JP2005222843A - Manufacturing method of fuel cell and electrolyte film for fuel cell - Google Patents

Manufacturing method of fuel cell and electrolyte film for fuel cell Download PDF

Info

Publication number
JP2005222843A
JP2005222843A JP2004030637A JP2004030637A JP2005222843A JP 2005222843 A JP2005222843 A JP 2005222843A JP 2004030637 A JP2004030637 A JP 2004030637A JP 2004030637 A JP2004030637 A JP 2004030637A JP 2005222843 A JP2005222843 A JP 2005222843A
Authority
JP
Japan
Prior art keywords
oxygen
electrolyte membrane
membrane layer
layer
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004030637A
Other languages
Japanese (ja)
Other versions
JP4595338B2 (en
Inventor
Naoki Ito
直樹 伊藤
Hiromichi Sato
博道 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004030637A priority Critical patent/JP4595338B2/en
Publication of JP2005222843A publication Critical patent/JP2005222843A/en
Application granted granted Critical
Publication of JP4595338B2 publication Critical patent/JP4595338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance practicality of an electrolyte film composed of a hydrogen separation film layer and an electrolyte film layer containing an oxygen-deficient type proton conductive compound. <P>SOLUTION: The electrolyte film 100 laid between an oxygen electrode 20 and a hydrogen electrode 30 is formed by sandwiching an electrolyte film layer 110 between a dense hydrogen separation film layer 120 and an oxygen electrode side film layer 125 formed into a thin film. The electrolyte film layer 110 is formed into a film by using a proton conductive compound of a perovskite structure, and exerts a proton conductive property in a state that an oxygen atom is introduced in an inter-lattice oxygen deficiency. Although the oxygen electrode side film layer 125 is formed into a film by using a proton conductive compound of a perovskite structure, its oxygen ion conductivity is small, and consequently, its transport number of oxygen ion also becomes small, so that it exerts proton conductivity sufficient for practical use as an electrolyte film 100 constructing member. Further, the oxygen electrode side film layer 125 prevents or restrains escape of the oxygen already introduced in the inter-lattice oxygen deficiency by being covered by the electrolyte film layer 110. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池に関し、詳しくは、電解質膜を、水素を選択的に透過する水素分離膜層と酸素欠損型プロトン伝導体化合物の電解質膜層とで構成した燃料電池と、この電解質膜の製造方法に関する。   The present invention relates to a fuel cell, and more specifically, a fuel cell in which an electrolyte membrane is composed of a hydrogen separation membrane layer that selectively permeates hydrogen and an electrolyte membrane layer of an oxygen-deficient proton conductor compound; It relates to a manufacturing method.

燃料電池は、電解質膜を挟んだ両極に、それぞれガス、例えば水素ガスと酸素ガスの供給を受け、発電する。こうした水素ガス供給に際しては、高純度の水素を供給することが電極反応の進行の上からも望ましいく、種々の提案がなされている。その一手法として、水素の供給を受ける水素極側において、電解質膜に水素を選択的に透過する性質の水素分離膜層を設けることが提案されている(例えば、特許文献1)   A fuel cell receives supply of gas, for example, hydrogen gas and oxygen gas, at both electrodes sandwiching an electrolyte membrane, and generates power. When supplying such hydrogen gas, it is desirable to supply high-purity hydrogen in view of the progress of the electrode reaction, and various proposals have been made. As one of the techniques, it has been proposed to provide a hydrogen separation membrane layer having a property of selectively permeating hydrogen in the electrolyte membrane on the side of the hydrogen electrode to which hydrogen is supplied (for example, Patent Document 1).

特開平5−299105号公報JP-A-5-299105

上記した特許文献では、その実施例にて、水素分離膜層を、プロトン伝導の性質を有するパーフルオロスルホン酸型イオン交換膜に接合させた電解質膜を提案している。こうした燃料電池では、水素分離膜層はその材料が金属であり、イオン交換膜は高分子樹脂であることから、その製膜手法が相違する。高分子樹脂の製膜手法では、その膜厚に限界があり、金属の製膜手法に比して膜厚が厚くなる。このため、膜厚に起因した膜抵抗が大きくなって燃料電池内部抵抗の増大も招きやすいことから、電池性能の性能向上のためには、薄膜の水素分離膜層が接合する電解質膜の薄膜化を図ることが望ましい。   In the above-mentioned patent document, an electrolyte membrane in which a hydrogen separation membrane layer is bonded to a perfluorosulfonic acid type ion exchange membrane having proton conductivity is proposed in the embodiment. In such a fuel cell, the material of the hydrogen separation membrane layer is a metal, and the ion exchange membrane is a polymer resin. In the polymer resin film formation technique, the film thickness is limited, and the film thickness is thicker than the metal film formation technique. For this reason, the membrane resistance due to the film thickness is increased and the internal resistance of the fuel cell is likely to increase. Therefore, in order to improve the performance of the battery performance, the electrolyte membrane to which the thin hydrogen separation membrane layer is bonded is made thinner. It is desirable to plan.

水素分離膜層と同様の製膜手法で薄膜化が可能でプロトン伝導性を有する電解質原材料としては、ペロブスカイト型プロトン伝導体化合物およびその類似化合物がある。こうした化合物の薄膜を電解質膜層として用いれば、薄膜であることから、膜抵抗の低減はもとより、内部抵抗の低減を図ることができ、電池性能の高性能化を図ることが可能となる。しかし、こうした化合物では、格子間酸素の欠損への酸素原子導入が起きた状態でプロトン伝導の性質を呈することから、水素分離膜層と併用して電解質膜として用いるとしても、実用に際してはその改善の余地が残されている。   Examples of electrolyte raw materials having proton conductivity that can be thinned by the same film forming technique as the hydrogen separation membrane layer include perovskite proton conductor compounds and similar compounds. If a thin film of such a compound is used as the electrolyte membrane layer, since it is a thin film, the internal resistance can be reduced as well as the reduction of the membrane resistance, and the battery performance can be improved. However, these compounds exhibit proton-conducting properties when oxygen atoms are introduced into interstitial oxygen vacancies, so even if they are used in combination with hydrogen separation membrane layers, they can be improved in practical use. There is room for.

本発明は、上記問題点を解決するためになされ、水素分離膜層と酸素欠損型プロトン伝導体化合物の電解質膜層とを備える電解質膜の実用性を高めることを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to improve the practicality of an electrolyte membrane including a hydrogen separation membrane layer and an oxygen-deficient proton conductor compound electrolyte membrane layer.

かかる課題の少なくとも一部を解決するため、本発明の燃料電池では、水素含有の燃料ガスの供給を受ける水素極と酸素含有の酸素ガスの供給を受ける酸素極の両極の間に配設されて両極と接合する電解質膜を備える。この電解質膜については、水素を選択的に透過する性質の水素極側の水素分離膜層と、当該水素分離層の表面に形成された電解質膜層と、酸素極側に位置するよう電解質膜層の表面に形成された酸素極側膜層とを備えるものとした上で、電解質膜層については、これを、格子間酸素の欠損への酸素原子導入が起きた状態でプロトン伝導の性質を呈する酸素欠損型プロトン伝導体化合物で水素分離層の表面に形成された電解質膜層とした。その一方、この電解質膜層を覆う酸素極側膜層については、これを、プロトン伝導の性質を呈すると共に、膜層における酸素原子の移動を抑制する性質により電解質膜層からの酸素原子抜けを抑制する性質を呈するものとした。   In order to solve at least a part of such problems, the fuel cell of the present invention is disposed between both the hydrogen electrode that receives the supply of the hydrogen-containing fuel gas and the oxygen electrode that receives the supply of the oxygen-containing oxygen gas. An electrolyte membrane is provided to be joined to both electrodes. For this electrolyte membrane, a hydrogen separation membrane layer on the hydrogen electrode side that selectively permeates hydrogen, an electrolyte membrane layer formed on the surface of the hydrogen separation layer, and an electrolyte membrane layer so as to be located on the oxygen electrode side In addition, the electrolyte membrane layer exhibits proton-conducting properties in a state in which oxygen atoms are introduced into interstitial oxygen deficiencies. The electrolyte membrane layer was formed on the surface of the hydrogen separation layer with an oxygen deficient proton conductor compound. On the other hand, for the oxygen electrode side membrane layer covering this electrolyte membrane layer, it exhibits proton conduction properties and suppresses oxygen atom escape from the electrolyte membrane layer due to the property of suppressing the movement of oxygen atoms in the membrane layer. It was assumed to exhibit the property to do.

酸素欠損型プロトン伝導体化合物の電解質膜層では、格子間酸素の欠損に導入済みの酸素原子が継続的に存在するとは断定できず、格子間酸素欠損への酸素原子導入反応は可逆的に起きることが知られている。つまり、ガス雰囲気(例えば、酸素過不足)、温度、電位等により酸素原子が格子間酸素欠損に出入りすることが知られている。   In the electrolyte membrane layer of oxygen-deficient proton conductor compound, it cannot be determined that oxygen atoms that have already been introduced into interstitial oxygen vacancies exist, and the oxygen atom introduction reaction into interstitial oxygen vacancies occurs reversibly. It is known. In other words, it is known that oxygen atoms enter and leave interstitial oxygen vacancies depending on the gas atmosphere (for example, oxygen deficiency), temperature, potential, and the like.

よって、こうした酸素原子の出入りが起き得ることに着目して、本発明の燃料電池では、電解質膜層を水素分離膜層と酸素極側膜層で挟んで電解質膜層の両表面を覆うことで、電解質膜層における格子間酸素欠損に導入済みの酸素原子が抜けることを防止、若しくは抑制する。よって、電解質膜層では、格子間酸素の欠損への酸素原子導入が起きた状態を維持できることになるので、電解質膜層でのプロトン伝導の性質を大きく損なうことがない。しかも、酸素極側膜層はプロトン伝導の性質を呈するので、プロトン伝導性が不可欠な電解質膜としての機能を損なうことはない。よって、水素分離膜層と酸素欠損型プロトン伝導体化合物の電解質膜層とを併用した電解質膜を燃料電池に使用する際の実用性を高めることができる。   Therefore, paying attention to the possibility that such oxygen atoms can enter and exit, in the fuel cell of the present invention, the electrolyte membrane layer is sandwiched between the hydrogen separation membrane layer and the oxygen electrode side membrane layer to cover both surfaces of the electrolyte membrane layer. This prevents or suppresses the release of oxygen atoms introduced into interstitial oxygen vacancies in the electrolyte membrane layer. Therefore, in the electrolyte membrane layer, the state in which oxygen atoms are introduced into interstitial oxygen vacancies can be maintained, so that the property of proton conduction in the electrolyte membrane layer is not significantly impaired. In addition, since the oxygen electrode side membrane layer exhibits the property of proton conduction, the function as an electrolyte membrane in which proton conductivity is indispensable is not impaired. Therefore, it is possible to improve the practicality when an electrolyte membrane using a hydrogen separation membrane layer and an oxygen-deficient proton conductor compound electrolyte membrane layer in combination is used in a fuel cell.

水素分離膜層の形成材料としては、パラジウム、パラジウム合金などの貴金属、並びにVA族元素、例えば、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)などを用いることができ、これらから形成した水素分離膜層は、水素を選択的に透過する性質を発揮する。電解質膜層の形成材料としては、ペロブスカイト型プロトン伝導体化合物(例えば、BaCeO3系、SrCeO3系、SrZrO3系、CaZrO3系等)や、パイロクロア型プロトン伝導体化合物(例えば、GdTi系、LaZr系等)を用いることができる。そして、これらプロトン伝導体化合物から形成した電解質膜層は、格子間酸素の欠損への酸素原子導入が起きた状態でプロトン伝導の性質を発揮する。 As a material for forming the hydrogen separation membrane layer, noble metals such as palladium and palladium alloys, and VA group elements such as vanadium (V), niobium (Nb), and tantalum (Ta) can be used. The hydrogen separation membrane layer exhibits the property of selectively permeating hydrogen. As a material for forming the electrolyte membrane layer, a perovskite proton conductor compound (for example, BaCeO 3 , SrCeO 3 , SrZrO 3 , CaZrO 3, etc.) or a pyrochlore proton conductor compound (for example, Gd 2 Ti 2). O 7 system, La 2 Zr 2 O 7 system, etc.) can be used. The electrolyte membrane layer formed from these proton conductor compounds exhibits the property of proton conduction in a state where oxygen atoms are introduced into interstitial oxygen defects.

酸素極側膜層の形成材料としては、CsHSO等のプロトン伝導性だけを発揮し酸素イオン伝導性を有しないプロトン伝導体や、WO等のプロトン伝導性と電子の伝導性を併せ持つプロトン・電子伝導体の他、プロトン伝導性と酸素イオン伝導性を併せ持ちイオン輸率の関係でプロトン伝導性を発揮する酸素欠損型プロトン伝導体化合物等を用いることができる。この場合、酸素極側膜層形成に酸素欠損型プロトン伝導体化合物を用いる場合は、この酸素極側膜層で覆う電解質膜層での格子間酸素欠損に導入済みの酸素原子の抜け防止或いは抑制の点から、この電解質膜層を形成する酸素欠損型プロトン伝導体化合物より酸素イオン伝導率が小さい酸素欠損型プロトン伝導体化合物を酸素極側膜層形成に用いることになる。 Examples of the material for forming the oxygen electrode side membrane layer include proton conductors that exhibit only proton conductivity such as CsHSO 4 and do not have oxygen ion conductivity, protons such as WO 3 that have both proton conductivity and electron conductivity. In addition to an electron conductor, an oxygen-deficient proton conductor compound having both proton conductivity and oxygen ion conductivity and exhibiting proton conductivity in terms of ion transport number can be used. In this case, when an oxygen-deficient proton conductor compound is used for forming the oxygen electrode side membrane layer, prevention or suppression of oxygen atoms already introduced into interstitial oxygen vacancies in the electrolyte membrane layer covered with the oxygen electrode side membrane layer is prevented. From this point, an oxygen deficient proton conductor compound having an oxygen ion conductivity smaller than that of the oxygen deficient proton conductor compound forming the electrolyte membrane layer is used for forming the oxygen electrode side membrane layer.

例えば、ペロブスカイト型プロトン伝導体化合物としてBaCeO3系、SrCeO3系、SrZrO3系、CaZrO3系のセラミックを採択するのであれば、これらセラミックは、この順に酸素イオン伝導性が小さいので、次のようになる。電解質膜層をBaCeO3系のセラミックで形成すれば、酸素極側膜層をSrCeO3系、SrZrO3系、CaZrO3系のセラミックで形成すればよい。同様に、電解質膜層をSrCeO3系のセラミックとすれば、酸素極側膜層をSrZrO3系、CaZrO3系のセラミックに、電解質膜層をSrZrO3系のセラミックとすれば、酸素極側膜層をCaZrO3系のセラミックとすればよい。そして、これら化合物から形成した電解質膜層は、プロトン伝導の性質を発揮すると共に、膜層における酸素原子の移動を抑制する性質により電解質膜層からの酸素原子抜けを抑制する。 For example, if BaCeO 3 , SrCeO 3 , SrZrO 3 , and CaZrO 3 ceramics are selected as the perovskite proton conductor compound, these ceramics have low oxygen ion conductivity in this order. become. If the electrolyte membrane layer is formed of a BaCeO 3 based ceramic, the oxygen electrode side membrane layer may be formed of a SrCeO 3 based, SrZrO 3 based, or CaZrO 3 based ceramic. Similarly, if the electrolyte membrane layer is a SrCeO 3 based ceramic, the oxygen electrode side membrane layer is a SrZrO 3 based or CaZrO 3 based ceramic, and the electrolyte membrane layer is a SrZrO 3 based ceramic, The layer may be a CaZrO 3 based ceramic. And the electrolyte membrane layer formed from these compounds exhibits the property of proton conduction, and suppresses the escape of oxygen atoms from the electrolyte membrane layer due to the property of suppressing the movement of oxygen atoms in the membrane layer.

上記した本発明の燃料電池は、種々の態様を採ることができ、例えば、酸素極側膜層に層を貫通する貫通孔を形成し、この貫通孔の孔範囲において電解質膜層を酸素極に対して露出させるようにすることもできる。こうすれば、電解質膜層から酸素抜けが起き得る領域が限られるので、その分、電解質膜層での格子間酸素欠損に導入済みの酸素原子の抜けの防止或いは抑制を図ることができる。また、仮に電解質膜層での格子間酸素欠損に導入済みの酸素原子の抜けが貫通孔の領域にて起きたとしても、この貫通孔を経て、格子間酸素欠損に酸素原子を注入できるので、酸素の抜けを補うことも可能である。   The above-described fuel cell of the present invention can take various forms. For example, a through-hole penetrating the layer is formed in the oxygen electrode side membrane layer, and the electrolyte membrane layer is formed as an oxygen electrode in the hole range of the through-hole. It can also be exposed to. By so doing, the region where oxygen can escape from the electrolyte membrane layer is limited, and accordingly, it is possible to prevent or suppress the escape of oxygen atoms already introduced into interstitial oxygen vacancies in the electrolyte membrane layer. In addition, even if oxygen atoms already introduced into the interstitial oxygen vacancies in the electrolyte membrane layer occur in the through hole region, oxygen atoms can be injected into the interstitial oxygen vacancies through the through holes. It is also possible to compensate for the loss of oxygen.

こうした酸素原子の注入に際しては、電解質膜層における格子間酸素欠損に導入済み酸素原子の抜けの度合いを推定し、導入済み酸素原子の抜けの度合いが高まったと推定されると、酸素極の側から貫通孔を経て電解質膜層に酸素を補給し、格子間酸素欠損に導入済み酸素原子の抜けを補うようにできる。   When such oxygen atoms are implanted, the degree of escape of oxygen atoms introduced into interstitial oxygen vacancies in the electrolyte membrane layer is estimated, and when the degree of escape of introduced oxygen atoms is estimated to increase, from the oxygen electrode side Oxygen is replenished to the electrolyte membrane layer through the through-hole, and the escape of oxygen atoms introduced into interstitial oxygen vacancies can be compensated.

この場合、電解質膜層における格子間酸素欠損に導入済み酸素原子の抜けの度合いが高まったと推定する手法としては、燃料電池の温度や環境温度の推移(低下)に基づいた推定手法が簡便である。また、次のようにすることもできる。   In this case, an estimation method based on the transition (decrease) in the temperature of the fuel cell or the environmental temperature is simple as a method for estimating that the degree of oxygen atoms introduced into interstitial oxygen vacancies in the electrolyte membrane layer has increased. . Moreover, it can also be performed as follows.

電解質膜層における格子間酸素欠損に導入済み酸素原子の抜けの度合いは、プロトン伝導性の程度に影響する。プロトン伝導性が変化すると、発電状況や膜抵抗や内部抵抗も変化する。よって、発電状況(詳しくは、出力電流推移)や内部抵抗推移に基づいて、上記推定を行うこともできる。こうした推定に際し、燃料電池温度を加味して推定を行うようにすることもできる。   The degree of escape of oxygen atoms introduced into interstitial oxygen vacancies in the electrolyte membrane layer affects the degree of proton conductivity. When proton conductivity changes, the power generation status, membrane resistance, and internal resistance also change. Therefore, the above estimation can also be performed based on the power generation status (specifically, output current transition) and internal resistance transition. In such estimation, the estimation can be performed in consideration of the fuel cell temperature.

また、燃料電池の水素極と酸素極の間に配設されて両極と接合する電解質膜を製造するために本発明が採用した手順は、
水素を選択的に透過する性質の水素分離膜層を形成する工程(1)と、
格子間酸素の欠損への酸素原子導入が起きた状態でプロトン伝導の性質を呈する酸素欠損型プロトン伝導体化合物を用いて、前記水素分離層の表面に電解質膜層を形成する工程(2)と、
プロトン伝導の性質と酸素原子の移動が制限された性質とを有する化合物を用いて、前記電解質膜層の表面に被覆膜層を形成する工程(3)とを有し、
前記被覆膜層を形成する工程(3)を、前記電解質膜層が前記格子間酸素の欠損への酸素原子導入が起きた状態にある状況下で、実行するようにした。
In addition, the procedure adopted by the present invention to produce an electrolyte membrane that is disposed between a hydrogen electrode and an oxygen electrode of a fuel cell and joined to both electrodes,
Forming a hydrogen separation membrane layer having a property of selectively permeating hydrogen (1);
(2) forming an electrolyte membrane layer on the surface of the hydrogen separation layer using an oxygen-deficient proton conductor compound that exhibits proton conduction properties in a state where oxygen atoms are introduced into interstitial oxygen defects; ,
A step (3) of forming a coating film layer on the surface of the electrolyte membrane layer using a compound having a property of proton conduction and a property of limited movement of oxygen atoms,
The step (3) of forming the coating film layer is performed in a state where the electrolyte membrane layer is in a state where oxygen atoms are introduced into the interstitial oxygen vacancies.

こうすれば、水素分離膜層と酸素欠損型プロトン伝導体化合物の電解質膜層とを併用した実用性の高い電解質膜を容易に製造できる。   By doing so, a highly practical electrolyte membrane using both the hydrogen separation membrane layer and the oxygen-deficient proton conductor compound electrolyte membrane layer can be easily produced.

こうした製造方法において、被覆膜層を形成するに当たり、前記被覆膜層の形成に用いる化合物として、格子間酸素の欠損への酸素原子導入が起きた状態でプロトン伝導の性質を呈する酸素欠損型プロトン伝導体化合物であって、前記電解質膜層を形成する酸素欠損型プロトン伝導体化合物より、酸素イオン伝導率が小さい酸素欠損型プロトン伝導体化合物を用いることができる。こうすれば、電解質膜層と被覆膜層を同質の化合物で形成できるので、ほぼ同一の膜形成手法をとることができる。   In such a manufacturing method, in forming a coating film layer, as a compound used for forming the coating film layer, an oxygen-deficient type that exhibits proton conduction properties in a state in which oxygen atoms are introduced into interstitial oxygen defects An oxygen deficient proton conductor compound having a lower oxygen ion conductivity than the oxygen deficient proton conductor compound forming the electrolyte membrane layer can be used. By doing so, the electrolyte membrane layer and the coating membrane layer can be formed of the same compound, so that almost the same film formation method can be taken.

また、電解質膜層を形成するに当たり、前記水素分離層をチャンバー内に配置して、前記酸素欠損型プロトン伝導体化合物を用いて前記水素分離層の表面に電解質膜層を製膜し、次いで、被覆膜層を形成するに当たっては、電解質膜層形成に用いたチャンバー内を電解質製膜時よりも酸素分圧の高い環境下に置くことで、前記電解質膜層が前記格子間酸素の欠損への酸素原子導入が起きた状態の状況下に置き、前記化合物を用いて前記電解質膜層の表面に前記被覆膜層を製膜するようにすることもできる。   In forming the electrolyte membrane layer, the hydrogen separation layer is disposed in a chamber, and the electrolyte membrane layer is formed on the surface of the hydrogen separation layer using the oxygen-deficient proton conductor compound, In forming the coating film layer, the inside of the chamber used for forming the electrolyte film layer is placed in an environment where the oxygen partial pressure is higher than that during the electrolyte film formation, so that the electrolyte film layer becomes deficient in the interstitial oxygen. It is also possible to form the coating film layer on the surface of the electrolyte membrane layer using the compound under the condition that oxygen atoms are introduced.

或いは、被覆膜層を形成するに当たり、前記電解質膜層に膜表面から酸素原子を注入することで、前記電解質膜層が前記格子間酸素の欠損への酸素原子導入が起きた状態の状況下に置き、前記化合物を用いて前記電解質膜層の表面に前記被覆膜層を製膜するようにすることもできる。   Alternatively, in forming the coating film layer, oxygen atoms are injected into the electrolyte membrane layer from the surface of the membrane so that the electrolyte membrane layer is introduced with oxygen atoms into the interstitial oxygen deficiency. The coating film layer can be formed on the surface of the electrolyte membrane layer using the compound.

また、被覆膜層を、電解質膜層の表面の一部領域が露出するように電解質膜層の表面に製膜しておき、その後に、この露出領域の膜表面から電解質膜層に酸素原子を注入する。そして、この酸素元素注入により、電解質膜層が格子間酸素の欠損への酸素原子導入が起きた状態の状況下に置き、露出領域を被覆するようにすることもできる。   Further, a coating film layer is formed on the surface of the electrolyte membrane layer so that a partial region of the surface of the electrolyte membrane layer is exposed, and then oxygen atoms are transferred from the membrane surface of the exposed region to the electrolyte membrane layer. Inject. Then, by this oxygen element implantation, the electrolyte membrane layer can be placed in a state where oxygen atoms are introduced into interstitial oxygen vacancies to cover the exposed region.

これらの手法を取れば、より簡便に、且つ、確実に、電解質膜層のプロトン伝導性を発現させた状態で、その酸素抜けを抑制或いは防止できる。   If these methods are taken, the oxygen escape can be suppressed or prevented more easily and reliably in a state where the proton conductivity of the electrolyte membrane layer is expressed.

次に、本発明に係る燃料電池の実施の形態を実施例に基づき説明する。図1は実施例の燃料電池10を構成するセルの断面を模式的に示す説明図である。このセルは、酸素極20(カソード)、水素極30(アノード)で電解質膜100を挟んだ構造となっている。酸素極20、水素極30は、白金など種々の導電性材料で形成可能であり、図示するようにそれぞれ酸素流路22、水素流路32を備える。   Next, embodiments of the fuel cell according to the present invention will be described based on examples. FIG. 1 is an explanatory view schematically showing a cross section of a cell constituting the fuel cell 10 of the embodiment. This cell has a structure in which an electrolyte membrane 100 is sandwiched between an oxygen electrode 20 (cathode) and a hydrogen electrode 30 (anode). The oxygen electrode 20 and the hydrogen electrode 30 can be formed of various conductive materials such as platinum, and include an oxygen channel 22 and a hydrogen channel 32, respectively, as shown.

電解質膜100は、バナジウム(V)を用いて薄膜形成された緻密な水素分離膜層120と、その表面に固体酸化物を用いて薄膜形成した電解質膜層110と、酸素極20側に位置するよう電解質膜層の表面に酸化物を用いて薄膜形成した酸素極側膜層125とを備える。水素分離膜層120は、製膜材料であるバナジウムの特性から、水素を選択的に透過する性質を発揮するものであり、水素極30の側に位置して当該極と接合する。   The electrolyte membrane 100 is located on the oxygen electrode 20 side, a dense hydrogen separation membrane layer 120 formed as a thin film using vanadium (V), an electrolyte membrane layer 110 formed as a thin film using a solid oxide on the surface thereof, and the oxygen electrode 20 side. And an oxygen-electrode-side film layer 125 formed on the surface of the electrolyte film layer using an oxide. The hydrogen separation membrane layer 120 exhibits the property of selectively permeating hydrogen due to the characteristics of vanadium as a film forming material, and is located on the hydrogen electrode 30 side and joined to the electrode.

電解質膜層110は、酸素欠損型プロトン伝導体化合物の代表例であるペロブスカイト型プロトン伝導体化合物のBaCeO3系のセラミックを用いて製膜されている。そして、製膜材料であるペロブスカイト型プロトン伝導体化合物のBaCeO3系セラミックの薄膜であることから、格子間酸素の欠損への酸素原子導入が起きた状態でプロトン伝導の性質を呈する。 The electrolyte membrane layer 110 is formed using a BaCeO 3 -based ceramic of a perovskite proton conductor compound, which is a typical example of an oxygen deficient proton conductor compound. Since it is a BaCeO 3 ceramic thin film of a perovskite type proton conductor compound, which is a film-forming material, it exhibits proton conduction properties in a state where oxygen atoms are introduced into interstitial oxygen defects.

酸素極側膜層125は、電解質膜層110と同様、ペロブスカイト型プロトン伝導体化合物を用いて製膜されているが、電解質膜層110の形成材料であるBaCeO3系のセラミックよりは、酸素イオン輸率が小さいペロブスカイト型プロトン伝導体化合物が用いられる。つまり、電解質膜層110の形成材料がBaCeO3系のセラミックであることから、本実施例では、酸素極側膜層125を、例えば、SrCeO3系のセラミックで形成することにした。この場合、BaCeO3系より酸素イオン輸率が小さいSrZrO3系やCaZrO3系のセラミックを用いることもできる。 The oxygen electrode side membrane layer 125 is formed using a perovskite type proton conductor compound in the same manner as the electrolyte membrane layer 110. However, the oxygen electrode side membrane layer 125 is more oxygen ion than the BaCeO 3 type ceramic that is a material for forming the electrolyte membrane layer 110. A perovskite proton conductor compound having a low transport number is used. That is, since the material for forming the electrolyte membrane layer 110 is a BaCeO 3 -based ceramic, in this embodiment, the oxygen electrode side membrane layer 125 is formed of, for example, a SrCeO 3 -based ceramic. In this case, SrZrO 3 or CaZrO 3 -based ceramics having an oxygen ion transport number smaller than that of the BaCeO 3 -based material can also be used.

酸素極側膜層125は、ペロブスカイト型プロトン伝導体化合物であることから、プロトン伝導性と酸素イオン伝導性を併せ持つが、採用した化合物の酸素イオン伝導性が小さいことから酸素イオン輸率も小さくなる。この結果、燃料電池用の電解質膜100の構成部材としての実用に足りるプロトン伝導性を発揮する。   Since the oxygen electrode side membrane layer 125 is a perovskite type proton conductor compound, it has both proton conductivity and oxygen ion conductivity. However, since the oxygen ion conductivity of the employed compound is small, the oxygen ion transport number is also small. . As a result, proton conductivity sufficient for practical use as a constituent member of the electrolyte membrane 100 for a fuel cell is exhibited.

この場合、水素分離膜層120や電解質膜層110および酸素極側膜層125の材料は、上記したものに限られるものではなく、水素分離膜層120にあっては、水素を選択的に透過する性質を発揮するパラジウム、パラジウム合金などの貴金属、並びにVA族元素、例えば、ニオブ(Nb)、タンタル(Ta)などを用いてもよい。電解質膜層110については、格子間酸素の欠損への酸素原子導入が起きた状態でプロトン伝導の性質を呈する他のペロブスカイト型プロトン伝導体化合物、例えば、SrCeO3系、SrZrO3系、CaZrO3系のセラミックや、パイロクロア型プロトン伝導体化合物、例えば、GdTi系、LaZr系のセラミックなどを用いてもよい。酸素極側膜層125については、電解質膜層110に用いたペロブスカイト型プロトン伝導体化合物やパイロクロア型プロトン伝導体化合物より酸素イオン伝導率が小さいものであればよい。そして、酸素極側膜層125の製膜化合物の酸素イオン伝導性が電解質膜層110の製膜化合物に比してより小さいほど、電解質膜層110から抜け出した酸素が酸素極側膜層125を経由して抜け出にくくなるので、電解質膜層110からの導入酸素抜けの抑制或いは防止の観点から好ましい。 In this case, the materials of the hydrogen separation membrane layer 120, the electrolyte membrane layer 110, and the oxygen electrode side membrane layer 125 are not limited to those described above. The hydrogen separation membrane layer 120 selectively transmits hydrogen. It is also possible to use noble metals such as palladium and palladium alloys that exhibit the properties to be used, and VA group elements such as niobium (Nb) and tantalum (Ta). For the electrolyte membrane layer 110, other perovskite proton conductor compounds exhibiting proton conduction properties in the state where oxygen atoms are introduced into interstitial oxygen defects, such as SrCeO 3 , SrZrO 3 , and CaZrO 3 Or pyrochlore proton conductor compounds such as Gd 2 Ti 2 O 7 -based and La 2 Zr 2 O 7 -based ceramics may be used. The oxygen electrode side membrane layer 125 may have any oxygen ion conductivity smaller than that of the perovskite proton conductor compound or pyrochlore proton conductor compound used for the electrolyte membrane layer 110. As the oxygen ion conductivity of the film forming compound of the oxygen electrode side film layer 125 is smaller than that of the film forming compound of the electrolyte film layer 110, the oxygen that has escaped from the electrolyte film layer 110 passes through the oxygen electrode side film layer 125. This is preferable from the viewpoint of suppressing or preventing the escape of introduced oxygen from the electrolyte membrane layer 110.

発電過程における水素極30および酸素極20での反応を促進するために、セル中には白金(Pt)等の触媒層を設けるのが通常である。図示を省略したが、触媒層は、例えば、電解質膜100と酸素極20、水素極30との間に設けることができる。   In order to promote the reaction at the hydrogen electrode 30 and the oxygen electrode 20 during the power generation process, a catalyst layer such as platinum (Pt) is usually provided in the cell. Although not shown, the catalyst layer can be provided between the electrolyte membrane 100, the oxygen electrode 20, and the hydrogen electrode 30, for example.

図示する通り、酸素極20には、酸素を含有したガスとして空気が供給される。水素極30には、水素リッチな燃料ガスが供給される。燃料ガス中の水素は、水素分離膜層120で分離され、プロトン伝導性を有する電解質膜層110および酸素極側膜層125を経て酸素極側に移動する。   As illustrated, air is supplied to the oxygen electrode 20 as a gas containing oxygen. A hydrogen-rich fuel gas is supplied to the hydrogen electrode 30. Hydrogen in the fuel gas is separated by the hydrogen separation membrane layer 120 and moves to the oxygen electrode side through the electrolyte membrane layer 110 and the oxygen electrode side membrane layer 125 having proton conductivity.

ここで、電解質膜100の製造プロセスについて説明する。図2は電解質膜100の製造工程を説明するための工程図、図3は薄膜形成の様子を模式的に示す説明図である。電解質膜層110と酸素極側膜層125および水素分離膜層120は、共に薄膜であることから、既存の薄膜形成手法を適用すれば足りる。例えば、電解質膜層110の厚さを1μm、酸素極側膜層125の厚さを0.1μm、水素分離膜層120の厚さを40μm程度とすれば、次のようにすればよい。なお、各層の厚さは任意に設定可能であり、製膜過程で調整される。   Here, a manufacturing process of the electrolyte membrane 100 will be described. FIG. 2 is a process diagram for explaining a manufacturing process of the electrolyte membrane 100, and FIG. 3 is an explanatory diagram schematically showing a state of thin film formation. Since the electrolyte membrane layer 110, the oxygen electrode side membrane layer 125, and the hydrogen separation membrane layer 120 are all thin films, it is sufficient to apply an existing thin film forming method. For example, if the thickness of the electrolyte membrane layer 110 is 1 μm, the thickness of the oxygen electrode side membrane layer 125 is 0.1 μm, and the thickness of the hydrogen separation membrane layer 120 is about 40 μm, the following may be performed. In addition, the thickness of each layer can be set arbitrarily and is adjusted in the film forming process.

まず、水素分離膜層120となる基材を形成する(ステップS200)。この基材形成に際しては、水素分離膜層120の厚み40μm程度の薄膜形成に適した手法、例えば気相成長法や、バナジウム(V)等の上記金属・合金を用いた薄肉成形手法にて、基材を形成する。   First, the base material used as the hydrogen separation membrane layer 120 is formed (step S200). In forming this base material, a method suitable for forming a thin film having a thickness of about 40 μm of the hydrogen separation membrane layer 120, for example, a vapor phase growth method or a thin-wall forming method using the above metal or alloy such as vanadium (V), A substrate is formed.

次に、この基材(水素分離膜層120)を薄膜形成装置のチャンバー300のセットテーブル302に載置し、チャンバー300内を適当な減圧状態にした後、基材表面に電解質膜層110を製膜する(ステップS210)。この薄膜形成装置は、製膜機器304に供給する膜材料を切り換えることにより、異なる材料の薄膜を形成できるように構成されている。また、薄膜形成装置は、上記のセラミックの薄膜形成に適した種々の手法、例えば、気相成長法(化学的気相成長法、物理的気相成長法)、スパッタリング、真空蒸着、レーザーアブレーション等の手法で薄膜形成可能に構成されている。   Next, this base material (hydrogen separation membrane layer 120) is placed on the set table 302 of the chamber 300 of the thin film forming apparatus, the inside of the chamber 300 is brought into an appropriate reduced pressure state, and then the electrolyte membrane layer 110 is placed on the surface of the base material. A film is formed (step S210). This thin film forming apparatus is configured to be able to form thin films of different materials by switching the film material supplied to the film forming apparatus 304. In addition, the thin film forming apparatus includes various methods suitable for the above-mentioned ceramic thin film formation, such as vapor phase growth (chemical vapor deposition, physical vapor deposition), sputtering, vacuum deposition, laser ablation, etc. The thin film can be formed by this method.

電解質膜層110の製膜に際しては、その形成材料であるBaCeO3系のセラミックを製膜機器304に供給してチャンバー300内を適当な減圧状態にした後、上記した膜厚に薄膜形成する。電解質膜層110の製膜後には、チャンバー300に付属の酸素加圧供給機器306により、チャンバー300内に酸素もしくは空気を適当な圧力で導入し、所定時間に亘ってチャンバー内を電解質製膜時よりも高酸素分圧下に置く(ステップS220)。 When forming the electrolyte membrane layer 110, a BaCeO 3 -based ceramic as a material for forming the electrolyte membrane layer 110 is supplied to the film-forming device 304 to bring the chamber 300 into an appropriate pressure-reduced state, and then the thin film is formed to the above-described thickness. After the formation of the electrolyte membrane layer 110, oxygen or air is introduced into the chamber 300 at an appropriate pressure by an oxygen pressurization supply device 306 attached to the chamber 300, and the inside of the chamber is subjected to electrolyte deposition for a predetermined time. (Step S220).

製膜済みの電解質膜層110は、その製膜過程で、格子間酸素の欠損に酸素原子が導入されるものの、格子間酸素欠損への酸素原子導入反応は可逆的であることから、その導入程度が高いとは限らず、製膜過程での導入済み酸素の抜けが起きているとも予想される。しかしながら、ステップS220にて、電解質膜層110は、高酸素分圧下の環境に置かれることから、その格子間酸素の欠損への酸素原子導入が起き、酸素イオン輸率が小さくなってプロトン輸率が高まり、プロトン伝導の性質を確実に発揮する。   The deposited electrolyte membrane layer 110 introduces oxygen atoms into interstitial oxygen vacancies during the film formation process, but the introduction of oxygen atoms into interstitial oxygen vacancies is reversible. The degree is not necessarily high, and it is also expected that introduced oxygen is lost during the film forming process. However, in step S220, since the electrolyte membrane layer 110 is placed in an environment under a high oxygen partial pressure, introduction of oxygen atoms into the deficiency of interstitial oxygen occurs, and the oxygen ion transport number decreases and the proton transport number. And the proton conduction properties are reliably exhibited.

このようにチャンバー300内を高酸素分圧にして電解質膜層110の格子間酸素欠損への酸素原子導入を図るに当たり、電源308により、水素分離膜層120と電解質膜層110とに、電解質膜層110の側が負の電位となるように直流電位をかけるようにすることもできる。こうすれば、電解質膜層110は、高酸素分圧下での酸素に触れた上で負の電圧印可を受けることから、電解質膜層110表面では、酸素原子が負の電荷のイオンとして格子間酸素欠損に導入される。よって、格子間酸素の欠損への酸素原子導入がより活発となり、電解質膜層110では、プロトン伝導の性質がより確実に発現する。そして、このように電位をかけることを高酸素分圧化と併用すれば、格子間酸素の欠損への酸素原子導入に要する時間の短縮化を図ることができる。   In this way, in order to introduce oxygen atoms into interstitial oxygen vacancies in the electrolyte membrane layer 110 by setting the inside of the chamber 300 to a high oxygen partial pressure, the electrolyte membrane is supplied to the hydrogen separation membrane layer 120 and the electrolyte membrane layer 110 by the power source 308. A direct current potential may be applied so that the layer 110 side has a negative potential. In this way, since the electrolyte membrane layer 110 is exposed to oxygen under a high oxygen partial pressure and receives a negative voltage, the oxygen atoms are interstitial oxygen as negatively charged ions on the surface of the electrolyte membrane layer 110. Introduced into the defect. Therefore, oxygen atom introduction into interstitial oxygen deficiency becomes more active, and the electrolyte membrane layer 110 exhibits the property of proton conduction more reliably. If applying such a potential in combination with increasing the oxygen partial pressure, the time required for introducing oxygen atoms into interstitial oxygen defects can be shortened.

電解質膜層110が高酸素分圧下に置かれている間に、製膜機器304に供給する膜材料を酸素極側膜層125の製膜材料であるSrCeO3系のセラミックに切り換え、電解質膜層110の表面に酸素極側膜層125を上記した膜厚に製膜する(ステップS230)。こうして、水素分離膜層120と酸素極側膜層125とでサンドイッチ状に電解質膜層110を挟み込んだ電解質膜100が完成する。そして、この電解質膜100を図1に示すように酸素極20と水素極30の両極間に配設して両極に接合させることで、燃料電池10(セル)が完成する。 While the electrolyte membrane layer 110 is placed under a high oxygen partial pressure, the membrane material supplied to the film-forming device 304 is switched to the SrCeO 3 -based ceramic that is the film-forming material of the oxygen electrode side membrane layer 125, and the electrolyte membrane layer The oxygen electrode side film layer 125 is formed on the surface of 110 to the above-described film thickness (step S230). Thus, the electrolyte membrane 100 in which the electrolyte membrane layer 110 is sandwiched between the hydrogen separation membrane layer 120 and the oxygen electrode side membrane layer 125 is completed. Then, the fuel cell 10 (cell) is completed by disposing the electrolyte membrane 100 between both the oxygen electrode 20 and the hydrogen electrode 30 as shown in FIG.

以上説明した本実施例の燃料電池10では、電解質膜層110を、共に緻密な水素分離膜層120と酸素極側膜層125とでサンドイッチ状にすることで、電解質膜層110の両面を水素分離膜層120と酸素極側膜層125で被覆して構成した。しかも、水素分離膜層120に製膜済みの電解質膜層110に対して酸素極側膜層125を製膜する際には、電解質膜層110を電解質製膜時よりも高酸素分圧下に置くことで、酸素極側膜層125の製膜前に電解質膜層110において格子間酸素欠損に酸素原子の導入を図り、その上で、電解質膜層110表面に酸素極側膜層125を製膜する。   In the fuel cell 10 of the present embodiment described above, the electrolyte membrane layer 110 is sandwiched between the dense hydrogen separation membrane layer 120 and the oxygen electrode side membrane layer 125 so that both surfaces of the electrolyte membrane layer 110 are hydrogenated. The separation membrane layer 120 and the oxygen electrode side membrane layer 125 were covered. Moreover, when the oxygen electrode side membrane layer 125 is deposited on the electrolyte membrane layer 110 that has been deposited on the hydrogen separation membrane layer 120, the electrolyte membrane layer 110 is placed under a higher oxygen partial pressure than when the electrolyte membrane is deposited. Thus, before the oxygen electrode side film layer 125 is formed, oxygen atoms are introduced into the interstitial oxygen vacancies in the electrolyte film layer 110, and then the oxygen electrode side film layer 125 is formed on the surface of the electrolyte film layer 110. To do.

このため、電解質膜100を構成する電解質膜層110における格子間酸素欠損に導入済みの酸素原子が抜けることを防止、若しくは抑制することができるので、電解質膜層110では、格子間酸素の欠損への酸素原子導入が起きた状態を確実に維持できる。よって、電解質膜層110における酸素イオン輸率が小さくなって水素イオン輸率が大きくなり、電解質膜層110でのプロトン伝導の性質を大きく損なうことがない。ましてや、酸素極側膜層125の製膜に先立って電解質膜層110に対しては予め格子間酸素欠損への酸素原子導入を促進しておくので、電解質膜層110のプロトン伝導の性質を高い確度で確実に維持できる。その一方、酸素極側膜層125はその形成材料の選定によりプロトン伝導の性質を呈するので、プロトン伝導性が不可欠な電解質膜としての機能を損なうことはない。よって、本実施例の燃料電池10では、水素分離膜層120と酸素欠損型プロトン伝導体化合物の電解質膜層110とを併用した電解質膜100の実用性を高めることができる。また、こうした電解質膜100を容易に製造することができる。   For this reason, since it is possible to prevent or suppress the introduction of oxygen atoms introduced into interstitial oxygen vacancies in the electrolyte membrane layer 110 constituting the electrolyte membrane 100, the electrolyte membrane layer 110 causes vacancy in interstitial oxygen. It is possible to reliably maintain the state in which oxygen atoms are introduced. Therefore, the oxygen ion transport number in the electrolyte membrane layer 110 is reduced, the hydrogen ion transport number is increased, and the proton conduction property in the electrolyte membrane layer 110 is not significantly impaired. Furthermore, since the introduction of oxygen atoms into interstitial oxygen vacancies is promoted in advance for the electrolyte membrane layer 110 prior to the formation of the oxygen electrode side membrane layer 125, the proton conduction property of the electrolyte membrane layer 110 is high. Can be reliably maintained with accuracy. On the other hand, since the oxygen electrode side membrane layer 125 exhibits the property of proton conduction depending on the selection of the forming material, the function as an electrolyte membrane in which proton conductivity is indispensable is not impaired. Therefore, in the fuel cell 10 of the present embodiment, the practicality of the electrolyte membrane 100 using both the hydrogen separation membrane layer 120 and the oxygen-deficient proton conductor compound electrolyte membrane layer 110 can be enhanced. Moreover, such an electrolyte membrane 100 can be easily manufactured.

本実施例では、酸素極20の側に位置する酸素極側膜層125は、格子間酸素の欠損への酸素原子導入が起きた状態でプロトン伝導の性質を呈する酸素欠損型プロトン伝導体化合物の薄膜ではあるものの、その酸素イオン伝導率が小さいことから、格子間酸素の欠損への導入済み酸素原子の抜けが起きにくい。このため、酸素極側膜層125におけるプロトン伝導の性質も大きく損なわれないので、電解質膜100としての実用に耐えることができる。   In this example, the oxygen electrode side membrane layer 125 located on the oxygen electrode 20 side is an oxygen deficient proton conductor compound that exhibits proton conduction properties in a state where oxygen atoms are introduced into interstitial oxygen defects. Although it is a thin film, since its oxygen ion conductivity is small, it is difficult for the introduced oxygen atoms to escape to interstitial oxygen defects. For this reason, since the property of proton conduction in the oxygen electrode side membrane layer 125 is not greatly impaired, the electrolyte membrane 100 can be practically used.

上記した実施例では、酸素極側膜層125の製膜に際し(ステップS230)、その膜材料を、CsHSO等のプロトン伝導性だけを発揮し酸素イオン伝導性を有しないプロトン伝導体の化合物、WO等のプロトン伝導性と電子の伝導性を併せ持つプロトン・電子伝導体の化合物、若しくは電解質膜層110に比して酸素イオン輸率が小さい酸素欠損型プロトン伝導体化合物とするだけで、これら化合物からなる酸素極側膜層125を容易に電解質膜層110表面に形成できる。そして、これら化合物の酸素極側膜層125であっても、既述した効果を奏することができる。 In the embodiment described above, when forming the oxygen electrode side membrane layer 125 (step S230), the membrane material is a proton conductor compound that exhibits only proton conductivity such as CsHSO 4 and does not have oxygen ion conductivity, Only by using a proton / electron conductor compound having both proton conductivity and electron conductivity such as WO 3 or an oxygen-deficient proton conductor compound having a smaller oxygen ion transport number than the electrolyte membrane layer 110 The oxygen electrode side membrane layer 125 made of a compound can be easily formed on the surface of the electrolyte membrane layer 110. And even if it is the oxygen-electrode side film | membrane layer 125 of these compounds, there can exist the effect mentioned above.

次に、他の実施例について説明する。図4は第2実施例の製造工程を説明するための工程図、図5は第2実施例の製造工程での薄膜形成の様子を模式的に示す説明図である。この実施例では、先に説明した実施例の製造工程における高酸素分圧工程に変え、電解質膜層110表面からの酸素注入を行うようにした点で相違する。   Next, another embodiment will be described. FIG. 4 is a process diagram for explaining the manufacturing process of the second embodiment, and FIG. 5 is an explanatory view schematically showing the state of thin film formation in the manufacturing process of the second embodiment. This embodiment is different in that oxygen is injected from the surface of the electrolyte membrane layer 110 in place of the high oxygen partial pressure step in the manufacturing process of the embodiment described above.

つまり、第2実施例の製造工程では、水素分離膜層120となる基材形成(ステップS200)、電解質膜層110の製膜(ステップS210)を、順次行い、その後、電解質膜層110への酸素注入を行う(ステップS225)。この酸素注入工程では、図5に示すように、プラズマ発生機器310により、チャンバー300内に酸素或いはオゾンのプラズマを発生させ、ステップS210にて水素分離膜層120の表面に製膜済みの電解質膜層110に酸素を膜表面から注入する。次いで、電解質膜層110の表面に酸素極側膜層125を製膜して(ステップS230)、水素分離膜層120と酸素極側膜層125とでサンドイッチ状に電解質膜層110を挟み込んだ電解質膜100を製造する。   In other words, in the manufacturing process of the second embodiment, the base material to be the hydrogen separation membrane layer 120 (step S200) and the membrane formation of the electrolyte membrane layer 110 (step S210) are sequentially performed, and then applied to the electrolyte membrane layer 110. Oxygen implantation is performed (step S225). In this oxygen injection step, as shown in FIG. 5, plasma of oxygen or ozone is generated in the chamber 300 by the plasma generator 310, and the electrolyte membrane that has been formed on the surface of the hydrogen separation membrane layer 120 in step S210. Oxygen is implanted into the layer 110 from the film surface. Next, an oxygen electrode side membrane layer 125 is formed on the surface of the electrolyte membrane layer 110 (step S230), and the electrolyte membrane layer 110 is sandwiched between the hydrogen separation membrane layer 120 and the oxygen electrode side membrane layer 125 so as to sandwich the electrolyte membrane layer 110. The membrane 100 is manufactured.

以上説明した本実施例の製造方法によれば、酸素極側膜層125の製膜に先立ち、酸素或いはオゾンのプラズマにより電解質膜層110への酸素注入を行う。よって、格子間酸素欠損への酸素原子導入がより確実になされた電解質膜層110を、水素分離膜層120と酸素極側膜層125とでサンドイッチ状に挟み、電解質膜100とすることができる。このため、電解質膜100を構成する電解質膜層110を格子間酸素の欠損への酸素原子導入が起きた状態をより確実に維持できる。よって、電解質膜層110のプロトン伝導の性質を高いまま維持できるので、より実用性が高まる。   According to the manufacturing method of the present embodiment described above, oxygen is injected into the electrolyte membrane layer 110 by oxygen or ozone plasma prior to the formation of the oxygen electrode side membrane layer 125. Therefore, the electrolyte membrane layer 110 in which the introduction of oxygen atoms into interstitial oxygen vacancies is more reliably performed can be sandwiched between the hydrogen separation membrane layer 120 and the oxygen electrode side membrane layer 125 to form the electrolyte membrane 100. . For this reason, the state in which the introduction of oxygen atoms into the deficiency of interstitial oxygen has occurred can be more reliably maintained in the electrolyte membrane layer 110 constituting the electrolyte membrane 100. Therefore, since the proton conduction property of the electrolyte membrane layer 110 can be maintained high, practicality is further increased.

上記した製造工程を取るに際して、電解質膜層110の製膜と酸素極側膜層125の製膜を同一のチャンバー300内で行ったが、電解質膜層110の製膜を別の製膜装置で行い、酸素極側膜層125の製膜装置に、電解質膜層110が製膜済みの水素分離膜層120をセットすることもできる。この場合は、酸素極側膜層125の製膜装置にプラズマ発生機器310を付属させればよい。   In taking the above-described manufacturing steps, the electrolyte membrane layer 110 and the oxygen electrode side membrane layer 125 were formed in the same chamber 300, but the electrolyte membrane layer 110 was formed by another film forming apparatus. It is possible to set the hydrogen separation membrane layer 120 on which the electrolyte membrane layer 110 has been formed in a film forming apparatus for the oxygen electrode side membrane layer 125. In this case, the plasma generating device 310 may be attached to the film forming apparatus for the oxygen electrode side film layer 125.

次に、酸素極側膜層125の構造とその製膜手順・酸素注入手法が相違する実施例について説明する。図6は他の酸素極側膜層125を有する燃料電池セルの断面を模式的に示す説明図、図7は電解質膜100の製造工程を示す工程図、図8は製造工程で行う貫通孔形成の準備の様子を示す説明図、図9は酸素極側膜層125での貫通孔形成の様子を示す説明図である。   Next, an embodiment in which the structure of the oxygen electrode side film layer 125 and the film forming procedure / oxygen implantation method are different will be described. 6 is an explanatory view schematically showing a cross section of a fuel cell having another oxygen electrode side membrane layer 125, FIG. 7 is a process diagram showing a manufacturing process of the electrolyte membrane 100, and FIG. 8 is a through-hole formation performed in the manufacturing process. FIG. 9 is an explanatory view showing a state of through-hole formation in the oxygen electrode side film layer 125.

図示するように、この実施例では、酸素極側膜層125は、その膜層を貫通する貫通孔126を点在させて備え、当該貫通孔を充填材127で閉塞させている。貫通孔126の総面積は、酸素極側膜層125の総面積に比して十分小さいので、貫通孔126の形成箇所にてプロトン伝導ができなくても、酸素極側膜層125全体から見れば、膜のプロトン伝導性を損なうことはない。よって、充填材127は、プロトンの非伝導性の材料、例えばガラスやセラミックの他、プロトン伝導性を有する金属等であってもよい。なお、上記した面積の関係から、充填材127が酸素イオン伝導性を有していても、電解質膜層110を酸素極側膜層125で覆うことで得られる酸素イオン抜け防止或いは抑制を、損なうものではない。   As shown in the drawing, in this embodiment, the oxygen electrode side membrane layer 125 is provided with the through holes 126 penetrating through the membrane layer, and the through holes are closed with the filler 127. Since the total area of the through-hole 126 is sufficiently smaller than the total area of the oxygen electrode side membrane layer 125, even if proton conduction cannot be performed at the position where the through hole 126 is formed, the entire area can be seen from the oxygen electrode side membrane layer 125. For example, the proton conductivity of the membrane is not impaired. Therefore, the filler 127 may be a proton non-conductive material such as glass or ceramic, or a metal having proton conductivity. Note that, from the above-described area relationship, even if the filler 127 has oxygen ion conductivity, the prevention or suppression of oxygen ion loss obtained by covering the electrolyte membrane layer 110 with the oxygen electrode side membrane layer 125 is impaired. It is not a thing.

こうした酸素極側膜層125を有する電解質膜100は、次のように製造される。図7に示すように、まず、先の実施例と同様、水素分離膜層120となる基材を形成し(ステップS200)、基材(水素分離膜層120)の表面に既述したペロブスカイト型プロトン伝導体化合物の電解質膜層110を適宜な手法で製膜する(ステップS210)。次に、電解質膜層110のペロブスカイト型プロトン伝導体化合物に比して酸素イオン伝導性が小さいペロブスカイト型プロトン伝導体化合物にて酸素極側膜層125を製膜する(ステップS240)。この製膜に際しては、図8に示すように、基板(水素分離膜層120)に製膜済みの電解質膜層110を、ジグ(図示略)から延びたテーパ状の押圧脚320で押圧し、この状態で酸素極側膜層125を既述した気相成長法等の手法で製膜する。そうすると、押圧脚320で押圧されている箇所では酸素極側膜層125の製膜がなされないので、押圧脚320を酸素極側膜層125の製膜後に取り去ることで、酸素極側膜層125に貫通孔126が形成される。なお、この貫通孔126の形成位置は、図6に示すように酸素流路22と一致した箇所に限らない。   The electrolyte membrane 100 having such an oxygen electrode side membrane layer 125 is manufactured as follows. As shown in FIG. 7, first, similarly to the previous embodiment, a base material to be the hydrogen separation membrane layer 120 is formed (step S200), and the perovskite type described above is formed on the surface of the base material (hydrogen separation membrane layer 120). The electrolyte membrane layer 110 of the proton conductor compound is formed by an appropriate method (step S210). Next, the oxygen electrode side membrane layer 125 is formed with a perovskite proton conductor compound having a smaller oxygen ion conductivity than the perovskite proton conductor compound of the electrolyte membrane layer 110 (step S240). In this film formation, as shown in FIG. 8, the electrolyte membrane layer 110 that has been formed on the substrate (hydrogen separation membrane layer 120) is pressed with tapered pressing legs 320 extending from a jig (not shown), In this state, the oxygen electrode side film layer 125 is formed by the method such as the vapor phase growth method described above. Then, since the oxygen electrode side film layer 125 is not formed at the place pressed by the pressing leg 320, the oxygen electrode side film layer 125 is removed by removing the pressing leg 320 after forming the oxygen electrode side film layer 125. A through-hole 126 is formed at the top. In addition, the formation position of this through-hole 126 is not restricted to the location corresponding to the oxygen flow path 22 as shown in FIG.

その後、電解質膜層110への酸素注入を行う(ステップS250)。この酸素注入工程では、図5を用いて説明したようにチャンバー内での酸素或いはオゾンのプラズマを発生させ、そのプラズマにより、貫通孔126の底面、即ち電解質膜層110の露出表面(貫通孔126の開孔領域)から、電解質膜層110に酸素が注入される。或いは、図3で説明したように、高酸素分圧下の環境で電位をかけるようにして、電解質膜層110の露出表面(貫通孔126の開孔領域)から、電解質膜層110に酸素を注入するようにすることもできる。こうした酸素注入は、酸素極側膜層125に対してもなされることになるが、酸素極側膜層125は、電解質膜層110に比して酸素イオン伝導性が小さいので、酸素注入の度合いは小さく、プロトン伝導性の大きな低下は起きない。なお、貫通孔126の形成箇所とその周辺にのみプラズマ照射するようにすれば、酸素極側膜層125における酸素注入の影響(プロトン伝導性低下)は問題とならない。   Thereafter, oxygen is injected into the electrolyte membrane layer 110 (step S250). In this oxygen implantation step, oxygen or ozone plasma is generated in the chamber as described with reference to FIG. 5, and the bottom surface of the through-hole 126, that is, the exposed surface of the electrolyte membrane layer 110 (through-hole 126) is generated by the plasma. The oxygen is injected into the electrolyte membrane layer 110 from the opening region. Alternatively, as described in FIG. 3, oxygen is injected into the electrolyte membrane layer 110 from the exposed surface of the electrolyte membrane layer 110 (opening region of the through hole 126) by applying a potential in an environment under a high partial pressure of oxygen. You can also do it. Such oxygen implantation is also performed on the oxygen electrode side film layer 125. However, the oxygen electrode side film layer 125 has lower oxygen ion conductivity than the electrolyte film layer 110, and therefore the degree of oxygen injection. Is small and does not cause a significant decrease in proton conductivity. Note that if plasma irradiation is performed only on the portion where the through-hole 126 is formed and its periphery, the influence of oxygen implantation (decrease in proton conductivity) in the oxygen electrode side film layer 125 does not become a problem.

こうした酸素注入に続いては、貫通孔126を閉塞し(ステップS260)、水素分離膜層120と酸素極側膜層125とでサンドイッチ状に電解質膜層110を挟み込んだ電解質膜100が完成する。貫通孔126の閉塞に際しては、押圧脚320を持ち上げて取り去り、貫通孔126の形成箇所に、溶融ガラス等を滴下した後に硬化させればよい。   Following such oxygen injection, the through-hole 126 is closed (step S260), and the electrolyte membrane 100 in which the electrolyte membrane layer 110 is sandwiched between the hydrogen separation membrane layer 120 and the oxygen electrode side membrane layer 125 is completed. When the through-hole 126 is closed, the pressing leg 320 may be lifted and removed, and molten glass or the like may be dropped onto the formation location of the through-hole 126 and then cured.

以上した製造工程を経ることで、酸素極側膜層125は、貫通孔126を充填材127で閉塞した状態で、電解質膜層110をその全面に亘って被覆する。しかも、電解質膜層110への酸素注入のために設けた貫通孔126を、酸素イオン伝導を起こさない充填材127で閉塞するので、上記した製造工程で製造した酸素極側膜層125を用いた電解質膜層110であっても、格子間酸素欠損に導入済みの酸素原子が抜けることを防止、若しくは抑制することができ、高い実用性を発揮することができる。   Through the manufacturing process described above, the oxygen electrode side membrane layer 125 covers the electrolyte membrane layer 110 over the entire surface in a state where the through hole 126 is closed with the filler 127. Moreover, since the through-hole 126 provided for oxygen injection into the electrolyte membrane layer 110 is closed with the filler 127 that does not cause oxygen ion conduction, the oxygen electrode side membrane layer 125 manufactured in the above manufacturing process was used. Even the electrolyte membrane layer 110 can prevent or suppress the escape of oxygen atoms introduced into interstitial oxygen vacancies, and can exhibit high practicality.

酸素極側膜層125に酸素注入のために設けた貫通孔126は、点在する孔である必要はなく、溝状等の種々の形態を取ることができる。図10は貫通孔126の他の形態を説明するための説明図である。図示するように、酸素極側膜層125の製膜に際して電解質膜層110を押圧するジグを、格子状の押圧脚322を有するものとすることもできる。こうすれば、電解質膜層110の表面に製膜済みの酸素極側膜層125には、格子状に連続した貫通孔126が形成され、この連続した貫通孔126が充填材127で閉塞されることになる。   The through holes 126 provided for oxygen injection in the oxygen electrode side film layer 125 do not have to be scattered holes, and can take various forms such as a groove shape. FIG. 10 is an explanatory view for explaining another form of the through hole 126. As shown in the figure, a jig that presses the electrolyte membrane layer 110 when the oxygen electrode side membrane layer 125 is formed may have a grid-like pressing leg 322. In this way, through-holes 126 that are continuous in the form of a lattice are formed in the oxygen electrode-side film layer 125 that has been formed on the surface of the electrolyte membrane layer 110, and the continuous through-holes 126 are blocked by the filler 127. It will be.

次に、貫通孔126をその一部について閉塞しないようにした実施例について説明する。図11は電解質膜100を組み込み済み完成させた燃料電池10の状態で貫通孔126を酸素注入に用いた実施例を説明するための説明図である。   Next, an embodiment in which the through hole 126 is not partially blocked will be described. FIG. 11 is an explanatory diagram for explaining an example in which the through hole 126 is used for oxygen injection in the state of the fuel cell 10 in which the electrolyte membrane 100 is assembled and completed.

この燃料電池10では、酸素極側膜層125は、充填材127で閉塞した貫通孔126と、解放のままの貫通孔126(非閉塞の貫通孔126)とを有する。こうした酸素極側膜層125を製造するには、図7で説明したステップS260において、一部の貫通孔126を充填材127で閉塞しないようにすればよい。この場合、総ての貫通孔126を解放のままとすることもできる。そして、この酸素極側膜層125では、非閉塞の貫通孔126を完成後の燃料電池10の状態での酸素注入に用いる都合上、非閉塞の貫通孔126を酸素流路22と合致させている。   In this fuel cell 10, the oxygen electrode side membrane layer 125 has a through hole 126 that is closed with a filler 127 and a through hole 126 that remains open (a non-closed through hole 126). In order to manufacture such an oxygen electrode side membrane layer 125, it is only necessary to prevent a part of the through holes 126 from being blocked by the filler 127 in step S260 described in FIG. In this case, all the through holes 126 can be left open. In the oxygen electrode side membrane layer 125, the non-blocking through hole 126 is made to coincide with the oxygen flow path 22 for the convenience of using the non-blocking through hole 126 for oxygen injection in the completed fuel cell 10 state. Yes.

燃料電池10は、既述したように酸素極側膜層125と水素分離膜層120で電解質膜層110をサンドイッチ状に挟んだ電解質膜100と、酸素極20と水素極30に加え、燃料電池10の発電制御等を行うための制御装置60の他、ポンプ40と改質装置50と温度センサ62と電流センサ64と電源70とスイッチ80とを有する。   As described above, the fuel cell 10 includes a fuel cell in addition to the electrolyte membrane 100 having the electrolyte membrane layer 110 sandwiched between the oxygen electrode side membrane layer 125 and the hydrogen separation membrane layer 120, the oxygen electrode 20 and the hydrogen electrode 30. In addition to the control device 60 for performing power generation control and the like, the pump 40, the reforming device 50, the temperature sensor 62, the current sensor 64, the power source 70, and the switch 80 are included.

ポンプ40は、酸素を含有したガスとしての圧縮空気を酸素極20の酸素流路22に供給する。改質装置50は、水素リッチな燃料ガスが改質生成し、当該ガスを水素極30の水素流路32に供給する。燃料ガス中の水素は、水素分離膜層120で分離され、電解質膜層110を経て酸素極側に移動する。   The pump 40 supplies compressed air as a gas containing oxygen to the oxygen flow path 22 of the oxygen electrode 20. The reformer 50 reforms and generates hydrogen-rich fuel gas and supplies the gas to the hydrogen flow path 32 of the hydrogen electrode 30. Hydrogen in the fuel gas is separated by the hydrogen separation membrane layer 120 and moves to the oxygen electrode side through the electrolyte membrane layer 110.

制御装置60は、上記したポンプ40や改質装置50の制御を介して燃料電池10の運転制御を司る。電源70は、制御装置60からの制御信号に基づいてスイッチ80が回路を閉じると、燃料電池10の各セルにおける酸素極20と水素極30の両電極間に、酸素極20の側が負極となるように直流電圧を印可する。こうした電圧印可は、温度センサ62や電流センサ64のセンサ出力に応じて制御装置60にてなされるが、その様子については後述する。   The control device 60 controls the operation of the fuel cell 10 through the control of the pump 40 and the reforming device 50 described above. When the switch 80 closes the circuit based on a control signal from the control device 60, the power source 70 has a negative electrode on the oxygen electrode 20 side between the oxygen electrode 20 and the hydrogen electrode 30 in each cell of the fuel cell 10. Apply a DC voltage as follows. Such voltage application is performed by the control device 60 in accordance with the sensor outputs of the temperature sensor 62 and the current sensor 64, which will be described later.

電源70は、燃料電池10とは別に用意された外部電源であり、本実施例の燃料電池10が車載のものであれば、車両が有する2次電池を適用すればよい。また、燃料電池10が定置式の燃料電池発電システムに組み込まれていれば、システム電源から直流の電源70を構成すればよい。   The power source 70 is an external power source prepared separately from the fuel cell 10. If the fuel cell 10 of this embodiment is an on-vehicle device, a secondary battery included in the vehicle may be applied. Further, if the fuel cell 10 is incorporated in a stationary fuel cell power generation system, the DC power source 70 may be configured from the system power source.

次に、本実施例の燃料電池10が行う運転制御について説明する。図12は酸素抜け抑制モード運転の内容を示すフローチャートである。   Next, operation control performed by the fuel cell 10 of the present embodiment will be described. FIG. 12 is a flowchart showing the contents of the oxygen escape suppression mode operation.

この酸素抜け抑制モード運転は、所定時間ごとに繰り返し実行されるものであるが、電解質膜層110の導入済み酸素原子の抜けを抑制するものであることから、燃料電池10を有するシステム(例えば、車両や燃料電池発電システム等)の稼働期間に限らず、非稼働の期間においても実行することが望ましい。制御装置60は、まず、温度センサ62や電流センサ64の他、システムのON・OFFスイッチ等の出力状況をセンシングし(ステップS300)、その結果に基づいて電解質膜層110における格子間酸素欠損に導入済み酸素原子の抜けの度合いを推定し(ステップS310)、酸素原子導入の要否、即ち酸素抜けの有無を判定する(ステップS320)。   This oxygen desorption suppression mode operation is repeatedly executed every predetermined time. However, since the oxygen desorption of the electrolyte membrane layer 110 is suppressed, the system having the fuel cell 10 (for example, It is desirable not only for the operation period of the vehicle, the fuel cell power generation system, etc.) but also for the non-operation period. First, the control device 60 senses the output status of the system ON / OFF switch and the like in addition to the temperature sensor 62 and the current sensor 64 (step S300), and based on the result, the interstitial oxygen deficiency in the electrolyte membrane layer 110 is detected. The degree of escape of introduced oxygen atoms is estimated (step S310), and it is determined whether or not oxygen atoms need to be introduced, that is, whether or not oxygen is lost (step S320).

こうした酸素抜けの推定は以下のような種々の手法を取ることができる。
<1>燃料電池10を有するシステム(例えば、車両や燃料電池発電システム等)の運転停止が継続すると、酸素極からの酸素イオン導入がないので、電解質膜層110において導入済み酸素の抜けが起き得る。よって、温度センサ62のセンサ出力推移と運転停止の経過時間等に基づいて、システム運転停止が継続しているような場合には、格子間酸素欠損に導入済み酸素原子の抜けの度合いが高いと推定する。
<2>また、燃料電池10の内部抵抗変化は、各セルの酸素極20と水素極30の間の抵抗変化として捕らえられるので、両極間に微少な電位を電源70からかけて、その際の電流推移を電流センサ64にて検出する。そして、その電流推移が内部抵抗の増大と関与するものであれば、格子間酸素欠損に導入済み酸素原子の抜けの度合いが高いと推定する。この推定手法は、両電極間に電位をかけることから、燃料電池10が運転を停止している間に行う。なお、上記した電流推移に基づいた推定に際しては、温度センサ62で検出した燃料電池温度にて推定の幅を持たせるようにすることもできる。
<3>水素ガス・酸素ガスの供給に対して温度センサ62の検出温度や電流センサ64の検出電流が低いまま推移するのであれば、電解質膜層110で酸素の抜けが起きてプロトン伝導性が低下し電解質膜100の機能低下(例えば、内部抵抗の増大)が起きたとも推考される。よって、こうした場合には、格子間酸素欠損に導入済み酸素原子の抜けの度合いが高いと推定する。
Such estimation of oxygen loss can be performed by the following various methods.
<1> If the operation stop of the system having the fuel cell 10 (for example, a vehicle, a fuel cell power generation system, etc.) is continued, oxygen ions are not introduced from the oxygen electrode, so that the introduced oxygen escapes from the electrolyte membrane layer 110. obtain. Therefore, based on the sensor output transition of the temperature sensor 62, the elapsed time of the shutdown, and the like, when the system shutdown is continued, the degree of escape of oxygen atoms already introduced into the interstitial oxygen vacancy is high. presume.
<2> Moreover, since the internal resistance change of the fuel cell 10 is captured as a resistance change between the oxygen electrode 20 and the hydrogen electrode 30 of each cell, a very small potential is applied from the power source 70 between the two electrodes, The current transition is detected by the current sensor 64. If the current transition is associated with an increase in internal resistance, it is estimated that the degree of escape of oxygen atoms already introduced into interstitial oxygen vacancies is high. This estimation method is performed while the fuel cell 10 is not in operation because a potential is applied between both electrodes. In the estimation based on the above-described current transition, the estimation range may be given by the fuel cell temperature detected by the temperature sensor 62.
<3> If the detection temperature of the temperature sensor 62 and the detection current of the current sensor 64 are kept low with respect to the supply of hydrogen gas / oxygen gas, oxygen escape occurs in the electrolyte membrane layer 110 and proton conductivity is reduced. It is assumed that the function of the electrolyte membrane 100 is lowered and the function of the electrolyte membrane 100 is reduced (for example, an increase in internal resistance). Therefore, in such a case, it is estimated that the degree of escape of oxygen atoms introduced into interstitial oxygen vacancies is high.

こうして格子間酸素欠損に導入済み酸素原子の抜けの度合いが高いと推定すれば、続くステップS330にて、酸素注入処理を行い本ルーチンを終了する。この酸素注入処理としては、次のような処置を取ることができる。   If it is estimated that the degree of escape of oxygen atoms introduced into interstitial oxygen vacancies is high in this way, in the subsequent step S330, oxygen implantation processing is performed and this routine is terminated. As this oxygen implantation treatment, the following treatment can be taken.

電解質膜100が運転を停止している間、或いは、起動時にあっては、水素ガス・酸素ガスの電極への供給が行われていない、或いは、電池運転のためのガス供給に備えた時期である。よって、こうした状況下での酸素抜け有りと判定した場合には、制御装置60は、ポンプ40を駆動制御して酸素極20に酸素(大気)を供給しつつ、スイッチ80をONに切り換え、酸素極20と水素極30の両電極間に、酸素極側を負極にして電源70から電圧を印可する。この酸素供給・電圧印可は、所定時間に亘って行うようにすることもできるほか、電源70から印可した積算電力が所定の値に達するまで継続し、その後終了するようにすることができる。この酸素供給・電圧印可の際に、水素極30に水素ガスを供給する必要はない。なお、電池起動時にあっては、酸素供給・電圧印可の終了後に、制御装置60は、水素ガス・酸素ガスの両ガスの供給制御を行い、燃料電池10を運転制御する。   While the electrolyte membrane 100 is not operating or at the start-up, hydrogen gas / oxygen gas is not supplied to the electrode or at a time when the gas supply for battery operation is prepared. is there. Therefore, when it is determined that there is oxygen depletion under such circumstances, the control device 60 drives and controls the pump 40 to supply oxygen (atmosphere) to the oxygen electrode 20 while switching the switch 80 to ON. A voltage is applied from the power source 70 between the electrode 20 and the hydrogen electrode 30 with the oxygen electrode side as a negative electrode. The oxygen supply / voltage application can be performed for a predetermined time, or can be continued until the integrated power applied from the power source 70 reaches a predetermined value, and then ended. It is not necessary to supply hydrogen gas to the hydrogen electrode 30 when supplying oxygen and applying voltage. At the time of starting the battery, after the oxygen supply / voltage application is completed, the control device 60 controls the supply of both hydrogen gas and oxygen gas to control the operation of the fuel cell 10.

以上説明した酸素供給・電圧印可を行えば、燃料電池10では、次のような現象が起きる。酸素極20の側の電解質膜層110は、充填材127のない非閉塞の貫通孔126の開孔領域において、酸素ガス中の酸素に触れた上で負の電圧印可を受ける。よって、電解質膜層110では、非閉塞の貫通孔126の開孔領域表面から、酸素原子が負の電荷のイオンとして格子間酸素欠損に導入(注入)される。   If the oxygen supply and voltage application described above are performed, the following phenomenon occurs in the fuel cell 10. The electrolyte membrane layer 110 on the oxygen electrode 20 side is exposed to oxygen in the oxygen gas in the opening region of the non-closed through-hole 126 without the filler 127 and receives a negative voltage. Therefore, in the electrolyte membrane layer 110, oxygen atoms are introduced (injected) into the interstitial oxygen vacancies as negatively charged ions from the surface of the open region of the non-blocking through-hole 126.

また、燃料電池10の運転停止時或いはその継続時にあっては、次のようにして酸素注入を図ることができる。この場合は、制御装置60は、ポンプ40を駆動制御して酸素極20に酸素(大気)を供給する。このとき、水素極30の側では水素ガス供給が起きていないので、燃料電池10での電気化学反応は進行せず、酸素が消費されることはない。このため、酸素極20では、その酸素流路22は加圧された酸素ガスで満たされることになり、こうしたガス供給がないまま運転を停止している場合に比して、酸素極20の側の酸素分圧が高まる。   Further, when the operation of the fuel cell 10 is stopped or continued, oxygen injection can be performed as follows. In this case, the control device 60 drives and controls the pump 40 to supply oxygen (atmosphere) to the oxygen electrode 20. At this time, since no hydrogen gas is supplied on the hydrogen electrode 30 side, the electrochemical reaction in the fuel cell 10 does not proceed and oxygen is not consumed. For this reason, in the oxygen electrode 20, the oxygen flow path 22 is filled with the pressurized oxygen gas, and compared with the case where the operation is stopped without such gas supply, the oxygen electrode 20 side. The oxygen partial pressure increases.

このように燃料電池の運転停止時において、酸素極20の側は、高い酸素分圧の状態で運転停止の期間において継続する。つまり、上記したように発電による酸素の消費も無く、酸素ガス供給系は閉じた系となるので、ガスリークが無い以上、高酸素分圧の状況は継続することになる。よって、酸素極20の側の電解質膜層110は、高い酸素分圧の酸素に触れた状態となっていることから、電解質膜層110における格子間酸素欠損に導入済み酸素原子の抜けが非閉塞の貫通孔126の開孔領域から起きたとしても、その抜けを高酸素分圧下での酸素により補うようにして酸素注入を図る。この酸素注入により、非閉塞の貫通孔126の開孔領域から格子間酸素の欠損への酸素原子導入が進むので、酸素イオン伝導度が高まって酸素イオン輸率が小さくなり、その逆に水素イオン輸率が大きくなってプロトン伝導の性質(程度)を維持できる。   As described above, when the operation of the fuel cell is stopped, the oxygen electrode 20 side continues in the period of the operation stop with a high oxygen partial pressure. That is, as described above, there is no consumption of oxygen due to power generation, and the oxygen gas supply system is a closed system. Therefore, as long as there is no gas leak, the situation of high oxygen partial pressure continues. Accordingly, since the electrolyte membrane layer 110 on the oxygen electrode 20 side is in contact with oxygen having a high oxygen partial pressure, the escape of oxygen atoms introduced into interstitial oxygen vacancies in the electrolyte membrane layer 110 is not occluded. Even if it occurs from the opening region of the through-hole 126, oxygen injection is attempted so as to compensate for the loss by oxygen under a high oxygen partial pressure. By this oxygen injection, oxygen atoms are introduced from the open region of the non-blocking through-hole 126 into interstitial oxygen deficiency, so that the oxygen ion conductivity is increased and the oxygen ion transport number is decreased, and vice versa. The transport number can be increased to maintain the property (degree) of proton conduction.

また、燃料電池10の稼働期間(運転期間)にあっては、次のようにして酸素注入を図ることができる。こうした稼働期間では、制御装置60は、負荷に応じて燃料電池を運転制御する図示しない運転制御ルーチンを実行して、水素ガス・酸素ガスを供給し発電制御を行っている。こうした発電を行っているにも拘わらず、図12のステップS320で酸素抜け有りと判定した場合は、ガス供給に対して発電が低調なために電池温度が上がらないと推考される。よって、こうした場合には、運転制御ルーチンで求められている発電を上回る発電を起こすよう、発電上乗せの指示を出力し、燃料電池10を、負荷の求めより上乗せして発電させる。こうすれば、次の現象が得られる。   Further, during the operation period (operation period) of the fuel cell 10, oxygen injection can be achieved as follows. During such an operation period, the control device 60 executes an operation control routine (not shown) that controls the operation of the fuel cell according to the load, and supplies hydrogen gas / oxygen gas to perform power generation control. In spite of such power generation, if it is determined in step S320 in FIG. 12 that there is oxygen loss, it is assumed that the battery temperature does not rise because power generation is slow relative to the gas supply. Therefore, in such a case, an instruction to add power generation is output so as to generate power exceeding the power generation required in the operation control routine, and the fuel cell 10 is added to generate power by obtaining the load. In this way, the following phenomenon can be obtained.

プロトン伝導の性質を呈するための格子間酸素の欠損への酸素原子導入は、酸素欠損型プロトン伝導体化合物の電解質膜層110における酸素イオンの伝導で起きる。つまり、酸素イオン伝導度が高まればそれだけ格子間酸素の欠損への酸素原子導入が進み、プロトン伝導の性質(程度)を維持できる。この酸素イオン伝導度は温度に対して正の相関を持つので、例えば、燃料電池10が微少の発電で運転されそうした運転状態が継続すると、電解質膜層110の温度が昇温せず、比較的低温のまま推移することがある。   Introduction of oxygen atoms into interstitial oxygen vacancies to exhibit proton conduction properties occurs by conduction of oxygen ions in the electrolyte membrane layer 110 of the oxygen-deficient proton conductor compound. In other words, the higher the oxygen ion conductivity, the more oxygen atoms are introduced into interstitial oxygen deficits, and the proton conduction property (degree) can be maintained. Since the oxygen ion conductivity has a positive correlation with the temperature, for example, when the fuel cell 10 is operated with a small amount of power generation and such an operation state continues, the temperature of the electrolyte membrane layer 110 does not rise, May remain low.

こうなると、電解質膜層110が低温であるがゆえに、電解質膜層110での酸素イオン伝導度が低くなり、格子間酸素の欠損への酸素原子導入が進まなくなる。よって、格子間酸素の欠損への導入済み酸素原子導入の抜けが起きている状況で酸素原子導入が進まないと、電解質膜層110では、酸素がイオンとして移動できる酸素イオン輸率が大きくなり、プロトンの移動できる水素イオン輸率は小さくなるので、プロトン伝導の性質が低下すると予想される。なお、ここで云う格子間酸素の欠損への導入済み酸素原子導入の抜けが起きている状況は、酸素極側膜層125を電解質膜層110に製膜したにも拘わらず、製膜ミス・不良により起きることがあり得る。   In this case, since the electrolyte membrane layer 110 is at a low temperature, the oxygen ion conductivity in the electrolyte membrane layer 110 is lowered, and the introduction of oxygen atoms into interstitial oxygen vacancies does not proceed. Therefore, if oxygen atom introduction does not proceed in a situation where introduction of introduced oxygen atoms into interstitial oxygen vacancies occurs, oxygen ion transport number in which oxygen can move as ions in electrolyte membrane layer 110 increases. Since the hydrogen ion transport number that protons can move is small, it is expected that the property of proton conduction will deteriorate. Note that the situation where the introduction of introduced oxygen atoms into the deficiency of interstitial oxygen occurs here refers to the fact that the oxygen electrode side film layer 125 was formed on the electrolyte film layer 110, but the film formation error It can be caused by a defect.

しかしながら、本実施例では、上記したように燃料電池10の発電を上乗せ実行するので、こうした発電により電解質膜層110を昇温させることができる。このため、昇温に伴い非閉塞の貫通孔126の開孔領域から格子間酸素の欠損への酸素原子導入が進むので、酸素イオン伝導度が高まって酸素イオン輸率が小さくなり、その逆に水素イオン輸率が大きくなる。よって、燃料電池10の稼働中において上記した酸素注入を行う本実施例によれば、燃料電池10の稼働期間に亘って常時プロトン伝導の性質(程度)を維持できる。   However, in the present embodiment, as described above, the power generation of the fuel cell 10 is added and executed, so that the electrolyte membrane layer 110 can be heated by such power generation. For this reason, as the temperature rises, oxygen atoms are introduced from the open region of the non-blocking through-hole 126 into the interstitial oxygen deficiency, so that the oxygen ion conductivity increases and the oxygen ion transport number decreases, and vice versa. Increases the hydrogen ion transport number. Therefore, according to the present embodiment in which oxygen injection is performed during operation of the fuel cell 10, the proton conduction property (degree) can always be maintained over the operation period of the fuel cell 10.

この場合、燃料電池10の上乗せ発電は、例えば現状の発電状況に対して、一律に数%〜十数%上乗せするようにできるほか、次のようにしてもよい。図13は燃料電池稼働中の酸素抜け抑制のための燃料電池10の上乗せ発電の様子を説明する説明図である。   In this case, the additional power generation of the fuel cell 10 can be, for example, uniformly added several percent to several tens of percent with respect to the current power generation state, and may be performed as follows. FIG. 13 is an explanatory view for explaining the state of power generation on the fuel cell 10 for suppressing oxygen loss during operation of the fuel cell.

図示するように、現状の発電状況が低調な発電状況であれば、上乗せ率を高く設定し、発電状況が高くなるほど上乗せ率を小さくするようにすることもできる。こうすれば、次の利点がある。   As shown in the figure, if the current power generation state is low, the increase rate can be set higher, and the increase rate can be reduced as the power generation state becomes higher. This has the following advantages.

燃料電池10が高負荷に対処する等のために活発な発電を起こしていると、電解質膜層110は既に高温であるため、格子間酸素の欠損への酸素原子導入が非閉塞の貫通孔126の開孔領域から進むので、既述したように高いプロトン伝導の性質を維持できる。よって、こうした場合に発電の上乗せ率を低くすれば、燃料電池10の発電を不用意に高めることがないので好ましい。その反面、上記したように電解質膜層110が低温であると予想される低調な発電状況では、発電の上乗せ率を大きくして電解質膜層110の昇温を早め、早期のうちにプロトン伝導の性質を回復・維持させることができる。   When the fuel cell 10 is actively generating power to cope with a high load or the like, the electrolyte membrane layer 110 is already at a high temperature, so that the introduction of oxygen atoms into the deficiency of interstitial oxygen is not blocked. As described above, the high proton conduction property can be maintained. Therefore, in such a case, it is preferable to reduce the rate of addition of power generation because the power generation of the fuel cell 10 will not be inadvertently increased. On the other hand, in the low power generation situation in which the electrolyte membrane layer 110 is expected to be at a low temperature as described above, the heating rate of the electrolyte membrane layer 110 is increased by increasing the rate of addition of power generation, and proton conduction can be achieved early. The property can be restored and maintained.

上記のように上乗せ率を変更する場合、図13に点線で示したように、所定の発電状況H0より高い場合は、上乗せ率をゼロとするようにすることもできる。つまり、この所定の発電状況H0にあれば、電解質膜層110は十分高温であるため既に高いプロトン伝導の性質を発現させているとして、上乗せ発電を停止するのである。こうすれば、実際の発電状況に応じて上記の上乗せ発電の実行頻度を少なくできるので、水素ガス・酸素ガスの不用意な消費を抑制できると共に、燃料電池10を含むシステム(車両や燃料電池発電システム)の不用意な効率低下を招かない。   When the increase rate is changed as described above, as shown by the dotted line in FIG. 13, the increase rate can be set to zero when higher than a predetermined power generation situation H0. That is, in this predetermined power generation situation H0, since the electrolyte membrane layer 110 is sufficiently hot, it is assumed that a high proton conduction property has already been developed, and the additional power generation is stopped. By doing so, the frequency of execution of the above-described additional power generation can be reduced according to the actual power generation situation, so that inadvertent consumption of hydrogen gas / oxygen gas can be suppressed and the system including the fuel cell 10 (vehicle or fuel cell power generation) System) will not cause an inadvertent decrease in efficiency.

この場合、ゼロとする発電状況H0を温度センサ62のセンサ出力に応じて大小設定するようにすることもできる。例えば、温度センサ62の検出温度が高ければ、それだけ格子間酸素の欠損への酸素原子導入が進むと推考できるので、発電状況H0を小さな値とする。こうすれば、実際の発電状況が低調でも上記の上乗せ発電が不要となり、その実行頻度を少なくできるので、上記した利点がある。   In this case, the power generation state H0 to be zero can be set to be large or small according to the sensor output of the temperature sensor 62. For example, if the temperature detected by the temperature sensor 62 is higher, it can be assumed that oxygen atoms are introduced into interstitial oxygen deficits, so the power generation status H0 is set to a small value. In this way, even if the actual power generation state is low, the above-described additional power generation is not necessary, and the frequency of execution thereof can be reduced, so that there is the above-described advantage.

この他、燃料電池10の運転停止が継続している期間での酸素注入を強制的な発電によって行うようにすることもできる。図14は酸素注入のための強制的な発電の様子の一例を示す説明図、図15は強制的な発電の様子の他の例を示す説明図である。   In addition, oxygen injection during a period in which the operation of the fuel cell 10 continues to be stopped can be performed by forced power generation. FIG. 14 is an explanatory diagram illustrating an example of a state of forced power generation for oxygen injection, and FIG. 15 is an explanatory diagram illustrating another example of a state of forced power generation.

燃料電池10の運転停止期間は、本来なら燃料電池10へのガス供給を停止し、一切の発電を行わないのであるが、制御装置60は、運転停止継続期間において、強制的な発電制御を行う。この強制的な発電は、負荷の運転等のためには不要なものであるので、燃料電池10を搭載した車両であれば、図14に示すように、アイドル運転時に必要とされる発電の10%程度以下の小さな発電を継続して起こせばよい。具体的には、こうした微少な発電を起こすに足りるだけ、酸素極20・水素極30に水素ガス・酸素ガスを供給制御する。   During the operation stop period of the fuel cell 10, the gas supply to the fuel cell 10 is originally stopped and no power generation is performed. However, the control device 60 performs forced power generation control during the operation stop continuation period. . Since this forced power generation is unnecessary for load operation or the like, if the vehicle is equipped with the fuel cell 10, as shown in FIG. It is only necessary to continuously generate a small amount of electricity of about% or less. Specifically, supply of hydrogen gas / oxygen gas to the oxygen electrode 20 and the hydrogen electrode 30 is controlled so as to generate such a small amount of power generation.

このような微少発電であっても、当該発電の間に電解質膜層110の昇温を図ることができるので、既述したように酸素イオン伝導度が高まり、非閉塞の貫通孔126の開孔領域から酸素注入を図ることができ、これにより、プロトン伝導の性質(程度)を燃料電池の運転停止期間中でも維持できる。   Even in such a minute power generation, the temperature of the electrolyte membrane layer 110 can be increased during the power generation, so that the oxygen ion conductivity is increased as described above, and the opening of the non-blocking through-hole 126 is opened. Oxygen can be injected from the region, so that the property (degree) of proton conduction can be maintained even during the fuel cell shutdown period.

また、強制的な微少発電に変えて、図15に示すように発電の停止・実行を繰り返すようにすることもできる。こうした発電の繰り返しに際しては、図中パターン1、パターン2で示すように種々の発電量・発電時間とすることもできる。こうした発電の繰り返しであっても、その発電の間に電解質膜層110の昇温を図ることができるので、既述したようにプロトン伝導の性質(程度)を燃料電池の運転停止期間中でも維持できる。加えて、強制的な発電を周期的に行えばよいことから、過度の発電運転が不要となり、水素ガス等の不用意な消費を抑制できる。発電の繰り返しで得られた起電力は、例えば、2次電池の蓄電等に用いることができる。   Further, instead of forced micro power generation, it is possible to repeatedly stop and execute power generation as shown in FIG. When such power generation is repeated, as shown by pattern 1 and pattern 2 in the figure, various power generation amounts and power generation times can be used. Even if such power generation is repeated, the temperature of the electrolyte membrane layer 110 can be increased during the power generation, so that the property (degree) of proton conduction can be maintained even during the fuel cell shutdown period as described above. . In addition, since forced power generation may be performed periodically, excessive power generation operation becomes unnecessary, and inadvertent consumption of hydrogen gas or the like can be suppressed. The electromotive force obtained by repeating the power generation can be used, for example, for storage of a secondary battery.

以上、本発明のいくつかの実施例について説明したが、本発明はこれらの実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の態様で実施できることは勿論である。例えば、非閉塞の貫通孔126の開孔領域から酸素注入を図るに当たり、酸素極20と水素極30の両電極間の電圧印可を定電圧印可を想定したが、次のように変形できる。図16は酸素注入のための電圧印可の変形例を説明する説明図である。   As mentioned above, although several Example of this invention was described, this invention is not limited to these Examples, Of course, it can implement with a various aspect in the range which does not deviate from the summary of this invention. For example, in order to inject oxygen from the open region of the non-closed through-hole 126, the voltage application between the oxygen electrode 20 and the hydrogen electrode 30 is assumed to be a constant voltage application, but can be modified as follows. FIG. 16 is an explanatory diagram for explaining a modification of voltage application for oxygen implantation.

図11に示す構成において、電源70をその出力電圧を可変のもの、或いは、回路中に可変抵抗を組み込む。そして、制御装置60により、出力電圧を上下に可変制御したり、可変抵抗値の上下制御により、酸素極20の側の電位を上下に変動させる。こうすれば、酸素極20にかかる負極電位は、図16に点線で示すように変化する。このように電位変動が起きると、格子間酸素欠損への酸素原子導入反応も電気化学反応であるという性質上、格子間酸素欠損への酸素原子導入は活発に進行すると予想される。よって、電圧印可下における酸素極20の側の非閉塞の貫通孔126の開孔領域から電解質膜層110への酸素原子の導入は促進され、電解質膜層110でのプロトン伝導の性質維持に有益である。   In the configuration shown in FIG. 11, the power supply 70 has a variable output voltage, or a variable resistor is incorporated in the circuit. Then, the control device 60 variably controls the output voltage up and down, and fluctuates the potential on the oxygen electrode 20 side up and down by controlling the variable resistance value up and down. In this way, the negative electrode potential applied to the oxygen electrode 20 changes as shown by the dotted line in FIG. When potential fluctuations occur in this manner, oxygen atom introduction into interstitial oxygen vacancies is expected to proceed actively due to the property that the oxygen atom introduction reaction into interstitial oxygen vacancies is also an electrochemical reaction. Therefore, the introduction of oxygen atoms from the opening region of the non-occluded through-hole 126 on the oxygen electrode 20 side under voltage application to the electrolyte membrane layer 110 is promoted, which is beneficial for maintaining the property of proton conduction in the electrolyte membrane layer 110. It is.

実施例の燃料電池10を構成するセルの断面を模式的に示す説明図である。It is explanatory drawing which shows typically the cross section of the cell which comprises the fuel cell 10 of an Example. 電解質膜100の製造工程を説明するための工程図である。5 is a process diagram for explaining a manufacturing process of the electrolyte membrane 100. FIG. 薄膜形成の様子を模式的に示す説明図である。It is explanatory drawing which shows the mode of thin film formation typically. 第2実施例の製造工程を説明するための工程図である。It is process drawing for demonstrating the manufacturing process of 2nd Example. 第2実施例の製造工程での薄膜形成の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of thin film formation in the manufacturing process of 2nd Example. 他の酸素極側膜層125を有する燃料電池セルの断面を模式的に示す説明図である。It is explanatory drawing which shows typically the cross section of the fuel battery cell which has the other oxygen electrode side membrane layer 125. FIG. 電解質膜100の製造工程を示す工程図である。FIG. 5 is a process diagram showing a manufacturing process of the electrolyte membrane 100. 製造工程で行う貫通孔形成の準備の様子を示す説明図である。It is explanatory drawing which shows the mode of the preparation of through-hole formation performed at a manufacturing process. 酸素極側膜層125での貫通孔形成の様子を示す説明図である。It is explanatory drawing which shows the mode of through-hole formation in the oxygen electrode side membrane layer. 貫通孔126の他の形態を説明するための説明図である。It is explanatory drawing for demonstrating the other form of the through-hole 126. FIG. 電解質膜100を組み込み済み完成させた燃料電池10の状態で貫通孔126を酸素注入に用いた実施例を説明するための説明図である。It is explanatory drawing for demonstrating the Example which used the through-hole 126 for oxygen injection in the state of the fuel cell 10 which incorporated the electrolyte membrane 100 and was completed. 酸素抜け抑制モード運転の内容を示すフローチャートである。It is a flowchart which shows the content of oxygen escape suppression mode driving | operation. 燃料電池稼働中の酸素抜け抑制のための燃料電池10の上乗せ発電の様子を説明する説明図である。It is explanatory drawing explaining the mode of the onboard power generation of the fuel cell 10 for oxygen depletion suppression during fuel cell operation. 酸素注入のために行う強制的な発電の様子の一例を示す説明図である。It is explanatory drawing which shows an example of the mode of the forced electric power generation performed for oxygen injection. 強制的な発電の様子の他の例を示す説明図である。It is explanatory drawing which shows the other example of the mode of forced electric power generation. 酸素注入のための電圧印可の変形例を説明する説明図である。It is explanatory drawing explaining the modification of the voltage application for oxygen implantation.

符号の説明Explanation of symbols

10...燃料電池
20...酸素極
22...酸素流路
30...水素極
32...水素流路
40...ポンプ
50...改質装置
60...制御装置
62...温度センサ
64...電流センサ
70...電源
80...スイッチ
100...電解質膜
110...電解質膜層
120...水素分離膜層
DESCRIPTION OF SYMBOLS 10 ... Fuel cell 20 ... Oxygen electrode 22 ... Oxygen flow path 30 ... Hydrogen electrode 32 ... Hydrogen flow path 40 ... Pump 50 ... Reformer 60 ... Control device 62 ... Temperature sensor 64 ... Current sensor 70 ... Power supply 80 ... Switch 100 ... Electrolyte membrane 110 ... Electrolyte membrane layer 120 ... Hydrogen separation membrane layer

Claims (9)

水素含有の燃料ガスの供給を受ける水素極と、酸素含有の酸素ガスの供給を受ける酸素極と、両極の間に配設されて両極と接合する電解質膜とを備える燃料電池であって、
前記電解質膜は、
前記水素極側に、水素を選択的に透過する性質の水素分離膜層と、
格子間酸素の欠損への酸素原子導入が起きた状態でプロトン伝導の性質を呈する酸素欠損型プロトン伝導体化合物で前記水素分離層の表面に形成された電解質膜層と、
プロトン伝導の性質を呈する材料を用いて前記酸素極側に位置するよう前記電解質膜層の表面に形成され、膜層における酸素原子の移動を抑制する性質を発揮する酸素極側膜層とを備える
燃料電池。
A fuel cell comprising a hydrogen electrode that is supplied with a hydrogen-containing fuel gas, an oxygen electrode that is supplied with an oxygen-containing oxygen gas, and an electrolyte membrane that is disposed between the electrodes and joined to both electrodes,
The electrolyte membrane is
A hydrogen separation membrane layer having a property of selectively permeating hydrogen on the hydrogen electrode side;
An electrolyte membrane layer formed on the surface of the hydrogen separation layer with an oxygen-deficient proton conductor compound exhibiting proton conduction properties in a state where oxygen atoms are introduced into interstitial oxygen defects,
An oxygen electrode side membrane layer that is formed on the surface of the electrolyte membrane layer so as to be located on the oxygen electrode side using a material exhibiting proton conduction properties and that exhibits the property of suppressing the movement of oxygen atoms in the membrane layer. Fuel cell.
請求項1記載の燃料電池であって、
前記酸素極側膜層は、
格子間酸素の欠損への酸素原子導入が起きた状態でプロトン伝導の性質を呈する酸素欠損型プロトン伝導体化合物で前記電解質膜層の表面に形成された膜層であって、
前記酸素極側膜層を形成する酸素欠損型プロトン伝導体化合物は、前記電解質膜層を形成する酸素欠損型プロトン伝導体化合物より、酸素イオン伝導率が小さい化合物である
燃料電池。
The fuel cell according to claim 1, wherein
The oxygen electrode side membrane layer is
A membrane layer formed on the surface of the electrolyte membrane layer with an oxygen-deficient proton conductor compound that exhibits proton-conducting properties in a state where oxygen atoms are introduced into interstitial oxygen defects,
The oxygen-deficient proton conductor compound forming the oxygen electrode side membrane layer is a compound having a lower oxygen ion conductivity than the oxygen-deficient proton conductor compound forming the electrolyte membrane layer.
請求項1または請求項2記載の燃料電池であって、
前記酸素極側膜層は、
層を貫通する貫通孔を備え、該貫通孔の孔範囲において前記電解質膜層を前記酸素極に対して露出させている
燃料電池。
The fuel cell according to claim 1 or 2, wherein
The oxygen electrode side membrane layer is
A fuel cell comprising a through hole penetrating the layer, wherein the electrolyte membrane layer is exposed to the oxygen electrode in a hole range of the through hole.
請求項3記載の燃料電池であって、
前記電解質膜層における前記格子間酸素欠損に導入済み酸素原子の抜けの度合いを推定する推定手段と、
前記導入済み酸素原子の抜けの度合いが高まったと推定されると、前記酸素極の側から前記貫通孔を経て前記電解質膜層に酸素を補給し、前記格子間酸素欠損に導入済み酸素原子の抜けを補う酸素補給手段とを有する
燃料電池。
The fuel cell according to claim 3, wherein
Estimating means for estimating the degree of escape of oxygen atoms introduced into the interstitial oxygen vacancies in the electrolyte membrane layer;
When it is estimated that the degree of escape of the introduced oxygen atoms is increased, oxygen is replenished to the electrolyte membrane layer from the oxygen electrode side through the through holes, and the escape of oxygen atoms introduced into the interstitial oxygen vacancies is performed. A fuel cell comprising oxygen supplementing means for supplementing the fuel cell.
燃料電池の水素極と酸素極の間に配設されて両極と接合する電解質膜を製造する製造方法であって、
水素を選択的に透過する性質の水素分離膜層を形成する工程(1)と、
格子間酸素の欠損への酸素原子導入が起きた状態でプロトン伝導の性質を呈する酸素欠損型プロトン伝導体化合物を用いて、前記水素分離層の表面に電解質膜層を形成する工程(2)と、
プロトン伝導の性質と酸素原子の移動が制限された性質とを有する化合物を用いて、前記電解質膜層の表面に被覆膜層を形成する工程(3)とを有し、
前記被覆膜層を形成する工程(3)は、
前記電解質膜層が前記格子間酸素の欠損への酸素原子導入が起きた状態にある状況下で、実行される
電解質膜の製造方法。
A manufacturing method for manufacturing an electrolyte membrane disposed between a hydrogen electrode and an oxygen electrode of a fuel cell and bonded to both electrodes,
Forming a hydrogen separation membrane layer having a property of selectively permeating hydrogen (1);
(2) forming an electrolyte membrane layer on the surface of the hydrogen separation layer using an oxygen-deficient proton conductor compound that exhibits proton conduction properties in a state where oxygen atoms are introduced into interstitial oxygen defects; ,
A step (3) of forming a coating film layer on the surface of the electrolyte membrane layer using a compound having a property of proton conduction and a property of limited movement of oxygen atoms,
The step (3) of forming the coating film layer includes:
An electrolyte membrane manufacturing method that is executed in a state where the electrolyte membrane layer is in a state where oxygen atoms are introduced into the interstitial oxygen deficiency.
請求項5記載の電解質膜の製造方法であって、
前記被覆膜層を形成する工程(3)は、
前記被覆膜層の形成に用いる化合物として、格子間酸素の欠損への酸素原子導入が起きた状態でプロトン伝導の性質を呈する酸素欠損型プロトン伝導体化合物であって、前記電解質膜層を形成する酸素欠損型プロトン伝導体化合物より、酸素イオン伝導率が小さい酸素欠損型プロトン伝導体化合物を用いる
電解質膜の製造方法。
A method for producing an electrolyte membrane according to claim 5,
The step (3) of forming the coating film layer includes:
The compound used for forming the coating film layer is an oxygen-deficient proton conductor compound that exhibits proton conduction properties in a state where oxygen atoms are introduced into interstitial oxygen defects, and forms the electrolyte membrane layer An electrolyte membrane manufacturing method using an oxygen deficient proton conductor compound having a lower oxygen ion conductivity than an oxygen deficient proton conductor compound.
請求項5または請求項6記載の電解質膜の製造方法であって、
前記電解質膜層を形成する工程(2)は、
前記水素分離層をチャンバー内に配置して、前記酸素欠損型プロトン伝導体化合物を用いて前記水素分離層の表面に電解質膜層を製膜し、
前記被覆膜層を形成する工程(3)は、
前記電解質膜層を形成する工程(2)に用いたチャンバー内を酸素分圧の高い環境下に置くことで、前記電解質膜層が前記格子間酸素の欠損への酸素原子導入が起きた状態の状況下に置き、前記化合物を用いて前記電解質膜層の表面に前記被覆膜層を製膜する
電解質膜の製造方法。
A method for producing an electrolyte membrane according to claim 5 or 6,
The step (2) of forming the electrolyte membrane layer includes:
The hydrogen separation layer is disposed in a chamber, and an electrolyte membrane layer is formed on the surface of the hydrogen separation layer using the oxygen deficient proton conductor compound.
The step (3) of forming the coating film layer includes:
By placing the inside of the chamber used in the step (2) of forming the electrolyte membrane layer in an environment having a high oxygen partial pressure, the electrolyte membrane layer is in a state where oxygen atoms are introduced into the interstitial oxygen defects. A method for producing an electrolyte membrane, wherein the coating membrane layer is deposited on the surface of the electrolyte membrane layer using the compound under the circumstances.
請求項5または請求項6記載の電解質膜の製造方法であって、
前記被覆膜層を形成する工程(3)は、
前記電解質膜層に膜表面から酸素原子を注入することで、前記電解質膜層が前記格子間酸素の欠損への酸素原子導入が起きた状態の状況下に置き、前記化合物を用いて前記電解質膜層の表面に前記被覆膜層を製膜する
電解質膜の製造方法。
A method for producing an electrolyte membrane according to claim 5 or 6,
The step (3) of forming the coating film layer includes:
By injecting oxygen atoms into the electrolyte membrane layer from the surface of the membrane, the electrolyte membrane layer is placed in a state where oxygen atoms are introduced into the defects of interstitial oxygen, and the electrolyte membrane is used with the compound. A method for producing an electrolyte membrane, comprising forming the coating film layer on a surface of the layer.
請求項8記載の電解質膜の製造方法であって、
前記被覆膜層を形成する工程(3)は、
前記電解質膜層の表面の一部領域が露出するよう、前記化合物を用いて前記電解質膜層の表面に前記被覆膜層を製膜する工程と、
前記電解質膜層の前記露出領域の膜表面から酸素原子を注入することで、前記電解質膜層が前記格子間酸素の欠損への酸素原子導入が起きた状態の状況下に置き、前記露出領域を被覆する工程とを有する
電解質膜の製造方法。
A method for producing an electrolyte membrane according to claim 8,
The step (3) of forming the coating film layer includes:
Forming the coating film layer on the surface of the electrolyte membrane layer using the compound such that a partial region of the surface of the electrolyte membrane layer is exposed;
By injecting oxygen atoms from the film surface of the exposed region of the electrolyte membrane layer, the electrolyte membrane layer is placed in a state where oxygen atoms are introduced into the interstitial oxygen defects, and the exposed region is A method for producing an electrolyte membrane.
JP2004030637A 2004-02-06 2004-02-06 FUEL CELL AND METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL Expired - Fee Related JP4595338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004030637A JP4595338B2 (en) 2004-02-06 2004-02-06 FUEL CELL AND METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004030637A JP4595338B2 (en) 2004-02-06 2004-02-06 FUEL CELL AND METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL

Publications (2)

Publication Number Publication Date
JP2005222843A true JP2005222843A (en) 2005-08-18
JP4595338B2 JP4595338B2 (en) 2010-12-08

Family

ID=34998305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030637A Expired - Fee Related JP4595338B2 (en) 2004-02-06 2004-02-06 FUEL CELL AND METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL

Country Status (1)

Country Link
JP (1) JP4595338B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310698A (en) * 2004-04-26 2005-11-04 Toyota Motor Corp Manufacturing method of fuel cell electrolyte membrane
WO2007043368A1 (en) * 2005-10-07 2007-04-19 Toyota Jidosha Kabushiki Kaisha Fuel cell and its fabrication method
JP2008282570A (en) * 2007-05-08 2008-11-20 Toyota Motor Corp Method and device for membrane deposition
WO2020152731A1 (en) * 2019-01-21 2020-07-30 株式会社日立ハイテク Fuel battery cell and fuel battery module
TWI744041B (en) * 2019-11-08 2021-10-21 日商日立全球先端科技股份有限公司 Fuel cell and fuel cell manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345762A (en) * 1991-05-24 1992-12-01 Nippon Telegr & Teleph Corp <Ntt> Gas separating film type fuel cell
JP2002083611A (en) * 2000-07-04 2002-03-22 Nissan Motor Co Ltd Solid electrolyte type fuel cell
JP2002170579A (en) * 2000-09-22 2002-06-14 Nissan Motor Co Ltd Solid-state electrolyte type fuel battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345762A (en) * 1991-05-24 1992-12-01 Nippon Telegr & Teleph Corp <Ntt> Gas separating film type fuel cell
JP2002083611A (en) * 2000-07-04 2002-03-22 Nissan Motor Co Ltd Solid electrolyte type fuel cell
JP2002170579A (en) * 2000-09-22 2002-06-14 Nissan Motor Co Ltd Solid-state electrolyte type fuel battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310698A (en) * 2004-04-26 2005-11-04 Toyota Motor Corp Manufacturing method of fuel cell electrolyte membrane
WO2007043368A1 (en) * 2005-10-07 2007-04-19 Toyota Jidosha Kabushiki Kaisha Fuel cell and its fabrication method
JP2008282570A (en) * 2007-05-08 2008-11-20 Toyota Motor Corp Method and device for membrane deposition
WO2020152731A1 (en) * 2019-01-21 2020-07-30 株式会社日立ハイテク Fuel battery cell and fuel battery module
JPWO2020152731A1 (en) * 2019-01-21 2021-11-04 株式会社日立ハイテク Fuel cell and fuel cell module
JP7181949B2 (en) 2019-01-21 2022-12-01 株式会社日立ハイテク Fuel cell and fuel cell module
TWI744041B (en) * 2019-11-08 2021-10-21 日商日立全球先端科技股份有限公司 Fuel cell and fuel cell manufacturing method

Also Published As

Publication number Publication date
JP4595338B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP2012509552A (en) How to start and stop a fuel cell
US11081713B2 (en) Fuel cell activation method
JP5347253B2 (en) Fuel cell starting method, fuel cell starting device and vehicle equipped with the starting device
CA2577047C (en) Fuel cell production method and fuel cell
Ju et al. Reoxidation behavior of Ni–Fe bimetallic anode substrate in solid oxide fuel cells using a thin LaGaO3 based film electrolyte
JP2004319492A (en) Fuel cell and passive support
US20060252634A1 (en) Micro-sized electrode for solid oxide fuel cell and method for fabricating the same
JP4595338B2 (en) FUEL CELL AND METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL
JP2009289681A (en) Method of cleaning fuel cell
WO2008062278A1 (en) Electrolyte membrane forming method and fuel cell manufacturing method
Su et al. Cup-shaped yttria-doped barium zirconate membrane fuel cell array
JP2004172105A (en) Operation method of fuel cell system and fuel cell system
JP5266652B2 (en) Solid oxide fuel cell and manufacturing method thereof
JP2006079889A (en) Manufacturing method of electrolyte-electrode junction and fuel cell
JP2019175815A (en) Fuel cell activation method
WO2021145221A1 (en) Fuel cell system and control method for fuel cell system
JPH09199151A (en) Fuel cell and its catalytic processing method
KR101586569B1 (en) Activating method of fuel cell for performance recovery
JP2005222842A (en) Fuel cell
KR101281772B1 (en) Solid oxide fuel cell and method of fabricating the same
Wang et al. Breeding phenomenon of nickel in anode of solid oxide fuel cell via electrochemical reaction
JP4848619B2 (en) Manufacturing method of electrolyte membrane for fuel cell
JP2010267477A (en) Fuel cell system
JP2009054515A (en) Fuel cell and its manufacturing method
JP2010257782A (en) Solid polymer fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees