JP2005222846A - Electrolyte solution for secondary battery and secondary battery using the same - Google Patents

Electrolyte solution for secondary battery and secondary battery using the same Download PDF

Info

Publication number
JP2005222846A
JP2005222846A JP2004030661A JP2004030661A JP2005222846A JP 2005222846 A JP2005222846 A JP 2005222846A JP 2004030661 A JP2004030661 A JP 2004030661A JP 2004030661 A JP2004030661 A JP 2004030661A JP 2005222846 A JP2005222846 A JP 2005222846A
Authority
JP
Japan
Prior art keywords
general formula
secondary battery
group
electrolyte solution
acid ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004030661A
Other languages
Japanese (ja)
Other versions
JP4577482B2 (en
Inventor
Koji Utsuki
功二 宇津木
Takeki Kusachi
雄樹 草地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2004030661A priority Critical patent/JP4577482B2/en
Publication of JP2005222846A publication Critical patent/JP2005222846A/en
Application granted granted Critical
Publication of JP4577482B2 publication Critical patent/JP4577482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To obtain electrolyte solution which is stable even if preserved for a long period, and to provide a lithium secondary battery excellent in a capacity restoration rate with rise of resistance and a generated volume of gas restrained. <P>SOLUTION: On the electrolyte solution for the secondary battery containing a compound expressed in general formula (1) in an aprotic solvent, a content of chlorine in the electrolyte solution is made less than 150 ppm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、二次電池用電解液およびそれを用いた二次電池に関するものである。   The present invention relates to an electrolyte for a secondary battery and a secondary battery using the same.

負極に炭素材料、酸化物、リチウム合金またはリチウム金属を用い、正極にリチウム含有遷移金属複合酸化物を用い、更に鎖状又は環状のカーボネート系の溶媒を含んだ電解液を有する非水電解液リチウムイオンまたはリチウム二次電池は、高いエネルギー密度を実現できることから携帯電話、ノートパソコン用などの電源として注目されている。また最近では、出力特性の向上、保存特性などの長期信頼性の向上によりハイブリッド自動車(HEV)などのモーター駆動の電源としても注目されている。これらの二次電池においては、電極表面と前記溶媒分子との反応を抑制する目的で、電解液中に1又は複数の添加剤を加え、充放電過程の電気化学反応を利用し、電極表面に添加剤由来の保護皮膜(又は皮膜)と呼ばれる膜を形成し二次電池の基本特性や信頼性を向上させることが知られている。この皮膜は、充放電効率、サイクル寿命、安全性に大きな影響を及ぼすことから電池の高性能化には電極表面の皮膜の形成・制御が不可欠であることが知られている。   Non-aqueous electrolyte lithium which uses carbon material, oxide, lithium alloy or lithium metal for negative electrode, uses lithium-containing transition metal composite oxide for positive electrode, and further has electrolyte containing chain or cyclic carbonate solvent Ion or lithium secondary batteries are attracting attention as power sources for mobile phones and laptop computers because they can achieve high energy density. Recently, attention has also been paid to a power source for driving a motor such as a hybrid vehicle (HEV) by improving output characteristics and long-term reliability such as storage characteristics. In these secondary batteries, for the purpose of suppressing the reaction between the electrode surface and the solvent molecules, one or more additives are added to the electrolytic solution, and the electrochemical reaction in the charge / discharge process is used to It is known to form a film called a protective film (or film) derived from an additive to improve the basic characteristics and reliability of a secondary battery. It is known that the formation and control of the coating on the electrode surface is indispensable for improving the performance of the battery because this coating has a great influence on the charge / discharge efficiency, cycle life, and safety.

前記皮膜を形成させるために、様々な添加剤が電解液に適用されてきたが、中でも特許文献1〜3に示すような環状モノスルホン酸エステルが皮膜形成能に優れ、電池特性の改善が図れることでよく使われている。また、最近では非特許文献1に環状ジスルホン酸エステル(CDS)を電解液の添加剤に用いた二次電池は環状モノスルホン酸エステルを用いたものよりもサイクル特性や保存特性(抵抗上昇の抑制、高容量維持率)を顕著に向上できることが報告されている。環状ジスルホン酸エステルは例えば、特許文献4に示されるように、アルキルジスルホン酸クロライドを経由して合成されるため、通常、不純物として塩素を含んだ化合物を含有する。
特開昭63−102173号公報 特開2000−3724号公報 特開平11−339850号公報 特公平5−44946号公報 草地雄樹、宇津木功二、第44回電池討論会講演要旨集、pp526−527(2003)
In order to form the film, various additives have been applied to the electrolytic solution. Among them, cyclic monosulfonic acid esters as shown in Patent Documents 1 to 3 have excellent film forming ability and can improve battery characteristics. It is often used. In addition, recently, in non-patent document 1, secondary batteries using cyclic disulfonate (CDS) as an additive for electrolyte solution have cycle characteristics and storage characteristics (inhibition of resistance increase) rather than those using cyclic monosulfonate. It has been reported that the high capacity retention rate) can be significantly improved. Since the cyclic disulfonic acid ester is synthesized via an alkyldisulfonic acid chloride, for example, as shown in Patent Document 4, it usually contains a compound containing chlorine as an impurity.
JP 63-102173 A JP 2000-3724 A JP 11-339850 A Japanese Patent Publication No. 5-44946 Yuki Kusachi, Koji Utsugi, Abstracts of the 44th Battery Conference, pp 526-527 (2003)

上述したように、環状ジスルホン酸エステルを電解液の添加剤に用いた二次電池は非常に優れた電池特性を示す。しかしながら、次のような課題も有していた。特許文献4では、粗合成後再結晶し更に昇華精製を行っているが、一般的に塩素系不純物を除去することが困難であった。塩素系不純物をある一定量含んだ環状ジスルホン酸を電解液に混ぜ、前記電解液を一ヶ月以上といった長期にわたって保管しておくと、経時に着色し劣化していく現象が見られた。また、塩素系不純物がある一定以上含有し、着色した電解液を用いて電池を作ると電池特性が低下することも判明した。   As described above, the secondary battery using the cyclic disulfonic acid ester as an additive for the electrolytic solution exhibits very excellent battery characteristics. However, it has the following problems. In Patent Document 4, recrystallization after crude synthesis and further sublimation purification are performed, but it is generally difficult to remove chlorine-based impurities. When a cyclic disulfonic acid containing a certain amount of a chlorine-based impurity was mixed with an electrolytic solution, and the electrolytic solution was stored for a long period of time, such as one month or longer, a phenomenon was observed in which it colored and deteriorated over time. It has also been found that battery characteristics deteriorate when a battery is made using a colored electrolyte containing a certain amount or more of chlorine-based impurities.

このように、環状ジスルホン酸エステルを電解液の添加剤に用いた場合、不純物である塩素系化合物の含有量を可能な限り少なくし、また、たとえ微量の塩素系化合物を含有していても優れた電池特性を発現する二次電池用電解液の開発が重要な課題である。   Thus, when cyclic disulfonic acid ester is used as an additive for electrolytic solution, the content of chlorinated compounds as impurities is reduced as much as possible, and even if it contains a trace amount of chlorinated compounds, it is excellent. Development of secondary battery electrolytes that exhibit excellent battery characteristics is an important issue.

上記課題を解決するために本発明は以下の構成を有することを特徴とする。すなわち、本発明は 少なくとも非プロトン性溶媒と、環状ジスルホン酸エステルとを含む二次電池用電解液であって、該電解液中の環状ジスルホン酸エステルの濃度が0.1質量%以上5.0質量%以下であり、該電解液中の塩素の割合が質量基準で150ppm未満であることを特徴とする二次電池用電解液。   In order to solve the above problems, the present invention is characterized by having the following configuration. That is, the present invention is an electrolytic solution for a secondary battery containing at least an aprotic solvent and a cyclic disulfonic acid ester, wherein the concentration of the cyclic disulfonic acid ester in the electrolytic solution is 0.1% by mass or more and 5.0% by mass. An electrolytic solution for a secondary battery, characterized in that the proportion of chlorine in the electrolytic solution is less than 150% by mass and is less than 150 ppm by mass.

本発明は更に、前記環状ジスルホン酸エステルが下記一般式(1)で示される物質であることが好ましい。   In the present invention, the cyclic disulfonic acid ester is preferably a substance represented by the following general formula (1).

Figure 2005222846
Figure 2005222846

(但し、上記一般式(1)において、Aは、分岐していても良い置換もしくは無置換の炭素数1〜5のアルキレン基、カルボニル基、スルフィニル基、分岐していても良い置換もしくは無置換の炭素数1〜5のパーフルオロアルキレン基、分岐していても良い炭素数2〜6の置換もしくは無置換のフルオロアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1〜6のアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1〜6のパーフルオロアルキレン基又はエーテル結合を含み分岐していても良い炭素数2〜6の置換もしくは無置換のフルオロアルキレン基を示す。Bは分岐していても良い置換もしくは無置換のアルキレン基を示す。)
本発明は更に、前記一般式(1)で示される化合物が下記一般式(2)で示される環状ジスルホン酸エステルであることが好ましい。
(However, in the above general formula (1), A is a substituted or unsubstituted C1-C5 alkylene group, carbonyl group, sulfinyl group, which may be branched, or substituted or unsubstituted which may be branched. A perfluoroalkylene group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkylene group having 2 to 6 carbon atoms which may be branched, and a substituted or unsubstituted carbon number which may be branched including an ether bond A 1-6 alkylene group, a substituted or unsubstituted C1-C6 perfluoroalkylene group that may contain an ether bond, or an ether bond, or a C2-6 substitution that may contain a ether bond Or an unsubstituted fluoroalkylene group, and B represents a substituted or unsubstituted alkylene group which may be branched.)
In the present invention, it is further preferable that the compound represented by the general formula (1) is a cyclic disulfonic acid ester represented by the following general formula (2).

Figure 2005222846
Figure 2005222846

(但し、上記一般式(2)において、xは0又は1であり、nは1以上5以下の整数である。また、Rは水素原子、メチル基、エチル基又はハロゲン原子を示す。)
本発明は更に、前記一般式(1)で示される化合物が下記一般式(3)で示される環状ジスルホン酸エステルであることが好ましい。
(However, in the said General formula (2), x is 0 or 1, n is an integer of 1-5, and R shows a hydrogen atom, a methyl group, an ethyl group, or a halogen atom.)
In the present invention, it is further preferable that the compound represented by the general formula (1) is a cyclic disulfonic acid ester represented by the following general formula (3).

Figure 2005222846
Figure 2005222846

(但し、上記一般式(3)において、xは0又は1であり、nは1以上5以下の整数である。また、Rは水素原子、メチル基、エチル基又はハロゲン原子を示す。)
本発明は更に、前記一般式(1)で示される化合物が下記一般式(4)で示される環状ジスルホン酸エステルであることが好ましい。
(However, in the general formula (3), x is 0 or 1, n is an integer of 1 to 5, and R represents a hydrogen atom, a methyl group, an ethyl group, or a halogen atom.)
In the present invention, it is further preferable that the compound represented by the general formula (1) is a cyclic disulfonic acid ester represented by the following general formula (4).

Figure 2005222846
Figure 2005222846

(但し、上記一般式(4)において、xは0又は1であり、k、mはそれぞれ独立して1又は2、nは1以上4以下の整数、k+m+nは3以上6以下である。また、Rは水素原子、メチル基、エチル基又はハロゲン原子を示す。)
本発明は更に、前記一般式(1)で示される化合物が下記一般式(5)で示される環状ジスルホン酸エステルであることが好ましい。
(However, in the above general formula (4), x is 0 or 1, k and m are each independently 1 or 2, n is an integer of 1 to 4, and k + m + n is 3 to 6. R represents a hydrogen atom, a methyl group, an ethyl group or a halogen atom.)
In the present invention, the compound represented by the general formula (1) is preferably a cyclic disulfonic acid ester represented by the following general formula (5).

Figure 2005222846
Figure 2005222846

(但し、上記一般式(5)において、xは0又は1であり、k、mはそれぞれ独立して1又は2、nは1以上4以下の整数、k+m+nは3以上6以下である。また、Rは水素原子、メチル基、エチル基又はハロゲン原子を示す。)
本発明は更に、前記一般式(1)で示される化合物が下記一般式(6)で示される環状ジスルホン酸エステルであることが好ましい。
(However, in the general formula (5), x is 0 or 1, k and m are each independently 1 or 2, n is an integer of 1 to 4 and k + m + n is 3 to 6.) R represents a hydrogen atom, a methyl group, an ethyl group or a halogen atom.)
In the present invention, it is further preferable that the compound represented by the general formula (1) is a cyclic disulfonic acid ester represented by the following general formula (6).

Figure 2005222846
Figure 2005222846

(但し、上記一般式(6)において、xは0又は1であり、k、mはそれぞれ独立して1又は2、nは1以上4以下の整数、k+m+nは3以上6以下である。また、Rは水素原子、メチル基、エチル基又はハロゲン原子を示す。)
本発明は更に、前記一般式(1)で示される化合物が下記一般式(7)で示される環状ジスルホン酸エステルであることが好ましい。
(However, in the general formula (6), x is 0 or 1, k and m are each independently 1 or 2, n is an integer of 1 to 4, and k + m + n is 3 to 6.) R represents a hydrogen atom, a methyl group, an ethyl group or a halogen atom.)
In the present invention, it is further preferable that the compound represented by the general formula (1) is a cyclic disulfonic acid ester represented by the following general formula (7).

Figure 2005222846
Figure 2005222846

(但し、上記一般式(6)において、xは0又は1であり、k、mはそれぞれ独立して1又は2、nは1以上4以下の整数、k+m+nは3以上6以下である。また、Rは水素原子、メチル基、エチル基又はハロゲン原子を示す。)
本発明によれば、非プロトン性溶媒に、上記一般式(1)で示される化合物が含まれていることを特徴とする二次電池用電解液であって、前記電解液中の塩素含有量が150ppm以下である場合、保存安定性に有効な電解液が提供できる。
(However, in the general formula (6), x is 0 or 1, k and m are each independently 1 or 2, n is an integer of 1 to 4, and k + m + n is 3 to 6.) R represents a hydrogen atom, a methyl group, an ethyl group or a halogen atom.)
According to the present invention, there is provided an electrolytic solution for a secondary battery, wherein the aprotic solvent contains the compound represented by the general formula (1), wherein the chlorine content in the electrolytic solution Is 150 ppm or less, an electrolytic solution effective for storage stability can be provided.

本発明によれば、質量基準で150pp未満の塩素を含有する非プロトン性溶媒に、一般式(1)の環状ジスルホン酸エステル化合物が含まれた二次電池用電解液を用いることにより、1ヶ月といった長期保存が可能となる。その結果、保存安定性(抵抗上昇の抑制、ガス発生の抑制、高容量回復率)に優れたリチウム二次電池を得ることができる。 According to the present invention, by using an electrolyte solution for a secondary battery in which a cyclic disulfonic acid ester compound of the general formula (1) is contained in an aprotic solvent containing less than 150 pp of chlorine on a mass basis, Such long-term storage is possible. As a result, a lithium secondary battery excellent in storage stability (suppression of resistance increase, suppression of gas generation, high capacity recovery rate) can be obtained.

本発明の二次電池用電解液は、下記一般式(1)で表される環状ジスルホン酸エステルを有する。この環状ジスルホン酸エステルを有することによって、150pp未満の塩素を含有する場合であっても長期保存安定性に優れた二次電池を得ることができる。   The electrolytic solution for a secondary battery of the present invention has a cyclic disulfonic acid ester represented by the following general formula (1). By having this cyclic disulfonic acid ester, a secondary battery excellent in long-term storage stability can be obtained even if it contains less than 150 pp of chlorine.

Figure 2005222846
Figure 2005222846

(但し、上記一般式(1)において、Aは、分岐していても良い置換もしくは無置換の炭素数1〜5のアルキレン基、カルボニル基、スルフィニル基、分岐していても良い置換もしくは無置換の炭素数1〜5のパーフルオロアルキレン基、分岐していても良い炭素数2〜6の置換もしくは無置換のフルオロアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1〜6のアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1〜6のパーフルオロアルキレン基又はエーテル結合を含み分岐していても良い炭素数2〜6の置換もしくは無置換のフルオロアルキレン基を示す。Bは分岐していても良い置換もしくは無置換のアルキレン基を示す。)
ここで、「分岐していても良い炭素数2〜6の置換もしくは無置換のフルオロアルキレン基」と「エーテル結合を含み分岐していても良い炭素数2〜6の置換もしくは無置換のフルオロアルキレン基」中のフルオロアルキレン基は、炭素原子に結合した水素原子の一部がフッ素原子により置換されたものであり、少なくとも同一の炭素に結合した二つの水素原子と、同一の炭素に結合した二つのフッ素原子を有することが好ましい。
また、パーフルオロアルキレン基とはアルキレン基のすべての水素原子がフッ素原子で置き換えられたアルキレン基をいう。
(However, in the above general formula (1), A is a substituted or unsubstituted C1-C5 alkylene group, carbonyl group, sulfinyl group, which may be branched, or substituted or unsubstituted which may be branched. A perfluoroalkylene group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkylene group having 2 to 6 carbon atoms which may be branched, and a substituted or unsubstituted carbon number which may be branched including an ether bond A 1-6 alkylene group, a substituted or unsubstituted C1-C6 perfluoroalkylene group that may contain an ether bond, or an ether bond, or a C2-6 substitution that may contain a ether bond Or an unsubstituted fluoroalkylene group, and B represents a substituted or unsubstituted alkylene group which may be branched.)
Here, “C2-C6 substituted or unsubstituted fluoroalkylene group which may be branched” and “C2-C6 substituted or unsubstituted fluoroalkylene which may be branched including an ether bond” The fluoroalkylene group in the “group” is a group in which a part of hydrogen atoms bonded to a carbon atom is substituted with a fluorine atom, and at least two hydrogen atoms bonded to the same carbon and two bonded to the same carbon. It preferably has two fluorine atoms.
The perfluoroalkylene group refers to an alkylene group in which all hydrogen atoms of the alkylene group are replaced with fluorine atoms.

以下に本発明の一般式(1)の環状ジスルホン酸エステルの代表例を具体的に例示するが、本発明はこれらに限定されるものではない。   Specific examples of the cyclic disulfonic acid ester of the general formula (1) of the present invention are specifically illustrated below, but the present invention is not limited thereto.

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

一般式(1)で表される化合物は特許文献4に示される環状ジスルホン酸エステルの合成方法などを参照し、メタンジスルホン酸クロライドなどを中間体として製造することが出来る。
また、電解液中に存在する塩素系不純物としては、以下に示すような化合物があげられる。
The compound represented by the general formula (1) can be produced by referring to a method for synthesizing a cyclic disulfonic acid ester described in Patent Document 4 and using methanedisulfonic acid chloride as an intermediate.
Further, examples of the chlorine-based impurities present in the electrolytic solution include the following compounds.

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

Figure 2005222846
Figure 2005222846

本発明では非プロトン性溶媒に少なくとも一般式(1)で表される化合物が含まれ、前記電解液中の塩素含有量が質量基準で150ppm未満の必要がある。150ppm以上の場合、おおよそ1ヶ月以上電解液を放置しておくと電解液が着色してくる。この着色についての詳細は現時点ではよく分かっていないが、塩素系不純物を介しての電解液に含まれる溶媒や指示塩の分解或いはそれを介しての添加剤の分解などが考えられる。この着色した電解液を用いて、二次電池を作成すると着色していない電解液に比較してサイクル特性や保存特性が悪くなるという結果を招いていた。塩素含有量が150ppm未満の場合には、1ヶ月以上放置しても着色する現象は見られず、電池特性も顕著に劣化する事はなかった。
塩素含有量は、150ppm未満であれば特に問題はないが、高温(例:55℃)下での電池の保存時のガス発生の抑制効果を高める目的で、特に好ましくは100ppm以下とするのが良い。更に好ましくは、塩素含有量が0であるのが良い。塩素含有量が0のとき、二次電池はより優れた長期保存性及びサイクル特性を有することができる。
In the present invention, the aprotic solvent contains at least the compound represented by the general formula (1), and the chlorine content in the electrolytic solution needs to be less than 150 ppm on a mass basis. In the case of 150 ppm or more, the electrolyte solution is colored when the electrolyte solution is allowed to stand for approximately one month or longer. The details of this coloring are not well understood at present, but it is conceivable to decompose the solvent or indicator salt contained in the electrolyte solution via chlorinated impurities, or decompose the additive via it. When a secondary battery is produced using this colored electrolyte, the cycle characteristics and the storage characteristics are deteriorated as compared with an electrolyte that is not colored. When the chlorine content was less than 150 ppm, no coloring phenomenon was observed even when left for more than one month, and the battery characteristics were not significantly deteriorated.
If the chlorine content is less than 150 ppm, there is no particular problem, but for the purpose of enhancing the effect of suppressing gas generation during storage of the battery at a high temperature (eg, 55 ° C.), the chlorine content is particularly preferably 100 ppm or less. good. More preferably, the chlorine content is zero. When the chlorine content is 0, the secondary battery can have better long-term storage and cycle characteristics.

前記一般式(1)で表される化合物は、電解液中に0.1〜5.0質量%含まれる必要がある。0.1質量%未満では電極表面での皮膜形成に十分効果がない。5.0質量%を越えると電解液の粘性を大きくしたり、電解液の抵抗を上げる要因となる。本発明においてより好ましくは、0.5〜3.0質量%の範囲で添加すると十分な皮膜効果が得られる。   The compound represented by the general formula (1) needs to be contained in an amount of 0.1 to 5.0% by mass in the electrolytic solution. If it is less than 0.1% by mass, the film formation on the electrode surface is not sufficiently effective. If it exceeds 5.0% by mass, it will increase the viscosity of the electrolyte or increase the resistance of the electrolyte. In the present invention, more preferably, a sufficient film effect is obtained when added in the range of 0.5 to 3.0% by mass.

上記一般式(1)で示される化合物に加え、更に一般式(1)で示される以外の一以上のスルホニル基を有する化合物を含む構成とすることができる。好ましくは、下記一般式(8)で示される環状スルホン酸エステル化合物を含むことができる。   In addition to the compound represented by the above general formula (1), it may further comprise a compound having one or more sulfonyl groups other than those represented by the general formula (1). Preferably, a cyclic sulfonic acid ester compound represented by the following general formula (8) can be included.

Figure 2005222846
Figure 2005222846

(但し、上記一般式(8)において、nは0以上2以下の整数である。また、R1〜R6はそれぞれ独立して水素原子、炭素数1以上12以下のアルキル基、炭素数3以上6以下のシクロアルキル基又は炭素数6以上12以下のアリール基である。)
一般式(1)に示す化合物に加え、一般式(8)で示されるスルホニル基を有する化合物を加えることにより、複合効果による皮膜の安定性向上、溶媒分子の分解抑制効果、水分除去効果が大きくなる。一般式(8)で示される具体的な化合物としては1,3−プロパンスルトンや1,4−ブタンスルトン(特開昭62−100948号公報、特開昭63−102173号公報、特開平11−339850号公報、特開2000−3724号公報)などがあげられるが、これらに限定されるものではない。
(However, in the general formula (8), n is 0 to 2 integer. Further, R 1 to R 6 are each independently hydrogen atom, C 1 to 12 alkyl group carbon, 3 carbon atoms Or a cycloalkyl group having 6 or less or an aryl group having 6 to 12 carbon atoms.)
By adding a compound having a sulfonyl group represented by the general formula (8) in addition to the compound represented by the general formula (1), the stability of the film is improved by the combined effect, the solvent molecule decomposition inhibiting effect, and the water removing effect are greatly increased. Become. Specific compounds represented by the general formula (8) include 1,3-propane sultone and 1,4-butane sultone (Japanese Patent Laid-Open Nos. 62-1000094, 63-102173, 11-339850). However, it is not limited to these.

更に本発明によれば、前記電解液中にビニレンカーボネート又はその誘導体を添加又は混合することで更にサイクル特性の改善を図ることができる。前記ビニレンカーボネート又はその誘導体を添加剤として使用する場合には、電解液中に0.01〜10質量%含ませることで効果が得られる。また、溶媒として用いる場合には1〜5質量%含ませることで効果が得られる。   Furthermore, according to the present invention, the cycle characteristics can be further improved by adding or mixing vinylene carbonate or a derivative thereof into the electrolytic solution. When the vinylene carbonate or a derivative thereof is used as an additive, the effect can be obtained by adding 0.01 to 10% by mass in the electrolytic solution. Moreover, when using as a solvent, an effect is acquired by including 1-5 mass%.

上記非プロトン性電解液用の有機溶媒としては、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ−ラクトン類、環状エーテル類、鎖状エーテル類およびそれらのフッ化誘導体からなる群より選ばれた少なくとも1種類の有機溶媒を含有することが好ましい。これらの有機溶媒を含有することでより電池特性に優れた二次電池とすることができる。   Examples of the organic solvent for the aprotic electrolyte solution include cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, γ-lactones, cyclic ethers, chain ethers, and fluorinated derivatives thereof. It is preferable to contain at least one organic solvent selected from the group. By containing these organic solvents, a secondary battery having more excellent battery characteristics can be obtained.

更に、電解液中にはリチウム塩を含有することが好ましい。リチウム塩としては、LiPF6、LiBF4、LiAsF6、LiSbF6、LiClO4、LiAlCl4、LiN(Ck2k+1SO22、LiN(Ck2k+1SO2)(Cm2m+1SO2)(k,mはそれぞれ独立して1あるいは2)から選ばれ、特にLiPF6、LiBF4が好ましい。これらのリチウム塩を含むことで高エネルギー密度を達成することができる。 Further, the electrolyte solution preferably contains a lithium salt. Lithium salts include LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , LiAlCl 4 , LiN (C k F 2k + 1 SO 2 ) 2 , LiN (C k F 2k + 1 SO 2 ) (C m F 2m + 1 SO 2 ) (k and m are each independently 1 or 2), and LiPF 6 and LiBF 4 are particularly preferable. By including these lithium salts, a high energy density can be achieved.

また、本発明によれば、リチウムを活物質とする正極、負極を備えた上記二次電池用電解液を用いた二次電池が与えられる。図1に本発明に係る電池の一例について概略構造を示す。正極集電体11と、リチウムイオンを吸蔵、放出し得る酸化物またはイオウ化合物、導電性高分子、安定化ラジカル化合物のいずれかまたは混合物からなる正極活物質を含有する層12と、リチウムイオンを吸蔵、放出する炭素材料または酸化物、リチウムと合金を形成する金属、リチウム金属自身のいずれかもしくはこれらの混合物からなる負極活物質を含有する層13と、負極集電体14と、電解液15、およびこれを含む多孔質セパレータ16から構成されている。ここで、一般式(1)で表されるビニルジスルホン化合物は電解質としてリチウム塩を含んでいる電解液15に含まれる。   Moreover, according to this invention, the secondary battery using the said electrolyte solution for secondary batteries provided with the positive electrode and negative electrode which use lithium as an active material is provided. FIG. 1 shows a schematic structure of an example of a battery according to the present invention. A positive electrode current collector 11, a layer 12 containing a positive electrode active material made of an oxide or a sulfur compound, a conductive polymer, a stabilized radical compound or a mixture capable of inserting and extracting lithium ions; and a lithium ion A layer 13 containing a negative electrode active material made of any one of a carbon material or an oxide to be occluded and released, a metal that forms an alloy with lithium, lithium metal itself, or a mixture thereof, a negative electrode current collector 14, and an electrolytic solution 15 , And a porous separator 16 including the same. Here, the vinyl disulfone compound represented by the general formula (1) is contained in the electrolytic solution 15 containing a lithium salt as an electrolyte.

上記負極が、リチウムを吸蔵、放出できる材料、リチウム金属、リチウムと合金を形成することができる金属材料、酸化物材料からなる負極活物質を用いる。上記リチウムを吸蔵、放出できる材料として炭素を含んでおり、特に黒鉛もしくは非晶質炭素であることが好ましい。   The negative electrode uses a negative electrode active material made of a material capable of inserting and extracting lithium, lithium metal, a metal material capable of forming an alloy with lithium, and an oxide material. Carbon is contained as a material capable of inserting and extracting lithium, and graphite or amorphous carbon is particularly preferable.

本発明に係る二次電池の負極は、リチウム金属、リチウム合金または炭素材料や酸化物等のリチウムを吸蔵、放出できる材料により構成されている。この炭素材料としては、リチウムを吸蔵する黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、カーボンナノホーンなど、あるいはこれらの複合物を用いることができる。   The negative electrode of the secondary battery according to the present invention is made of a material that can occlude and release lithium, such as lithium metal, a lithium alloy, or a carbon material or an oxide. As the carbon material, graphite that occludes lithium, amorphous carbon, diamond-like carbon, carbon nanotube, carbon nanohorn, or a composite thereof can be used.

また、酸化物材料としては酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、リン酸、ホウ酸のいずれか、あるいはこれらの複合物を用いてもよく、特に酸化シリコンを含むことが好ましい。構造としてはアモルファス状態であることが好ましい。これは、酸化シリコンが安定で他の化合物との反応を引き起こさないため、またアモルファス構造が結晶粒界、欠陥といった不均一性に起因する劣化を導かないためである。負極活物質を有する層の成膜方法としては、蒸着法、CVD法、スパッタリング法などの方法を用いることができる。   Further, as the oxide material, any of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, phosphoric acid, boric acid, or a composite thereof may be used, and it is particularly preferable that silicon oxide is included. . The structure is preferably in an amorphous state. This is because silicon oxide is stable and does not cause a reaction with other compounds, and the amorphous structure does not lead to deterioration due to nonuniformity such as crystal grain boundaries and defects. As a method for forming the layer having the negative electrode active material, a method such as an evaporation method, a CVD method, or a sputtering method can be used.

リチウム合金とは、リチウムおよびリチウムと合金形成可能な金属により構成される。例えばAl、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元または3元以上の合金により構成される。リチウム金属乃至リチウム合金としては、特にアモルファス状合金が好ましい。これは、アモルファス構造により結晶粒界、欠陥といった不均一性に起因する劣化が起きにくいためである。   The lithium alloy is composed of lithium and a metal capable of forming an alloy with lithium. For example, it is composed of a binary or ternary or higher alloy of a metal such as Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and lithium. As the lithium metal or lithium alloy, an amorphous alloy is particularly preferable. This is because the amorphous structure hardly causes deterioration due to non-uniformity such as crystal grain boundaries and defects.

リチウム金属またはリチウム合金は、融液冷却方式、液体急冷方式、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマCVD方式、光CVD方式、熱CVD方式、ゾルーゲル方式、などの適宜な方式で形成することができる。負極活物質としてこれらの物質を用いることによって、高エネルギー密度を有する二次電池とすることができる。   Lithium metal or lithium alloy is formed by an appropriate method such as a melt cooling method, a liquid quenching method, an atomizing method, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, a thermal CVD method, a sol-gel method, etc. Can do. By using these materials as the negative electrode active material, a secondary battery having a high energy density can be obtained.

本発明において、正極活物質としては、LibZO2(ただしZは、少なくとも1種の遷移金属を表す。)である複合酸化物、例えば、LibCoO2、LibNiO2、LibMn24、LibMnO3、LibNidCr1-d2(ここで、0<b<1、0<d<1である。)、または有機イオウ化合物、導電性高分子、有機ラジカル化合物などを用いることができる。また、金属リチウム対極電位で4.5V以上にプラトーを有するリチウム含有複合酸化物を用いることもできる。リチウム含有複合酸化物としては、スピネル型リチウムマンガン複合酸化物、オリビン型リチウム含有複合酸化物、逆スピネル型リチウム含有複合酸化物等が例示される。リチウム含有複合酸化物は、例えば一般式Lia(AxMn2-x)O4(ここで、0<x<2、0<a<1.2である。Aは、Ni、Co、Fe、Ti、CrおよびCuよりなる群から選ばれる少なくとも一種である。)で表される化合物とすることができる。正極活物質としてこれらの物質を用いることによって、高エネルギー密度を有する二次電池とすることができる。 In the present invention, as the positive electrode active material, a composite oxide that is Li b ZO 2 (wherein Z represents at least one transition metal), for example, Li b CoO 2 , Li b NiO 2 , Li b Mn 2 O 4 , Li b MnO 3 , Li b Ni d Cr 1-d O 2 (where 0 <b <1, 0 <d <1), or organic sulfur compound, conductive polymer, organic A radical compound or the like can be used. Alternatively, a lithium-containing composite oxide having a plateau at 4.5 V or more at the metal lithium counter electrode potential can be used. Examples of the lithium-containing composite oxide include spinel-type lithium manganese composite oxide, olivine-type lithium-containing composite oxide, and reverse spinel-type lithium-containing composite oxide. The lithium-containing composite oxide is, for example, a general formula Li a (A x Mn 2−x ) O 4 (where 0 <x <2, 0 <a <1.2. A is Ni, Co, Fe , At least one selected from the group consisting of Ti, Cr and Cu.). By using these materials as the positive electrode active material, a secondary battery having a high energy density can be obtained.

本発明における正極は、これらの活物質を、カーボンブラック等の導電性物質、ポリビニリデンフルオライド(PVDF)等の結着剤とともにN−メチル−2−ピロリドン(NMP)等の溶剤中に分散混練し、これをアルミニウム箔等の基体上に塗布するなどの方法により得ることができる。   In the positive electrode according to the present invention, these active materials are dispersed and kneaded in a solvent such as N-methyl-2-pyrrolidone (NMP) together with a conductive material such as carbon black and a binder such as polyvinylidene fluoride (PVDF). It can be obtained by a method such as coating on a substrate such as an aluminum foil.

本発明の電解液は、一般式(1)で表される化合物を電解液にあらかじめ添加・溶解することによりもたらされる。この電解液に更に一般式(8)に示す化合物あるいはビニレンカーボネート化合物を加えることによりモノスルホン酸エステルやビニレンカーボネート化合物を含有する電解液が得られる。   The electrolytic solution of the present invention is brought about by adding and dissolving the compound represented by the general formula (1) in the electrolytic solution in advance. An electrolytic solution containing a monosulfonic acid ester or a vinylene carbonate compound can be obtained by further adding a compound represented by the general formula (8) or a vinylene carbonate compound to the electrolytic solution.

本発明においては、リチウムを活物質とする負極と正極とをセパレータを隔てて組み合わせ、電池外装体に挿入後、一般式(1)で表される化合物を含む電解液を含浸させた後、電池外装体を封止または封止後に、電池を充電することにより、前記電極上に皮膜を形成させることができる。   In the present invention, a negative electrode using lithium as an active material and a positive electrode are combined with a separator interposed therebetween, inserted into a battery outer package, impregnated with an electrolytic solution containing a compound represented by the general formula (1), and then the battery. A film can be formed on the electrode by charging the battery after sealing or sealing the outer package.

本発明における電解液としては、プロピレンカーボネート(以下、PCと記載する。)、エチレンカーボネート(以下、ECと記載する。)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(以下、DECと記載する。)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンスルトン、アニソール、N−メチルピロリドン、フッ素化カルボン酸エステルなどの非プロトン性有機溶媒を一種又は二種以上を混合して使用し、これらの有機溶媒に溶解するリチウム塩を溶解させる。リチウム塩としては、リチウムイミド塩、LiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6などがあげられる。 Examples of the electrolytic solution in the present invention include propylene carbonate (hereinafter referred to as PC), ethylene carbonate (hereinafter referred to as EC), butylene carbonate (BC), cyclic carbonates such as vinylene carbonate (VC), dimethyl Chain carbonates such as carbonate (DMC), diethyl carbonate (hereinafter referred to as DEC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), aliphatic such as methyl formate, methyl acetate, ethyl propionate Carboxylic acid esters, γ-lactones such as γ-butyrolactone, chain ethers such as 1,2-ethoxyethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, Dimethylsulfoxy 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphate triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl Aprotic organics such as 2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, fluorinated carboxylic acid esters One or a mixture of two or more solvents are used to dissolve lithium salts that are dissolved in these organic solvents. The lithium salt, lithium imide salt, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, LiSbF 6 , and the like.

一般式(1)で表される化合物を溶解させ、更に一般式(8)の環状モノスルホン酸エステルを溶解させる場合、電解液に含まれる一般式(8)で表される化合物の濃度は特に限定されないが好ましくは電界液全体に対して、0.01〜10質量%が好ましい。0.01質量%未満では、電極表面全体に添加剤の効果が行き渡らず、また10質量%を越えると電解液の粘性が増大するために液抵抗が大きくなるためである。   When dissolving the compound represented by the general formula (1) and further dissolving the cyclic monosulfonic acid ester of the general formula (8), the concentration of the compound represented by the general formula (8) contained in the electrolytic solution is particularly Although not limited, Preferably 0.01-10 mass% is preferable with respect to the whole electrolysis liquid. When the amount is less than 0.01% by mass, the effect of the additive does not spread over the entire electrode surface, and when the amount exceeds 10% by mass, the viscosity of the electrolyte increases and the liquid resistance increases.

本発明に係るリチウム二次電池は、乾燥空気または不活性ガス雰囲気において、負極および正極をセパレーターを介して積層、あるいは積層したものを捲回した後に、電池缶に収容したり、合成樹脂と金属箔との積層体からなる可撓性フィルム等によって封口することによって電池を製造することができる。なお、セパレーターとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルムが用いられる。
本発明に係る二次電池の形状としては、特に制限はないが、例えば、円筒型、角型、コイン型、ラミネート型などがあげられる。
The lithium secondary battery according to the present invention includes a negative electrode and a positive electrode laminated in a dry air or inert gas atmosphere via a separator, or after being rolled up, the lithium secondary battery is accommodated in a battery can or a synthetic resin and a metal A battery can be manufactured by sealing with a flexible film made of a laminate with a foil. In addition, as a separator, porous films, such as polyolefin, such as a polypropylene and polyethylene, a fluororesin, are used.
The shape of the secondary battery according to the present invention is not particularly limited, and examples thereof include a cylindrical shape, a square shape, a coin shape, and a laminate shape.

(実施合成例1)
(化合物No.1に示すメチレンメタンジスルホン酸エステル(MMDS)の合成)
(1)メチレン−ジ−スルホクロリド(MDSC)の合成
オキシ塩化リン339.32g(2.213mol)を仕込み、氷冷下クロルスルホン酸(CS)257.88g(2.213mol)を仕込む。次いで、酢酸66.45g(1.107mol)を40℃以下で滴下した後、リフラックス(110℃)までゆっくり昇温する。リフラックス下1時間保温後、蒸留してMDSC159.10g(0.47mol)を得た。NMR所見(5.6ppm(2H))によりMDSCであることを確認した。
(Execution synthesis example 1)
(Synthesis of methylenemethane disulfonate (MMDS) shown in Compound No. 1)
(1) Synthesis of methylene-di-sulfochloride (MDSC) 339.32 g (2.213 mol) of phosphorus oxychloride is charged, and 257.88 g (2.213 mol) of chlorosulfonic acid (CS) is charged under ice cooling. Next, 66.45 g (1.107 mol) of acetic acid is added dropwise at 40 ° C. or lower, and then the temperature is slowly raised to reflux (110 ° C.). After incubating for 1 hour under reflux, it was distilled to obtain 159.10 g (0.47 mol) of MDSC. It was confirmed to be MDSC by NMR findings (5.6 ppm (2H)).

(2)メチレン−ジ−スルホン酸の銀塩(SMDS)の合成
炭酸銀201.73g(0.728mol)とアセトニトリル(五酸化ニリン添加蒸留品)706mlとを仕込む。前記MDSC73.48g(0.345mol)のアセトニトリル(五酸化ニリン添加蒸留品)463ml溶液を40℃以下で滴下した。
(2) Synthesis of silver salt of methylene-di-sulfonic acid (SMDS) 201.73 g (0.728 mol) of silver carbonate and 706 ml of acetonitrile (distilled product added with niline pentoxide) are charged. A solution of MDSC 73.48 g (0.345 mol) in 463 ml of acetonitrile (distilled product added with niline pentoxide) was added dropwise at 40 ° C. or lower.

室温下24時間攪拌後、濾過・アセトニトリルで洗浄して(ろ過残さの乾燥後重量=134.54g)955.90gのSMDSのアセトニトリル溶液を得た。(SMDSとして 119.07g、0.305molを含む)
(3)化合物No.1の合成
(3)−A法
SMDSのアセトニトリル溶液955.90g(SMDSとして119.07g、0.305mol)にジヨードメタン195.60g(0.727mol)を仕込み、リフラックス下24時間攪拌した。濾過・アセトニトリルで洗浄(残さの乾燥後重量=116.54g)・濃縮して、黄色のペースト状残渣76.34gを得た。塩化メチレン100ml×3回でMMDSを溶出した。溶出した塩化メチレン溶液を、活性炭1gで脱色・濾過した後、約5mlまで濃縮、析出した結晶を濾過・乾燥し、白色針状結晶4.62gを得た。上記白色針状結晶4.62gを90℃の油浴中で、0.5Torrの減圧下で、1時間昇華させる。この時の昇華物(微量)は廃棄する。再度、200℃の油浴中で、0.5Torrの減圧下で昇華させ4.25gの昇華精製後の化合物NO.1を得た(200℃×1時間で未昇華分はtraceとなった。)。さらに、化合物No.1をシリカゲルカラムクロマト精製(SiO2:20g,ヘキサン:酢酸エチル=1:1)を2回行って、化合物No.1を得た。得られた化合物NO.1の塩素含有量を元素分析により測定したころ0.01質量%未満(検出限界未満)であった。
After stirring at room temperature for 24 hours, filtration and washing with acetonitrile (weight after drying of filtration residue = 134.54 g), 955.90 g of an SMDS acetonitrile solution was obtained. (SMDS includes 119.07g, 0.305mol)
(3) Compound No. Synthesis of 1 (3) -Method A 195.90 g of SMDS in acetonitrile (119.07 g, 0.305 mol as SMDS) was charged with 195.60 g (0.727 mol) of diiodomethane and stirred under reflux for 24 hours. Filtration, washing with acetonitrile (weight after drying of residue = 116.54 g) and concentration gave 76.34 g of a yellow pasty residue. MMDS was eluted with 3 x 100 ml of methylene chloride. The eluted methylene chloride solution was decolorized and filtered with 1 g of activated carbon, concentrated to about 5 ml, and the precipitated crystals were filtered and dried to obtain 4.62 g of white needle crystals. 4.62 g of the white needle crystals are sublimated in a 90 ° C. oil bath under a reduced pressure of 0.5 Torr for 1 hour. The sublimate (a trace amount) at this time is discarded. Again, sublimation under reduced pressure of 0.5 Torr in an oil bath at 200 ° C. and 4.25 g of compound NO. 1 was obtained (the amount of unsublimated was traced at 200 ° C. for 1 hour). Furthermore, Compound No. No. 1 was purified twice by silica gel column chromatography (SiO2: 20 g, hexane: ethyl acetate = 1: 1), and compound No. 1 was obtained. 1 was obtained. The resulting compound NO. When the chlorine content of 1 was measured by elemental analysis, it was less than 0.01% by mass (less than the detection limit).

(3)−B法
(3)−A法において、昇華精製を行わなかった以外は(3)−A法と同様に合成し、化合物No.1を得た。得られた化合物No.1の塩素含有量を元素分析により求めたところ0.03質量%であった。
(3) Method -B Method (3) The method was synthesized in the same manner as in Method (3) -A, except that sublimation purification was not performed in Method -A. 1 was obtained. The obtained Compound No. The chlorine content of 1 was determined by elemental analysis and found to be 0.03% by mass.

(3)−C法
(3)−A法において、シリカゲルカラムクロマト精製を1回のみ行った以外は、同様に合成し、化合物No.1を得た。得られた化合物No.1の塩素含有量を元素分析により求めたところ0.08質量%であった。
(3) -C Method (3) Compound A was prepared in the same manner as in Method (A) except that silica gel column chromatography purification was performed only once. 1 was obtained. The obtained Compound No. The chlorine content of 1 was determined by elemental analysis and found to be 0.08% by mass.

(3)−D法
(3)−A法において、シリカゲルクロマト精製を1回のみ行い、昇華精製を行わなかった以外は(3)−A法と同様に合成し、化合物No.1を得た。得られた化合物No.1の塩素含有量を元素分析により求めたところ0.4質量%であった。
(3) -D Method (3) In the method -A, synthesis was performed in the same manner as in the method (3) -A except that silica gel chromatography purification was performed only once and sublimation purification was not performed. 1 was obtained. The obtained Compound No. The chlorine content of 1 was determined by elemental analysis and found to be 0.4% by mass.

(3)−E法
(3)−A法において、シリカゲルカラムクロマト精製を行わなかった以外は、(3)−A法と同様に合成し、化合物No.1を得た。得られた化合物No.1の塩素含有量を元素分析により求めたところ0.5質量%であった。
(3) -E Method (3) The method was synthesized in the same manner as in (3) -A method except that silica gel column chromatographic purification was not performed. 1 was obtained. The obtained Compound No. The chlorine content of 1 was determined by elemental analysis and found to be 0.5% by mass.

(3)−F法
(3)−A法において、昇華精製とシリカゲルカラムクロマト精製を行わなかった以外は、(3)−A法と同様に合成し、化合物No.1を得た。0.8質量%であった。
(3) -F Method (3) The method was synthesized in the same manner as in (3) -A except that sublimation purification and silica gel column chromatography purification were not performed. 1 was obtained. It was 0.8 mass%.

(電解液の作製)
電解質溶液15は、溶媒としてPCとECとDEC混合溶媒(体積比:20/20/60)を用い、この溶媒中に1mol/LのLiPF6を溶解させた。更に(3)−A〜(3)−F法で合成した化合物No.1を電解液全体の質量に対し3.0質量%になるように調整した。
(Preparation of electrolyte)
The electrolyte solution 15 used a mixed solvent of PC, EC, and DEC (volume ratio: 20/20/60) as a solvent, and 1 mol / L LiPF 6 was dissolved in the solvent. Furthermore, compound No. 1 synthesized by the method (3) -A to (3) -F was used. 1 was adjusted to 3.0% by mass with respect to the total mass of the electrolytic solution.

以上のように作成した電解液を密閉し、露点−60℃で30日間保管した。30日後の電解液をそれぞれサンプリングし、吸収スペクトルの測定を行った。(3)−E法及び(3)−F法で合成したMMDSの入った電解液の吸収スペクトルは、367nm付近にピークを示し、無色透明から薄褐色に変色していた。一方、(3)−A、(3)−B、(3)−C及び(3)−D法で合成したMMDSの入った電解液の吸収スペクトルは367nm付近のピークは観測されず、変色は見られなかった。   The electrolytic solution prepared as described above was sealed and stored at a dew point of −60 ° C. for 30 days. The electrolyte solution after 30 days was sampled and the absorption spectrum was measured. The absorption spectrum of the electrolyte solution containing MMDS synthesized by the (3) -E method and the (3) -F method showed a peak in the vicinity of 367 nm, and the color changed from colorless and transparent to light brown. On the other hand, the absorption spectrum of the electrolyte containing MMDS synthesized by the methods (3) -A, (3) -B, (3) -C, and (3) -D is not observed in the vicinity of 367 nm, and the color change is I couldn't see it.

(電池の作製と評価)
(実施例1)
正極はマンガン酸リチウムとニッケル酸リチウムとの複合酸化物として用いた。表面積1.7m2/gのLiNi0.8Co0.22を用い、外装体としてアルミニウムラミネートフィルムを用いてフィルム外装電池を試作した。
(Production and evaluation of batteries)
(Example 1)
The positive electrode was used as a composite oxide of lithium manganate and lithium nickelate. A film-sheathed battery was manufactured using LiNi 0.8 Co 0.2 O 2 having a surface area of 1.7 m 2 / g and using an aluminum laminate film as the outer package.

まず、マンガン酸リチウム、LiNi0.8Co0.22および導電性付与剤を乾式混合し、バインダーであるPVDFを溶解させたN−メチル−2−ピロリドン(NMP)中に均一に分散させスラリーを作製した。導電性付与剤としてはカーボンブラックを用いた。そのスラリーを厚さ25μmのアルミ金属箔上に塗布後、NMPを蒸発させることにより正極シートとした。正極中の固形分比率はマンガン酸リチウム:LiNi0.8Co0.22:導電性付与剤:PVDF=72:8:10:10(重量%)の混合比(a=10)とした。
一方、負極シートはカーボン:PVDF=90:10(重量%)の比率となるように混合しNMPに分散させ、厚さ20μmの銅箔上に塗布して作製した。
First, lithium manganate, LiNi 0.8 Co 0.2 O 2 and a conductivity-imparting agent were dry-mixed and uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which PVDF as a binder was dissolved to prepare a slurry. . Carbon black was used as the conductivity imparting agent. The slurry was applied on an aluminum metal foil having a thickness of 25 μm, and NMP was evaporated to obtain a positive electrode sheet. The solid content ratio in the positive electrode was a mixture ratio (a = 10) of lithium manganate: LiNi 0.8 Co 0.2 O 2 : conductivity imparting agent: PVDF = 72: 8: 10: 10 (% by weight).
On the other hand, the negative electrode sheet was prepared by mixing in a ratio of carbon: PVDF = 90: 10 (% by weight), dispersing in NMP, and coating on a 20 μm thick copper foil.

以上のように作製した正極および負極の電極シートを厚さ25μmのポリエチレン多孔膜セパレーターを介し、交互に前記電極シートを積層し、正極12層、負極13層からなる積層電極体を作成した。   The electrode sheets of the positive electrode and the negative electrode produced as described above were alternately laminated through a 25 μm thick polyethylene porous membrane separator to produce a laminated electrode body composed of 12 positive electrode layers and 13 negative electrode layers.

一方、ポリプロピレン樹脂(封着層、厚み70μm)、ポリエチレンテレフタレート(20μm)、アルミニウム(50μm)、ポリエチレンテレフタレート(20μm)の順に積層した構造を有するラミネートフィルムを所定の大きさに2枚切り出し、その一部分に上記の積層電極体の大きさに合った底面部分と側面部分とを有する凹部を形成した。これらを対向させて上記の積層電極体を包み込み、周囲を熱融着させてフィルム外装電池を作製した。最後の1辺を熱融着封口する前に上で述べた電解液を積層電極体に含浸させた。   On the other hand, two laminated films having a structure in which polypropylene resin (sealing layer, thickness 70 μm), polyethylene terephthalate (20 μm), aluminum (50 μm), and polyethylene terephthalate (20 μm) are laminated in this order are cut into a predetermined size, and a part thereof A recess having a bottom surface portion and a side surface portion suitable for the size of the laminated electrode body was formed. The laminated electrode body was wrapped with these facing each other, and the periphery was heat-sealed to produce a film-clad battery. The laminated electrode body was impregnated with the electrolytic solution described above before the last side was heat sealed.

以上のようにして、実施例1のラミネート外装二次電池(120x80x4mm)を作成した。このラミネート電池を用いて室温(25℃)において、2Aの定電流及び定電圧で、終止電圧4.3Vまで5時間充電し、次に2Aの定電流下、終止電圧2.5Vまで充電し、この充放電を繰り返した。   As described above, a laminate-coated secondary battery (120 × 80 × 4 mm) of Example 1 was produced. Using this laminated battery, at room temperature (25 ° C.), it was charged at a constant current and a constant voltage of 2 A for 5 hours to a final voltage of 4.3 V, and then charged to a final voltage of 2.5 V under a constant current of 2 A. This charge / discharge was repeated.

ここで得られた二次電池を用いて保存特性を評価した。まず室温において充電及び放電を1回ずつ行った。このときの充電電流及び放電電流は一定(2A)であり、この際の充電容量を初期容量としその際の抵抗を初期抵抗とした。尚、放電側のカットオフ電位は2.5V、充電側のカットオフ電位は4.3Vとした。その後、2Aの定電流定電圧で4.2Vまで2.5時間の充電後、放電深度50%まで充電した後、55℃で90日間放置した。放置後に室温において再度定電流で放電操作を行い、続いて同じく定電流で充電、放電をもう一度繰り返し、充電時の抵抗を測定し、放電容量を回復容量とした。更に、90日間放置後のラミネート外装電池の体積を測定し、セル膨れ量(ガス発生量)とした。結果を表1に示す。   The storage characteristics were evaluated using the secondary battery obtained here. First, charging and discharging were performed once at room temperature. The charging current and discharging current at this time are constant (2A), the charging capacity at this time is the initial capacity, and the resistance at that time is the initial resistance. The discharge-side cutoff potential was 2.5 V, and the charge-side cutoff potential was 4.3 V. Then, after charging for 2.5 hours to 4.2 V at a constant current and constant voltage of 2 A, the battery was charged to a discharge depth of 50%, and then left at 55 ° C. for 90 days. After being left standing, the discharging operation was performed again at a constant current at room temperature. Subsequently, charging and discharging were repeated once again at the same constant current, the resistance during charging was measured, and the discharging capacity was defined as the recovery capacity. Furthermore, the volume of the laminate-clad battery after being left for 90 days was measured and taken as the amount of cell swelling (gas generation amount). The results are shown in Table 1.

(実施例2)
(3)−B法で合成した化合物No.1を用いた電解液を用いた以外は実施例1と同様に二次電池を作成し評価した。結果を表1に示す。
(Example 2)
(3) Compound No. synthesized by Method -B A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the electrolytic solution using 1 was used. The results are shown in Table 1.

(実施例3)
(3)−C法で合成した化合物No.1を用いた電解液を用いた以外は実施例1と同様に二次電池を作成し評価した。結果を表1に示す。
(Example 3)
(3) Compound No. synthesized by Method -C A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the electrolytic solution using 1 was used. The results are shown in Table 1.

(実施例4)
(3)−D法で合成した化合物No.1を用いた電解液を用いた以外は実施例1と同様に二次電池を作成し評価した。結果を表1に示す。
Example 4
(3) Compound No. synthesized by Method -D A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the electrolytic solution using 1 was used. The results are shown in Table 1.

(比較例1)
(3)−E法で合成した化合物No.1を用いた電解液を用いた以外は実施例1と同様に二次電池を作成し評価した。結果を表1に示す。
(Comparative Example 1)
(3) Compound No. synthesized by the -E method A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the electrolytic solution using 1 was used. The results are shown in Table 1.

(比較例2)
(3)−F法で合成した化合物No.1を用いた電解液を用いた以外は実施例1と同様に二次電池を作成し評価した。結果を表1に示す。
実施例5及び実施例6に示すように電解液に占める塩素濃度が150ppm以上である場合、電解液が着色し、容量回復率は80%未満と極端に減少し、抵抗上昇率とセル体積変化量(電解液の分解によるガス発生量)は極端に大きくなっていることが分かる。
(Comparative Example 2)
(3) Compound No. synthesized by Method -F A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the electrolytic solution using 1 was used. The results are shown in Table 1.
As shown in Example 5 and Example 6, when the chlorine concentration in the electrolyte is 150 ppm or more, the electrolyte is colored, the capacity recovery rate is extremely reduced to less than 80%, the resistance increase rate and the cell volume change It can be seen that the amount (the amount of gas generated by the decomposition of the electrolyte) is extremely large.

Figure 2005222846
Figure 2005222846

(実施合成例2)
(化合物No.2に示すエチレンメタンジスルホン酸エステル(EMDS)の合成)
(4)−A法
エチレングリコール(6.21g;100mmol)のDME(1000ml)溶液中に、窒素気流中、−34〜−40℃で攪拌下、MDSC(21.33g;100mmol)の乾燥グライム(140ml)溶液を20分かけて滴下した。その後、乾燥トリエチルアミン(20.27g;200mmol)の乾燥グライム(140ml)溶液を反応液中に、窒素気流中、−11〜−20℃で攪拌した後、反応液を室温に戻して、1時間攪拌を続けた。溶媒を減圧留去後、残渣を氷冷水中に注ぎ、10分間攪拌後、析出した白色結晶を濾取し、濾上物を氷冷水で洗浄後、50℃で減圧乾燥することにより、目的のEMDS(10.86g;53.71mmol;53.7%)を得た。得られたEMDS(2.44g;12.07mmol)を、111〜117℃の油浴中で、3〜8Paの減圧下で、15時間昇華精製を行い、EMDS(2.06g;10.19mmol;84.4%)を得た。このものを更にシリカゲルクロマト精製を2回行ってEMDSを得た。得られた化合物No.2(EMDS)はNMR所見により構造を確認した。また、元素分析により塩素含有量を確認したところ、その含量は0.01%未満(検出限界未満)であった。
(Execution synthesis example 2)
(Synthesis of ethylenemethane disulfonate (EMDS) shown in Compound No. 2)
(4)-Method A Dry glyme of MDSC (21.33 g; 100 mmol) in a solution of ethylene glycol (6.21 g; 100 mmol) in DME (1000 ml) with stirring at −34 to −40 ° C. in a nitrogen stream. 140 ml) The solution was added dropwise over 20 minutes. Thereafter, a dry glyme (140 ml) solution of dry triethylamine (20.27 g; 200 mmol) was stirred in a nitrogen stream at −11 to −20 ° C., then returned to room temperature and stirred for 1 hour. Continued. After distilling off the solvent under reduced pressure, the residue was poured into ice-cold water and stirred for 10 minutes. The precipitated white crystals were collected by filtration, and the filtered product was washed with ice-cold water and dried at 50 ° C. under reduced pressure to obtain the desired product. EMDS (10.86 g; 53.71 mmol; 53.7%) was obtained. The obtained EMDS (2.44 g; 12.07 mmol) was purified by sublimation in an oil bath at 111 to 117 ° C. under a reduced pressure of 3 to 8 Pa for 15 hours to obtain EMDS (2.06 g; 10.19 mmol; 84.4%) was obtained. This was further purified by silica gel chromatography twice to obtain EMDS. The obtained Compound No. 2 (EMDS) confirmed the structure by NMR findings. Moreover, when the chlorine content was confirmed by elemental analysis, the content was less than 0.01% (less than the detection limit).

(4)−B法
(4)−A法において、昇華精製を行わなかった以外は(4)−A法と同様に合成し、化合物No.2を得た。得られた化合物No.2の塩素含有量を元素分析により求めたところ0.04質量%であった。
(4) Method -B In the method (4) -A, synthesis was performed in the same manner as in the method (4) -A, except that sublimation purification was not performed. 2 was obtained. The obtained Compound No. It was 0.04 mass% when the chlorine content of 2 was calculated | required by the elemental analysis.

(4)−C法
(4)−A法において、シリカゲルカラムクロマト精製を1回のみ行った以外は、(4)−A法と同様に合成し、化合物No.2を得た。得られた化合物No.2の塩素含有量を元素分析により求めたところ0.10質量%であった。
(4) -C Method (4) The method was synthesized in the same manner as in (4) -A except that silica gel column chromatography purification was performed only once in Method (A). 2 was obtained. The obtained Compound No. The chlorine content of 2 was determined by elemental analysis and found to be 0.10% by mass.

(4)−D法
(4)−A法において、シリカゲルクロマト精製を1回のみ行い、昇華精製を行わなかった以外は(4)−A法と同様に合成し、化合物No.2を得た。得られた化合物No.2の塩素含有量を元素分析により求めたところ0.45質量%であった。
(4) -D Method (4) In the method -A, synthesis was carried out in the same manner as in the method (4) -A except that silica gel chromatography purification was performed only once and sublimation purification was not performed. 2 was obtained. The obtained Compound No. It was 0.45 mass% when the chlorine content of 2 was calculated | required by the elemental analysis.

(4)−E法
(4)−A法において、シリカゲルカラムクロマト精製を行わなかった以外は、(4)−A法と同様に合成し、化合物No.2を得た。得られた化合物No.2の塩素含有量を元素分析により求めたところ0.62質量%であった。
(4) -E Method (4) A compound No. 4 was synthesized in the same manner as in (4) -A method except that silica gel column chromatography purification was not performed. 2 was obtained. The obtained Compound No. It was 0.62 mass% when the chlorine content of 2 was calculated | required by the elemental analysis.

(4)−F法
(4)−A法において、昇華精製とシリカゲルカラムクロマト精製を行わなかった以外は、(4)−A法と同様に合成し、化合物No.2を得た。0.85質量%であった。
(4) -F Method (4) A compound No. 4 was synthesized in the same manner as (4) -A method except that sublimation purification and silica gel column chromatography purification were not performed. 2 was obtained. It was 0.85 mass%.

(電解液の作製)
電解質溶液15は、溶媒としてPCとECとDEC混合溶媒(体積比:20/20/60)を用い、この溶媒中に1mol/LのLiPF6を溶解させた。更に(4)−A〜(4)−F法で合成した化合物No.1を電解液全体の質量に対し3.0質量%になるように調整した。
(Preparation of electrolyte)
The electrolyte solution 15 used a mixed solvent of PC, EC, and DEC (volume ratio: 20/20/60) as a solvent, and 1 mol / L LiPF 6 was dissolved in the solvent. Furthermore, compound No. 1 synthesized by the method (4) -A to (4) -F was used. 1 was adjusted to 3.0% by mass with respect to the total mass of the electrolytic solution.

以上のように作成した電解液を密閉し、露点−60℃で30日間保管した。30日後の電解液をそれぞれサンプリングし、吸収スペクトルの測定を行った。(4)−E法及び(4)−F法で合成した化合物No.2の入った電解液の吸収スペクトルは、367nm付近にピークを示し、無色透明から薄褐色に変色していた。一方、(4)−A、(4)−B、(4)−C及び(4)−D法で合成した化合物No.2の入った電解液の吸収スペクトルは367nm付近のピークは観測されず、変色は見られなかった。   The electrolytic solution prepared as described above was sealed and stored at a dew point of −60 ° C. for 30 days. The electrolyte solution after 30 days was sampled and the absorption spectrum was measured. Compound Nos. Synthesized by the methods (4) -E and (4) -F. The absorption spectrum of the electrolyte solution containing 2 showed a peak at around 367 nm and changed from colorless and transparent to light brown. On the other hand, compound No. 4 synthesized by the methods (4) -A, (4) -B, (4) -C and (4) -D. In the absorption spectrum of the electrolytic solution containing 2, no peak near 367 nm was observed, and no discoloration was observed.

(電池の作製)
(実施例5)
(4)−A法で合成した化合物No.2を用いた電解液を用いた以外は実施例1と同様に二次電池を作成し評価した。結果を表4に示す。
(Production of battery)
(Example 5)
(4) Compound No. synthesized by Method -A A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the electrolytic solution using 2 was used. The results are shown in Table 4.

(実施例6)
(4)−B法で合成した化合物No.2を用いた電解液を用いた以外は実施例1と同様に二次電池を作成し評価した。結果を表4に示す。
(Example 6)
(4) Compound No. synthesized by Method B A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the electrolytic solution using 2 was used. The results are shown in Table 4.

(実施例7)
(4)−C法で合成した化合物No.2を用いた電解液を用いた以外は実施例1と同様に二次電池を作成し評価した。結果を表4に示す。
(Example 7)
(4) Compound No. synthesized by Method -C A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the electrolytic solution using 2 was used. The results are shown in Table 4.

(実施例8)
(4)−D法で合成した化合物No.2を用いた電解液を用いた以外は実施例1と同様に二次電池を作成し評価した。結果を表4に示す。
(Example 8)
(4) Compound No. synthesized by Method -D A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the electrolytic solution using 2 was used. The results are shown in Table 4.

(比較例3)
(4)−E法で合成した化合物No.2を用いた電解液を用いた以外は実施例1と同様に二次電池を作成し評価した。結果を表4に示す。
(Comparative Example 3)
(4) Compound No. synthesized by the -E method A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the electrolytic solution using 2 was used. The results are shown in Table 4.

(比較例4)
(4)−F法で合成した化合物No.2を用いた電解液を用いた以外は実施例1と同様に二次電池を作成し評価した。結果を表4に示す。
(Comparative Example 4)
(4) Compound No. synthesized by Method -F A secondary battery was prepared and evaluated in the same manner as in Example 1 except that the electrolytic solution using 2 was used. The results are shown in Table 4.

Figure 2005222846
Figure 2005222846

本発明に係る二次電池の概略構成図である。It is a schematic block diagram of the secondary battery which concerns on this invention.

符号の説明Explanation of symbols

11 正極集電体
12 正極活物質を含有する層
13 負極活物質を含有する層
14 負極集電体
15 非水電解質溶液
16 多孔質セパレータ
11 Positive Electrode Current Collector 12 Layer Containing Positive Electrode Active Material 13 Layer Containing Negative Electrode Active Material 14 Negative Electrode Current Collector 15 Nonaqueous Electrolyte Solution 16 Porous Separator

Claims (16)

少なくとも非プロトン性溶媒と、環状ジスルホン酸エステルとを含む二次電池用電解液であって、該電解液中の環状ジスルホン酸エステルの濃度が0.1質量%以上5.0質量%以下であり、該電解液中の塩素の割合が質量基準で150ppm未満であることを特徴とする二次電池用電解液。   An electrolytic solution for a secondary battery containing at least an aprotic solvent and a cyclic disulfonic acid ester, wherein the concentration of the cyclic disulfonic acid ester in the electrolytic solution is 0.1% by mass or more and 5.0% by mass or less. An electrolyte solution for a secondary battery, wherein the ratio of chlorine in the electrolyte solution is less than 150 ppm on a mass basis. 前記環状ジスルホン酸エステルが下記一般式(1)で示される請求項1に記載の二次電池用電解液。
Figure 2005222846
(但し、上記一般式(1)において、Aは、分岐していても良い置換もしくは無置換の炭素数1〜5のアルキレン基、カルボニル基、スルフィニル基、分岐していても良い置換もしくは無置換の炭素数1〜5のパーフルオロアルキレン基、分岐していても良い炭素数2〜6の置換もしくは無置換のフルオロアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1〜6のアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1〜6のパーフルオロアルキレン基又はエーテル結合を含み分岐していても良い炭素数2〜6の置換もしくは無置換のフルオロアルキレン基を示す。Bは分岐していても良い置換もしくは無置換のアルキレン基を示す。)
The electrolyte solution for secondary batteries according to claim 1, wherein the cyclic disulfonic acid ester is represented by the following general formula (1).
Figure 2005222846
(However, in the above general formula (1), A is a substituted or unsubstituted C1-C5 alkylene group, carbonyl group, sulfinyl group, which may be branched, or substituted or unsubstituted which may be branched. A perfluoroalkylene group having 1 to 5 carbon atoms, a substituted or unsubstituted fluoroalkylene group having 2 to 6 carbon atoms which may be branched, and a substituted or unsubstituted carbon number which may be branched including an ether bond A 1-6 alkylene group, a substituted or unsubstituted C1-C6 perfluoroalkylene group that may contain an ether bond, or an ether bond, or a C2-6 substitution that may contain a ether bond Alternatively, it represents an unsubstituted fluoroalkylene group, and B represents a substituted or unsubstituted alkylene group which may be branched.)
前記一般式(1)で示される化合物が下記一般式(2)で示される環状ジスルホン酸エステルであることを特徴とする請求項2に記載の二次電池用電解液。
Figure 2005222846
(但し、上記一般式(2)において、xは0又は1であり、nは1以上5以下の整数である。また、Rは水素原子、メチル基、エチル基又はハロゲン原子を示す。)
The electrolyte solution for a secondary battery according to claim 2, wherein the compound represented by the general formula (1) is a cyclic disulfonic acid ester represented by the following general formula (2).
Figure 2005222846
(However, in the said General formula (2), x is 0 or 1, n is an integer of 1-5, and R shows a hydrogen atom, a methyl group, an ethyl group, or a halogen atom.)
前記一般式(1)で示される化合物が下記一般式(3)で示される環状ジスルホン酸エステルであることを特徴とする請求項2に記載の二次電池用電解液。
Figure 2005222846
(但し、上記一般式(3)において、xは0又は1であり、nは1以上5以下の整数である。また、Rは水素原子、メチル基、エチル基又はハロゲン原子を示す。)
The electrolyte solution for a secondary battery according to claim 2, wherein the compound represented by the general formula (1) is a cyclic disulfonic acid ester represented by the following general formula (3).
Figure 2005222846
(However, in the general formula (3), x is 0 or 1, n is an integer of 1 to 5, and R represents a hydrogen atom, a methyl group, an ethyl group, or a halogen atom.)
前記一般式(1)で示される化合物が下記一般式(4)で示される環状ジスルホン酸エステルであることを特徴とする請求項2に記載の二次電池用電解液。
Figure 2005222846
(但し、上記一般式(4)において、xは0又は1であり、k、mはそれぞれ独立して1又は2、nは1以上4以下の整数、k+m+nは3以上6以下である。また、Rは水素原子、メチル基、エチル基又はハロゲン原子を示す。)
The electrolyte solution for a secondary battery according to claim 2, wherein the compound represented by the general formula (1) is a cyclic disulfonic acid ester represented by the following general formula (4).
Figure 2005222846
(However, in the above general formula (4), x is 0 or 1, k and m are each independently 1 or 2, n is an integer of 1 to 4, and k + m + n is 3 to 6. R represents a hydrogen atom, a methyl group, an ethyl group or a halogen atom.)
前記一般式(1)で示される化合物が下記一般式(5)で示される環状ジスルホン酸エステルであることを特徴とする請求項2に記載の二次電池用電解液。
Figure 2005222846
(但し、上記一般式(5)において、xは0又は1であり、k、mはそれぞれ独立して1又は2、nは1以上4以下の整数、k+m+nは3以上6以下である。また、Rは水素原子、メチル基、エチル基又はハロゲン原子を示す。)
The electrolyte solution for a secondary battery according to claim 2, wherein the compound represented by the general formula (1) is a cyclic disulfonic acid ester represented by the following general formula (5).
Figure 2005222846
(However, in the general formula (5), x is 0 or 1, k and m are each independently 1 or 2, n is an integer of 1 to 4 and k + m + n is 3 to 6.) R represents a hydrogen atom, a methyl group, an ethyl group or a halogen atom.)
前記一般式(1)で示される化合物が下記一般式(6)で示される環状ジスルホン酸エステルであることを特徴とする請求項2に記載の二次電池用電解液。
Figure 2005222846
(但し、上記一般式(6)において、xは0又は1であり、k、mはそれぞれ独立して1又は2、nは1以上4以下の整数、k+m+nは3以上6以下である。また、Rは水素原子、メチル基、エチル基又はハロゲン原子を示す。)
The electrolyte solution for secondary batteries according to claim 2, wherein the compound represented by the general formula (1) is a cyclic disulfonic acid ester represented by the following general formula (6).
Figure 2005222846
(However, in the general formula (6), x is 0 or 1, k and m are each independently 1 or 2, n is an integer of 1 to 4, and k + m + n is 3 to 6.) And R represents a hydrogen atom, a methyl group, an ethyl group or a halogen atom.)
前記一般式(1)で示される化合物が下記一般式(7)で示される環状ジスルホン酸エステルであることを特徴とする請求項2に記載の二次電池用電解液。
Figure 2005222846
(但し、上記一般式(6)において、xは0又は1であり、k、mはそれぞれ独立して1又は2、nは1以上4以下の整数、k+m+nは3以上6以下である。また、Rは水素原子、メチル基、エチル基又はハロゲン原子を示す。)
The electrolyte solution for a secondary battery according to claim 2, wherein the compound represented by the general formula (1) is a cyclic disulfonic acid ester represented by the following general formula (7).
Figure 2005222846
(However, in the general formula (6), x is 0 or 1, k and m are each independently 1 or 2, n is an integer of 1 to 4, and k + m + n is 3 to 6.) And R represents a hydrogen atom, a methyl group, an ethyl group or a halogen atom.)
前記非プロトン性溶媒が、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ−ラクトン類、環状エーテル類、鎖状エーテル類およびそれらのフッ化誘導体からなる群より選択された少なくとも1種類の有機溶媒を含むことを特徴とする請求項1〜8のいずれか1項に記載の二次電池用電解液。   The aprotic solvent is at least selected from the group consisting of cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, γ-lactones, cyclic ethers, chain ethers and their fluorinated derivatives. The electrolyte solution for secondary batteries according to any one of claims 1 to 8, comprising one kind of organic solvent. 前記二次電池用電解液が、更にリチウム塩としてLiPF6、LiBF4、LiAsF6、LiSbF6、LiClO4、LiAlCl4、LiN(Ck2k+1SO22及びLiN(Cn2n+1SO2)(Cm2m+1SO2)(n,mは自然数)からなる群より選択された少なくとも1種類を含むことを特徴とする請求項1〜9のいずれか1項に記載の二次電池用電解液。 LiPF 6 wherein the secondary battery electrolyte, as further lithium salt, LiBF 4, LiAsF 6, LiSbF 6, LiClO 4, LiAlCl 4, LiN (C k F 2k + 1 SO 2) 2 and LiN (C n F 2n +1 SO 2) (C m F 2m + 1 SO 2) (n, m are any one of the preceding claims, characterized in that it comprises at least one member selected from the group consisting of natural numbers) The electrolyte solution for secondary batteries as described. 正極と、負極と、二次電池用電解液とを備えた二次電池において、該二次電池用電解液が請求項1〜10のいずれか1項に記載の二次電池用電解液であることを特徴とする二次電池。   A secondary battery comprising a positive electrode, a negative electrode, and a secondary battery electrolyte, wherein the secondary battery electrolyte is the secondary battery electrolyte according to any one of claims 1 to 10. A secondary battery characterized by that. 前記正極が、正極活物質としてリチウム含有複合酸化物を含むことを特徴とする請求項11に記載の二次電池。   The secondary battery according to claim 11, wherein the positive electrode includes a lithium-containing composite oxide as a positive electrode active material. 前記負極が、負極活物質としてリチウムを吸蔵、放出できる材料、リチウム金属、リチウムと合金を形成することができる金属材料及び酸化物材料からなる群より選択された少なくとも1種を含むことを特徴とする請求項11又は12に記載の二次電池。   The negative electrode includes at least one selected from the group consisting of a material capable of inserting and extracting lithium as a negative electrode active material, a lithium metal, a metal material capable of forming an alloy with lithium, and an oxide material. The secondary battery according to claim 11 or 12. 前記負極が、負極活物質として炭素を有することを特徴とする請求項11〜13のいずれか1項に記載の二次電池。   The secondary battery according to claim 11, wherein the negative electrode has carbon as a negative electrode active material. 前記炭素が黒鉛であることを特徴とする請求項14に記載の二次電池。   The secondary battery according to claim 14, wherein the carbon is graphite. 前記炭素が非晶質炭素であることを特徴とする請求項14に記載の二次電池。   The secondary battery according to claim 14, wherein the carbon is amorphous carbon.
JP2004030661A 2004-02-06 2004-02-06 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same Expired - Lifetime JP4577482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004030661A JP4577482B2 (en) 2004-02-06 2004-02-06 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004030661A JP4577482B2 (en) 2004-02-06 2004-02-06 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2005222846A true JP2005222846A (en) 2005-08-18
JP4577482B2 JP4577482B2 (en) 2010-11-10

Family

ID=34998308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030661A Expired - Lifetime JP4577482B2 (en) 2004-02-06 2004-02-06 Electrolytic solution for lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4577482B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336155A (en) * 2004-04-28 2005-12-08 Sumitomo Chemical Co Ltd Method for producing cyclic disulfonic acid ester
JP2007504619A (en) * 2003-09-19 2007-03-01 エルジー・ケム・リミテッド Non-aqueous lithium secondary battery with improved cycle characteristics and / or high temperature stability
JP2007328992A (en) * 2006-06-07 2007-12-20 Nec Tokin Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using it
WO2008023951A1 (en) * 2006-08-25 2008-02-28 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery using the same
WO2008044850A1 (en) * 2006-10-09 2008-04-17 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery using the same
JP2008169161A (en) * 2007-01-12 2008-07-24 Sumitomo Seika Chem Co Ltd Method for producing methylene disulfonate compound
JP2008169162A (en) * 2007-01-12 2008-07-24 Sumitomo Seika Chem Co Ltd Method for producing methylene disulfonate compound
JP2008189612A (en) * 2007-02-07 2008-08-21 Sumitomo Seika Chem Co Ltd Method for producing alkanedisulfonyl halide
JP2008262895A (en) * 2007-03-16 2008-10-30 Nec Tokin Corp Manufacturing method of lithium polymer battery
JP2009140641A (en) * 2007-12-04 2009-06-25 Nec Tokin Corp Nonaqueous electrolyte, gel electrolyte, and secondary battery using the same
JP2010219011A (en) * 2009-03-19 2010-09-30 Nec Energy Devices Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
WO2011136189A1 (en) * 2010-04-26 2011-11-03 三井化学株式会社 Nonaqueous electrolyte solution containing cyclic sulfone compound, and lithium secondary battery
CN102464648A (en) * 2010-11-03 2012-05-23 中国科学院福建物质结构研究所 Method for refining and purifying methylene methanedisulfonate
WO2016095116A1 (en) * 2014-12-17 2016-06-23 Basf Corporation Electrolyte compositions for rechargeable lithium ion batteries
US9711825B2 (en) 2013-03-01 2017-07-18 Nec Corporation Lithium ion secondary battery
JP2017157327A (en) * 2016-02-29 2017-09-07 富山薬品工業株式会社 Nonaqueous electrolyte solution for power storage device
US9780411B2 (en) 2013-03-01 2017-10-03 Nec Corporation Nonaqueous electrolyte solution secondary battery
US9941545B2 (en) 2013-03-01 2018-04-10 Nec Corporation Electrolyte solution for secondary batteries, and secondary battery using same
US9991561B2 (en) 2013-09-12 2018-06-05 Nec Corporation Lithium ion secondary battery
US10224568B2 (en) 2013-09-13 2019-03-05 Nec Corporation Electrolytic solution and secondary battery
WO2019051996A1 (en) * 2016-12-14 2019-03-21 广州天赐高新材料股份有限公司 Lithium secondary battery electrolyte solution containing cyclic silyl disulfonate ester and lithium secondary battery
CN112574167A (en) * 2020-12-07 2021-03-30 烟台海川化学制品有限公司 Preparation method of methylene methanedisulfonate
WO2022149792A1 (en) * 2021-01-06 2022-07-14 삼성에스디아이주식회사 Electrolyte for lithium secondary battery, and lithium secondary battery comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923239B2 (en) 2011-07-14 2018-03-20 Nec Energy Devices, Ltd. Lithium ion battery

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504619A (en) * 2003-09-19 2007-03-01 エルジー・ケム・リミテッド Non-aqueous lithium secondary battery with improved cycle characteristics and / or high temperature stability
JP4588407B2 (en) * 2004-04-28 2010-12-01 住友化学株式会社 Method for producing cyclic disulfonic acid ester
JP2005336155A (en) * 2004-04-28 2005-12-08 Sumitomo Chemical Co Ltd Method for producing cyclic disulfonic acid ester
JP2007328992A (en) * 2006-06-07 2007-12-20 Nec Tokin Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using it
WO2008023951A1 (en) * 2006-08-25 2008-02-28 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery using the same
US8124285B2 (en) 2006-08-25 2012-02-28 Lg Chem, Ltd. Electrode having solid electrolyte interface and secondary battery using the same
US7972733B2 (en) 2006-08-25 2011-07-05 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery using the same
CN101507042B (en) * 2006-08-25 2011-06-29 株式会社Lg化学 Non-aqueous electrolyte and secondary battery using the same
WO2008044850A1 (en) * 2006-10-09 2008-04-17 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery using the same
US9337510B2 (en) 2006-10-09 2016-05-10 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery using the same
US8524400B2 (en) 2006-10-09 2013-09-03 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery using the same
JP2008169161A (en) * 2007-01-12 2008-07-24 Sumitomo Seika Chem Co Ltd Method for producing methylene disulfonate compound
JP2008169162A (en) * 2007-01-12 2008-07-24 Sumitomo Seika Chem Co Ltd Method for producing methylene disulfonate compound
JP2008189612A (en) * 2007-02-07 2008-08-21 Sumitomo Seika Chem Co Ltd Method for producing alkanedisulfonyl halide
JP2008262895A (en) * 2007-03-16 2008-10-30 Nec Tokin Corp Manufacturing method of lithium polymer battery
JP2013048113A (en) * 2007-03-16 2013-03-07 Nec Energy Devices Ltd Method of manufacturing lithium polymer battery
JP2009140641A (en) * 2007-12-04 2009-06-25 Nec Tokin Corp Nonaqueous electrolyte, gel electrolyte, and secondary battery using the same
JP2010219011A (en) * 2009-03-19 2010-09-30 Nec Energy Devices Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
WO2011136189A1 (en) * 2010-04-26 2011-11-03 三井化学株式会社 Nonaqueous electrolyte solution containing cyclic sulfone compound, and lithium secondary battery
CN102870268A (en) * 2010-04-26 2013-01-09 三井化学株式会社 Nonaqueous electrolyte solution containing cyclic sulfone compound, and lithium secondary battery
JP5399556B2 (en) * 2010-04-26 2014-01-29 三井化学株式会社 Nonaqueous electrolyte containing cyclic sulfone compound and lithium secondary battery
US9303011B2 (en) 2010-04-26 2016-04-05 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution containing cyclic sulfone compound, and lithium secondary battery
CN102464648A (en) * 2010-11-03 2012-05-23 中国科学院福建物质结构研究所 Method for refining and purifying methylene methanedisulfonate
US9711825B2 (en) 2013-03-01 2017-07-18 Nec Corporation Lithium ion secondary battery
US9780411B2 (en) 2013-03-01 2017-10-03 Nec Corporation Nonaqueous electrolyte solution secondary battery
US9941545B2 (en) 2013-03-01 2018-04-10 Nec Corporation Electrolyte solution for secondary batteries, and secondary battery using same
US9991561B2 (en) 2013-09-12 2018-06-05 Nec Corporation Lithium ion secondary battery
US10224568B2 (en) 2013-09-13 2019-03-05 Nec Corporation Electrolytic solution and secondary battery
WO2016095116A1 (en) * 2014-12-17 2016-06-23 Basf Corporation Electrolyte compositions for rechargeable lithium ion batteries
JP2017157327A (en) * 2016-02-29 2017-09-07 富山薬品工業株式会社 Nonaqueous electrolyte solution for power storage device
WO2019051996A1 (en) * 2016-12-14 2019-03-21 广州天赐高新材料股份有限公司 Lithium secondary battery electrolyte solution containing cyclic silyl disulfonate ester and lithium secondary battery
CN112574167A (en) * 2020-12-07 2021-03-30 烟台海川化学制品有限公司 Preparation method of methylene methanedisulfonate
CN112574167B (en) * 2020-12-07 2021-11-09 烟台海川化学制品有限公司 Preparation method of methylene methanedisulfonate
WO2022149792A1 (en) * 2021-01-06 2022-07-14 삼성에스디아이주식회사 Electrolyte for lithium secondary battery, and lithium secondary battery comprising same

Also Published As

Publication number Publication date
JP4577482B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP4577482B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP5236875B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP4033074B2 (en) Secondary battery electrolyte and secondary battery using the same
JP5169400B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JPWO2005057714A1 (en) Secondary battery electrolyte and secondary battery using the same
JP4465968B2 (en) Secondary battery electrolyte and secondary battery using the same
JP2006244776A (en) Electrolyte for secondary battery, and the secondary battery using the same
JP5305446B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP4972915B2 (en) Non-aqueous electrolyte battery
EP3771013A1 (en) Electrolyte for power storage devices and nonaqueous electrolyte solution
JP2009129747A (en) Secondary battery
JP4909649B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP4968614B2 (en) Secondary battery electrolyte and secondary battery using the same
JP4345642B2 (en) Secondary battery
KR20180025917A (en) Non-aqueous electrolyte for lithium-ion batteries containing isocyanide
JP4433163B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP5012767B2 (en) Secondary battery
JP5300054B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
CN111512488A (en) Non-aqueous electrolyte composition comprising lithium bis (fluorosulfonyl) imide
CN108352572B (en) Additive for nonaqueous electrolyte solution, and electricity storage device
JP4701601B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4265169B2 (en) Secondary battery electrolyte and secondary battery using the same
JP7084607B2 (en) Non-aqueous electrolyte for power storage devices
CN111971841B (en) Nonaqueous electrolyte for electricity storage device
JP4355947B2 (en) Secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4577482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150