JP2005222838A - Method for manufacturing negative electrode in dye sensitized solar cell - Google Patents

Method for manufacturing negative electrode in dye sensitized solar cell Download PDF

Info

Publication number
JP2005222838A
JP2005222838A JP2004030543A JP2004030543A JP2005222838A JP 2005222838 A JP2005222838 A JP 2005222838A JP 2004030543 A JP2004030543 A JP 2004030543A JP 2004030543 A JP2004030543 A JP 2004030543A JP 2005222838 A JP2005222838 A JP 2005222838A
Authority
JP
Japan
Prior art keywords
semiconductor
transparent resin
film
layer
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004030543A
Other languages
Japanese (ja)
Other versions
JP4595337B2 (en
Inventor
Naotada Yamamoto
直嗣 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2004030543A priority Critical patent/JP4595337B2/en
Publication of JP2005222838A publication Critical patent/JP2005222838A/en
Application granted granted Critical
Publication of JP4595337B2 publication Critical patent/JP4595337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a negative electrode in a dye sensitized solar cell that can bake and form a semiconductor porous layer coated on an electrode made of a transparent resin by applying general-purpose microwaves at an oscillation frequency of 2.45 GHz for heating, and can effectively suppress the deformation of the electrode made of a transparent resin in heating baking. <P>SOLUTION: In the method for manufacturing the negative electrode in the dye sensitized solar cell, an electrode substrate made of a transparent resin having a transparent conductive layer on a transparent resin film is prepared, a semiconductor-coated layer is formed by coating the transparent conductive layer of the electrode made of the transparent resin with semiconductor paste in which a metal oxide semiconductor is dispersed into an organic solvent for forming a semiconductor-coated layer, and a semiconductor porous layer is formed by baking the semiconductor-coated layer. In the method for manufacturing the negative electrode, the baking of the semiconductor-coated layer is made by applying a microwave of 2.45 GHz while the semiconductor-coated layer becomes the surface side and the electrode made of the transparent resin is being placed on a liquid film formed on a sample state. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、色素増感型太陽電池における負極の製造方法に関するものであり、より詳細には、マイクロ波を用いての加熱により半導体多孔質層を形成する色素増感型太陽電池における負極の製造法に関する。   The present invention relates to a method for producing a negative electrode in a dye-sensitized solar cell, and more specifically, production of a negative electrode in a dye-sensitized solar cell in which a semiconductor porous layer is formed by heating using a microwave. Regarding the law.

現在、地球規模の環境問題や化石エネルギー資源枯渇問題などの観点から太陽光発電に対する期待が大きく、単結晶及び多結晶シリコン光電変換素子が太陽電池として実用化されている。しかし、この種の太陽電池は、高価格であること、シリコン原料の供給問題などを有しており、シリコン以外の材料を用いた太陽電池の実用化が望まれている。   Currently, there is great expectation for photovoltaic power generation from the viewpoint of global environmental problems and fossil energy resource depletion problems, and single crystal and polycrystalline silicon photoelectric conversion elements are put into practical use as solar cells. However, this type of solar cell is expensive and has a problem of supply of silicon raw materials, and the practical application of solar cells using materials other than silicon is desired.

上記のような見地から、最近では、シリコン以外の材料を用いた太陽電池として、色素増感型太陽電池が注目されている。この色素増感型太陽電池は、図1に示すように、透明ガラスや透明樹脂フィルムなどの透明基板1a上に透明導電膜1b(例えばITO膜)を電極基板1として使用し、この電極基板1の透明導電膜1b上に二酸化チタンなどの金属酸化物半導体の多孔質層3を設け、この多孔質層3の表面に増感色素(例えばRu色素)5を吸着させたものを負極7として有しており、このような負極7を、電解質液8を間に挟んで正極10に対峙させた構造を有している。   From the above viewpoint, recently, a dye-sensitized solar cell has attracted attention as a solar cell using a material other than silicon. As shown in FIG. 1, this dye-sensitized solar cell uses a transparent conductive film 1b (for example, ITO film) as an electrode substrate 1 on a transparent substrate 1a such as transparent glass or a transparent resin film. A porous layer 3 made of a metal oxide semiconductor such as titanium dioxide is provided on the transparent conductive film 1b, and a sensitizing dye (for example, Ru dye) 5 is adsorbed on the surface of the porous layer 3 as the negative electrode 7. Such a negative electrode 7 has a structure in which the positive electrode 10 is opposed to the electrolyte solution 8 therebetween.

このような構造の色素増感型太陽電池では、負極7側から可視光を照射すると、色素5が励起され、基底状態から励起状態へと遷移し、励起された色素5の電子は、半導体の多孔質層3の伝導帯へ注入され、外部回路12を通って正極10に移動する。正極10に移動した電子は、電解液中のイオンによって運ばれ、色素5に戻る。このような過程の繰り返しにより電気エネルギーが取り出されるわけである。このような色素増感型太陽電池の発電メカニズムは、pn接合型光電変換素子と異なり、光の捕捉と電子伝導が別々の場所で行われ、植物の光電変換プロセスに非常に似たものとなっている。   In the dye-sensitized solar cell having such a structure, when visible light is irradiated from the negative electrode 7 side, the dye 5 is excited and transitions from the ground state to the excited state. It is injected into the conduction band of the porous layer 3 and moves to the positive electrode 10 through the external circuit 12. The electrons that have moved to the positive electrode 10 are carried by the ions in the electrolytic solution and return to the dye 5. Electric energy is extracted by repeating such a process. The power generation mechanism of such a dye-sensitized solar cell differs from that of a pn junction photoelectric conversion element in that light capture and electron conduction are performed at different locations, which is very similar to a plant photoelectric conversion process. ing.

ところで、上記のような色素増感型太陽電池の負極7は、透明基板1aの透明導電膜1b上に、金属酸化物半導体のペーストを塗布し、焼成して半導体の多孔質層3を形成し、この上に色素溶液を塗布し、色素を多孔質層3に吸着させた後、色素溶液の溶媒を除去することにより製造されており(特許文献1,2)、また、上記半導体ペーストの焼付けをマイクロ波照射により行うことも知られている(非特許文献1)。
特許第2664194号 特公平8−15097号 機能材料 2003年6月号 Vol.23 No.6 58〜63頁
By the way, in the negative electrode 7 of the dye-sensitized solar cell as described above, a metal oxide semiconductor paste is applied on the transparent conductive film 1b of the transparent substrate 1a and baked to form the semiconductor porous layer 3. It is manufactured by applying a dye solution thereon, adsorbing the dye to the porous layer 3, and then removing the solvent of the dye solution (Patent Documents 1 and 2), and baking the semiconductor paste. Is also known to be performed by microwave irradiation (Non-patent Document 1).
Japanese Patent No. 2664194 Japanese Patent Publication 8-15097 Functional Materials June 2003 Vol.23 No.6 pp.58-63

特許文献3のようにマイクロ波照射により半導体ペーストの焼成を行う方法は、電気炉で焼成を行う場合に比して非常に短時間で焼成を完結できるという利点を有しているが、半面、半導体ペーストやその下層の透明導電層が急激に高温に加熱されるため、透明導電層を支持している透明基板の温度上昇を伴ない、例えば透明基板として透明な樹脂フィルムを用いた透明樹脂製電極の場合には、熱膨張や収縮により変形を生じてしまうという欠点がある。このため、照射するマイクロ波としては、一般的に汎用されている2.45GHzの周波数のものではなく、特殊な発振周波数(例えば28GHz)のマイクロ波が使用され、選択加熱性を高めている。   The method of firing semiconductor paste by microwave irradiation as in Patent Document 3 has the advantage that firing can be completed in a very short time compared to firing in an electric furnace. Since the semiconductor paste and the underlying transparent conductive layer are heated rapidly to a high temperature, the temperature of the transparent substrate supporting the transparent conductive layer is increased. For example, a transparent resin film using a transparent resin film as the transparent substrate is used. In the case of electrodes, there is a drawback that deformation occurs due to thermal expansion and contraction. For this reason, as a microwave to be irradiated, a microwave having a special oscillation frequency (for example, 28 GHz) is used instead of a generally used frequency of 2.45 GHz, and the selective heating property is enhanced.

しかしながら、上記のような特殊な発振周波数のマイクロ波を用いた場合には、電波法などにより定められている出力や漏洩電界強度に関する制限を満足させるため、特殊なマイクロ波発振器や導波管などの設備が必要となり、製造コストの著しい増大をもたらす。   However, when microwaves with special oscillation frequencies as described above are used, special microwave oscillators, waveguides, etc. are used to satisfy the restrictions on the output and leakage electric field strength specified by the Radio Law. Equipment is required, resulting in a significant increase in manufacturing costs.

従って、本発明の目的は、汎用されている発振周波数が2.45GHzのマイクロ波の照射による加熱によって半導体多孔質層の形成が可能であり、加熱焼成時の透明樹脂製電極の変形を有効に抑制できる色素増感型太陽電池における負極の製造法を提供することにある。   Therefore, the object of the present invention is to form a semiconductor porous layer by heating by microwave irradiation with a commonly used oscillation frequency of 2.45 GHz, and to effectively deform the transparent resin electrode during heating and firing. It is providing the manufacturing method of the negative electrode in the dye-sensitized solar cell which can be suppressed.

本発明によれば、透明樹脂フィルム上に透明導電層を備えた透明樹脂製電極基板を用意し、該透明樹脂製電極の透明導電層上に、金属酸化物半導体が有機溶媒中に分散された半導体ペーストを塗布して半導体コーティング層を形成し、該半導体コーティング層を焼き付けて半導体多孔質層を形成するとともに、焼付け前の半導体コーティング層或いは焼付け後の半導体多孔質層に色素溶液を接触させての吸着処理を行う色素増感型太陽電池における負極の製造法において、
半導体コーティング層の焼付けを、前記半導体コーティング層が表面側となるように、前記透明樹脂製電極をサンプルステージ上に形成された液膜上に載置した状態でマイクロ波を照射しての加熱により行うことを特徴とする製造法が提供される。
According to the present invention, a transparent resin electrode substrate provided with a transparent conductive layer on a transparent resin film is prepared, and a metal oxide semiconductor is dispersed in an organic solvent on the transparent conductive layer of the transparent resin electrode. A semiconductor paste is applied to form a semiconductor coating layer, and the semiconductor coating layer is baked to form a semiconductor porous layer, and a dye solution is brought into contact with the semiconductor coating layer before baking or the semiconductor porous layer after baking. In the method for producing a negative electrode in a dye-sensitized solar cell that performs adsorption treatment of
The semiconductor coating layer is baked by heating with microwave irradiation in a state where the transparent resin electrode is placed on the liquid film formed on the sample stage so that the semiconductor coating layer is on the surface side. There is provided a manufacturing method characterized in that it is performed.

本発明においては、
(1)マイクロ波として、発振周波数が2.45GHzのものを使用すること、
(2)前記液膜が水により形成されていること、
(3)前記透明樹脂フィルムがポリエチレンテレフタレート又は、ポリエチレンナフタレートであること、
が好ましい。
In the present invention,
(1) Use a microwave whose oscillation frequency is 2.45 GHz.
(2) the liquid film is formed of water;
(3) The transparent resin film is polyethylene terephthalate or polyethylene naphthalate,
Is preferred.

本発明は、半導体ペーストの多孔質化のための熱処理(焼成)をマイクロ波の照射により行うが、マイクロ波の照射に際して、マイクロ波が照射される半導体コーティング層を支持している透明樹脂製電極基板を、サンプルステージ上に形成された液膜上に載置することが重要な特徴である。即ち、該液膜の冷却作用によって、該電極基板中の透明樹脂フィルムの昇温を有効に回避でき、しかも、液膜の性質上、透明樹脂フィルムの裏面(透明導電層が形成されている側とは反対側の面)の全体に、常に液膜が接触しているため、均一な冷却効果を確保することができ、透明樹脂フィルムの局部的な温度ムラによる変形も有効に回避できる。また、透明導電性フィルムが熱変形を受けても、液膜であるため、サンプルステージとフィルムの空間を絶えず液が満たされた状態を維持でき、このためにマイクロ波による損傷を大幅に軽減することができる。従って、本発明では、特に汎用されている周波数が2.45GHzでのマイクロ波を用いて焼成を行うことができ、格別の設備を要せず、極めて安価な製造コストで色素増感型太陽電池の負極を製造することができる。   In the present invention, a heat treatment (firing) for making a semiconductor paste porous is performed by microwave irradiation. When microwave irradiation is performed, a transparent resin electrode supporting a semiconductor coating layer irradiated with microwaves is provided. It is an important feature that the substrate is placed on a liquid film formed on the sample stage. That is, due to the cooling action of the liquid film, the temperature rise of the transparent resin film in the electrode substrate can be effectively avoided. Moreover, due to the nature of the liquid film, the back surface of the transparent resin film (the side on which the transparent conductive layer is formed) Since the liquid film is always in contact with the entire surface on the opposite side, the uniform cooling effect can be ensured, and deformation due to local temperature unevenness of the transparent resin film can be effectively avoided. In addition, even if the transparent conductive film is subjected to thermal deformation, it is a liquid film, so the space between the sample stage and the film can be maintained constantly filled with liquid, which greatly reduces the damage caused by microwaves. be able to. Therefore, in the present invention, the dye-sensitized solar cell can be fired by using microwaves with a particularly wide frequency of 2.45 GHz, requires no special equipment, and is manufactured at an extremely low manufacturing cost. The negative electrode can be manufactured.

以下、本発明の半導体微粒子ペーストを用いての色素増感型太陽電池における負極の製造プロセスを、図1及び図2を参照して説明する。   Hereinafter, the manufacturing process of the negative electrode in the dye-sensitized solar cell using the semiconductor fine particle paste of the present invention will be described with reference to FIG. 1 and FIG.

先ず、図1で示されている透明樹脂製電極基板1を用意する。この電極基板1は、透明樹脂フィルム1a上に透明導電膜1bを設けたものであり、透明樹脂フィルム1aとしては、透明である限り任意のものが使用されるが、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ1−ブテン、ポリ4−メチル−1−ペンテン、或いはエチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン等のα−オレフィン同士のランダム乃至ブロック共重合体等のポリオレフィン系樹脂;エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、エチレン−塩化ビニル共重合体等のエチレン−ビニル化合物共重合体樹脂;ポリスチレン、アクリロニトリル−スチレン共重合体、ABS、α−メチルスチレン−スチレン共重合体等のスチレン系樹脂;ポリビニルアルコール、ポリビニルピロリドン、ポリ塩化ビニル、ポリ塩化ビニリデン、塩化ビニル−塩化ビニリデン共重合体、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル等のビニル系樹脂;ナイロン6、ナイロン6−6、ナイロン6−10、ナイロン11、ナイロン12等のポリアミド樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂;ポリカーボネート;ポリフェニレンオキサイド;カルボキシメチルセルロース、ヒドロキシエチルセルロースなどのセルロース誘導体;酸化澱粉、エーテル化澱粉、デキストリンなどの澱粉;及びこれらの混合物からなる樹脂;などからなるフィルムを用いることができる。一般的には、強度や耐熱性等の見地から、ポリエチレンテレフタレートフィルムやポリエチレンナフタレートが好適に使用される。また、透明樹脂フィルム1aの厚みや大きさは、特に制限されず、最終的に使用される色素増感型太陽電池の用途に応じて適宜決定される。   First, the transparent resin electrode substrate 1 shown in FIG. 1 is prepared. This electrode substrate 1 is provided with a transparent conductive film 1b on a transparent resin film 1a, and any transparent resin film 1a may be used as long as it is transparent. Random or block copolymer of α-olefins such as density polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene, ethylene, propylene, 1-butene, 4-methyl-1-pentene, etc. Polyolefin resin; ethylene-vinyl compound copolymer resin such as ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-vinyl chloride copolymer; polystyrene, acrylonitrile-styrene copolymer, ABS, α -Styrenic resin such as methylstyrene-styrene copolymer; polyvinyl alcohol, Vinyl resins such as polyvinylpyrrolidone, polyvinyl chloride, polyvinylidene chloride, vinyl chloride-vinylidene chloride copolymer, polyacrylic acid, polymethacrylic acid, polymethyl acrylate, polymethyl methacrylate; nylon 6, nylon 6-6 Polyamide resins such as nylon 6-10, nylon 11 and nylon 12; polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polycarbonates; polyphenylene oxide; cellulose derivatives such as carboxymethylcellulose and hydroxyethylcellulose; oxidized starch and ether A film made of starch such as modified starch or dextrin; and a resin made of a mixture thereof can be used. In general, a polyethylene terephthalate film or polyethylene naphthalate is preferably used from the standpoint of strength, heat resistance, and the like. Further, the thickness and size of the transparent resin film 1a are not particularly limited, and are appropriately determined according to the use of the dye-sensitized solar cell to be finally used.

透明導電膜1bとしては、酸化インジウム−酸化錫合金からなる膜(ITO膜)や酸化錫にフッ素をドープした膜(FTO膜)が代表的であるが、電気抵抗が低いことから、特にITO膜が好適である。これらは蒸着により上記の透明基板1a上に形成され、その厚みは、通常、0.5乃至0.7μm程度である。   The transparent conductive film 1b is typically a film made of an indium oxide-tin oxide alloy (ITO film) or a film in which tin oxide is doped with fluorine (FTO film). Is preferred. These are formed on the transparent substrate 1a by vapor deposition, and the thickness is usually about 0.5 to 0.7 μm.

次いで、透明樹脂製電極基板1の透明導電膜1b上に、半導体ペーストを塗布して半導体コーティング層を形成する。このコーティング層は、焼成により図1における半導体多孔質層(チタニア多孔質層)3を形成するものである。   Next, a semiconductor paste is applied on the transparent conductive film 1b of the transparent resin electrode substrate 1 to form a semiconductor coating layer. This coating layer forms the semiconductor porous layer (titania porous layer) 3 in FIG. 1 by firing.

従って、塗布する半導体ペーストは、金属酸化物半導体粒子を有機溶媒に分散させたものであり、金属酸化物半導体としては、色素増感型太陽電池において従来から使用されているもの、具体的には、チタン、ジルコニウム、ハフニウム、ストロンチウム、タンタル、クロム、モリブデン、タングステンなどの金属の酸化物、或いはこれら金属を含有する複合酸化物、例えばSrTiO、CaTiOなどのペロブスカイト型酸化物などを用いることができる。高い変換率を確保するためには、二酸化チタンが最も好適に使用される。また、このような半導体酸化物の粒子は、多孔質化の点で微粒であることが好ましく、通常、その粒径が5〜500nm、特に5〜350nmの範囲にあるのがよい。 Therefore, the semiconductor paste to be applied is obtained by dispersing metal oxide semiconductor particles in an organic solvent. As the metal oxide semiconductor, those conventionally used in dye-sensitized solar cells, specifically, It is possible to use oxides of metals such as titanium, zirconium, hafnium, strontium, tantalum, chromium, molybdenum and tungsten, or composite oxides containing these metals, such as perovskite oxides such as SrTiO 3 and CaTiO 3. it can. In order to ensure a high conversion rate, titanium dioxide is most preferably used. Such semiconductor oxide particles are preferably fine in terms of porosity, and generally have a particle size of 5 to 500 nm, particularly 5 to 350 nm.

また、上記の金属酸化物半導体粒子を分散させる有機溶媒としては、炭素数が4以下の低級アルコール、例えばメタノール、エタノール、イソプロパノール、n−ブタノール、sec−ブタノール、t−ブタノールなどを単独または2種以上の組み合わせで好適に使用される。   In addition, as the organic solvent in which the metal oxide semiconductor particles are dispersed, a lower alcohol having 4 or less carbon atoms, for example, methanol, ethanol, isopropanol, n-butanol, sec-butanol, t-butanol or the like may be used alone or in combination. It is suitably used in the above combination.

さらに、上記の半導体ペースト中は、前記金属酸化物に対応する金属アルコキシドを含有していることが好ましい。このような金属アルコキシドは、所謂分散剤及び硬化剤としての機能を有しており、有機溶媒中に金属酸化物半導体粒子を均一且つ安定に分散させることができ、更に、半導体微粒子同士を連結させるように硬化し、後述するマイクロ波加熱によって短時間で均一な半導体コーティング層を形成するのに有利となる。しかも、この金属アルコキシドは、後述する多孔質化のための焼成によって容易に対応する金属酸化物を形成するため、このような金属アルコキシドによる性能低下は生じない。本発明において、このような金属アルコキシドとしては、イソプロポキシドが好適であり、特に二酸化チタン粒子を用いた場合には、テトライソプロポキシチタンが最も好適である。   Further, the semiconductor paste preferably contains a metal alkoxide corresponding to the metal oxide. Such a metal alkoxide has a function as a so-called dispersant and curing agent, can uniformly and stably disperse the metal oxide semiconductor particles in the organic solvent, and further connects the semiconductor fine particles to each other. It becomes advantageous to form a uniform semiconductor coating layer in a short time by microwave heating described later. In addition, since the metal alkoxide easily forms a corresponding metal oxide by firing for porous formation, which will be described later, performance deterioration due to such metal alkoxide does not occur. In the present invention, as such a metal alkoxide, isopropoxide is suitable, and particularly when titanium dioxide particles are used, tetraisopropoxy titanium is most preferred.

また、上記の金属アルコキシドは、前述した金属酸化物半導体粒子100重量部当り、10乃至40重量部、特に10乃至30重量部の量で使用するのが好適である。あまり多量に使用すると、硬化効果は上昇するが、分散効果は上昇せず、かえって変換効率を低下する等の不都合を生じ易く、また、あまり少量でも、所望の硬化効果及び分散効果を得ることができないからである。   The metal alkoxide is preferably used in an amount of 10 to 40 parts by weight, particularly 10 to 30 parts by weight per 100 parts by weight of the metal oxide semiconductor particles described above. If it is used too much, the curing effect will increase, but the dispersion effect will not increase, but it will tend to cause inconveniences such as lowering conversion efficiency, and the desired curing effect and dispersion effect can be obtained even with a very small amount. It is not possible.

さらに、上述した半導体ペーストの固形分濃度は、20乃至50重量%、特に25乃至30重量%の範囲にあるのがよい。溶媒量が多すぎると、垂れ等により安定な厚みのコーティング層を形成することが困難となり、また、溶媒量が少ないと、作業性が低下してしまう。   Furthermore, the solid content concentration of the above-described semiconductor paste is preferably in the range of 20 to 50% by weight, particularly 25 to 30% by weight. When the amount of the solvent is too large, it becomes difficult to form a coating layer having a stable thickness due to dripping or the like, and when the amount of the solvent is small, the workability is lowered.

尚、金属アルコキシド含有の半導体ペーストは、1〜3モル程度の金属アルコキシドを含有する有機溶媒溶液を調製し、この有機溶媒溶液を金属酸化物半導体粒子とともに前述した低級アルコールに分散させることにより調製することができる。この場合、金属アルコキシド用の有機溶媒としては、前述した炭素数4以下の低級アルコール以外に、エチレングリコール、プロピレングリコール(1,2−プロパンジオール)、1,3−プロパンジオール、1,4−ブタンジオール、1,2−ブタンジオール、1,3−ブタンジオール、2−メチル−1,3−プロパンジオールなどの脂肪族グリコール類、メチルエチルケトンなどのケトン類、ジメチルエチルアミンなどのアミン類を1種単独または2種以上の組み合わせで用いることもできる。   The metal alkoxide-containing semiconductor paste is prepared by preparing an organic solvent solution containing about 1 to 3 moles of metal alkoxide and dispersing the organic solvent solution together with the metal oxide semiconductor particles in the lower alcohol. be able to. In this case, as the organic solvent for the metal alkoxide, in addition to the aforementioned lower alcohol having 4 or less carbon atoms, ethylene glycol, propylene glycol (1,2-propanediol), 1,3-propanediol, 1,4-butane. Diol, 1,2-butanediol, 1,3-butanediol, aliphatic glycols such as 2-methyl-1,3-propanediol, ketones such as methylethylketone, and amines such as dimethylethylamine alone or It can also be used in a combination of two or more.

半導体ペーストのコーティングは、ドクターブレード法、スピンコート法、スクリーン印刷法、スプレーコーティング法等の周知の方法で行うことができ、その厚みは、焼成後の厚みが5乃至20μm程度、半導体重量としては、0.001乃至0.005g/cm程度となるようにするのがよい。 The coating of the semiconductor paste can be performed by a known method such as a doctor blade method, a spin coating method, a screen printing method, or a spray coating method. The thickness after baking is about 5 to 20 μm, and the semiconductor weight is as follows. , 0.001 to 0.005 g / cm 2 is preferable.

上記のようにして本発明の半導体ペーストを透明基板1の透明導電膜1b上にコーティングした後に、焼成を行う。この焼成は、既に述べたように、マイクロ波照射による行う。   After the semiconductor paste of the present invention is coated on the transparent conductive film 1b of the transparent substrate 1 as described above, baking is performed. As described above, this firing is performed by microwave irradiation.

このマイクロ波照射による焼成工程を説明するための図2において、金属壁等でシールドされたチャンバー内のサンプルステージ20上に、半導体コーティング層3’が形成された透明樹脂製電極基板1を置いた状態で、表面の半導体コーティング層3’にマイクロ波を照射して焼成を行うが、本発明では、特にサンプルステージ20上に液膜22を形成し、この液膜22上に透明樹脂製電極基板1を載置してマイクロ波を照射する。   In FIG. 2 for explaining the firing process by microwave irradiation, a transparent resin electrode substrate 1 on which a semiconductor coating layer 3 ′ is formed is placed on a sample stage 20 in a chamber shielded by a metal wall or the like. In this state, the semiconductor coating layer 3 ′ on the surface is irradiated with microwaves for baking. In the present invention, a liquid film 22 is formed on the sample stage 20, and a transparent resin electrode substrate is formed on the liquid film 22. 1 is placed and irradiated with microwaves.

即ち、マイクロ波によって、半導体コーティング層3’の金属酸化物半導体粒子やアルコキシドが急激に加熱され、或いは同時に透明導電膜2も加熱されるが、液膜2が透明樹脂フィルム1aの裏面に接触しているため、その冷却効果によって透明樹脂フィルム1aの昇温が有効に抑制され、その変形が有効に防止される。しかも、樹脂フィルム1aが膨張、収縮を生じたとしても、図2から明らかな通り、液膜2の性質上、その液面が透明樹脂フィルム1aの裏面に追随し、透明樹脂フィルム1aの裏面は、その全体が常に液膜2に均一に接触し、均一な冷却効果が保持される。従って、透明樹脂フィルム1aの温度ムラが有効に回避され、例えば局部的な昇温などによる不均一な膨張、収縮などによるシワの発生などを有効に回避できることとなる。また、透明導電性フィルムが熱変形を受けても、液膜であるため、サンプルステージとフィルムの空間を絶えず液が満たされた状態を維持でき、このためにマイクロ波による損傷を大幅に軽減することができる。液膜2を設けない場合には、透明樹脂フィルム1aが部分的にサンプルステージ20に接触するようになるため、透明樹脂フィルム1aに温度ムラが発生し、不均一な膨張、収縮などによってシワ等が生じて透明導電性フィルムが熱変形を受け、サンプルステージとフィルム間に空間ができるために、その部分にマイクロ波による電磁界が集中的に形成されて、放電、発熱が生じてフィルムが破損してしまう。   That is, the metal oxide semiconductor particles and alkoxide of the semiconductor coating layer 3 ′ are rapidly heated by the microwave, or at the same time the transparent conductive film 2 is heated, but the liquid film 2 comes into contact with the back surface of the transparent resin film 1a. Therefore, the temperature rise of the transparent resin film 1a is effectively suppressed by the cooling effect, and the deformation is effectively prevented. Moreover, even if the resin film 1a expands and contracts, as is apparent from FIG. 2, the liquid surface follows the back surface of the transparent resin film 1a due to the nature of the liquid film 2, and the back surface of the transparent resin film 1a is The whole always contacts the liquid film 2 uniformly, and the uniform cooling effect is maintained. Therefore, temperature unevenness of the transparent resin film 1a can be effectively avoided, and for example, wrinkles due to uneven expansion and contraction due to local temperature rise can be effectively avoided. In addition, even if the transparent conductive film is subjected to thermal deformation, it is a liquid film, so the space between the sample stage and the film can be maintained constantly filled with liquid, which greatly reduces the damage caused by microwaves. be able to. In the case where the liquid film 2 is not provided, the transparent resin film 1a partially comes into contact with the sample stage 20, so that temperature unevenness occurs in the transparent resin film 1a and wrinkles due to non-uniform expansion and contraction. The transparent conductive film is subjected to thermal deformation and a space is created between the sample stage and the film. As a result, an electromagnetic field caused by microwaves is intensively formed on the part, and the film is damaged due to discharge and heat generation. Resulting in.

本発明においては、液膜20を設けることにより、透明樹脂フィルム1aの変形等が有効に防止されるため、照射するマイクロ波の周波数は、半導体コーティング層3’中の金属酸化物半導体粒子やアルコキシドが吸収帯を有するものであれば特に制限されないが、汎用されている2.45GHzのマイクロ波を使用できることが大きな利点である。即ち、このような汎用されている周波数のマイクロ波を用いることにより、特殊な周波数を使用する場合と異なり、格別の設備を用いることが不必要となり、製造コストを著しく低減させることができる。   In the present invention, since the deformation of the transparent resin film 1a is effectively prevented by providing the liquid film 20, the frequency of the microwave to be irradiated depends on the metal oxide semiconductor particles or alkoxides in the semiconductor coating layer 3 ′. Is not particularly limited as long as it has an absorption band, but it is a great advantage that a commonly used 2.45 GHz microwave can be used. That is, by using a microwave having such a general frequency, unlike the case of using a special frequency, it is not necessary to use special equipment, and the manufacturing cost can be significantly reduced.

上述したマイクロ波の照射は、半導体コーティング層3’中の金属酸化物粒子が適度に焼結する程度でよく、例えばアルキメデス法による相対密度が50乃至90%に達する程度に緻密化される程度に行わればよい。照射時間は、用いる金属酸化物粒子の種類によっても異なるが、例えば酸化チタンとテトライソプロポキシチタンとを含有するペーストを用いた場合には、容易に緻密化できるため、2.45GHzのマイクロ波で3乃至10分程度の照射時間でよく、照射される透明導電性フィルムのサイズとしては、0.25乃至360cmが選択できる。 The microwave irradiation described above may be performed to such an extent that the metal oxide particles in the semiconductor coating layer 3 ′ are appropriately sintered. For example, the metal oxide particles are densified so that the relative density by the Archimedes method reaches 50 to 90%. Just do it. Although the irradiation time varies depending on the type of metal oxide particles used, for example, when a paste containing titanium oxide and tetraisopropoxytitanium is used, it can be easily densified. 3 to be a irradiation time of about 10 minutes, as the size of the transparent conductive film to be irradiated, 0.25 to 360 cm 2 can be selected.

また、液膜22としては、マイクロ波照射時に揮発してしまうようなものでなければ、特に制限なく使用できるが、通常、水を使用するのがコスト等の点で最も好適である。例えば、2.45GHzのマイクロ波を用いた場合、水も加熱されるが、本発明では、極めて短時間での照射により焼成を完結できるため、マイクロ波照射中、水を液膜22として存在させることができる。さらに、水を液膜22として用いた場合、その量は、0.2乃至1.0g/cm程度でよい。 The liquid film 22 can be used without particular limitation as long as it does not volatilize during microwave irradiation, but it is usually most preferable to use water in terms of cost. For example, when a microwave of 2.45 GHz is used, water is also heated. However, in the present invention, since baking can be completed by irradiation in an extremely short time, water is present as the liquid film 22 during microwave irradiation. be able to. Further, when water is used as the liquid film 22, the amount may be about 0.2 to 1.0 g / cm 2 .

尚、サンプルステージ20としては、通常、ガラスや熱伝導率の良い金属板、又必要に応じて、樹脂板などが使用される。   In addition, as the sample stage 20, glass, a metal plate with good thermal conductivity, or a resin plate is used as necessary.

上記のようなマイクロ波の照射によって形成された半導体多孔質層3に色素溶液を接触させることにより、増感色素5を吸着させる。色素溶液の接触は、通常は、ディッピングにより行われ、吸着処理時間(浸漬時間)は、通常、30分〜24時間程度であり、吸着後、乾燥して色素溶液の溶媒を除去することにより、表面に増感色素5が形成された半導体多孔質層3を有する負極7を得ることができる。   The sensitizing dye 5 is adsorbed by bringing the dye solution into contact with the semiconductor porous layer 3 formed by the microwave irradiation as described above. The contact of the dye solution is usually performed by dipping, and the adsorption treatment time (immersion time) is usually about 30 minutes to 24 hours, and after adsorption, the solvent of the dye solution is removed by drying, The negative electrode 7 having the semiconductor porous layer 3 having the sensitizing dye 5 formed on the surface can be obtained.

用いる増感色素は、カルボキシレート基、シアノ基、ホスフェート基、オキシム基、ジオキシム基、ヒドロキシキノリン基、サリチレート基、α−ケト−エノール基などの結合基を有するそれ自体公知のものが使用され、前述した特許文献1〜3等に記載されているもの、例えばルテニウム錯体、オスミウム錯体、鉄錯体などを何ら制限なく使用することができる。特に幅広い吸収帯を有するなどの点で、ルテニウム−トリス(2,2’−ビスピリジル−4,4’−ジカルボキシラート)、ルテニウム−シス−ジアクア−ビス(2,2’−ビスピリジル−4,4’−ジカルボキシラート)などのルテニウム系錯体が好適である。このような増感色素の色素溶液は、溶媒としてエタノールやブタノールなどのアルコール系有機溶媒を用いて調製され、その色素濃度は、通常、3×10−4乃至5×10−4mol/l程度である。 As the sensitizing dye to be used, those known per se having a linking group such as a carboxylate group, a cyano group, a phosphate group, an oxime group, a dioxime group, a hydroxyquinoline group, a salicylate group, an α-keto-enol group are used. Those described in Patent Documents 1 to 3 described above, for example, ruthenium complexes, osmium complexes, iron complexes, and the like can be used without any limitation. Ruthenium-tris (2,2′-bispyridyl-4,4′-dicarboxylate), ruthenium-cis-diaqua-bis (2,2′-bispyridyl-4,4) in that it has a particularly broad absorption band. Ruthenium-based complexes such as' -dicarboxylate) are preferred. Such a dye solution of a sensitizing dye is prepared using an alcohol organic solvent such as ethanol or butanol as a solvent, and the dye concentration is usually about 3 × 10 −4 to 5 × 10 −4 mol / l. It is.

また、上記の製造プロセスでは、半導体コーティング層3’を焼成して半導体多孔質層3を形成した後に色素の吸着を行っているが、本発明では、短時間でのマイクロ波照射により焼成を行うことができるため、焼成を色素の吸着処理を行った後に行うこともできる。即ち、半導体微粒子ペーストを塗布し、乾燥を行った後に、ディッピング等により色素溶液を接触させて増感色素を吸着させ、乾燥した後に、焼成を行うことも可能である。この場合の乾燥は、大気中に放置するのみでの自然乾燥でよいが、必要により、100℃未満の温度に加熱してもよい。   In the manufacturing process, the semiconductor coating layer 3 ′ is fired to form the semiconductor porous layer 3, and then the dye is adsorbed. In the present invention, the firing is performed by microwave irradiation in a short time. Therefore, the baking can be performed after the dye adsorption treatment. That is, after the semiconductor fine particle paste is applied and dried, the dye solution is brought into contact by dipping or the like to adsorb the sensitizing dye and dried, followed by baking. The drying in this case may be natural drying simply by leaving it in the atmosphere, but may be heated to a temperature of less than 100 ° C. if necessary.

上記のように、色素の吸着を焼成に先立って行う場合とあるが、前記ペースト材料で調整されたペーストを用いると、塗布後5〜10分の大気中乾燥である程度密着性の優れた強靱な多孔質膜が得られるので、焼成前に色素の吸着を行うことができ、この場合だと、例えば、10〜15分程度の短時間で吸着処理を行うことができ、焼成後に吸着処理を行う場合の1/2以下の時間で吸着処理を完了することが可能となり、生産性、量産性の点で極めて優れている。   As described above, there is a case where the adsorption of the dye is performed prior to firing, but when using the paste adjusted with the paste material, the toughness having excellent adhesion to some extent after drying in the air for 5 to 10 minutes Since the porous film is obtained, the dye can be adsorbed before firing. In this case, for example, the adsorption treatment can be performed in a short time of about 10 to 15 minutes, and the adsorption treatment is performed after firing. The adsorption process can be completed in half the time or less, which is extremely excellent in terms of productivity and mass productivity.

上記のようにして得られた負極7は、図1に示すように、電解質液8を間に挟んで対極である正極10に対峙させることにより、色素増感型太陽電池として使用に供される。   As shown in FIG. 1, the negative electrode 7 obtained as described above is used as a dye-sensitized solar cell by facing the positive electrode 10 which is a counter electrode with an electrolyte solution 8 interposed therebetween. .

尚、電解質液8としては、通常、リチウムイオン等の陽イオンや塩素イオン等の陰イオンを含む種々の電解質溶液を使用することができる。また、この電解質溶液中には、酸化型構造及び還元型構造を可逆的にとり得るような酸化還元対を存在させることが好ましく、このような酸化還元対としては、例えばヨウ素−ヨウ素化合物、臭素−臭素化合物、キノン−ヒドロキノンなどを挙げることができる。また、この電解質液8は、一般に、電気絶縁性の樹脂等により封止され、電極間から漏洩しないように構成されている。   As the electrolyte solution 8, various electrolyte solutions containing a cation such as lithium ion and an anion such as chlorine ion can be used. Further, in this electrolyte solution, it is preferable to have a redox pair capable of reversibly taking an oxidized structure and a reduced structure. Examples of such a redox pair include iodine-iodine compounds, bromine- Examples thereof include bromine compounds and quinone-hydroquinone. The electrolyte solution 8 is generally sealed with an electrically insulating resin or the like so that it does not leak between the electrodes.

また、正極10は、透明、不透明に関係なく、種々の電極基板を用いることができ、例えばガラス基板や透明樹脂フィルムなどの透明基板表面に白金層やITO等の透明電極層を蒸着させたもの、或いは透明基板表面にITO等の透明電極層を蒸着させ、さらにその上に白金層を蒸着させたものなど、任意の構造を採ることができる。   In addition, the positive electrode 10 can use various electrode substrates regardless of whether they are transparent or opaque. For example, a transparent electrode layer such as a platinum layer or ITO is deposited on the surface of a transparent substrate such as a glass substrate or a transparent resin film. Alternatively, it is possible to adopt an arbitrary structure such as a transparent electrode layer such as ITO deposited on the transparent substrate surface and a platinum layer deposited thereon.

チタンイソプロポキシドを1mol/Lになるように、有機溶剤ブタノールで希釈したチタンアルコキシド溶液を調整し、この溶液と二酸化チタン粒子(構成粒子径は、15〜350nmの汎用チタニア粒子)とを混合し、二酸化チタン微粒子100重量部当り20重量部の量でチタンイソプロポキシドを含有し、且つ固形分濃度が30重量%の二酸化チタン微粒子ペーストを調整した。
そして、ポリエチレンテレフタレートフィルムに導電膜としてITO膜を設けた
導電性フィルム(トービ社製、製品名「OTEC」)に、上記調整した二酸化チタンのペーストを塗布し、その後、室温での大気放置にて、5分間乾燥を行った。乾燥後の半導体ペースト(半導体コーティング層)の厚みは約5μmで、半導体重量は約0.002g/cmであった。
その後、純度99.5%のエタノールに分散させたルテニウム錯体色素[Ru(dcbpy)2(NCS)2]・2H2Oからなる色素溶液を、ITO膜に塗布したチタニア膜上に滴下・吸着し、金属壁でシールドされたチャンバー内のガラス製サンプルステージ上に液膜として水を形成し、この水上に半導体コーティング層が形成された透明樹脂製電極基板を載置してマイクロ波を照射した。
以上のようにして得られた負極を用いて、これと、LiI/I20.5mol/0.05mol)をメトキシプロピオニトリルに溶かしたものに4-tert-butyl pyridine(ターシャリーブチルピリジン)を添加して作製した電解質を、白金を蒸着したITO/PETフィルムで構成される正極とで挟み込んだ色素増感型太陽電池を作成した。この電池の変換効率を測定したところ、約2〜3%であり、太陽電池として機能することが確認された。
A titanium alkoxide solution diluted with an organic solvent butanol is prepared so that titanium isopropoxide is 1 mol / L, and this solution is mixed with titanium dioxide particles (general-purpose titania particles having a particle size of 15 to 350 nm). A titanium dioxide fine particle paste containing titanium isopropoxide in an amount of 20 parts by weight per 100 parts by weight of titanium dioxide fine particles and having a solid content concentration of 30% by weight was prepared.
Then, the above-prepared titanium dioxide paste is applied to a conductive film (product name “OTEC”, manufactured by Tobi Co., Ltd.) in which an ITO film is provided as a conductive film on a polyethylene terephthalate film. Drying was performed for 5 minutes. The dried semiconductor paste (semiconductor coating layer) had a thickness of about 5 μm and a semiconductor weight of about 0.002 g / cm 2 .
After that, a dye solution composed of ruthenium complex dye [Ru (dcbpy) 2 (NCS) 2 ] · 2H 2 O dispersed in ethanol of 99.5% purity is dropped and adsorbed onto the titania film coated on the ITO film. Then, water was formed as a liquid film on a glass sample stage in a chamber shielded by a metal wall, and a transparent resin electrode substrate on which a semiconductor coating layer was formed was placed on the water and irradiated with microwaves.
Using the negative electrode obtained as described above, 4-tert-butyl pyridine was added to this and LiI / I 2 0.5 mol / 0.05 mol) dissolved in methoxypropionitrile. Thus, a dye-sensitized solar cell was prepared by sandwiching the prepared electrolyte with a positive electrode composed of an ITO / PET film on which platinum was deposited. When the conversion efficiency of this battery was measured, it was about 2 to 3%, and it was confirmed that it functions as a solar battery.

比較例Comparative example

チタンイソプロポキシドを1mol/Lになるように、有機溶剤ブタノールで希釈したチタンアルコキシド溶液を調整し、この溶液と二酸化チタン粒子(構成粒子径は、15〜350nmの汎用チタニア粒子)とを混合し、二酸化チタン微粒子100重量部当り20重量部の量でチタンイソプロポキシドを含有し、且つ固形分濃度が30重量%の二酸化チタン微粒子ペーストを調整する。
そして、ポリエチレンテレフタレートフィルムに導電膜としてITO膜を設けた
導電性フィルム(トービ社製、製品名「OTEC」)に、上記調整した二酸化チタンのペーストを塗布し、その後、室温での大気放置にて、5分間乾燥を行った。乾燥後の半導体ペースト(半導体コーティング層)の厚みは約5μmで、半導体重量は約0.002g/cmであった。
その後、純度99.5%のエタノールに分散させたルテニウム錯体色素[Ru(dcbpy)2(NCS)2]・2H2Oからなる色素溶液を、ITO膜に塗布したチタニア膜上に滴下・吸着し、金属壁でシールドされたチャンバー内のガラス製サンプルステージ上に、半導体コーティング層が形成された透明樹脂製電極基板を載置してマイクロ波を照射した。すると、1分以内の照射時間で、半導体コーティング層が形成された透明樹脂製電極基板は熱変形し、破損していた。これは、マイクロ波の照射によって、サンプルステージ上の基板が熱変形し、それに伴って形成された基板とサンプルステージ間の空間に、マイクロ波による電磁界が集中的に形成されて、放電、発熱が生じてフィルムが破損したと考えられる。
A titanium alkoxide solution diluted with an organic solvent butanol is prepared so that titanium isopropoxide is 1 mol / L, and this solution is mixed with titanium dioxide particles (general-purpose titania particles having a constituent particle diameter of 15 to 350 nm). A titanium dioxide fine particle paste containing titanium isopropoxide in an amount of 20 parts by weight per 100 parts by weight of titanium dioxide fine particles and having a solid content concentration of 30% by weight is prepared.
Then, the above-prepared titanium dioxide paste is applied to a conductive film (product name “OTEC”, manufactured by Tobi Co., Ltd.) in which an ITO film is provided as a conductive film on a polyethylene terephthalate film. Drying was performed for 5 minutes. The dried semiconductor paste (semiconductor coating layer) had a thickness of about 5 μm and a semiconductor weight of about 0.002 g / cm 2 .
Thereafter, a dye solution composed of a ruthenium complex dye [Ru (dcbpy) 2 (NCS) 2 ] · 2H 2 O dispersed in ethanol of 99.5% purity is dropped and adsorbed onto the titania film coated on the ITO film. A transparent resin electrode substrate on which a semiconductor coating layer was formed was placed on a glass sample stage in a chamber shielded by a metal wall and irradiated with microwaves. Then, the transparent resin electrode substrate on which the semiconductor coating layer was formed was thermally deformed and damaged within an irradiation time of 1 minute or less. This is because the substrate on the sample stage is thermally deformed by microwave irradiation, and an electromagnetic field due to microwaves is intensively formed in the space between the substrate and the sample stage that is formed. It is thought that the film was damaged due to the occurrence of the above.

本発明により製造される負極を有する色素増感型太陽電池の概略構造を示す図。The figure which shows schematic structure of the dye-sensitized solar cell which has a negative electrode manufactured by this invention. 本発明におけるマイクロ波照射による焼成工程を説明するための図。The figure for demonstrating the baking process by the microwave irradiation in this invention.

符号の説明Explanation of symbols

1:透明電極基板
1a:透明基板
1b:透明導電層
3:多孔質半導体層
3’:半導体コーティング層
5:増感色素
7:負極
8:電解質液
10:正極
20:サンプルステージ
22:液膜
1: Transparent electrode substrate 1a: Transparent substrate 1b: Transparent conductive layer 3: Porous semiconductor layer 3 ′: Semiconductor coating layer 5: Sensitizing dye 7: Negative electrode 8: Electrolyte solution 10: Positive electrode 20: Sample stage 22: Liquid film

Claims (4)

透明樹脂フィルム上に透明導電層を備えた透明樹脂製電極を用意し、該透明樹脂製電極の透明導電層上に、金属酸化物半導体が有機溶媒中に分散された半導体ペーストを塗布して半導体コーティング層を形成し、該半導体コーティング層を焼き付けて半導体多孔質層を形成するとともに、焼付け前の半導体コーティング層或いは焼付け後の半導体多孔質層に色素溶液を接触させての吸着処理を行う色素増感型太陽電池における負極の製造法において、
半導体コーティング層の焼付けを、前記半導体コーティング層が表面側となるように、前記透明樹脂製電極をサンプルステージ上に形成された液膜上に載置した状態でマイクロ波を照射しての加熱により行うことを特徴とする製造法。
A transparent resin electrode provided with a transparent conductive layer is prepared on a transparent resin film, and a semiconductor paste in which a metal oxide semiconductor is dispersed in an organic solvent is applied onto the transparent conductive layer of the transparent resin electrode to form a semiconductor. A dye layer is formed by forming a coating layer, baking the semiconductor coating layer to form a semiconductor porous layer, and performing an adsorption treatment by bringing a dye solution into contact with the semiconductor coating layer before baking or the semiconductor porous layer after baking. In the method for producing a negative electrode in a sensitive solar cell,
The semiconductor coating layer is baked by heating with microwave irradiation in a state where the transparent resin electrode is placed on the liquid film formed on the sample stage so that the semiconductor coating layer is on the surface side. Manufacturing method characterized by performing.
マイクロ波として、発振周波数が2.45GHzのものを使用する請求項1に記載の製造法。   The manufacturing method according to claim 1, wherein a microwave having an oscillation frequency of 2.45 GHz is used. 前記液膜が水により形成されている請求項1または2に記載の製造法。   The production method according to claim 1, wherein the liquid film is formed of water. 前記透明樹脂フィルムがポリエチレンテレフタレートフィルムまたはポリエチレンナフタレートフィルムである請求項1乃至3の何れかに記載の製造法。   The manufacturing method according to claim 1, wherein the transparent resin film is a polyethylene terephthalate film or a polyethylene naphthalate film.
JP2004030543A 2004-02-06 2004-02-06 Method for producing negative electrode in dye-sensitized solar cell Expired - Fee Related JP4595337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004030543A JP4595337B2 (en) 2004-02-06 2004-02-06 Method for producing negative electrode in dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004030543A JP4595337B2 (en) 2004-02-06 2004-02-06 Method for producing negative electrode in dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2005222838A true JP2005222838A (en) 2005-08-18
JP4595337B2 JP4595337B2 (en) 2010-12-08

Family

ID=34998300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030543A Expired - Fee Related JP4595337B2 (en) 2004-02-06 2004-02-06 Method for producing negative electrode in dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4595337B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305367A (en) * 2004-04-23 2005-11-04 Nippon Shokubai Co Ltd Particle dispersion and its application
GB2432721A (en) * 2005-11-25 2007-05-30 Seiko Epson Corp Metal oxide layer for electrochemical cell
CN100580744C (en) * 2005-09-13 2010-01-13 南京大学 Fluid phenomenon two-dimensional analog demenstration method and special dyeing apparatus thereof
EP2256763A2 (en) 2009-05-27 2010-12-01 TDK Corporation Metal oxide electrode for dye-sensitized solar cell, dye-sensitized solar cell, and manufacturing method of metal oxide electrode
EP2682969A1 (en) * 2012-07-03 2014-01-08 University College Dublin Methods of manufacturing photovoltaic electrodes
US8951601B2 (en) 2005-11-25 2015-02-10 Seiko Epson Corporation Electrochemical cell structure and method of fabrication
CN112397314A (en) * 2020-10-27 2021-02-23 南京邮电大学 Semitransparent film electrode and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357896A (en) * 2000-06-13 2001-12-26 Fuji Photo Film Co Ltd Photoelectric conversion element and photoelectric cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357896A (en) * 2000-06-13 2001-12-26 Fuji Photo Film Co Ltd Photoelectric conversion element and photoelectric cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305367A (en) * 2004-04-23 2005-11-04 Nippon Shokubai Co Ltd Particle dispersion and its application
CN100580744C (en) * 2005-09-13 2010-01-13 南京大学 Fluid phenomenon two-dimensional analog demenstration method and special dyeing apparatus thereof
GB2432721A (en) * 2005-11-25 2007-05-30 Seiko Epson Corp Metal oxide layer for electrochemical cell
GB2432721B (en) * 2005-11-25 2011-06-22 Seiko Epson Corp Electrochemical cell structure and method of fabrication
US8951601B2 (en) 2005-11-25 2015-02-10 Seiko Epson Corporation Electrochemical cell structure and method of fabrication
EP2256763A2 (en) 2009-05-27 2010-12-01 TDK Corporation Metal oxide electrode for dye-sensitized solar cell, dye-sensitized solar cell, and manufacturing method of metal oxide electrode
EP2682969A1 (en) * 2012-07-03 2014-01-08 University College Dublin Methods of manufacturing photovoltaic electrodes
WO2014006590A1 (en) * 2012-07-03 2014-01-09 University College Dublin, National University Of Ireland, Dublin Methods of manufacturing photovoltaic electrodes
CN112397314A (en) * 2020-10-27 2021-02-23 南京邮电大学 Semitransparent film electrode and preparation method thereof

Also Published As

Publication number Publication date
JP4595337B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
Dao et al. Dry plasma reduction to synthesize supported platinum nanoparticles for flexible dye-sensitized solar cells
Nemoto et al. All-plastic dye-sensitized solar cell using a polysaccharide film containing excess redox electrolyte solution
CN102290249B (en) Light anode of flexible dye sensitized nano crystalline organic photovoltaic cell and preparation method thereof
Seo et al. Method for fabricating the compact layer in dye-sensitized solar cells by titanium sputter deposition and acid-treatments
JP4659954B2 (en) Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module
JP2000285974A (en) Photosensitized photovolatic power generation element
JP4665426B2 (en) Dye-sensitized solar cell and method for producing the same
Cai et al. Low-Pt-loading acetylene-black cathode for high-efficient dye-sensitized solar cells
Wang et al. Planar heterojunction perovskite solar cells with TiO2 scaffold in perovskite film
JP4807020B2 (en) Method for producing binder composition for dispersing semiconductor fine particles
JP4595337B2 (en) Method for producing negative electrode in dye-sensitized solar cell
JP4710251B2 (en) Method for producing metal oxide film
JP5266524B2 (en) Electrode substrate for dye-sensitized solar cell and dye-sensitized solar cell
JP4601285B2 (en) Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell
JP2005251591A (en) Manufacturing method of negative electrode in dye-sensitized solar cell
JP5332358B2 (en) Coating solution for reverse electron prevention layer formation
Cai et al. Porous acetylene-black spheres as the cathode materials of dye-sensitized solar cells
JP4904698B2 (en) Method for producing negative electrode in dye-sensitized solar cell
JP2010020938A (en) Dye-sensitized solar battery
Cao et al. Electrocatalytically active MoSe2 counter electrode prepared in situ by magnetron sputtering for a dye-sensitized solar cell
JP5396757B2 (en) Coating composition for forming electron reducing layer and method for forming electron reducing layer
JP4608897B2 (en) Method for producing negative electrode in dye-sensitized solar cell
JP2009129574A (en) Dye-sensitized solar cell
JP2008053024A (en) Dye-sensitized solar battery
WO2005029571A1 (en) Coating agent for forming semiconductor film, semiconductor film, photoelectric converter, and solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees