JP2005222746A - Thin-film heating element and its manufacturing method - Google Patents

Thin-film heating element and its manufacturing method Download PDF

Info

Publication number
JP2005222746A
JP2005222746A JP2004027523A JP2004027523A JP2005222746A JP 2005222746 A JP2005222746 A JP 2005222746A JP 2004027523 A JP2004027523 A JP 2004027523A JP 2004027523 A JP2004027523 A JP 2004027523A JP 2005222746 A JP2005222746 A JP 2005222746A
Authority
JP
Japan
Prior art keywords
thin film
heating element
molybdenum
substrate
mosi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004027523A
Other languages
Japanese (ja)
Inventor
Shinzo Yoshikado
進三 吉門
Kenichi Wakizaka
憲一 脇坂
Noboru Naruo
昇 成尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2004027523A priority Critical patent/JP2005222746A/en
Priority to PCT/JP2004/003989 priority patent/WO2005076666A1/en
Publication of JP2005222746A publication Critical patent/JP2005222746A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/148Silicon, e.g. silicon carbide, magnesium silicide, heating transistors or diodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/011Heaters using laterally extending conductive material as connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/018Heaters using heating elements comprising mosi2

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, although a resistance heating element is used for various material sources or for heating of substrates, and there is recently growing need for a heating element material chemically stable at all atmospheres, and in response to the above, heating elements using silicon carbide, molybdenum, tantalum, and tungsten are hitherto known, reduction of the thickness of the film and downsizing are difficult, and shapes are mostly limited to plate or wire shapes with poor thermal efficiency. <P>SOLUTION: The thin-film heating element is structured so as to improve the disadvantage of MoSi<SB>2</SB>by directly depositing it in a crucible or the like as a thin film with the use of an RF magnetron sputtering device or the like. With this, heating with high thermal efficiency is realized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、基体上に二珪化モリブデン(MoSi2)を薄膜状に形成してなる薄膜発熱体およびその製造方法に関する。 The present invention relates to a thin film heating element in which molybdenum disilicide (MoSi 2 ) is formed in a thin film on a substrate and a method for manufacturing the same.

真空蒸着装置やCVD装置などで、抵抗発熱体は種々の材料ソースあるいは基板加熱などに用いられ、近年あらゆる雰囲気で化学的に安定な発熱体材料が必要とされている。従来、炭化ケイ素、モリブデン、タンタル、タングステンを用いた発熱体が知られているが、薄膜化が困難であり、小さくできない。現在市販のヒータ発熱体は棒状、線状、板状である。(例えば、特許文献1参照)被加熱物、加熱用るつぼ(坩堝)等への熱伝達の効率が低く、曲面発熱等が困難である。曲面形状に対応した効率的な加熱が可能な任意の形状の発熱体が望まれている。   Resistance heating elements are used for various material sources or substrate heating in vacuum vapor deposition apparatuses, CVD apparatuses, and the like, and in recent years, chemically stable heating element materials in various atmospheres are required. Conventionally, heating elements using silicon carbide, molybdenum, tantalum, and tungsten are known, but thinning is difficult and cannot be reduced. Commercially available heater heating elements are rod-shaped, linear, and plate-shaped. (See, for example, Patent Document 1) The efficiency of heat transfer to an object to be heated, a heating crucible (crucible), etc. is low, and curved surface heat generation is difficult. A heating element having an arbitrary shape capable of efficient heating corresponding to a curved surface shape is desired.

金属並みの良好な導電性を有する非酸化物セラミックスの一つである二珪化モリブデン(MoSi2)は融点が約2030℃と非常に高く、空気中ではSiC発熱体よりも高温の1800℃程度まで使用可能であるが、常温で脆く高温下で軟化しやすい難点があり、抵抗発熱体としての使用が困難であった。
特開平8−153568号公報(第3頁、図1)
Molybdenum disilicide (MoSi 2 ), one of the non-oxide ceramics with good conductivity similar to metals, has a very high melting point of about 2030 ° C, and in air, up to about 1800 ° C, which is higher than the SiC heating element Although it can be used, it is brittle at room temperature and has a difficulty in being softened at high temperature, and it is difficult to use as a resistance heating element.
JP-A-8-153568 (page 3, FIG. 1)

MoSi2の欠点を、RFマグネトロンスパッタリング装置などを用いて、るつぼ等の基体に直接薄膜として堆積させることで改善し、高効率の抵抗加熱を目的としたMoSi2薄膜発熱体の提供を可能にする。 The disadvantage of MoSi 2 can be improved by depositing it directly as a thin film on a crucible or other substrate using an RF magnetron sputtering system, etc., enabling the provision of a MoSi 2 thin film heating element for the purpose of highly efficient resistance heating .

上記の課題を解決するために、本発明の薄膜発熱体およびその製造方法は、以下のような手段および方法を採用する。   In order to solve the above-mentioned problems, the following means and method are employed in the thin film heating element and the manufacturing method thereof according to the present invention.

(1)基体上に薄膜状に形成してなる二珪化モリブデン、珪化モリブデンあるいはモリブデン白金シリサイドの薄膜、または、二珪化モリブデン、珪化モリブデンあるいはモリブデン白金シリサイドを主成分とする薄膜より成る薄膜発熱体。   (1) A thin film heating element comprising a thin film of molybdenum disilicide, molybdenum silicide or molybdenum platinum silicide formed in a thin film on a substrate, or a thin film mainly composed of molybdenum disilicide, molybdenum silicide or molybdenum platinum silicide.

(2)基体上に二珪化モリブデン、珪化モリブデンあるいはモリブデン白金シリサイドの薄膜、または、二珪化モリブデン、珪化モリブデンあるいはモリブデン白金シリサイドを主成分とする薄膜を形成した前記基体を含む薄膜発熱体。
(3)前記薄膜をスパッタリング、真空蒸着、PVC、CVDの何れかにより形成した請求項1または2何れか記載の薄膜発熱体。
(4)前記基体は、アルミナ製の基体である(1)または(2)何れか記載の薄膜発熱体。
(5)前記基体は、BN製またはSBN製の基体である(1)または(2)何れか記載の薄膜発熱体。
(6)前記基体は、サイアロンまたは窒化珪素製の基体である(1)または(2)何れか記載の薄膜発熱体。
(7)前記基体は、任意曲面を有する基体である(1)または(2)何れか記載の薄膜発熱体。
(8)前記基体は、板状である(1)または(2)何れか記載の薄膜発熱体。
(9)前記基体は、るつぼ形状である(1)または(2)何れか記載の薄膜発熱体。
(10)前記基体は、棒状である(1)または(2)何れか記載の薄膜発熱体。
(11)前記基体は、筒状である(1)または(2)何れか記載の薄膜発熱体。
(12)電極層、または、端子を有する(1)から(11)何れか記載の薄膜発熱体。
(2) A thin-film heating element including the above-described substrate in which a thin film of molybdenum disilicide, molybdenum silicide, or molybdenum platinum silicide or a thin film mainly composed of molybdenum disilicide, molybdenum silicide, or molybdenum platinum silicide is formed on the substrate.
(3) The thin film heating element according to claim 1 or 2, wherein the thin film is formed by any one of sputtering, vacuum deposition, PVC, and CVD.
(4) The thin film heating element according to any one of (1) and (2), wherein the base is an alumina base.
(5) The thin film heating element according to (1) or (2), wherein the substrate is a substrate made of BN or SBN.
(6) The thin film heating element according to any one of (1) and (2), wherein the base is a base made of sialon or silicon nitride.
(7) The thin film heating element according to any one of (1) and (2), wherein the base is a base having an arbitrary curved surface.
(8) The thin film heating element according to any one of (1) and (2), wherein the base has a plate shape.
(9) The thin film heating element according to any one of (1) and (2), wherein the base has a crucible shape.
(10) The thin film heating element according to any one of (1) and (2), wherein the base has a rod shape.
(11) The thin film heating element according to any one of (1) and (2), wherein the base is cylindrical.
(12) The thin film heating element according to any one of (1) to (11), which has an electrode layer or a terminal.

(13)アルミナ製、BN製、SBN製、サイアロン製、または、窒化珪素製の基体上に、二珪化モリブデン、珪化モリブデンあるいはモリブデン白金シリサイドの薄膜、または、二珪化モリブデン、珪化モリブデンあるいはモリブデン白金シリサイドを主成分とする薄膜を形成することを特徴とする薄膜発熱体の製造方法。   (13) A thin film of molybdenum disilicide, molybdenum silicide, or molybdenum platinum silicide, or molybdenum disilicide, molybdenum silicide, or molybdenum platinum silicide on an alumina, BN, SBN, sialon, or silicon nitride substrate. A method for producing a thin film heating element, characterized in that a thin film containing as a main component is formed.

(14)アルミナ製、BN製、SBN製、サイアロン製、または、窒化珪素製の基体上に、二珪化モリブデン、珪化モリブデンあるいはモリブデン白金シリサイドの薄膜、または、二珪化モリブデン、珪化モリブデンあるいはモリブデン白金シリサイドを主成分とする薄膜を、スパッタリング、真空蒸着、PVC、CVDの何れかにより形成することを特徴とする薄膜発熱体の製造方法。   (14) A thin film of molybdenum disilicide, molybdenum silicide, or molybdenum platinum silicide, or molybdenum disilicide, molybdenum silicide, or molybdenum platinum silicide on an alumina, BN, SBN, sialon, or silicon nitride substrate. A method for producing a thin film heating element, characterized in that a thin film containing as a main component is formed by any one of sputtering, vacuum deposition, PVC, and CVD.

本発明の薄膜発熱体によれば、熱伝達効率が高く、昇温速度、降温速度が速く、任意形状の均一面発熱が可能である。   According to the thin film heating element of the present invention, the heat transfer efficiency is high, the heating rate and the cooling rate are fast, and uniform surface heating of an arbitrary shape is possible.

本発明の薄膜発熱体は、MoSi2の欠点を、RFマグネトロンスパッタリング装置などを用いて、基体である基板やるつぼ等に直接薄膜として堆積させることにより改善し、高効率の抵抗加熱を可能にしたMoSi2薄膜の薄膜発熱体である。MoSi2薄膜を堆積させる基材としては一般的な耐熱材料であるアルミナ、有機ELなどのソース用のるつぼの材料として用いられている窒化硼素BN、SBN、サイアロン、窒化珪素基板などを使用する。さらに、アルミナや窒化珪素,窒化硼素,種々の添加物を添加した窒化珪素,窒化硼素等から作製された基体を使用する。
以下、本発明の薄膜発熱体の実施形態について図面を参照して説明する。なお、実施の形態において同じ符号を付した構成要素が同様の動作を行う場合には、再度の説明を省略する場合がある。
(実施の形態1)
The thin film heating element of the present invention improves the disadvantages of MoSi 2 by directly depositing it as a thin film on a substrate, a crucible or the like using an RF magnetron sputtering apparatus, etc., and enables highly efficient resistance heating. It is a thin film heating element of MoSi 2 thin film. As the base material on which the MoSi 2 thin film is deposited, boron nitride BN, SBN, sialon, silicon nitride substrate, etc., which are used as materials for crucibles for sources such as alumina and organic EL, which are general heat-resistant materials, are used. Further, a substrate made of alumina, silicon nitride, boron nitride, silicon nitride added with various additives, boron nitride or the like is used.
Hereinafter, embodiments of the thin film heating element of the present invention will be described with reference to the drawings. In addition, when the component which attached | subjected the same code | symbol performed in embodiment performs the same operation | movement, description may be abbreviate | omitted again.
(Embodiment 1)

図1は、本発明の薄膜発熱体の実施の形態を示す図である。図1において、長方形のアルミナ製の基板10の表面の両端部分に白金Ptによる電極層11a、11bが設けられる。アルミナ基板10と電極層11a、11bを覆うように珪化モリブデンMoSi2薄膜層12、12a、12bが設けられる。電極層11a、11bの上部のMoSi2層12a、12bは、若干盛り上がる。MoSi2層12a、12bが設けられない電極層11a、11bの露出部分には、端子13a、13bが設けられる。2つの端子13a、13bの間に電流を流すと、MoSi2薄膜層12が発熱する。すなわち、MoSi2薄膜層12が薄膜発熱体となる。
上記薄膜発熱体を基板10の表面に作製する方法について説明する。
FIG. 1 is a diagram showing an embodiment of a thin film heating element of the present invention. In FIG. 1, electrode layers 11a and 11b of platinum Pt are provided at both ends of the surface of a rectangular alumina substrate 10. Molybdenum silicide MoSi 2 thin film layers 12, 12a, 12b are provided so as to cover the alumina substrate 10 and the electrode layers 11a, 11b. The MoSi 2 layers 12a and 12b above the electrode layers 11a and 11b are slightly raised. Terminals 13a and 13b are provided in exposed portions of the electrode layers 11a and 11b where the MoSi 2 layers 12a and 12b are not provided. When a current is passed between the two terminals 13a and 13b, the MoSi 2 thin film layer 12 generates heat. That is, the MoSi 2 thin film layer 12 becomes a thin film heating element.
A method for producing the thin film heating element on the surface of the substrate 10 will be described.

珪化モリブデンMoSi2(ナカライテスク(登録商標)社製)の粉末を直径12cmの無酸素銅製の皿状のターゲットホルダーに25MPaで加圧形成して、容量結合型平行平板型マグネトロンスパッタリング装置(アネルバ(登録商標)、SPF-210B)にRF電源(東京ハイパワー(登録商標)、RF-500)を組み合わせたRFマグネトロンスパッタリング装置内に設置し、それと対向する位置にMoSi2薄膜を堆積させるための基板を固定する。基板として、アルミナ基板(純度95.3%、フルウチ化学(登録商標)、厚さ1.0mm)を用いる。スパッタリング条件は放電周波数13.56MHz、放電電力200W、放電ガスとしてAr流量を400ml/min一定とし、放電時の圧力を0.53Paに保つ。基板の温度を700℃、800℃、あるいは基板加熱なしの自然昇温とし、製膜時間を2時間、4時間、または、6時間程度とする。るつぼへの製膜の場合は、るつぼは加熱なしの自然昇温とする。 Molybdenum silicide MoSi 2 (manufactured by Nacalai Tesque (registered trademark)) was pressure-formed at 25 MPa on an oxygen-free copper dish-shaped target holder with a diameter of 12 cm, and a capacitively coupled parallel plate magnetron sputtering device (Anelva Substrate for depositing a MoSi 2 thin film in a position facing the RF magnetron sputtering system that combines RF power supply (Tokyo High Power (registered trademark), RF-500) with SPF-210B (registered trademark) To fix. An alumina substrate (purity 95.3%, Furuuchi Chemical (registered trademark), thickness 1.0 mm) is used as the substrate. The sputtering conditions are a discharge frequency of 13.56 MHz, a discharge power of 200 W, a discharge gas with a constant Ar flow rate of 400 ml / min, and a discharge pressure of 0.53 Pa. The substrate temperature is 700 ° C., 800 ° C., or a natural temperature rise without heating the substrate, and the film formation time is about 2 hours, 4 hours, or 6 hours. In the case of film formation on a crucible, the crucible is naturally heated without heating.

上記のような方法で作製するアルミナ基板上のMoSi2薄膜について、その作製経過と、作製したMoSi2薄膜の性質について説明する。上記スパッタリング条件により、0.9μm/h程度の製膜速度が得られる。基板加熱なしの自然昇温では、基板への薄膜の堆積開始時に予備放電の影響で基板温度は約180℃であり、堆積開始後約1時間で基板温度は約350℃で安定する。基板温度700℃で製膜時間を4あるいは6時間とした場合には、堆積させたMoSi2薄膜には僅かなむらが生じ、表面形状の粒の大きさ等に違いが観測できるが、それ以外の場合では、薄膜の位置による表面状態の差異はほぼ確認できない程度である。製膜時間2時間で基板温度700℃あるいは自然昇温で堆積させた薄膜の直流4探針法による抵抗値は平均0.27〜0.29Ωである。ターゲットのMoSi2の結晶構造は正方晶系(Tetragonal)であり、アルミナ基板上に堆積させたMoSi2薄膜の結晶構造はどのスパッタリング条件でも六方晶系(Hexagonal)となっている。しかし、その配向性は異なり、特に製膜時間を長くすると配向性が変化し、表面形状のむらと関係していると考えられる。 Regarding the MoSi 2 thin film on the alumina substrate manufactured by the above method, the manufacturing process and the properties of the manufactured MoSi 2 thin film will be described. A film forming speed of about 0.9 μm / h can be obtained under the above sputtering conditions. In natural temperature rise without substrate heating, the substrate temperature is about 180 ° C. due to the effect of preliminary discharge at the start of thin film deposition on the substrate, and the substrate temperature stabilizes at about 350 ° C. about 1 hour after the start of deposition. When the film formation time is 4 or 6 hours at a substrate temperature of 700 ° C, slight unevenness occurs in the deposited MoSi 2 thin film, and a difference in the size of the surface shape can be observed. In this case, the difference in the surface state depending on the position of the thin film is almost unidentifiable. The resistance value of thin films deposited at a substrate temperature of 700 ° C. or a natural temperature rise in a film formation time of 2 hours by the DC 4 probe method is 0.27 to 0.29Ω on average. The crystal structure of the target MoSi 2 is tetragonal (Tetragonal), and the crystal structure of the MoSi 2 thin film deposited on the alumina substrate is hexagonal (Hexagonal) under any sputtering conditions. However, the orientation is different, and it is considered that the orientation changes, particularly when the film forming time is lengthened, and is related to the unevenness of the surface shape.

一般にスパッタリングによる製膜をArガス中で行った場合は、薄膜内部の結晶がすべて柱のような形で基板上に林立する、いわゆる柱状構造を持つことが多い。アルミナ基板上に基板温度700℃、製膜時間4時間で堆積させたMoSi2薄膜について、基板を切断し薄膜の断面をSEMで観察したところ、そのような柱状構造が確認できる。 In general, when film formation by sputtering is performed in Ar gas, it often has a so-called columnar structure in which all the crystals inside the thin film stand on the substrate in a columnar shape. For a MoSi 2 thin film deposited on an alumina substrate at a substrate temperature of 700 ° C. and a film formation time of 4 hours, such a columnar structure can be confirmed when the substrate is cut and the cross section of the thin film is observed by SEM.

アルミナ基板上に堆積させたMoSi2薄膜は、どのスパッタリング条件でもターゲットの正方晶系(Tetragonal)とは異なる六方晶系(Hexagonal)の結晶構造となる。アルミナ基板を用いて作製したMoSi2薄膜発熱体の真空中での発熱特性は、ほぼ安定であり、特にアルミナ基板上のMoSi2薄膜では、発熱後も顕著な変化は確認できない。
次に、アルミナ基板10を用いたMoSi2薄膜発熱体の電極層11a、11bの作製方法について説明する。
The MoSi 2 thin film deposited on the alumina substrate has a hexagonal crystal structure different from the target tetragonal system under any sputtering condition. The heat generation characteristics in a vacuum of a MoSi 2 thin film heating element produced using an alumina substrate are almost stable. In particular, in the MoSi 2 thin film on an alumina substrate, no remarkable change can be confirmed even after heat generation.
Next, a method for producing the electrode layers 11a and 11b of the MoSi 2 thin film heating element using the alumina substrate 10 will be described.

発熱体の電極としては融点が1770℃と高いPtをペースト焼成法により作製するのが適当であると考えられるが、MoSi2薄膜を堆積させた後にPtペーストを空気中で焼成する手順ではMoSi2のSiが酸化されてしまうおそれがある。そのため、アルミナ基板上にPt電極層を先に作製し、その上にMoSi2薄膜を堆積させ発熱体を作製する。MoSi2薄膜を堆積させたくない部分には、マスクを施す。 It is considered appropriate to produce Pt with a high melting point of 1770 ° C as a heating element electrode by paste firing. However, in the procedure of firing Pt paste in air after depositing a MoSi 2 thin film, MoSi 2 The Si may be oxidized. Therefore, a Pt electrode layer is first prepared on an alumina substrate, and a MoSi 2 thin film is deposited thereon to produce a heating element. A mask is applied to a portion where the MoSi 2 thin film is not desired to be deposited.

2つの電極層11a、11bの間に電流を流した場合のMoSi2薄膜発熱体の特性は、以下のようになる。基板温度700℃あるいは自然昇温で製膜時間を2時間とした場合について、発熱体を空気雰囲気中圧力10-6Torr(10-4Pa)程度の真空において、直流通電で室温付近から約600℃まで繰り返し発熱させたときの昇温時における抵抗−平衡発熱温度特性(R−T特性)を測定すると、温度係数は正であり、最初の数回は特性がばらつくがその後は特性が安定化する。また、基板温度700℃と自然昇温とを比較しても、顕著な特性の差異はない。基板加熱なしの自然昇温で製膜時間2時間としてアルミナ基板上に堆積させたMoSi2薄膜について、真空中で温度を変化させ、粉末X線回折法によるXRDパターンを調べた結果、100℃から1000℃の範囲において、温度によるMoSi2薄膜あるいはアルミナ基板の結晶構造の変化は確認できず、安定した発熱体が形成されている。Pt電極上のMoSi2薄膜については、PtがMoSi2を取り込んでいる可能性があるが、発熱特性は安定化しているので、特に問題とはならない。 The characteristics of the MoSi 2 thin film heating element when a current is passed between the two electrode layers 11a and 11b are as follows. When the substrate temperature is 700 ° C or the film formation time is 2 hours with natural temperature rise, the heating element is heated from about room temperature to about 600 ° C under direct current in a vacuum of about 10-6Torr (10-4Pa) in air atmosphere. When the resistance-equilibrium exothermic temperature characteristic (RT characteristic) at the time of temperature rise when repeatedly generating heat is measured, the temperature coefficient is positive and the characteristic varies after the first few times, but then the characteristic stabilizes. Further, even when the substrate temperature of 700 ° C. and the natural temperature rise are compared, there is no significant difference in characteristics. As a result of examining the XRD pattern by powder X-ray diffractometry for MoSi 2 thin film deposited on an alumina substrate with a natural temperature rise without substrate heating and a film formation time of 2 hours, the temperature was changed in vacuum. In the range of 1000 ° C., a change in the crystal structure of the MoSi 2 thin film or the alumina substrate due to temperature cannot be confirmed, and a stable heating element is formed. As for the MoSi 2 thin film on the Pt electrode, Pt may have taken in MoSi 2 , but the heat generation characteristics are stabilized, so there is no particular problem.

なお、電極層11a、11bは、MoSi2薄膜を堆積させた後、その上にPtペーストを塗布し、窒素雰囲気中で焼成してもよく、この場合は、MoSi2のSiが酸化されてしまうおそれはない。焼成したPtペーストによる電極層11の上に、端子13をろう付けすればよい。
(実施の形態2)
In addition, after depositing a MoSi 2 thin film, the electrode layers 11a and 11b may be coated with a Pt paste and fired in a nitrogen atmosphere. In this case, Si of MoSi 2 is oxidized. There is no fear. What is necessary is just to braze the terminal 13 on the electrode layer 11 by the baked Pt paste.
(Embodiment 2)

窒化硼素BN材料あるいは窒化硼素、窒化珪素複合のSBN/50材料による基板上にMoSi2薄膜を形成した薄膜発熱体について説明する。基板10には、BN基板(純度99%、フルウチ化学(登録商標)、厚さ1.0mm)および複合系BN基板(BN50%、Si3N450%、E&M(登録商標)、厚さ1.0mm)(以降SBN/50と表記)などを使用し、実施の形態1で説明した装置と同様の装置を使用することによりMoSi2薄膜を堆積し、図1で説明したと同様の構造の薄膜発熱体を作製することができる。 A thin film heating element in which a MoSi 2 thin film is formed on a substrate made of a boron nitride BN material or a boron nitride / silicon nitride composite SBN / 50 material will be described. The substrate 10 includes a BN substrate (purity 99%, Furuuchi Chemical (registered trademark), thickness 1.0 mm) and a composite BN substrate (BN 50%, Si 3 N 4 50%, E & M (registered trademark), thickness 1.0 mm). ) (Hereinafter referred to as SBN / 50), etc., and using the same apparatus as described in the first embodiment, a MoSi 2 thin film is deposited, and the thin film heat generation having the same structure as described in FIG. The body can be made.

BNあるいはSBN/50基板上に各種条件で堆積させたMoSi2薄膜のXRDパターンによれば、基板温度700℃で製膜時間を4時間とした場合を除き、アルミナ基板上に堆積させた場合と配向性は異なるものの結晶構造は六方晶系(Hexagonal)となる。基板温度700℃で製膜時間を4時間とした場合についてはJCPDSカードに記載のMoSi2とは異なるピークが現れるが、BN基板上に堆積させたMoSi2薄膜の組成は基板温度700℃あるいは800℃いずれの条件でもアルミナ基板上のMoSi2薄膜のそれとほぼ一致する。 According to the XRD pattern of the MoSi 2 thin film deposited on the BN or SBN / 50 substrate under various conditions, except when the substrate temperature is 700 ° C. and the deposition time is 4 hours, Although the orientation is different, the crystal structure is hexagonal. When the substrate temperature is 700 ° C and the film formation time is 4 hours, a peak different from MoSi 2 described in the JCPDS card appears, but the composition of the MoSi 2 thin film deposited on the BN substrate is 700 ° C or 800 ° C. It almost coincides with that of the MoSi 2 thin film on the alumina substrate at any temperature.

BNあるいはSBN/50基板上にもスパッタリング条件によりアルミナ基板の場合と同様の六方晶系の結晶構造のMoSi2薄膜が堆積することが確認できた。六方晶のBNあるいはSBN/50基板の代りに、立方方晶窒化硼素の基板10を使用してもよい。
(実施の形態3)
It was confirmed that a MoSi 2 thin film having a hexagonal crystal structure similar to that of an alumina substrate was deposited on a BN or SBN / 50 substrate by sputtering conditions. Instead of the hexagonal BN or SBN / 50 substrate, a cubic boron nitride substrate 10 may be used.
(Embodiment 3)

次に、高温強度、破壊靭性、耐熱衝撃性等の優れた機械的特性をもつサイアロンや窒化珪素基板上にMoSi2薄膜発熱体を作製した例について説明する。サイアロンや窒化珪素基板としては、SAN-2(α-Sialon、α-Si3N4、品川ファインセラミックス(登録商標)、厚さ2.0-2.5mm)を用いた。なお、サイアロンの組成は、Si、Al、O、Nからなり、窒化珪素に酸化アルミニウムが添加されたファインセラミックスとして知られている。基板加熱なしの自然昇温あるいは基板温度700℃の条件で堆積できるが、条件はこれに限らない。堆積させた薄膜には剥離などがなく均一である。アルミナ基板の場合と配向性は異なるもののMoSi2薄膜の結晶構造はいずれのスパッタリング条件でも六方晶系(Hexagonal)となっている。ただし、基板温度700℃においては55°付近にJCPDSカードに記載のMoSi2とは異なるピークが現れ、BNあるいはSBN/50基板上に基板温度700℃で製膜時間を4時間とした場合について現れた最も強度の大きいピークと2θ?がほぼ一致した。直流4探針法による抵抗値は自然昇温で平均0.26Ω、700℃で平均0.30Ωであり、同条件でアルミナ基板上に堆積させたMoSi2薄膜と同程度の値を示す。SEMによる表面形状の観察を行った結果、サイアロンや窒化珪素基板の表面形状による影響と考えられる線状の模様が観察され、アルミナ基板の場合のように粒子の集合同士の境界は明確ではない様子である。組成については、アルミナ基板の場合とほぼ同じで理論値であるMo:Si=1:2におおよそ一致する。
(実施の形態4)
本発明によれば、上記実施の形態1、2において説明した平板上の基板10だけでなく、曲面を有する基体の上、例えば、るつぼ形状の基体上にMoSi2薄膜を形成した薄膜発熱体を作製できる。
Next, an example in which a MoSi 2 thin film heating element is manufactured on a sialon or silicon nitride substrate having excellent mechanical properties such as high-temperature strength, fracture toughness, and thermal shock resistance will be described. As a sialon or silicon nitride substrate, SAN-2 (α-Sialon, α-Si 3 N 4 , Shinagawa Fine Ceramics (registered trademark), thickness 2.0-2.5 mm) was used. Note that the composition of sialon is known as fine ceramics composed of Si, Al, O, and N, in which aluminum oxide is added to silicon nitride. Deposition can be performed under conditions of natural temperature rise without substrate heating or substrate temperature of 700 ° C., but the conditions are not limited to this. The deposited thin film is uniform without peeling. Although the orientation is different from that of the alumina substrate, the crystal structure of the MoSi 2 thin film is a hexagonal system under any sputtering conditions. However, when the substrate temperature is 700 ° C, a peak different from that of MoSi 2 described on the JCPDS card appears around 55 °, and it appears when the substrate temperature is 700 ° C and the film formation time is 4 hours on the BN or SBN / 50 substrate. The highest intensity peak and 2θ? The resistance value by DC 4 probe method is 0.26Ω on average at natural temperature rise and 0.30Ω on average at 700 ° C, which is the same value as MoSi 2 thin film deposited on an alumina substrate under the same conditions. As a result of observation of the surface shape by SEM, a linear pattern considered to be affected by the surface shape of the sialon or silicon nitride substrate was observed, and the boundary between the particle aggregates was not clear as in the case of the alumina substrate It is. The composition is almost the same as in the case of the alumina substrate, and roughly corresponds to the theoretical value Mo: Si = 1: 2.
(Embodiment 4)
According to the present invention, not only the flat substrate 10 described in the first and second embodiments, but also a thin film heating element in which a MoSi 2 thin film is formed on a base having a curved surface, for example, a crucible base. Can be made.

図2に、アルミナるつぼを用いたMoSi2薄膜高温発熱体の構造の例を示す。図2(A)において、アルミナ製のるつぼ20の外面上にMoSi2薄膜発熱体となるMoSi2薄膜層22を形成する。るつぼ20の開口部と底部付近には、電極層21a、21bが、アルミナの上に形成される。電極層21a、21bの上部のMoSi2薄膜層22a、22bは、少し盛り上がる。電極層21a、21bの上部のMoSi2薄膜層22a、22bを貫いてリード線23a、23bが引き出される。図2(B)に、開口部付近の電極層21aとリード線23aの構造を示す。 FIG. 2 shows an example of the structure of a MoSi 2 thin film high-temperature heating element using an alumina crucible. In FIG. 2A, a MoSi 2 thin film layer 22 serving as a MoSi 2 thin film heating element is formed on the outer surface of an alumina crucible 20. In the vicinity of the opening and bottom of the crucible 20, electrode layers 21a and 21b are formed on the alumina. The MoSi 2 thin film layers 22a and 22b above the electrode layers 21a and 21b are slightly raised. Lead wires 23a and 23b are drawn through the MoSi 2 thin film layers 22a and 22b above the electrode layers 21a and 21b. FIG. 2B shows the structure of the electrode layer 21a and the lead wire 23a in the vicinity of the opening.

実施の形態1において説明したマグネトロンスパッタリング装置において、るつぼを回転機構に取り付けて回転させながらMoSi2薄膜を堆積すると、るつぼの周囲に一様にMoSi2薄膜を堆積することが可能になる。るつぼ自体の加熱が困難な場合は、基板加熱なしと同様に自然昇温でもよい。基板加熱なしにおいても、BNあるいはSBN/50いずれもアルミナ基板の場合と同様の六方晶系のMoSi2薄膜が堆積可能である。 In magnetron sputtering apparatus described in the first embodiment, when depositing a MoSi 2 thin film while rotating by attaching a crucible rotation mechanism, it becomes possible to deposit a uniform MoSi 2 thin film around the crucible. When it is difficult to heat the crucible itself, a natural temperature rise may be used as in the case of no substrate heating. Even without substrate heating, the same hexagonal MoSi 2 thin film can be deposited on both BN and SBN / 50 as in the case of an alumina substrate.

アルミナ製のるつぼを用いて発熱体の試作をおこなった例について説明する。アルミナるつぼは純度99.5%である。アルミナ基板の場合と同様に、先にアルミナるつぼ(内径12mm、外径15mm、長さ23mm)にPtペーストとPt線で電極を作製し、回転機構を用いて、るつぼ外側にMoSi2薄膜を、るつぼ加熱なしの条件で堆積する。6時間をかけて発熱体の薄膜を製膜した。このようにして作製した発熱体は抵抗値が低いため、MoSi2薄膜の発熱部をらせん状に削り適当な抵抗値とする。空気雰囲気中圧力10-6Torr(10-4Pa)程度の真空において、直流通電で約500℃まで繰り返し発熱させたときの昇温時における抵抗−平衡発熱温度特性(R−T特性)を調べたところ、アルミナ基板を用いて作製した発熱体の特性とは高温領域での傾向が異なったが、繰り返し発熱による抵抗値の変動は安定化する傾向を示した。 A description will be given of an example in which a heating element was prototyped using an alumina crucible. The alumina crucible is 99.5% pure. As in the case of the alumina substrate, an electrode was first made of an alumina crucible (inner diameter 12 mm, outer diameter 15 mm, length 23 mm) with Pt paste and Pt wire, and using a rotating mechanism, a MoSi 2 thin film was placed outside the crucible. Deposit under conditions without crucible heating. A heating element thin film was formed over 6 hours. Since the heating element thus manufactured has a low resistance value, the heating part of the MoSi 2 thin film is spirally cut to have an appropriate resistance value. The resistance-equilibrium exothermic temperature characteristics (RT characteristics) at the time of temperature rise when repeatedly generating heat up to about 500 ° C with DC current in a vacuum of about 10-6 Torr (10-4 Pa) in air atmosphere Although the tendency in the high temperature region was different from the characteristics of the heating element produced using the alumina substrate, the resistance value variation due to repeated heat generation tended to stabilize.

発熱、放熱を50回繰り返した後の電圧−発熱温度、電力−発熱温度の関係を見ると、発熱後はMoSi2薄膜の発熱部の一部に若干の変色が生じるものの、発熱温度は電圧に対してほぼ線形であり、発熱温度の制御性は良好であった。 Looking at the relationship between voltage-heat generation temperature and power-heat generation temperature after 50 times of heat generation and heat release, although some discoloration occurs in the heat generation part of MoSi 2 thin film after heat generation, the heat generation temperature is voltage On the other hand, it was almost linear, and the exothermic temperature was controllable.

10-9Torr(10-7Pa)程度まで到達可能な超高真空排気装置内で、アルミナるつぼを用いて薄膜発熱体を作製してもよい。アルミナるつぼに先にPt電極を作製する場合、MoSi2のスパッタリングの際にPt線のマスク等を考慮すれば、図2(B)に示したリード線23aa、23bの引き出し穴を形成することができる。MoSi2薄膜の作製後に、Pt線をMoSi2薄膜に巻きつけて電極としてもよい。MoSi2薄膜発熱体の抵抗値が低すぎる場合は、MoSi2薄膜発熱体の電極層21a、21bに挟まれた発熱部をらせん状に削り適当な抵抗値とすることができる。 A thin film heating element may be fabricated using an alumina crucible in an ultra-high vacuum evacuation apparatus that can reach about 10-9 Torr (10-7 Pa). When a Pt electrode is first prepared in an alumina crucible, lead holes 23aa and 23b shown in FIG. 2B can be formed if a mask of Pt wire is taken into account when sputtering MoSi 2 . it can. After producing the MoSi 2 thin film, a Pt wire may be wound around the MoSi 2 thin film to form an electrode. If the resistance of MoSi 2 thin film heating element is too low, the electrode layer 21a of MoSi 2 thin film heating element, the heating portion sandwiched 21b may be any suitable resistance cutting spirally.

別のるつぼ形状での薄膜発熱体の作製の例について説明する。アルミナるつぼ(内径11mm、外径13mm、長さ61mm)に、るつぼ加熱なし、製膜時間3時間の条件で、MoSi2薄膜を堆積する。電極の作製には、Pt線を巻きつけた後にPtペーストを用いて均一に電極を形成し、ロータリーポンプで排気した真空下で1000℃で1時間の条件で焼成をおこなう。なお、Ptペーストへの加熱は急速な昇温と降温となるようにおこなう。このようにして作製した薄膜発熱体の超高真空排気装置内でのR−T特性および真空容器内の圧力変化の測定を行うと、MoSi2薄膜の発熱は非常に安定で、約190Wの電力で発熱温度は1000℃を達成する。圧力は、最初、脱ガスにより上昇し、その後低下する傾向を示す。 An example of producing a thin film heating element in another crucible shape will be described. A MoSi 2 thin film is deposited on an alumina crucible (inner diameter: 11 mm, outer diameter: 13 mm, length: 61 mm) under conditions of no crucible heating and a film formation time of 3 hours. For the preparation of the electrode, a Pt wire is wound and then the electrode is uniformly formed using Pt paste and fired at 1000 ° C. for 1 hour under vacuum exhausted by a rotary pump. Note that the Pt paste is heated so that the temperature rises and falls rapidly. When the RT characteristics of the thin-film heating element produced in this way were measured in the ultra-high vacuum evacuation system and the pressure change in the vacuum vessel was measured, the heat generation of the MoSi 2 thin film was very stable and the power of about 190 W The exothermic temperature achieves 1000 ℃. The pressure tends to increase initially by degassing and then decrease.

この発熱体をその後、直流通電で約1000℃まで繰り返し発熱させたときのR−T特性および真空容器内の圧力変化の測定結果を図3に示す。このR−T特性は、アルミナるつぼにMoSi2薄膜を堆積(るつぼ加熱なし,製膜時間3時間)させ,Pt線を巻きつけて真空中でPtペーストを焼成して作製した発熱体の直流通電による繰り返しR−T特性(昇温時)である。図3より、900℃程度の高温領域でも抵抗値の低下は見られず、ほぼ線形の特性となる。また、電力に対する発熱温度の特性は非常に安定であり、繰り返し発熱により抵抗値がしだいに低下する傾向となったものの、その変化率は徐々に小さくなっており、安定化が示唆される。   FIG. 3 shows the measurement results of the RT characteristic and the pressure change in the vacuum vessel when the heating element is repeatedly heated to about 1000 ° C. by direct current energization. This RT characteristic is due to direct current conduction of a heating element produced by depositing a MoSi2 thin film on an alumina crucible (no crucible heating, film formation time 3 hours), winding Pt wire and firing Pt paste in vacuum. Repeated RT characteristics (at elevated temperature). From FIG. 3, the resistance value does not decrease even in a high temperature region of about 900 ° C., and the characteristics are almost linear. In addition, the characteristics of heat generation temperature with respect to electric power are very stable and the resistance value tends to gradually decrease due to repeated heat generation, but the rate of change gradually decreases, suggesting stabilization.

以上のように、アルミナるつぼを用いて作製したMoSi2薄膜高温発熱体は、その作製方法により特性が若干異なるが、ほぼ線形のR−T特性を有し、現時点で最高発熱温度が1000℃程度の発熱体を作製できる。 As described above, the MoSi 2 thin film high-temperature heating element manufactured using an alumina crucible has almost linear RT characteristics, although the characteristics differ slightly depending on the manufacturing method. Can be produced.

実施の形態1において説明したマグネトロンスパッタリング装置において、るつぼに限らず曲面を有する基体に回転機構を取り付けると、基体の周囲に一様にMoSi2薄膜を堆積することが可能になる。基体自体の加熱が困難な場合は、基体加熱なしと同様に自然昇温でもよい。基体加熱なしにおいても、BNあるいはSBN/50を基体として用いた場合、いずれもアルミナ基板の場合と同様の六方晶系のMoSi2薄膜が堆積可能である。
また、サイアロンや窒化珪素製の曲面を有する基体やるつぼ状の基体にMoSi2薄膜を堆積してもよい。
In the magnetron sputtering apparatus described in the first embodiment, if a rotating mechanism is attached to a substrate having a curved surface as well as a crucible, a MoSi 2 thin film can be uniformly deposited around the substrate. When it is difficult to heat the substrate itself, the temperature may be increased naturally as in the case where the substrate is not heated. Even when the substrate is not heated, when BN or SBN / 50 is used as the substrate, the same hexagonal MoSi 2 thin film can be deposited as in the case of the alumina substrate.
Alternatively, a MoSi 2 thin film may be deposited on a sialon or silicon nitride curved substrate or a crucible substrate.

リード線23a、23bを引き出す穴は、マスクで覆って、MoSi2薄膜がPt層状に堆積しないようにして作製すればよい。また、マスクを使用せず、Pt層上に堆積にしたMoSi2薄膜の一部を機械的に切削あるいは研磨により除去、あるいは化学的に除去して、Pt層を露出させ、リード線をろう付けしてもよい。
(実施の形態5)
The holes for drawing out the lead wires 23a and 23b may be covered with a mask so that the MoSi 2 thin film is not deposited in the Pt layer shape. Also, without using a mask, a part of the MoSi 2 thin film deposited on the Pt layer is removed mechanically by cutting or polishing, or chemically removed to expose the Pt layer and braze the lead wire. May be.
(Embodiment 5)

前記各実施の形態では、電極層や端子を設けるようにした。電極を全く用いないで、本発明の薄膜発熱体を作製することができる。るつぼ材の表面に、電極層21a、21bなしで、MoSi2薄膜を堆積させる。るつぼのMoSi2薄膜発熱体の周りに高周波電流が流れるコイルを設置すれば、電磁誘導で薄膜表面に電流が誘導され,ジュール熱が発生し,加熱が行わる。この構造では白金電極を用いずとも高温加熱が可能である。最高発熱温度は投入電力と高周波結合の度合いにより決まる。薄膜の破壊あるいは基体材との反応が起きない温度範囲にすべきことは言うまでもない。基材としては、るつぼ形状に限らず、板状、棒状、筒状などでもよい。
(実施の形態6)
In each of the above embodiments, an electrode layer and a terminal are provided. The thin film heating element of the present invention can be produced without using any electrode. A MoSi 2 thin film is deposited on the surface of the crucible material without the electrode layers 21a and 21b. If a coil carrying high-frequency current is installed around the MoSi 2 thin film heating element in the crucible, current is induced on the surface of the thin film by electromagnetic induction, Joule heat is generated, and heating is performed. In this structure, high temperature heating is possible without using a platinum electrode. The maximum heat generation temperature is determined by the input power and the degree of high frequency coupling. Needless to say, the temperature should be within a range where the thin film does not break or react with the substrate material. The substrate is not limited to the crucible shape, and may be a plate shape, a rod shape, a cylindrical shape, or the like.
(Embodiment 6)

上記各実施の形態では、薄膜化する材料として、MoSi2、すなわち、珪化モリブデン(モリブデンシリサイド)を用いているが、MoSi2を主成分とし、他の成分を含有していてもよい。また、MoSi2にさらに白金等を添加してモリブデン白金シリサイドを薄膜の材料として使用してもよい。白金シリサイドは、半導体であって、その抵抗が温度とともに減少する。モリブデンシリサイドMoSi2は、金属的な性質を備え、抵抗が温度とともに増加する。その合金であるモリブデン白金シリサイドは、モリブデンと白金の組成によって金属的、あるいは半導体的、あるいはその中間的な抵抗の温度変化を示す。また電極に白金を用いる場合には、白金がモリブデンシリサイド中に一部拡散する可能性があるが、最初から白金がそれ以上拡散しない組成の薄膜にしておけば,拡散による抵抗値の変化を小さくすることが可能である。上記実施の形態5のように、無電極の場合にも,抵抗温度特性の改善が可能である。 In each of the above embodiments, MoSi 2 , that is, molybdenum silicide (molybdenum silicide) is used as a material for thinning, but MoSi 2 may be the main component and other components may be contained. Further, platinum or the like may be added to MoSi 2 and molybdenum platinum silicide may be used as a thin film material. Platinum silicide is a semiconductor and its resistance decreases with temperature. Molybdenum silicide MoSi 2 has metallic properties, and its resistance increases with temperature. Molybdenum platinum silicide, which is an alloy thereof, exhibits a temperature change of resistance in a metallic, semiconducting, or intermediate state depending on the composition of molybdenum and platinum. In addition, when platinum is used for the electrode, platinum may partially diffuse into molybdenum silicide. However, if a thin film of a composition that does not diffuse platinum from the beginning is used, the change in resistance due to diffusion is reduced. Is possible. As in the fifth embodiment, the resistance temperature characteristic can be improved even when there is no electrode.

薄膜化する材料、あるいは、本発明により薄膜状に作製された薄膜の材質について更に説明する。珪化モリブデンと呼ばれる材料には、少なくとも3種類の異なる組成がある。すなわち、Mo5Si3(融点2090℃)、MoSi2(二珪化モリブデン)(融点1980℃)、Mo3Si(融点2100℃)である。この3種類は代表的なものであり,他にもいろいろな組成のものがある。このうち2珪化モリブデンは空気中1650℃に長時間加熱しても変化しないという性質を持っているためにバルク発熱体として実用化されているが、薄膜化すると空気中では酸化するため、酸素雰囲気以外の環境で薄膜化する必要がある。真空中での使用の場合には他の組成のものもよい特性を示す可能性がある。これは、モリブデンが多原子価元素であることによる。なお、知られているものは、融点が2000℃前後である。上記のように、MoSi2は、通常、二珪化モリブデンと呼ばれる。二珪化モリブデンとされているものにも、そのものには添加物を含まないものの、分析すると酸化アルミニウムを少量含んでいるものもある。二珪化モリブデンが高温で軟化するという欠点を軽減する効果があるものと考えられる。 The material to be thinned or the material of the thin film produced in the form of a thin film according to the present invention will be further described. A material called molybdenum silicide has at least three different compositions. That is, Mo 5 Si 3 (melting point 2090 ° C.), MoSi 2 (molybdenum disilicide) (melting point 1980 ° C.), Mo 3 Si (melting point 2100 ° C.). These three types are representative, and there are various other compositions. Of these, molybdenum disilicide is practically used as a bulk heating element because it has the property that it does not change even when heated to 1650 ° C. for a long time in air. It is necessary to reduce the film thickness in other environments. Other compositions may exhibit good properties when used in vacuum. This is because molybdenum is a polyvalent element. In addition, as for what is known, melting | fusing point is around 2000 degreeC. As mentioned above, MoSi 2 is usually called molybdenum disilicide. Some molybdenum disilicides contain no additives, but some contain a small amount of aluminum oxide when analyzed. It is considered that molybdenum disilicide has an effect of reducing the drawback of softening at high temperatures.

本発明では、上記のような二珪化モリブデンや各種の珪化モリブデン、モリブデン白金シリサイド、および、二珪化モリブデンや各種の珪化モリブデンやモリブデン白金シリサイドを主成分とし、いくつかの添加物を加えた材料を出発材料として、薄膜を作製することにより、本発明の薄膜発熱体を作製する。また、作製された薄膜発熱体の薄膜の組成も、二珪化モリブデンや各種の珪化モリブデン、または、二珪化モリブデンや各種の珪化モリブデンを主成分とし、いくつかの添加物を加えた組成のものとなる。また、電極層の材料が加わった組成となってもよい。
(その他の実施の形態および補足)
基材としては、上記、基板状、るつぼ形状に限らず、棒状、筒状などでもよい。
上記実施の形態の説明における、アルミナ、窒化硼素BN、SBN、サイアロンのような窒化珪素(Si3N4)などの基体材料以外に、これらの材料を主成分とし種々の添加物を添加した材料による基体でもよい。
In the present invention, the above-described molybdenum disilicide, various molybdenum silicides, molybdenum platinum silicide, and a material mainly composed of molybdenum disilicide, various molybdenum silicides, and molybdenum platinum silicide, with some additives added. A thin film heating element of the present invention is produced by producing a thin film as a starting material. In addition, the composition of the thin film of the produced thin film heating element is also composed of molybdenum disilicide and various molybdenum silicides, or a composition mainly composed of molybdenum disilicide and various molybdenum silicides with some additives added. Become. Further, the composition may include a material for the electrode layer.
(Other embodiments and supplements)
The substrate is not limited to the above-mentioned substrate shape or crucible shape, but may be a rod shape or a cylindrical shape.
In addition to the base materials such as alumina, boron nitride BN, SBN, and silicon nitride (Si 3 N 4 ) such as sialon in the description of the above-described embodiment, these materials are the main components and various additives are added. May be a substrate.

上記各実施の形態では、RFマグネトロンスパッタリング装置によりMoSi2薄膜やモリブデン白金シリサイド薄膜の堆積を行ったが、薄膜を作製できる方法であれば、他の方法でもよい。例えば、RFマグネトロンによらない他のスパッタリング、真空蒸着法などのよる、PVCやCVDなどを使用してもよい。また、薄膜を作製できるなら他の薄膜形成方法でもよい。 In each of the above embodiments, the MoSi 2 thin film and the molybdenum platinum silicide thin film are deposited by the RF magnetron sputtering apparatus, but other methods may be used as long as the thin film can be produced. For example, you may use PVC, CVD, etc. by other sputtering which does not depend on RF magnetron, a vacuum evaporation method, etc. Further, if a thin film can be produced, other thin film forming methods may be used.

上記各実施の形態の説明において、本発明の薄膜発熱体は、上記基体上に形成して作製するMoSi2やモリブデン白金シリサイドなどの上記各種材料による薄膜発熱体の薄膜部分、または、上記基体とMoSi2やモリブデン白金シリサイドなどの上記各種材料による薄膜とよりなる薄膜発熱器の何れかを指す。
上記実施の形態1、2において、基体の形状、電極層の位置、形状、端子などは、図1、2で示したものに限らない。
In the description of each of the above embodiments, the thin film heating element of the present invention is a thin film portion of a thin film heating element made of various materials such as MoSi 2 and molybdenum platinum silicide formed on the substrate, or the substrate and It refers to any one of the thin film heaters composed of thin films of the above-mentioned various materials such as MoSi 2 and molybdenum platinum silicide.
In the first and second embodiments, the shape of the base, the position and shape of the electrode layers, the terminals, etc. are not limited to those shown in FIGS.

本発明にかかる薄膜発熱体および薄膜発熱器は、高効率の加熱、発熱を必要とする処理装置、種々の製造装置などの分野に利用することができる。   The thin film heating element and the thin film heating device according to the present invention can be used in fields such as a processing apparatus that requires highly efficient heating and heat generation, and various manufacturing apparatuses.

本発明の薄膜発熱体の一実施形態の構成図The block diagram of one Embodiment of the thin film heating element of this invention 本発明の薄膜発熱体の一実施形態の他の構成図The other block diagram of one Embodiment of the thin film heating element of this invention 本発明の薄膜発熱体の加熱特性の図Diagram of heating characteristics of thin film heating element of the present invention

符号の説明Explanation of symbols

10 基板
11a、11b 電極層
12、12a、12b MoSi2薄膜層
13a、13b 端子
20 るつぼ
21a、21b 電極層
22、22a、22b MoSi2薄膜層
23a、23b リード線

10 Substrate 11a, 11b Electrode layer 12, 12a, 12b MoSi 2 thin film layer 13a, 13b Terminal 20 Crucible 21a, 21b Electrode layer 22, 22a, 22b MoSi 2 thin film layer 23a, 23b Lead wire

Claims (14)

基体上に薄膜状に形成してなる二珪化モリブデン、珪化モリブデンあるいはモリブデン白金シリサイドの薄膜、または、二珪化モリブデン、珪化モリブデンあるいはモリブデン白金シリサイドを主成分とする薄膜より成る薄膜発熱体。 A thin film heating element comprising a thin film of molybdenum disilicide, molybdenum silicide or molybdenum platinum silicide formed in a thin film on a substrate, or a thin film mainly composed of molybdenum disilicide, molybdenum silicide or molybdenum platinum silicide. 基体上に二珪化モリブデン、珪化モリブデンあるいはモリブデン白金シリサイドの薄膜、または、二珪化モリブデン、珪化モリブデンあるいはモリブデン白金シリサイドを主成分とする薄膜を形成した前記基体を含む薄膜発熱体。 A thin-film heating element comprising the above-mentioned substrate, in which a thin film of molybdenum disilicide, molybdenum silicide, or molybdenum platinum silicide, or a thin film mainly composed of molybdenum disilicide, molybdenum silicide, or molybdenum platinum silicide is formed on a substrate. 前記薄膜をスパッタリング、真空蒸着、PVC、CVDの何れかにより形成した請求項1または2何れか記載の薄膜発熱体。 The thin film heating element according to claim 1, wherein the thin film is formed by any one of sputtering, vacuum deposition, PVC, and CVD. 前記基体は、アルミナ製の基体である請求項1または2何れか記載の薄膜発熱体。 The thin film heating element according to claim 1, wherein the substrate is an alumina substrate. 前記基体は、BN製またはSBN製の基体である請求項1または2何れか記載の薄膜発熱体。 The thin film heating element according to claim 1 or 2, wherein the base is a base made of BN or SBN. 前記基体は、サイアロンまたは窒化珪素製の基体である請求項1または2何れか記載の薄膜発熱体。 The thin film heating element according to claim 1, wherein the base is a base made of sialon or silicon nitride. 前記基体は、任意曲面を有する基体である請求項1または2何れか記載の薄膜発熱体。 The thin film heating element according to claim 1, wherein the substrate is a substrate having an arbitrary curved surface. 前記基体は、板状である請求項1または2何れか記載の薄膜発熱体。 The thin film heating element according to claim 1, wherein the base is plate-shaped. 前記基体は、るつぼ形状である請求項1または2何れか記載の薄膜発熱体。 The thin film heating element according to claim 1, wherein the substrate has a crucible shape. 前記基体は、棒状である請求項1または2何れか記載の薄膜発熱体。 The thin film heating element according to claim 1, wherein the base body has a rod shape. 前記基体は、筒状である請求項1または2何れか記載の薄膜発熱体。 The thin film heating element according to claim 1, wherein the base is cylindrical. 電極層、または、端子を有する請求項1乃至11何れか記載の薄膜発熱体。 The thin film heating element according to any one of claims 1 to 11, comprising an electrode layer or a terminal. アルミナ製、BN製、SBN製、サイアロン製、または、窒化珪素製の基体上に、二珪化モリブデン、珪化モリブデンあるいはモリブデン白金シリサイドの薄膜、または、二珪化モリブデン、珪化モリブデンあるいはモリブデン白金シリサイドを主成分とする薄膜を形成することを特徴とする薄膜発熱体の製造方法。 Mainly composed of a thin film of molybdenum disilicide, molybdenum silicide, or molybdenum platinum silicide, or molybdenum disilicide, molybdenum silicide, or molybdenum platinum silicide on an alumina, BN, SBN, sialon, or silicon nitride substrate A method of manufacturing a thin film heating element, comprising: forming a thin film. アルミナ製、BN製、SBN製、サイアロン製、または、窒化珪素製の基体上に、二珪化モリブデン、珪化モリブデンあるいはモリブデン白金シリサイドの薄膜、または、二珪化モリブデン、珪化モリブデンあるいはモリブデン白金シリサイドを主成分とする薄膜を、スパッタリング、真空蒸着、PVC、CVDの何れかにより形成することを特徴とする薄膜発熱体の製造方法。

Mainly composed of molybdenum disilicide, molybdenum silicide, or molybdenum platinum silicide thin film, or molybdenum disilicide, molybdenum silicide, or molybdenum platinum silicide on a substrate made of alumina, BN, SBN, sialon, or silicon nitride A method for producing a thin film heating element, comprising forming the thin film by sputtering, vacuum deposition, PVC, or CVD.

JP2004027523A 2004-02-04 2004-02-04 Thin-film heating element and its manufacturing method Pending JP2005222746A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004027523A JP2005222746A (en) 2004-02-04 2004-02-04 Thin-film heating element and its manufacturing method
PCT/JP2004/003989 WO2005076666A1 (en) 2004-02-04 2004-03-23 Heat porducing material in thin film form and method for manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027523A JP2005222746A (en) 2004-02-04 2004-02-04 Thin-film heating element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005222746A true JP2005222746A (en) 2005-08-18

Family

ID=34835893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027523A Pending JP2005222746A (en) 2004-02-04 2004-02-04 Thin-film heating element and its manufacturing method

Country Status (2)

Country Link
JP (1) JP2005222746A (en)
WO (1) WO2005076666A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121753A (en) * 2010-12-08 2012-06-28 Doshisha Method for producing metal silicide thin film
KR101918606B1 (en) * 2016-11-21 2018-11-14 주식회사 비앤비 Hybrid heater rapidly heated by microwave

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287030A (en) * 1988-09-24 1990-03-27 Murata Mfg Co Ltd Platinum temperature sensor
JP2778598B2 (en) * 1989-06-23 1998-07-23 東京エレクトロン株式会社 Heating method and heating device
US5031229A (en) * 1989-09-13 1991-07-09 Chow Loren A Deposition heaters
JPH05273429A (en) * 1992-03-26 1993-10-22 Nippon Telegr & Teleph Corp <Ntt> Small-sized electric furnace for working optical fiber
JP2839418B2 (en) * 1992-10-29 1998-12-16 京セラ株式会社 Temperature sensor
JP3162324B2 (en) * 1997-09-02 2001-04-25 日本特殊陶業株式会社 Ceramic heater and oxygen sensor
JP4031615B2 (en) * 1999-11-07 2008-01-09 株式会社材研 Method for preventing oozing of Si or Si alloy
WO2001050818A1 (en) * 1999-12-29 2001-07-12 Ibiden Co., Ltd. Ceramic heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121753A (en) * 2010-12-08 2012-06-28 Doshisha Method for producing metal silicide thin film
KR101918606B1 (en) * 2016-11-21 2018-11-14 주식회사 비앤비 Hybrid heater rapidly heated by microwave

Also Published As

Publication number Publication date
WO2005076666A1 (en) 2005-08-18

Similar Documents

Publication Publication Date Title
JP3888531B2 (en) Ceramic heater, method for manufacturing ceramic heater, and buried article of metal member
CN103201235B (en) Electrostatic chuck
TW546984B (en) Ceramic heater with heater element and method for use thereof
JP4879929B2 (en) Electrostatic chuck and manufacturing method thereof
TWI500806B (en) Method for manufacturing silicon carbide thin film
TW201223915A (en) Method of making ceramic sintered body, ceramic sintered body and ceramics heater
TWI322140B (en) Ceramic member and method for producing the same
JPH10236871A (en) Plasma resistant member
US20120175639A1 (en) Tantalum carbide, method for producing tantalum carbide, tantalum carbide wiring and tantalum carbide electrode
JP2006273584A (en) Aluminum nitride sintered compact, member for manufacturing semiconductor, and method for manufacturing aluminum nitride sintered compact
JP4863176B2 (en) Thin film heating element
JP3680281B2 (en) Tantalum carbide, tantalum carbide manufacturing method, tantalum carbide wiring, tantalum carbide electrode
JP4243943B2 (en) Aluminum nitride material and semiconductor manufacturing member
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JP2005222746A (en) Thin-film heating element and its manufacturing method
JP3813381B2 (en) Multilayer ceramic heater
JP3037883B2 (en) Aluminum nitride sintered body, method for manufacturing the same and apparatus for manufacturing semiconductor
JP3152898B2 (en) Aluminum nitride ceramic heater
JP2000143349A (en) Aluminum nitride-based sintered compact and electrostatic chuck using the same
JP2006164595A (en) Thin film heating element and its manufacturing method
TW201221353A (en) Heat spreading element with AlN film and method for manufacturing the same
JP3623107B2 (en) Electrostatic chuck
JP2006274327A (en) Clathrate compound thin film manufacturing method
JP2537606B2 (en) Ceramic Heater
JP3965467B2 (en) Ceramic resistor, method for manufacturing the same, and electrostatic chuck