B2 (en
Inventor
Tamaki To
玉▲棋▼ 唐
Satoshi Sugita
聡 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004028549A priority Critical patent/JP4522106B2/en
Publication of JP2005223997A publication Critical patent/JP2005223997A/en
Application granted granted Critical
Publication of JP4522106B2 publication Critical patent/JP4522106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To lessen cogging torque, in a linear motor or a cylinder type linear motor which is constituted so that the overall length dimension in motional direction of the row of permanent magnets may be larger than the overall length dimension in motional direction of the row of slots wherein exciting coils are arranged and shorter than the overall length dimension in motional direction of the core. <P>SOLUTION: Each pole tooth face 23a of two end-side pole teeth 23A and 23G positioned at both ends of the seven pole teeth 23A-23G of the core 17 comprises a first incline part 23b which leans so that the interval dimension between the pole tooth face 23a and the row 9 of the permanent magnets may be larger gradually as it goes away from other pole teeth 23B and 23F adjoining each in its motional direction in such a state that it confronts the row 9 of permanent magnets, and a second incline part 23d which leans so that the interval dimension between the pole tooth face 23a and the rows 9-15 of permanent magnets may be smaller gradually as it goes away from the first incline part 23b. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リニアモータ及びシリンダ型リニアモータに関するものである。   The present invention relates to a linear motor and a cylinder type linear motor.

特開2002−359962号公報(特許文献1)には、複数の永久磁石からなる永久磁石列を備えて往復運動する可動子と、コアと励磁巻線とを有する電機子を備える固定子とを具備しリニアモータが示されている。コアは永久磁石列と対向する極歯面を端部に有する複数の極歯と、隣接する2つの極歯の間にスロットが形成されるように複数の極歯を相互に連結するヨークとを備えている。また、励磁巻線は複数の極歯を励磁する役割を果たしている。このリニアモータでは、永久磁石列の運動方向の全長寸法が、巻線が配置されるスロット列の運動方向の全長寸法よりも長く、且つコアの運動方向の全長寸法よりも短くなるように構成されるタイプとなっている。
特開2002−359962号(図6)
Japanese Patent Laid-Open No. 2002-359962 (Patent Document 1) includes a mover that includes a permanent magnet array composed of a plurality of permanent magnets and reciprocates, and a stator that includes an armature having a core and an excitation winding. An included linear motor is shown. The core includes a plurality of pole teeth having pole tooth surfaces opposite to the permanent magnet row at the end, and a yoke that interconnects the plurality of pole teeth so that a slot is formed between two adjacent pole teeth. I have. The excitation winding plays a role of exciting a plurality of pole teeth. In this linear motor, the total length in the movement direction of the permanent magnet row is configured to be longer than the total length in the movement direction of the slot row where the windings are arranged, and shorter than the total length in the movement direction of the core. It has become a type.
Japanese Patent Laid-Open No. 2002-359962 (FIG. 6)

しかしながら、この種のリニアモータでは、脈動(コギング力)を含むトルク及び推力が発生する。このようなコギング力は、円滑な往復動を阻害し、振動や速度変動の原因となる。なお、永久磁石列の運動方向の全長寸法が、コアの運動方向の全長寸法よりも長いリニアモータでは、複数の極歯の両端に位置する二つの端部側極歯の極歯面を、それぞれ隣接する他の極歯から離れるに従って極歯面と永久磁石列との間の間隙寸法が徐々に大きくなるように傾斜させて、コギング力の低下を図っている。しかしながら、永久磁石列の運動方向の全長寸法が、巻線が配置されるスロット列の運動方向の全長寸法よりもそれほど長くないリニアモータでは、このような傾斜だけではコギング力を小さくできない。   However, in this type of linear motor, torque and thrust including pulsation (cogging force) are generated. Such cogging force hinders smooth reciprocation, and causes vibration and speed fluctuation. In the linear motor in which the total length dimension of the permanent magnet row in the moving direction is longer than the total length dimension in the core moving direction, the pole tooth surfaces of the two end side pole teeth positioned at both ends of the plurality of pole teeth are respectively The cogging force is reduced by inclining the gap dimension between the pole tooth surface and the permanent magnet array so as to gradually increase as the distance from other adjacent pole teeth increases. However, in a linear motor in which the total length in the movement direction of the permanent magnet row is not much longer than the total length in the movement direction of the slot row where the windings are arranged, the cogging force cannot be reduced only by such inclination.

本目的は、永久磁石列の運動方向の全長寸法が、巻線が配置されるスロット列の運動方向の全長寸法よりも長く、コアの運動方向の全長寸法よりも短くなるように構成されたリニアモータ及びシリンダ型リニアモータにおいて、コギング力を小さくできるリニアモータ及びシリンダ型リニアモータを提供することにある。   The purpose of the present invention is to provide a linear configuration in which the total length in the movement direction of the permanent magnet row is longer than the total length in the movement direction of the slot row where the windings are arranged, and shorter than the total length in the movement direction of the core. An object of the present invention is to provide a linear motor and a cylinder type linear motor that can reduce the cogging force in the motor and the cylinder type linear motor.

本発明が改良の対象とするリニアモータは、固定子に対して可動子が往復運動をするように構成されている。そして、固定子及び可動子の一方は、可動子が往復運動をする運動方向に複数の永久磁石が列を成すように並んで構成された1以上の永久磁石列を有している。また、固定子及び可動子の他方は、永久磁石列と対向する極歯面を端部に有する複数の極歯及び隣接する2つの極歯の間にスロットが形成されるように複数の極歯を相互に連結するヨークを備えたコアと、コアに対して設けられて複数の極歯を励磁する励磁巻線とを有する電機子を備えている。そして、永久磁石列の運動方向の全長寸法が、励磁巻線が配置されるスロットの列の運動方向の全長寸法よりも長く、且つコアの運動方向の全長寸法よりも短くなるように構成され、複数の極歯のうち運動方向の両端に位置する二つの端部側極歯の極歯面の形状が、コギング力の発生を低減するように定められている。本発明では、二つの端部側極歯の極歯面は、それぞれ永久磁石列と対向している状態において、隣接する他の極歯から離れるに従って極歯面と永久磁石列との間の間隙寸法が徐々に大きくなるように傾斜する第1の傾斜面部と、第1の傾斜面部から離れるに従って極歯面と永久磁石列との間の間隙寸法が徐々に小さくなるように傾斜する第2の傾斜面部とを含んでいる。本発明のように二つの端部側極歯の極歯面を形成すれば、可動子が往復動する際に、両端に位置する二つの端部側極歯においてそれぞれ生じるコギング力を最適に打ち消すことができる。   The linear motor to be improved by the present invention is configured such that the mover reciprocates with respect to the stator. One of the stator and the mover has one or more permanent magnet rows configured such that a plurality of permanent magnets are arranged in a row in a moving direction in which the mover reciprocates. The other of the stator and the mover has a plurality of pole teeth such that a slot is formed between a plurality of pole teeth having a pole tooth surface facing the permanent magnet row at the end and two adjacent pole teeth. The armature includes a core having yokes that connect the two to each other, and an excitation winding that is provided to the core and excites a plurality of pole teeth. And the total length dimension in the movement direction of the permanent magnet row is configured to be longer than the total length dimension in the movement direction of the row of slots in which the excitation windings are arranged, and shorter than the total length dimension in the movement direction of the core, The shape of the pole tooth surfaces of the two end side pole teeth located at both ends in the movement direction among the plurality of pole teeth is determined so as to reduce the generation of cogging force. In the present invention, the pole tooth surfaces of the two end-side pole teeth are opposed to the permanent magnet row, and the gap between the pole tooth surface and the permanent magnet row is increased as the distance from the other adjacent pole teeth increases. A first inclined surface portion that inclines so that the size gradually increases, and a second inclined surface that inclines so that the gap size between the pole tooth surface and the permanent magnet row gradually decreases as the distance from the first inclined surface portion increases. And an inclined surface portion. If the pole tooth surfaces of the two end side pole teeth are formed as in the present invention, the cogging forces generated in the two end side pole teeth positioned at both ends are optimally canceled when the mover reciprocates. be able to.

本発明は、永久磁石列側を可動子とし電機子側を固定子としてもよいし、永久磁石列側を固定子とし電機子側を可動子としてもよいが、永久磁石列の運動方向の全長寸法が、コアの運動方向の全長寸法よりも短かいので、永久磁石列側を可動子とし、電機子側を固定子とすると、可動子の重量を小さくできる。   In the present invention, the permanent magnet row side may be a mover and the armature side may be a stator, or the permanent magnet row side may be a stator and the armature side may be a mover. Since the dimension is shorter than the overall length in the moving direction of the core, the weight of the mover can be reduced if the permanent magnet array side is a mover and the armature side is a stator.

第1の傾斜面部と第2の傾斜面部とは連続して形成してもよいし、第1の傾斜面部と第2の傾斜面部との間に1以上の面等を形成してもよい。第1の傾斜面部と第2の傾斜面部とを連続して形成する場合は、第1の傾斜面部と第2の傾斜面部との間の境界部が位置する境界位置と境界部から見た第1の傾斜面の終点位置との間の長さ寸法が、境界位置と境界部から見た第2の傾斜面の終点位置との間の長さ寸法よりも長くするのが好ましい。このようにすれば、両端に発生するコギングがバランスよく相殺され、全体のコギング力を小さくできる利点がある。   The first inclined surface portion and the second inclined surface portion may be formed continuously, or one or more surfaces may be formed between the first inclined surface portion and the second inclined surface portion. In the case where the first inclined surface portion and the second inclined surface portion are continuously formed, the boundary position between the first inclined surface portion and the second inclined surface portion and the position viewed from the boundary portion It is preferable that the length dimension between the end point position of one inclined surface is longer than the length dimension between the boundary position and the end point position of the second inclined surface viewed from the boundary part. In this way, cogging generated at both ends is offset in a balanced manner, and there is an advantage that the entire cogging force can be reduced.

第1の傾斜面部及び第2の傾斜面部は、それぞれ平坦面でもよいし、湾曲面でもよい。第1の傾斜面部及び第2の傾斜面部が永久磁石列が位置する側に向かって凸部となるようにそれぞれ湾曲していれば、永久磁石列や電機子の寸法誤差に起因するコギング力のバランスを抑制できる利点がある。   Each of the first inclined surface portion and the second inclined surface portion may be a flat surface or a curved surface. If the first inclined surface portion and the second inclined surface portion are curved so as to be convex toward the side where the permanent magnet row is located, the cogging force caused by the dimensional error of the permanent magnet row or armature There is an advantage that balance can be suppressed.

第1の傾斜面部及び第2の傾斜面部が永久磁石列が位置する側に向かって凹部となるようにそれぞれ湾曲していれば、極歯面寸法を決定する要素が少なくなり、磁極面の設計が容易になる。   If the first inclined surface portion and the second inclined surface portion are curved so as to be recessed toward the side where the permanent magnet row is located, the number of elements for determining the pole tooth surface dimension is reduced, and the design of the magnetic pole surface is reduced. Becomes easier.

二つの端部側極歯の極歯面は、可動子が運動方向の両端に定まる停止位置にあるときに、永久磁石列の端部を越えて運動方向の外側に延び出る延長面部を有しているのが好ましい。このように、延長面部を有していると、可動子が運動方向の両端に定まる停止位置のコギング力を小さくできる利点がある。この場合、延長面部の運動方向の長さ寸法δは、永久磁石列の永久磁石を配置するためのピッチτpとの関係がδ/τp≧0.05となるように定めるのが好ましい。このようにすると、全可動範囲内でコギング力を小さくすることができる。   The pole tooth surfaces of the two end side pole teeth have an extended surface portion that extends outward in the movement direction beyond the end of the permanent magnet row when the mover is in a stop position determined at both ends in the movement direction. It is preferable. As described above, when the extended surface portion is provided, there is an advantage that the cogging force at the stop position where the movable element is determined at both ends in the movement direction can be reduced. In this case, the length dimension δ in the movement direction of the extended surface portion is preferably determined so that the relationship with the pitch τp for arranging the permanent magnets in the permanent magnet row is δ / τp ≧ 0.05. In this way, the cogging force can be reduced within the entire movable range.

延長面部は、第2の傾斜面部をそのまま延長させて構成してもよいし、永久磁石列とほぼ平行になるように形成してもよい。第2の傾斜面部をそのまま延長させて構成すれば、コアを簡単に形成できる利点がある。永久磁石列とほぼ平行になるように形成すれば、可動子が運動方向の両端に定まる停止位置近傍のコギング力を小さくできる利点や、永久磁石列や電機子の寸法誤差に起因するコギング力のバランスを抑制できる利点がある。   The extended surface portion may be configured by extending the second inclined surface portion as it is, or may be formed so as to be substantially parallel to the permanent magnet row. If the second inclined surface portion is extended as it is, there is an advantage that the core can be easily formed. If it is formed so as to be almost parallel to the permanent magnet row, the cogging force near the stop position where the mover is fixed at both ends in the direction of movement can be reduced, and the cogging force caused by the dimensional error of the permanent magnet row or armature can be reduced. There is an advantage that balance can be suppressed.

第1の傾斜面部の終点位置と第2の傾斜面部の終点位置とを結ぶ仮想水平線と該仮想水平線と直交し境界位置を通る仮想垂直線とを想定して、仮想水平線と仮想垂直線との交点と前記境界位置との間の距離をhとした場合に、永久磁石列の永久磁石を配置するためのピッチτpと距離hとの関係がh/τp=0.1〜0.4となるように前記第1及び第2の傾斜面部が形成さるのが好ましい。このようにすると、コギング力を最適に小さくすることができる。   Assuming a virtual horizontal line connecting the end point position of the first inclined surface part and the end point position of the second inclined surface part and a virtual vertical line orthogonal to the virtual horizontal line and passing through the boundary position, the virtual horizontal line and the virtual vertical line When the distance between the intersection point and the boundary position is h, the relationship between the pitch τp and the distance h for arranging the permanent magnets in the permanent magnet row is h / τp = 0.1 to 0.4. Thus, it is preferable that the first and second inclined surface portions are formed. In this way, the cogging force can be reduced optimally.

二つの端部側極歯の一方の極歯面の境界部と他方の極歯面の境界部との間の距離寸法LKと、永久磁石列の運動方向の全長寸法LMと永久磁石列の永久磁石を配置するためのピッチτpとの関係は、(LK−LM)/τp=0.25〜1.25とするのが好ましい。このようにすると、コギング力を最適に小さくすることができる。   The distance dimension LK between the boundary portion of one pole tooth surface of the two end side pole teeth and the boundary portion of the other pole tooth surface, the total length dimension LM in the movement direction of the permanent magnet row, and the permanent magnet row permanent The relationship with the pitch τp for arranging the magnets is preferably (LK−LM) /τp=0.25 to 1.25. In this way, the cogging force can be reduced optimally.

コアは、運動方向と直交する方向に複数枚の鋼板を積層して構成するのが好ましい。このようにすれば、コアの製造コストを低くすることができる。   The core is preferably configured by laminating a plurality of steel plates in a direction orthogonal to the movement direction. In this way, the manufacturing cost of the core can be reduced.

本発明の改良の対象とするシリンダ型リニアモータは、可動子と固定子とを具備している。可動子は、軸線方向に往復動する直動軸、直動軸に固定された磁石取付部及び磁石取付部に固定され直動軸の軸線方向に並ぶ複数の永久磁石からなる4つの永久磁石列を有し
ている。固定子は、4つの永久磁石列のうち対応する1つの永久磁石列と対向する極歯面を端部に有する複数の極歯及び隣接する2つの極歯の間にスロットが形成されるように複数の極歯を相互に連結するヨークを備えた4つのコアと、4つのコアに対して装着されて複数の極歯を励磁する励磁巻線と有する電機子を備えている。そして、永久磁石列の運動方向の全長寸法が、励磁巻線が配置されるスロットの列の運動方向の全長寸法よりも長く、且つコアの運動方向の全長寸法よりも短くなるように構成され、コアに含まれる複数の極歯のうち運動方向の両端に位置する二つの端部側極歯の極歯面の形状が、コギング力の発生を低減するように定められている。本発明では、二つの端部側極歯の極歯面は、それぞれ永久磁石列と対向している状態において、運動方向に隣接する他の極歯から離れるに従って極歯面と永久磁石列との間の間隙寸法が徐々に大きくなるように傾斜する第1の傾斜面部と、第1の傾斜面部から離れるに従って極歯面と永久磁石列との間の間隙寸法が徐々に小さくなるように傾斜する第2の傾斜面部とを含んでいる。このようなシリンダ型リニアモータに本発明を適用すると、コギング力を小さくできるのに加えて、一つの巻線を4面にまたがるように巻き回すことで、コイルエンドを少なくでき、低発熱のシリンダ型リニアモータを得ることができる。
A cylinder type linear motor to be improved by the present invention includes a mover and a stator. The mover includes a linear motion shaft that reciprocates in the axial direction, a magnet mounting portion that is fixed to the linear motion shaft, and four permanent magnet rows that are fixed to the magnet mounting portion and arranged in the axial direction of the linear motion shaft. have. The stator is formed such that a slot is formed between a plurality of pole teeth having an end face facing a corresponding one of the four permanent magnet rows, and two adjacent pole teeth. The armature includes four cores including yokes that interconnect the plurality of pole teeth, and excitation windings that are attached to the four cores and that excite the plurality of pole teeth. And the total length dimension in the movement direction of the permanent magnet row is configured to be longer than the total length dimension in the movement direction of the row of slots in which the excitation windings are arranged, and shorter than the total length dimension in the movement direction of the core, Of the plurality of pole teeth included in the core, the shape of the pole tooth surfaces of the two end side pole teeth located at both ends in the movement direction is determined so as to reduce the generation of cogging force. In the present invention, the pole tooth surfaces of the two end side pole teeth are opposed to the permanent magnet row, and the distance between the pole tooth surface and the permanent magnet row increases as the distance from other pole teeth adjacent in the movement direction increases. Inclining so that the gap dimension between the pole tooth surface and the permanent magnet row gradually decreases as the distance from the first inclined surface part increases from the first inclined surface part. A second inclined surface portion. When the present invention is applied to such a cylinder type linear motor, in addition to reducing the cogging force, a coil end can be reduced by winding one winding so as to extend over four surfaces, and a low heat generating cylinder. A type linear motor can be obtained.

本発明によれば、可動子が往復動する際に、両端に位置する二つの端部側極歯においてそれぞれ生じるコギング力を打ち消すことができる。そのため、コギング力を小さくすることができる。   According to the present invention, when the mover reciprocates, the cogging force generated in the two end side pole teeth located at both ends can be canceled out. Therefore, the cogging force can be reduced.

以下、図面を参照して本発明を実施するための最良の形態について説明する。図1は、本発明のシリンダ型リニアモータの可動子及び固定子の実施の形態の一例の概略斜視図であり、図2は、図1をII-II線で切断した概略断面図である。両図に示すように、本例のシリンダ型リニアモータは可動子1と固定子3とから構成されている。可動子1は直動軸5に磁石取付部7が固定された構造体に永久磁石列9,11,13,15が取付けられて構成されている。直動軸5は磁性材料である鉄により形成されており、往復運動可能に図示しない一対のリニア軸受に支持されている。直動軸5に固定されている磁石取付部7は、直動軸5の軸線方向に沿って延びる四角柱形状を有しており、その4つの側面(直動軸を囲む4つの辺)7a,7b,7c,7dの上には永久磁石列9,11,13,15がそれぞれ取付けられている。永久磁石列9〜15は平板状の9枚の永久磁石(図2においては9a)が軸線方向に並んでそれぞれ構成されている。図1に示すように、4つの永久磁石列9〜15の平板状の永久磁石は、周方向に隣接している他の平板状の永久磁石列9〜15と接触して取付けられている。4つの平板状の永久磁石列9〜15の周方向の長さは、磁石取付部7の周方向の長さよりも平板状の永久磁石列9〜15の厚み分だけ長くなっている。したがって磁石取付部7の側面7a,7b,7c,7dの端部からは平板状の永久磁石列9〜15の厚みに相当する突出部9a,11a,13a,15aが突出しており、この突出部9a,11a,13a,15aが他の平板状の永久磁石列11,13,15,9の端面11b,13b,15b,9bとそれぞれ接触している。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a schematic perspective view of an example of an embodiment of a mover and a stator of a cylinder type linear motor of the present invention, and FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. As shown in both figures, the cylinder type linear motor of this example is composed of a mover 1 and a stator 3. The mover 1 is configured by attaching permanent magnet rows 9, 11, 13, and 15 to a structure in which a magnet mounting portion 7 is fixed to a linear motion shaft 5. The linear motion shaft 5 is made of iron, which is a magnetic material, and is supported by a pair of linear bearings (not shown) so as to be able to reciprocate. The magnet mounting portion 7 fixed to the linear motion shaft 5 has a quadrangular prism shape extending along the axial direction of the linear motion shaft 5, and its four side surfaces (four sides surrounding the linear motion shaft) 7a. , 7b, 7c, 7d are attached permanent magnet rows 9, 11, 13, 15 respectively. Each of the permanent magnet rows 9 to 15 is composed of nine plate-like permanent magnets (9a in FIG. 2) arranged in the axial direction. As shown in FIG. 1, the plate-like permanent magnets of the four permanent magnet rows 9 to 15 are attached in contact with other plate-like permanent magnet rows 9 to 15 adjacent in the circumferential direction. The circumferential lengths of the four flat permanent magnet rows 9 to 15 are longer than the circumferential length of the magnet mounting portion 7 by the thickness of the flat permanent magnet rows 9 to 15. Accordingly, projecting portions 9a, 11a, 13a, and 15a corresponding to the thickness of the plate-like permanent magnet rows 9 to 15 project from the end portions of the side surfaces 7a, 7b, 7c, and 7d of the magnet mounting portion 7, and this projecting portion 9a, 11a, 13a, and 15a are in contact with the end faces 11b, 13b, 15b, and 9b of the other flat permanent magnet rows 11, 13, 15, and 9, respectively.

固定子3は、4つのコア17…と6つの環状の励磁巻線19A〜19Fとを有する電機子から構成されている。4つのコア17…は可動子1の周囲に配置されており、図2に示すように、7つの極歯23A〜23Gと該7つの極歯23A〜23Gを相互に連結するヨーク21とを備えている。7つの極歯23A〜23Gは、永久磁石列1〜9のうち対応する1つの永久磁石列(図2に示す例では永久磁石列9)と対向する極歯面23aを端部に有している。また、4つのコア17…は、図1に示すように、極歯面23aが可動子1の永久磁石列9〜15とそれぞれ対向するように周方向に等しい間隔(この例では90°間隔)をあけて配置されている。そして、隣接する2つのコア17の間には、両コア17を磁気的に連結する磁性連結体25が配置されている。磁性連結体25の2つの面には、隣接する2つのコア17にネジ部材29によりネジ止めして固定するための貫通孔31,33が軸線方向に並んで形成されている。このネジ部材29によって磁性連結体25は隣接するコア17間にしっかり固定される。   The stator 3 is composed of an armature having four cores 17 and six annular excitation windings 19A to 19F. The four cores 17 are arranged around the mover 1 and include seven pole teeth 23A to 23G and a yoke 21 that interconnects the seven pole teeth 23A to 23G as shown in FIG. ing. The seven pole teeth 23A to 23G have pole tooth surfaces 23a facing the corresponding one permanent magnet array (in the example shown in FIG. 2, the permanent magnet array 9) of the permanent magnet arrays 1 to 9 at the end. Yes. Further, as shown in FIG. 1, the four cores 17 are equally spaced in the circumferential direction so that the pole tooth surface 23a faces the permanent magnet rows 9 to 15 of the mover 1 (90 ° intervals in this example). It is arranged with a gap. A magnetic coupling body 25 that magnetically couples both cores 17 is disposed between two adjacent cores 17. On two surfaces of the magnetic coupling body 25, through holes 31 and 33 are formed side by side in the axial direction for fixing the two adjacent cores 17 by screwing with screw members 29. With this screw member 29, the magnetic coupling body 25 is firmly fixed between the adjacent cores 17.

4つのコア17…は、可動子1の往復運動する運動方向と直交する方向に複数枚のケイ素鋼板が積層されてそれぞれ構成されている。図2に示すように、各コア17の隣接する2つの極歯23間に形成される6個のスロット26には、巻線導体を環状に巻回してなる環状の励磁巻線19A〜19Fの一部がそれぞれ嵌合されている。本例では、スロット26は、励磁巻線19A〜19Fが嵌合されやすいように、軸線方向の対向面26a,26aが平行に延びている。   The four cores 17 are each configured by laminating a plurality of silicon steel plates in a direction orthogonal to the direction of movement of the mover 1 in a reciprocating motion. As shown in FIG. 2, six slots 26 formed between two adjacent pole teeth 23 of each core 17 have annular excitation windings 19A to 19F formed by winding a winding conductor in an annular shape. Part of each is fitted. In this example, the opposing surfaces 26a and 26a in the axial direction of the slot 26 extend in parallel so that the excitation windings 19A to 19F can be easily fitted.

コア17の7つの極歯23A〜23Gのうち可動子1の運動方向の両端に位置する二つの端部側極歯23A,23Gの極歯面23aは、永久磁石列9〜15と対向している状態において、運動方向にそれぞれ隣接する他の極歯23B,23Fから離れるに従って極歯面23aと永久磁石列9との間の間隙寸法が徐々に大きくなるように傾斜する第1の傾斜面部23bと、第1の傾斜面部23bと連続して形成され、第1の傾斜面部23bから離れるに従って極歯面23aと永久磁石列9〜15との間の間隙寸法が徐々に小さくなるように傾斜する第2の傾斜面部23dとを含んでいる。これにより、極歯23A,23Gの永久磁石列9側の部分には、凹部27がそれぞれ形成されることになる。   Of the seven pole teeth 23A to 23G of the core 17, the pole tooth surfaces 23a of the two end side pole teeth 23A and 23G located at both ends in the movement direction of the mover 1 are opposed to the permanent magnet rows 9 to 15. The first inclined surface portion 23b is inclined so that the gap dimension between the pole tooth surface 23a and the permanent magnet row 9 gradually increases as the distance from the other pole teeth 23B and 23F adjacent in the movement direction increases. And the first inclined surface portion 23b is formed continuously, and as the distance from the first inclined surface portion 23b increases, the gap between the pole tooth surface 23a and the permanent magnet rows 9 to 15 is inclined so as to gradually decrease. A second inclined surface portion 23d. Thereby, the recessed part 27 is each formed in the part by the side of the permanent magnet row | line | column 9 of the pole teeth 23A and 23G.

永久磁石列9〜15のそれぞれの運動方向の全長寸法LMは、励磁巻線19A〜19Fが配置されるスロット26の列の運動方向の全長寸法よりも長く、且つコア17の運動方向の全長寸法LEより、ほぼ端部側極歯(23Aまたは23G)分だけ短かくなっている。また、第1の傾斜面部23bと第2の傾斜面部23dとの間の境界部23cが位置する境界位置と境界部23cから見た第1の傾斜面23bの終点位置との間の長さ寸法L1が、境界位置と境界部23cから見た第2の傾斜面の終点位置との間の長さ寸法L2よりも長くなっている。更に、二つの端部側極歯23A,23Gの極歯面23aは、可動子1が運動方向の両端に定まる停止位置にあるときに、永久磁石列9〜15の端部を越えて運動方向の外側に延び出る延長面部17aを有している。延長面部17aは、永久磁石列9〜15とほぼ平行になるように形成されている。これにより、コア17の運動方向の全長寸法LEと永久磁石列9〜15の運動方向の全長寸法LMと可動子1のストロークの長さSと延長面部17aの運動方向の長さ寸法δとの関係は、LE=LM+S+2δとなる。   The total length dimension LM in the movement direction of each of the permanent magnet rows 9 to 15 is longer than the total length dimension in the movement direction of the row of slots 26 in which the excitation windings 19A to 19F are arranged, and the total length dimension in the movement direction of the core 17. It is shorter than LE by about the end side pole teeth (23A or 23G). Further, the length dimension between the boundary position where the boundary portion 23c between the first inclined surface portion 23b and the second inclined surface portion 23d is located and the end point position of the first inclined surface 23b viewed from the boundary portion 23c. L1 is longer than the length dimension L2 between the boundary position and the end point position of the second inclined surface as viewed from the boundary portion 23c. Further, the pole tooth surfaces 23a of the two end-side pole teeth 23A and 23G are moved in the direction of motion beyond the ends of the permanent magnet rows 9 to 15 when the mover 1 is at a stop position determined at both ends of the direction of motion. It has the extended surface part 17a extended on the outer side. The extended surface portion 17a is formed so as to be substantially parallel to the permanent magnet rows 9-15. Thereby, the overall length LE in the motion direction of the core 17, the overall length LM in the motion direction of the permanent magnet rows 9 to 15, the stroke length S of the mover 1, and the length dimension δ in the motion direction of the extension surface portion 17a. The relationship is LE = LM + S + 2δ.

また、本例のシリンダ型リニアモータでは、延長面部17aの運動方向の長さ寸法δは、永久磁石列9〜15の永久磁石を配置するためのピッチτpとの関係がδ/τp≧0.05となるように定められている。また、第1の傾斜面部23bの終点位置と第2の傾斜面部23dの終点位置とを結ぶ仮想水平線LHと該仮想水平線LHと直交し境界位置を通る仮想垂直線LPとを想定して、仮想水平線LHと仮想垂直線LPとの交点と境界位置との間の距離(凹部27の深さ寸法)をhとした場合に、永久磁石列9〜15の永久磁石を配置するためのピッチτpと凹部27の深さ寸法hとの関係がh/τp=0.1〜0.4となるように第1及び第2の傾斜面部23b,23dは形成されている。更に第1及び第2の傾斜面部23b,23dは、二つの端部側極歯23A,23Gの一方の極歯面23aの境界部23cと他方の極歯面23aの境界部23cとの間の距離寸法(境界部距離寸法)LKと、永久磁石列9〜15の運動方向の全長寸法LMと、永久磁石列9〜15の永久磁石を配置するためのピッチτpとの関係が(LK−LM)/τp=0.25〜1.25となるように形成されている。   Further, in the cylinder type linear motor of this example, the relationship between the length dimension δ in the movement direction of the extension surface portion 17a and the pitch τp for arranging the permanent magnets of the permanent magnet rows 9 to 15 is δ / τp ≧ 0. It is set to be 05. Further, assuming a virtual horizontal line LH connecting the end point position of the first inclined surface part 23b and the end point position of the second inclined surface part 23d and a virtual vertical line LP orthogonal to the virtual horizontal line LH and passing through the boundary position, the virtual line LH is assumed. When the distance between the intersection of the horizontal line LH and the virtual vertical line LP and the boundary position (the depth dimension of the recess 27) is h, the pitch τp for arranging the permanent magnets of the permanent magnet rows 9 to 15 is The first and second inclined surface portions 23b and 23d are formed so that the relationship with the depth dimension h of the recess 27 is h / τp = 0.1 to 0.4. Further, the first and second inclined surface portions 23b and 23d are formed between the boundary portion 23c of one pole tooth surface 23a of the two end side pole teeth 23A and 23G and the boundary portion 23c of the other pole tooth surface 23a. The relationship between the distance dimension (boundary distance dimension) LK, the total length dimension LM in the movement direction of the permanent magnet arrays 9 to 15 and the pitch τp for arranging the permanent magnets of the permanent magnet arrays 9 to 15 is (LK-LM). ) /Τp=0.25 to 1.25.

本例では、永久磁石列9〜15のそれぞれの運動方向の全長寸法LMは、144mmであり、コア17の運動方向の全長寸法は、180mmであり、ストロークの長さSは、32mmであり、延長面部17aの運動方向の長さ寸法δは、2mmであった。   In this example, the total length LM in the movement direction of each of the permanent magnet rows 9 to 15 is 144 mm, the total length in the movement direction of the core 17 is 180 mm, and the stroke length S is 32 mm. The length dimension δ in the movement direction of the extension surface portion 17a was 2 mm.

また、永久磁石列9〜15の永久磁石を配置するためのピッチτpは、16mmであり、凹部27の深さ寸法hは、3.5mmであり、極歯間のピッチは、18.7mmであり、境界部距離寸法LKは、152mmであった。   The pitch τp for arranging the permanent magnets of the permanent magnet rows 9 to 15 is 16 mm, the depth dimension h of the recess 27 is 3.5 mm, and the pitch between the pole teeth is 18.7 mm. Yes, the boundary distance dimension LK was 152 mm.

次に本例のシリンダ型リニアモータにおいて、寸法を種々に変えたものを作り、試験を行った。まず、ストロークの長さSが32mm、24mm、16mmの3種類のシリンダ型リニアモータXS1,XS2,XS3において、第1及び第2の傾斜面部23b,23dを形成したもの(実施例)と、第1及び第2の傾斜面部23b,23dを形成せず、二つの端部側極歯の極歯面が平坦なもの(比較例)とを作り、第1及び第2の傾斜面部23b,23dを形成しないシリンダ型リニアモータのコギング力をそれぞれ100とした場合の第1及び第2の傾斜面部23b,23dを形成した各シリンダ型リニアモータのコギング力を測定した。表1はその測定結果を示している。

Figure 2005223997
Next, the cylinder type linear motor of this example was made with various dimensions and tested. First, three types of cylinder type linear motors XS1, XS2, and XS3 having stroke lengths S of 32 mm, 24 mm, and 16 mm, in which the first and second inclined surface portions 23b and 23d are formed (Example), The first and second inclined surface portions 23b and 23d are not formed, and the pole tooth surfaces of the two end side pole teeth are made flat (comparative example), and the first and second inclined surface portions 23b and 23d are formed. The cogging force of each cylinder type linear motor formed with the first and second inclined surface portions 23b and 23d when the cogging force of the cylinder type linear motor not formed is set to 100 was measured. Table 1 shows the measurement results.
Figure 2005223997

表1より、いずれのストロークの長さSにおいても、第1及び第2の傾斜面部23b,23dを形成することにより、コギング力を大きく低下できるのが分かる。   From Table 1, it can be seen that at any stroke length S, the cogging force can be greatly reduced by forming the first and second inclined surface portions 23b and 23d.

次に、延長面部17aの運動方向の長さ寸法δを永久磁石を配置するためのピッチτpで割った値(δ/τp)を種々に変え、その他は本例と同様のシリンダ型リニアモータを作り、各シリンダ型リニアモータのコギング力を測定した。本試験では、τpの値を一定にし、δの値を変えてδ/τpの値を種々に変化させた。図3はその測定結果を示している。図3よりδ/τp≧0.05とするとコギング力が低下するのが分かる。
次に、凹部27の深さ寸法hを永久磁石列の永久磁石を配置するためのピッチτpで割った値(h/τp)を種々に変え、その他は本例と同様のシリンダ型リニアモータを作り、各シリンダ型リニアモータのコギング力を測定した。本試験では、ピッチτpの値を一定にし、深さ寸法hの値を変えて(h/τp)の値を種々に変えた。図4はその測定結果を示している。図4よりh/τp=0.1〜0.4とするとコギング力が低下するのが分かる。
Next, the value (δ / τp) obtained by dividing the length dimension δ in the moving direction of the extension surface portion 17a by the pitch τp for arranging the permanent magnets is variously changed. The cogging force of each cylinder type linear motor was measured. In this test, the value of τp was kept constant, the value of δ was changed, and the value of δ / τp was changed variously. FIG. 3 shows the measurement results. It can be seen from FIG. 3 that the cogging force decreases when δ / τp ≧ 0.05.
Next, the value (h / τp) obtained by dividing the depth dimension h of the recess 27 by the pitch τp for arranging the permanent magnets of the permanent magnet array is variously changed. The cogging force of each cylinder type linear motor was measured. In this test, the value of pitch τp was made constant, and the value of depth dimension h was changed to change the value of (h / τp) variously. FIG. 4 shows the measurement results. FIG. 4 shows that the cogging force decreases when h / τp = 0.1 to 0.4.

次に、前述のストロークの長さSが異なる3種類のシリンダ型リニアモータXS1,XS2,XS3のそれぞれにおいて、境界部距離寸法LKと永久磁石列9〜15の運動方向の全長寸法LMと永久磁石列の永久磁石を配置するためのピッチτpとの関係が(LK−LM)/τpとなる値を種々に変え、その他は本例と同様のシリンダ型リニアモータを作り、各シリンダ型リニアモータのコギング力を測定した。本試験では、全長寸法LM及びピッチτpの値を一定にし、境界部距離寸法LKの値を変えて(LK−LM)/τpの値を種々に変えた。図5はその測定結果を示している。図5より、いずれのストロークの長さSにおいても、(LK−LM)/τp=0.25〜1.25とするとコギング力が低下するのが分かる。   Next, in each of the three types of cylinder type linear motors XS1, XS2, and XS3 having different stroke lengths S, the boundary portion distance dimension LK and the total length dimension LM in the movement direction of the permanent magnet rows 9 to 15 and the permanent magnets. Cylinder linear motors similar to those in this example are made by changing the value of the relationship with the pitch τp for arranging the permanent magnets in the row to (LK-LM) / τp, and the others are the same as in this example. The cogging force was measured. In this test, the values of the total length dimension LM and the pitch τp were made constant, the value of the boundary portion distance dimension LK was changed, and the value of (LK−LM) / τp was changed variously. FIG. 5 shows the measurement results. From FIG. 5, it can be seen that at any stroke length S, the cogging force decreases when (LK−LM) /τp=0.25 to 1.25.

第1及び第2の傾斜面部及び延長面部は、種々の形状に形成することができる。例えば、図6に示すように、第1の傾斜面部及び第2の傾斜面部123b,123dを永久磁石列109が位置する側に向かって凸となるようにそれぞれ湾曲させることができる。このようにすれば、永久磁石列9〜15や電機子の寸法誤差に起因するコギング力のバランスを抑制できる利点がある。   The first and second inclined surface portions and the extended surface portion can be formed in various shapes. For example, as shown in FIG. 6, the first inclined surface portion and the second inclined surface portions 123 b and 123 d can be curved so as to be convex toward the side where the permanent magnet row 109 is located. In this way, there is an advantage that the balance of the cogging force due to the dimensional errors of the permanent magnet arrays 9 to 15 and the armature can be suppressed.

また、図7に示すように、第1の傾斜面部及び第2の傾斜面部223b,223dは、永久磁石列209が位置する側に向かって凹部となるようにそれぞれ湾曲させることができる。このようにすれば、極歯面寸法を決定する要素が少なくなり、磁極面の設計が容易になる。また、第1の傾斜面部と第2の傾斜面部は、連続して形成されていなくてもよく、例えば、図8に示すように、第1の傾斜面部323bと第2の傾斜面部323dとの間に永久磁石列209と平行に延びる1以上の面323e等を設けても構わない。   Further, as shown in FIG. 7, the first inclined surface portion and the second inclined surface portions 223 b and 223 d can be respectively curved so as to be recessed toward the side where the permanent magnet row 209 is located. In this way, the elements that determine the pole tooth surface dimensions are reduced, and the design of the magnetic pole surface is facilitated. Further, the first inclined surface portion and the second inclined surface portion do not have to be formed continuously. For example, as shown in FIG. 8, the first inclined surface portion 323b and the second inclined surface portion 323d are formed. One or more surfaces 323e extending in parallel with the permanent magnet row 209 may be provided therebetween.

また、上記例では、延長面部は、永久磁石列とほぼ平行になるように形成したが、延長面部は第2の傾斜面部をそのまま延長して構成しても構わない。   In the above example, the extended surface portion is formed so as to be substantially parallel to the permanent magnet row. However, the extended surface portion may be configured by extending the second inclined surface portion as it is.

本発明のシリンダ型リニアモータの可動子及び固定子の実施の形態の一例の概略斜視図である。It is a schematic perspective view of an example of an embodiment of a mover and a stator of a cylinder type linear motor of the present invention. 図1をII-II線で切断した概略断面図である。It is the schematic sectional drawing which cut | disconnected FIG. 1 by the II-II line. 延長面部の運動方向の長さ寸法δを永久磁石を配置するためのピッチτpで割った値(δ/τp)とシリンダ型リニアモータのコギング力との関係を示す図である。It is a figure which shows the relationship between the value (delta / taup) which divided | segmented the length dimension (delta) of the movement direction of the extended surface part by the pitch (tau) p for arrange | positioning a permanent magnet, and the cogging force of a cylinder type linear motor. 凹部の深さ寸法hを永久磁石列の永久磁石を配置するためのピッチτpで割った値(h/τp)とシリンダ型リニアモータのコギング力との関係を示す図である。It is a figure which shows the relationship between the value (h / τp) which divided the depth dimension h of the recessed part by the pitch (tau) p for arrange | positioning the permanent magnet of a permanent magnet row | line | column, and the cogging force of a cylinder type linear motor. 境界部距離寸法LKと永久磁石列の運動方向の全長寸法LMと永久磁石列の永久磁石を配置するためのピッチτpとの関係が(LK−LM)/τpとなる値とシリンダ型リニアモータのコギング力との関係を示す図である。The relationship between the boundary distance dimension LK, the total length dimension LM in the movement direction of the permanent magnet array, and the pitch τp for arranging the permanent magnets of the permanent magnet array is (LK−LM) / τp and the cylinder type linear motor It is a figure which shows the relationship with cogging force. 本発明の他の実施の形態のシリンダ型リニアモータの部分拡大図である。It is the elements on larger scale of the cylinder type linear motor of other embodiment of this invention. 本発明の他の実施の形態のシリンダ型リニアモータの部分拡大図である。It is the elements on larger scale of the cylinder type linear motor of other embodiment of this invention. 本発明の他の実施の形態のシリンダ型リニアモータの部分拡大図である。It is the elements on larger scale of the cylinder type linear motor of other embodiment of this invention.

符号の説明Explanation of symbols

1 可動子
3 固定子
9,11,13,15 永久磁石列
17 コア
19A〜19F 励磁巻線
21 ヨーク
23A〜23G 極歯
26 スロット
23b 第1の傾斜面部
23c 境界部
23d 第2の傾斜面部
DESCRIPTION OF SYMBOLS 1 Movable element 3 Stator 9, 11, 13, 15 Permanent magnet row | line | column 17 Core 19A-19F Excitation winding 21 Yoke 23A-23G Polar tooth 26 Slot 23b 1st inclined surface part 23c Boundary part 23d 2nd inclined surface part

Claims (13)

固定子に対して可動子が往復運動をするように構成され、
前記固定子及び可動子の一方は、前記可動子が前記往復運動をする運動方向に複数の永久磁石が列を成すように並んで構成された1以上の永久磁石列を有し、
前記固定子及び可動子の他方は、前記永久磁石列と対向する極歯面を端部に有する複数の極歯及び隣接する2つの前記極歯の間にスロットが形成されるように前記複数の極歯を相互に連結するヨークを備えたコアと、前記コアに対して設けられて前記複数の極歯を励磁する励磁巻線とを有する電機子を備え、
前記永久磁石列の前記運動方向の全長寸法が、前記励磁巻線が配置される前記スロットの列の前記運動方向の全長寸法よりも長く、且つ前記コアの前記運動方向の全長寸法よりも短くなるように構成され、
前記複数の極歯のうち前記運動方向の両端に位置する二つの端部側極歯の前記極歯面の形状が、コギング力の発生を低減するように定められているリニアモータであって、
前記二つの端部側極歯の前記極歯面は、それぞれ前記永久磁石列と対向している状態において、隣接する他の前記極歯から離れるに従って前記極歯面と前記永久磁石列との間の間隙寸法が徐々に大きくなるように傾斜する第1の傾斜面部と、前記第1の傾斜面部から離れるに従って前記極歯面と前記永久磁石列との間の間隙寸法が徐々に小さくなるように傾斜する第2の傾斜面部とを含んでいることを特徴とするリニアモータ。
The mover is configured to reciprocate with respect to the stator,
One of the stator and the mover has one or more permanent magnet rows configured such that a plurality of permanent magnets form a row in a moving direction in which the mover performs the reciprocating motion,
The other of the stator and the mover includes a plurality of pole teeth having pole tooth surfaces facing the permanent magnet row at the end, and a plurality of slots formed between the two adjacent pole teeth. An armature having a core including a yoke for connecting pole teeth to each other and an excitation winding provided to the core to excite the plurality of pole teeth;
The overall length dimension of the permanent magnet row in the movement direction is longer than the overall length dimension in the movement direction of the row of slots in which the excitation windings are arranged, and is shorter than the overall length dimension of the core in the movement direction. Configured as
The shape of the pole tooth surface of the two end side pole teeth located at both ends of the movement direction among the plurality of pole teeth is a linear motor that is determined so as to reduce the occurrence of cogging force,
The pole tooth surfaces of the two end-side pole teeth face each other between the pole tooth surface and the permanent magnet row as they move away from the other adjacent pole teeth in a state of facing the permanent magnet row. A first inclined surface portion that inclines so that a gap dimension of the first electrode gradually increases, and a gap size between the pole tooth surface and the permanent magnet row gradually decreases as the distance from the first inclined surface portion increases. The linear motor characterized by including the 2nd inclined surface part which inclines.
固定子に対して可動子が往復運動をするように構成され、
前記可動子は、該可動子が前記往復運動をする運動方向に複数の永久磁石が列を成すように並んで構成された複数の永久磁石列を有し、
前記固定子は、前記複数の永久磁石列のうち対応する1つの前記永久磁石列と対向する極歯面を端部に有する複数の極歯及び隣接する2つの前記極歯の間にスロットが形成されるように前記複数の極歯を相互に連結するヨークを備えた複数のコアと、前記複数のコアに対して装着されて前記複数の極歯を励磁する励磁巻線と有する電機子を備え、
前記永久磁石列の前記運動方向の全長寸法が、前記励磁巻線が配置される前記スロットの列の前記運動方向の全長寸法よりも長く、且つ前記コアの前記運動方向の全長寸法よりも短くなるように構成され、
前記コアに含まれる前記複数の極歯のうち前記運動方向の両端に位置する二つの端部側極歯の前記極歯面の形状が、コギング力の発生を低減するように定められているリニアモータであって、
前記二つの端部側極歯の前記極歯面は、それぞれ前記永久磁石列と対向している状態において、前記運動方向に隣接する他の前記極歯から離れるに従って前記極歯面と前記永久磁石列との間の間隙寸法が徐々に大きくなるように傾斜する第1の傾斜面部と、前記第1の傾斜面部から離れるに従って前記極歯面と前記永久磁石列との間の間隙寸法が徐々に小さくなるように傾斜する第2の傾斜面部とを含んでいることを特徴とするシリンダ型のリニアモータ。
The mover is configured to reciprocate with respect to the stator,
The mover has a plurality of permanent magnet rows configured such that a plurality of permanent magnets form a row in a moving direction in which the mover reciprocates.
In the stator, a plurality of pole teeth having pole tooth surfaces facing one of the corresponding permanent magnet rows among the plurality of permanent magnet rows at an end thereof and a slot formed between two adjacent pole teeth. An armature having a plurality of cores including yokes that interconnect the plurality of pole teeth, and an excitation winding that is attached to the plurality of cores and that excites the plurality of pole teeth. ,
The overall length in the movement direction of the permanent magnet row is longer than the overall length in the movement direction of the row of slots in which the excitation windings are arranged, and shorter than the overall length in the movement direction of the core. Configured as
The shape of the pole tooth surfaces of the two end side pole teeth located at both ends of the movement direction among the plurality of pole teeth included in the core is determined so as to reduce the occurrence of cogging force A motor,
The pole tooth surfaces of the two end side pole teeth are opposed to the permanent magnet row, and the pole tooth surfaces and the permanent magnets are separated from other pole teeth adjacent to the movement direction. The first sloping surface portion that inclines so that the gap size between the rows gradually increases, and the gap size between the pole tooth surface and the permanent magnet row gradually increases as the distance from the first sloping surface portion increases. A cylinder-type linear motor including a second inclined surface portion that is inclined so as to become smaller.
前記第1の傾斜面部と前記第2の傾斜面部とが連続して形成されていることを特徴とする請求項1または2に記載のリニアモータ。   The linear motor according to claim 1, wherein the first inclined surface portion and the second inclined surface portion are continuously formed. 前記第1の傾斜面部と前記第2の傾斜面部との間の境界部が位置する境界位置と前記境界部から見た前記第1の傾斜面の終点位置との間の長さ寸法が、前記境界位置と前記境界部から見た第2の傾斜面の終点位置との間の長さ寸法よりも長いことを特徴とする請求項3に記載のリニアモータ。   A length dimension between a boundary position where a boundary portion between the first inclined surface portion and the second inclined surface portion is located and an end point position of the first inclined surface viewed from the boundary portion is The linear motor according to claim 3, wherein the linear motor is longer than a length dimension between a boundary position and an end point position of the second inclined surface as viewed from the boundary portion. 前記第1の傾斜面部及び第2の傾斜面部は、前記永久磁石列が位置する側に向かって凸部となるようにそれぞれ湾曲している請求項1または2に記載のリニアモータ。   3. The linear motor according to claim 1, wherein the first inclined surface portion and the second inclined surface portion are respectively curved so as to be convex toward the side where the permanent magnet row is located. 前記第1の傾斜面部及び第2の傾斜面部は、前記永久磁石列が位置する側に向かって凹部となるようにそれぞれ湾曲している請求項1または2に記載のリニアモータ。   3. The linear motor according to claim 1, wherein the first inclined surface portion and the second inclined surface portion are respectively curved so as to be recessed toward the side where the permanent magnet row is located. 前記二つの端部側極歯の前記極歯面は、前記可動子が前記運動方向の両端に定まる停止位置にあるときに、前記永久磁石列の端部を越えて前記運動方向の外側に延び出る延長面部を有しており、
前記延長面部の前記運動方向の長さ寸法δは、前記永久磁石列の前記永久磁石を配置するためのピッチτpとの関係がδ/τp≧0.05となるように定められていることを特徴とする請求項3に記載のリニアモータ。
The pole tooth surfaces of the two end side pole teeth extend beyond the end of the permanent magnet row beyond the end of the movement direction when the mover is at a stop position determined at both ends of the movement direction. It has an extended surface part that goes out,
The length dimension δ of the extension surface portion in the moving direction is determined so that the relationship with the pitch τp for arranging the permanent magnets in the permanent magnet row is δ / τp ≧ 0.05. The linear motor according to claim 3.
前記延長面部は、前記第2の傾斜面部がそのまま延長されて構成されている請求項7に記載のリニアモータ。   The linear motor according to claim 7, wherein the extended surface portion is configured by extending the second inclined surface portion as it is. 前記延長面部は、前記永久磁石列とほぼ平行になるように形成されている請求項7に記載のリニアモータ。   The linear motor according to claim 7, wherein the extension surface portion is formed to be substantially parallel to the permanent magnet row. 前記第1の傾斜面部の前記終点位置と前記第2の傾斜面部の前記終点位置とを結ぶ仮想水平線と該仮想水平線と直交し前記境界位置を通る仮想垂直線とを想定して、前記仮想水平線と前記仮想垂直線との交点と前記境界位置との間の距離をhとした場合に、前記永久磁石列の前記永久磁石を配置するためのピッチτpと前記距離hとの関係がh/τp=0.1〜0.4となるように前記第1及び第2の傾斜面部が形成されていることを特徴とする請求項3に記載のリニアモータ。   Assuming a virtual horizontal line connecting the end point position of the first inclined surface part and the end point position of the second inclined surface part, and a virtual vertical line orthogonal to the virtual horizontal line and passing through the boundary position, the virtual horizontal line When the distance between the intersection of the imaginary vertical line and the boundary position is h, the relationship between the pitch τp for arranging the permanent magnets of the permanent magnet row and the distance h is h / τp. The linear motor according to claim 3, wherein the first and second inclined surface portions are formed so as to be equal to 0.1 to 0.4. 前記二つの端部側極歯の一方の前記極歯面の前記境界部と他方の前記極歯面の前記境界部との間の距離寸法LKと、前記永久磁石列の前記運動方向の全長寸法LMと、前記永久磁石列の前記永久磁石を配置するためのピッチτpとの関係が(LK−LM)/τp=0.25〜1.25となるように前記第1及び第2の傾斜面部が形成されていることを特徴とする請求項3に記載のリニアモータ。   The distance dimension LK between the boundary part of one pole tooth surface of the two end side pole teeth and the boundary part of the other pole tooth surface, and the total length dimension of the permanent magnet row in the movement direction The first and second inclined surface portions so that the relationship between LM and the pitch τp for arranging the permanent magnets in the permanent magnet row is (LK−LM) /τp=0.25 to 1.25. The linear motor according to claim 3, wherein the linear motor is formed. 前記コアは、前記運動方向と直交する方向に複数枚の鋼板が積層されて構成されていることを特徴とする請求項1または2に記載のリニアモータ。   The linear motor according to claim 1, wherein the core is configured by laminating a plurality of steel plates in a direction orthogonal to the movement direction. 軸線方向に往復動する直動軸、前記直動軸に固定された磁石取付部及び前記磁石取付部に固定され前記直動軸の軸線方向に並ぶ複数の永久磁石からなる4つの永久磁石列を有する可動子と、
前記4つの永久磁石列のうち対応する1つの前記永久磁石列と対向する極歯面を端部に有する複数の極歯及び隣接する2つの前記極歯の間にスロットが形成されるように前記複数の極歯を相互に連結するヨークを備えた4つのコアと、前記4つのコアに対して装着されて前記複数の極歯を励磁する励磁巻線と有する電機子を備えた固定子とを具備し、
前記永久磁石列の前記運動方向の全長寸法が、前記励磁巻線が配置される前記スロットの列の運動方向の全長寸法よりも長く、且つ前記コアの前記運動方向の全長寸法よりも短くなるように構成され、
前記コアに含まれる前記複数の極歯のうち前記運動方向の両端に位置する二つの端部側極歯の前記極歯面の形状が、コギング力の発生を低減するように定められているシリンダ型リニアモータにおいて、
前記二つの端部側極歯の前記極歯面は、それぞれ前記永久磁石列と対向している状態において、前記運動方向に隣接する他の前記極歯から離れるに従って前記極歯面と前記永久磁石列との間の間隙寸法が徐々に大きくなるように傾斜する第1の傾斜面部と、前記第1の傾斜面部から離れるに従って前記極歯面と前記永久磁石列との間の間隙寸法が徐々に小さくなるように傾斜する第2の傾斜面部とを含んでいることを特徴とするシリンダ型リニアモータ。
Four permanent magnet rows comprising a linear motion shaft that reciprocates in the axial direction, a magnet mounting portion fixed to the linear motion shaft, and a plurality of permanent magnets fixed to the magnet mounting portion and arranged in the axial direction of the linear motion shaft. A mover having,
A plurality of pole teeth having pole tooth surfaces facing one of the corresponding permanent magnet rows among the four permanent magnet rows, and slots formed between the two adjacent pole teeth. A stator including an armature having four cores having yokes for interconnecting a plurality of pole teeth, and an excitation winding attached to the four cores to excite the plurality of pole teeth; Equipped,
The overall length dimension of the permanent magnet row in the movement direction is longer than the overall length dimension in the movement direction of the row of slots in which the excitation windings are arranged, and is shorter than the overall length dimension of the core in the movement direction. Composed of
A cylinder in which the shape of the pole tooth surfaces of two end side pole teeth located at both ends in the movement direction among the plurality of pole teeth included in the core is determined so as to reduce the occurrence of cogging force. Type linear motor
The pole tooth surfaces of the two end side pole teeth are respectively opposed to the permanent magnet row, and the pole tooth surfaces and the permanent magnets are separated from the other pole teeth adjacent to the movement direction. The first sloping surface portion that inclines so that the gap size between the rows gradually increases, and the gap size between the pole tooth surface and the permanent magnet row gradually increases as the distance from the first sloping surface portion increases. A cylinder-type linear motor including a second inclined surface portion that is inclined so as to become smaller.
JP2004028549A 2004-02-04 2004-02-04 Linear motor Expired - Fee Related JP4522106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004028549A JP4522106B2 (en) 2004-02-04 2004-02-04 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004028549A JP4522106B2 (en) 2004-02-04 2004-02-04 Linear motor

Publications (2)

Publication Number Publication Date
JP2005223997A true JP2005223997A (en) 2005-08-18
JP4522106B2 JP4522106B2 (en) 2010-08-11

Family

ID=34999209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028549A Expired - Fee Related JP4522106B2 (en) 2004-02-04 2004-02-04 Linear motor

Country Status (1)

Country Link
JP (1) JP4522106B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171659A (en) * 2008-01-11 2009-07-30 Yamaha Motor Co Ltd Linear motor and component transfer apparatus
JP2010532155A (en) * 2007-06-27 2010-09-30 ブルックス オートメーション インコーポレイテッド Motor stator with lifting function and low cogging characteristics
CN102195440A (en) * 2010-03-11 2011-09-21 株式会社安川电机 Linear motor
US8680803B2 (en) 2007-07-17 2014-03-25 Brooks Automation, Inc. Substrate processing apparatus with motors integral to chamber walls
US8723376B2 (en) 2009-01-23 2014-05-13 Hitachi Metals, Ltd. Mover and linear motor
US8803513B2 (en) 2007-06-27 2014-08-12 Brooks Automation, Inc. Multiple dimension position sensor
US8823294B2 (en) 2007-06-27 2014-09-02 Brooks Automation, Inc. Commutation of an electromagnetic propulsion and guidance system
US9024488B2 (en) 2007-06-27 2015-05-05 Brooks Automation, Inc. Robot drive with magnetic spindle bearings
DE102015013638A1 (en) 2014-10-29 2016-05-04 Fanuc Corporation Linear motor with reduced latching force
US9752615B2 (en) 2007-06-27 2017-09-05 Brooks Automation, Inc. Reduced-complexity self-bearing brushless DC motor
JP2018074722A (en) * 2016-10-27 2018-05-10 山洋電気株式会社 Linear motor
US11002566B2 (en) 2007-06-27 2021-05-11 Brooks Automation, Inc. Position feedback for self bearing motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286122A (en) * 2000-03-31 2001-10-12 Sanyo Denki Co Ltd Cylinder-type linear synchronous motor
JP2002359962A (en) * 2001-03-30 2002-12-13 Sanyo Denki Co Ltd Cylinder-type linear synchronous motor
JP2003199319A (en) * 2001-10-19 2003-07-11 Yaskawa Electric Corp Permanent magnetic synchronous linear motor
JP2003299342A (en) * 2002-01-29 2003-10-17 Mitsubishi Electric Corp Linear motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286122A (en) * 2000-03-31 2001-10-12 Sanyo Denki Co Ltd Cylinder-type linear synchronous motor
JP2002359962A (en) * 2001-03-30 2002-12-13 Sanyo Denki Co Ltd Cylinder-type linear synchronous motor
JP2003199319A (en) * 2001-10-19 2003-07-11 Yaskawa Electric Corp Permanent magnetic synchronous linear motor
JP2003299342A (en) * 2002-01-29 2003-10-17 Mitsubishi Electric Corp Linear motor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101496654B1 (en) * 2007-06-27 2015-02-27 브룩스 오토메이션 인코퍼레이티드 Motor stator with lift capability and reduced cogging characteristics
JP2010532155A (en) * 2007-06-27 2010-09-30 ブルックス オートメーション インコーポレイテッド Motor stator with lifting function and low cogging characteristics
US11002566B2 (en) 2007-06-27 2021-05-11 Brooks Automation, Inc. Position feedback for self bearing motor
US9752615B2 (en) 2007-06-27 2017-09-05 Brooks Automation, Inc. Reduced-complexity self-bearing brushless DC motor
US8659205B2 (en) 2007-06-27 2014-02-25 Brooks Automation, Inc. Motor stator with lift capability and reduced cogging characteristics
US9024488B2 (en) 2007-06-27 2015-05-05 Brooks Automation, Inc. Robot drive with magnetic spindle bearings
US8803513B2 (en) 2007-06-27 2014-08-12 Brooks Automation, Inc. Multiple dimension position sensor
US8823294B2 (en) 2007-06-27 2014-09-02 Brooks Automation, Inc. Commutation of an electromagnetic propulsion and guidance system
US8680803B2 (en) 2007-07-17 2014-03-25 Brooks Automation, Inc. Substrate processing apparatus with motors integral to chamber walls
JP2009171659A (en) * 2008-01-11 2009-07-30 Yamaha Motor Co Ltd Linear motor and component transfer apparatus
US9071124B2 (en) 2009-01-23 2015-06-30 Hitachi Metals, Ltd. Mover and linear motor
US8723376B2 (en) 2009-01-23 2014-05-13 Hitachi Metals, Ltd. Mover and linear motor
US8384252B2 (en) 2010-03-11 2013-02-26 Kabushiki Kaisha Yaskawa Denki Linear motor
JP2011188709A (en) * 2010-03-11 2011-09-22 Yaskawa Electric Corp Linear motor
CN102195440A (en) * 2010-03-11 2011-09-21 株式会社安川电机 Linear motor
DE102015013638A1 (en) 2014-10-29 2016-05-04 Fanuc Corporation Linear motor with reduced latching force
US10355575B2 (en) 2014-10-29 2019-07-16 Fanuc Corporation Linear motor with reduced cogging force
DE102015013638B4 (en) 2014-10-29 2021-08-19 Fanuc Corporation Linear motor with reduced detent force
JP2018074722A (en) * 2016-10-27 2018-05-10 山洋電気株式会社 Linear motor

Also Published As

Publication number Publication date
JP4522106B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
JP4603316B2 (en) Cylinder type linear motor mover
US6949846B2 (en) Linear motor with reduced cogging force
JP4522106B2 (en) Linear motor
US7839030B2 (en) Linear motor
US7696654B2 (en) Linear motor not requiring yoke
TWI459684B (en) Linear motor
JP2004064852A (en) Linear motor and linear motor compressor
JP5418558B2 (en) Linear motor stator and linear motor
JP4458238B2 (en) Permanent magnet synchronous linear motor
JP2010213374A (en) Linear motor
JP5300325B2 (en) Linear motor
TWI664795B (en) Linear motor
JP4962040B2 (en) Vibration type motor
US7482716B2 (en) Linear motor with claw-pole armature units
JP4522192B2 (en) Linear motor
JP4925720B2 (en) Mover for linear motor
JP5356488B2 (en) Mover for linear motor
JP2003244930A (en) Driving device
JP4551684B2 (en) Cylinder type linear motor
JP2018050430A (en) Linear motor
JP4988233B2 (en) Linear motor
JP4711182B2 (en) Linear motor armature and linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees