JP2005221913A - Optical incident apparatus for polarization maintaining optical fiber - Google Patents

Optical incident apparatus for polarization maintaining optical fiber Download PDF

Info

Publication number
JP2005221913A
JP2005221913A JP2004031564A JP2004031564A JP2005221913A JP 2005221913 A JP2005221913 A JP 2005221913A JP 2004031564 A JP2004031564 A JP 2004031564A JP 2004031564 A JP2004031564 A JP 2004031564A JP 2005221913 A JP2005221913 A JP 2005221913A
Authority
JP
Japan
Prior art keywords
optical fiber
polarization
polarizer
light
maintaining optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004031564A
Other languages
Japanese (ja)
Other versions
JP4706017B2 (en
Inventor
Mitsuhiro Tatsuta
立田  光廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2004031564A priority Critical patent/JP4706017B2/en
Publication of JP2005221913A publication Critical patent/JP2005221913A/en
Application granted granted Critical
Publication of JP4706017B2 publication Critical patent/JP4706017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical incident apparatus for a polarization maintaining optical fiber, the apparatus enabling linear polarization in the direction of birefringent main axis of the polarization maintaining optical fiber to be made incident on the polarization maintaining optical fiber without making additional adjustments, with respect to the light in which polarizing ellipticity and polarizing main axis direction are arbitrary. <P>SOLUTION: The optical incident apparatus for the polarization maintaining optical fiber is provided with: a first lens 3 that outputs, as a parallel luminous flux, the light emitted from a light source 1; a quarter-wave plate 8 and a polarizer 5 that successively pass the parallel luminous flux; and a second lens 6 that makes the outgoing light from the polarizer enter the polarization maintaining optical fiber, wherein the fast axis of the quarter-wave plate and the transmission axis of the polarizer mutually form a 45° angle, and the transmission axis of the polarizer is made parallel or orthogonal to the fast axis of the polarization maintaining optical fiber. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、偏波保持光ファイバへの光入射装置に関する。   The present invention relates to a light incident device for a polarization maintaining optical fiber.

光ファイバは、通信はもちろんのこと、さまざまな光計測に用いられている。一般に光ファイバにはわずかながら複屈折があるため、光ファイバ内に入射された光の偏光状態は光ファイバを伝搬するに従い、直線偏波から楕円偏波へと、数メートルから数十メートルを周期として変化する。この偏光状態変化の程度は入射光の偏光状態や、入射光の偏光主軸と光ファイバの複屈折主軸の相対角度、さらには温度や応力状態など、光ファイバのおかれた環境などにも依存する。通信、計測のいずれにおいても、光ファイバ出射光のパワーのみを対象とする場合にはこの偏光状態変化はあまり問題とされないが、長距離通信やヘテロダイン検波、干渉計測などにおいてはその影響が大きく、重大な問題とされる。   Optical fibers are used for various optical measurements as well as communications. In general, optical fibers have a slight birefringence, so the polarization state of the light entering the optical fiber cycles from several meters to several tens of meters as it propagates through the optical fiber. As it changes. The degree of this polarization state change depends on the polarization state of the incident light, the relative angle between the polarization main axis of the incident light and the birefringence main axis of the optical fiber, and the environment where the optical fiber is placed, such as the temperature and stress state . In both communication and measurement, when only the power of the optical fiber output light is targeted, this polarization state change is not so much a problem, but in long distance communication, heterodyne detection, interference measurement, etc., the influence is great, It is considered a serious problem.

偏波保持光ファイバは、10−4程度の大きな複屈折をもつ光ファイバであって、その複屈折主軸に平行な直線偏波が入射されるとき、光ファイバの長さに全く依存せず、光ファイバ内での偏光状態は常に直線偏波状態が保たれる。このことに着目し、偏光状態を一定に保つ必要のある光ファイバ増幅器の励起光入力部や、光源から干渉計測系への導入部などに偏波保持光ファイバがすでに活用されており、また、新規な提案もなされている(特許文献1〜3)。 The polarization maintaining optical fiber is an optical fiber having a large birefringence of about 10 −4 , and when linearly polarized light parallel to the birefringent main axis is incident, it does not depend on the length of the optical fiber at all, The polarization state in the optical fiber is always kept linearly polarized. Paying attention to this, polarization-maintaining optical fibers have already been used in the pumping light input section of optical fiber amplifiers that need to keep the polarization state constant, the introduction section from the light source to the interference measurement system, etc. New proposals have also been made (Patent Documents 1 to 3).

前述のように、偏波保持光ファイバの特徴を生かすためにはその複屈折主軸に平行に直線偏光を入射する必要がある。特許文献4には半導体レーザと偏波保持光ファイバの間に磁性ガーネットを挟み、これを取り巻く電磁石の磁力調整により半導体レーザ出射光の偏光方向を偏波保持光ファイバの偏光主軸に一致させるデバイスが開示されている。しかしながら、光源と偏波保持光ファイバが空間的に離れていたり、光源を取り替えて特性を比較したい場合など、光源と偏波保持光ファイバが直結されない場合には前記方法は使えない。そこで従来は、このために、図1に示すような光学系が用いられている。   As described above, in order to take advantage of the characteristics of the polarization maintaining optical fiber, it is necessary to make linearly polarized light incident parallel to the principal axis of birefringence. Patent Document 4 discloses a device in which a magnetic garnet is sandwiched between a semiconductor laser and a polarization-maintaining optical fiber, and the polarization direction of the light emitted from the semiconductor laser coincides with the polarization main axis of the polarization-maintaining optical fiber by adjusting the magnetic force of an electromagnet surrounding the semiconductor garnet. It is disclosed. However, the method cannot be used when the light source and the polarization maintaining optical fiber are not directly connected, such as when the light source and the polarization maintaining optical fiber are spatially separated or when it is desired to compare the characteristics by replacing the light source. Therefore, conventionally, an optical system as shown in FIG. 1 is used for this purpose.

光源1の光は、平行光束として取り出されこれを光源1の直近に配置した偏波保持光ファイバに入射する場合もあるが、多くの場合は一旦光ファイバコード2により取り出され、偏波保持光ファイバ7の近くまで導かれる。光ファイバコード2から出射する発散光はコリメート用第1のレンズ3により平行光束にされる。光源1としては通常レーザ光源が使われる。レーザ光源出射直後の光はほぼ完全な直線偏光であるが、光ファイバコード2を通過する際に偏光状態は乱され、一般に楕円偏光となる。そこで、この楕円偏光を偏光子5を用いて直線偏光にしたのち、第2のレンズ6を用いて偏波保持光ファイバ7に入射させる。その際、偏波保持光ファイバ7の偏光主軸と偏光子5の透過軸が一致するように、偏波保持光ファイバ7あるいは偏光子5を光軸まわりに回転させて、調整される。   The light from the light source 1 may be extracted as a parallel light beam and may be incident on a polarization maintaining optical fiber disposed in the immediate vicinity of the light source 1, but in many cases, the light is extracted once by the optical fiber cord 2 and polarization maintaining light. Guided to near fiber 7. The divergent light emitted from the optical fiber cord 2 is converted into a parallel light beam by the first collimating lens 3. As the light source 1, a laser light source is usually used. The light immediately after being emitted from the laser light source is almost completely linearly polarized light. However, when passing through the optical fiber cord 2, the polarization state is disturbed and generally becomes elliptically polarized light. Therefore, the elliptically polarized light is converted into linearly polarized light using the polarizer 5 and then incident on the polarization maintaining optical fiber 7 using the second lens 6. At that time, the polarization maintaining optical fiber 7 or the polarizer 5 is rotated around the optical axis and adjusted so that the polarization main axis of the polarization maintaining optical fiber 7 and the transmission axis of the polarizer 5 coincide.

入射光束の偏光主軸(長軸)方向をψ、偏光子透過軸方向をθとすると、偏光子透過光パワーは一般に図2に示すようにθに依存して変化する。平行光束が偏光子5を効率よく透過するためには、平行光束の偏光主軸(長軸)を偏光子5の透過軸と一致させる(すなわち、θ=φとする)必要があるため、第1のレンズ3と偏光子5との間に1/2波長板4を挿入する。すなわち、1/2波長板4の主軸をΘだけ回転させると平行光束の偏光主軸が2Θだけ回転する性質を用いて偏光子5の透過軸と入射光の偏光主軸(長軸)を一致させる。
特開2002−176217号公報 特開平11−271028号公報 特開2001−127737号公報 特開平5−257106号公報
Assuming that the polarization main axis (major axis) direction of the incident light beam is ψ and the polarizer transmission axis direction is θ, the polarizer transmitted light power generally varies depending on θ as shown in FIG. In order for the parallel light beam to pass through the polarizer 5 efficiently, it is necessary to make the polarization main axis (long axis) of the parallel light beam coincide with the transmission axis of the polarizer 5 (that is, θ = φ). A half-wave plate 4 is inserted between the lens 3 and the polarizer 5. That is, when the main axis of the half-wave plate 4 is rotated by Θ, the polarization main axis of the parallel light beam is rotated by 2Θ, so that the transmission axis of the polarizer 5 and the polarization main axis (long axis) of the incident light are matched.
JP 2002-176217 A Japanese Patent Laid-Open No. 11-271028 JP 2001-127737 A JP-A-5-257106

上記従来法の装置構成では、1/2波長板4と偏光子5の順序を入れ替えることは可能であり、そのようにしても結果は全く同じである。この場合、第1のレンズ3出射光の偏光主軸(長軸)と偏光子5の透過軸を一致させるが、一般には光ファイバコード2出射光の偏光主軸方向が未知なので偏光子5の透過軸方向を光源1の状態毎に調整する必要がある。いずれの場合にも、1/2波長板4の挿入とその軸方向調整は不可欠となる。   In the apparatus configuration of the conventional method, the order of the half-wave plate 4 and the polarizer 5 can be changed, and even if so, the result is exactly the same. In this case, the polarization main axis (long axis) of the light emitted from the first lens 3 and the transmission axis of the polarizer 5 are matched, but generally, the transmission axis of the polarizer 5 is unknown because the direction of the polarization main axis of the light emitted from the optical fiber cord 2 is unknown. It is necessary to adjust the direction for each state of the light source 1. In either case, it is indispensable to insert the half-wave plate 4 and adjust its axial direction.

以上に説明したように、従来法では偏波保持光ファイバに入射したい光の状態に依存して、光入射の都度1/2波長板の主軸方向の回転調整が必要不可欠であるという課題があった。   As described above, according to the conventional method, depending on the state of light that is desired to be incident on the polarization-maintaining optical fiber, there is a problem that rotation adjustment in the principal axis direction of the half-wave plate is indispensable every time light enters. It was.

この課題を解決するために、本発明は、入射すべき光の偏光状態に全く依存せずに、すなわち、偏光楕円率ならびに偏光主軸方向が任意の光に対して、追加の調整をすることなく偏波保持光ファイバへ該光ファイバの複屈折主軸方向の直線偏光を入射可能とする、偏波保持光ファイバへの光入射装置を提供することを目的とする。   In order to solve this problem, the present invention does not depend on the polarization state of light to be incident at all, that is, without any additional adjustment for light whose polarization ellipticity and polarization main axis direction are arbitrary. It is an object of the present invention to provide a light incidence device for a polarization maintaining optical fiber that allows linearly polarized light in the birefringent principal axis direction of the optical fiber to be incident on the polarization maintaining optical fiber.

本発明者らは、鋭意研究した結果、主軸が互いに45°の角度をなす1/4波長板と偏光子の組を光源と偏波保持光ファイバの間に挿入することを本質的な構成要件とし、これに光源からの光の取り出しと偏波保持光ファイバへの集光のためのレンズを各々1つずつ備えた装置とすることで、上記目的を達成できることを見出し、本発明をなした。すなわち、本発明は、以下のとおりである。
(発明項1) 光源から出射した光を平行光束として出力する第1のレンズと、前記平行光束を順次通過させる1/4波長板および偏光子と、該偏光子からの出射光を偏波保持光ファイバに入射させる第2のレンズとを有してなり、前記1/4波長板の速い軸と前記偏光子の透過軸は互いに45°の角度をなし、かつ前記偏光子の透過軸を前記偏波保持光ファイバの速い軸と平行または直交させたことを特徴とする偏波保持光ファイバへの光入射装置。
(発明項2) 前記1/4波長板および偏光子を一体に保持して光軸のまわりに回転可能とする1/4波長板・偏光子一体回転機構を有することを特徴とする発明項1記載の偏波保持光ファイバへの光入射装置。
(発明項3) 前記偏波保持光ファイバの速い軸を光軸のまわりに回転可能とする偏波保持光ファイバ回転機構を有することを特徴とする発明項1または2記載の偏波保持光ファイバへの光入射装置。
As a result of diligent research, the present inventors have found that a quarter wave plate and a pair of polarizers whose main axes form an angle of 45 ° with each other are inserted between the light source and the polarization maintaining optical fiber. It was found that the above-mentioned object can be achieved by providing an apparatus with one lens each for taking out light from a light source and condensing light onto a polarization-maintaining optical fiber. . That is, the present invention is as follows.
(Invention 1) The 1st lens which outputs the light radiate | emitted from the light source as a parallel light beam, the quarter wavelength plate and polarizer which pass the said parallel light beam one by one, and the polarization | polarized-light maintenance of the emitted light from this polarizer A second lens incident on the optical fiber, the fast axis of the quarter-wave plate and the transmission axis of the polarizer forming an angle of 45 ° with each other, and the transmission axis of the polarizer A light incidence device for a polarization-maintaining optical fiber, characterized by being parallel or orthogonal to the fast axis of the polarization-maintaining optical fiber.
(Invention 2) The invention also has a 1/4 wavelength plate / polarizer integrated rotation mechanism that holds the 1/4 wavelength plate and the polarizer integrally and is rotatable around the optical axis. A light incident device for the polarization-maintaining optical fiber.
(Invention 3) The polarization maintaining optical fiber according to claim 1 or 2, further comprising a polarization maintaining optical fiber rotating mechanism that allows a fast axis of the polarization maintaining optical fiber to rotate around the optical axis. Light incident device.

従来法では、光源や光源とコリメート用レンズとを結ぶ光ファイバコードを取替えるたびに、1/2波長板の偏光主軸の調整を必要としたのに対し、本発明によれば、光ファイバコードのねじれなどによる第1のレンズへの入射光の偏光主軸の回転の影響を全く受けないから、一旦組み立ててしまえばその後の調整は一切必要なくなるという優れた効果を奏する。   In the conventional method, each time the optical fiber cord connecting the light source or the light source and the collimating lens is changed, it is necessary to adjust the polarization main axis of the half-wave plate. Since it is not affected at all by the rotation of the polarization main axis of the light incident on the first lens due to torsion or the like, there is an excellent effect that once it is assembled, no further adjustment is necessary.

図3は、本発明の実施形態の1例の光学系を示す模式図である。光源1の光は光ファイバコード2により取り出され、偏波保持光ファイバ7近くまで導かれる。光ファイバコード2から出射する発散光はコリメート用第1のレンズ3により平行光束にされる。ここまでの光ファイバコード2ならびに第1のレンズ3の役割は従来法と全く同一であって、第1のレンズ3で得られる平行光束は一般に楕円偏光となり、その主軸方向は未知である。   FIG. 3 is a schematic diagram showing an example of an optical system according to an embodiment of the present invention. The light from the light source 1 is extracted by the optical fiber cord 2 and guided to the vicinity of the polarization maintaining optical fiber 7. The divergent light emitted from the optical fiber cord 2 is converted into a parallel light beam by the first collimating lens 3. The roles of the optical fiber cord 2 and the first lens 3 so far are exactly the same as in the conventional method, and the parallel light beam obtained by the first lens 3 is generally elliptically polarized, and the principal axis direction is unknown.

第1のレンズ3と後述する第2のレンズ6の間に挿入された1/4波長板8と偏光子5はその主軸方向が互いに45°の角度をなすようにあらかじめ調整されており、これらが一体として共通の光軸の回りに回転可能となっている。この主軸角調整は本装置を組立てるに際して一度限り行えば十分であり、光源1の取替えや光を入射すべき偏波保持ファイバ7を取替える度に再調整する必要が一切ないことを強調しておく。   The quarter-wave plate 8 and the polarizer 5 inserted between the first lens 3 and the second lens 6 described later are adjusted in advance so that the principal axis directions thereof form an angle of 45 ° with each other. Are rotatable around a common optical axis. It should be emphasized that this main axis angle adjustment need only be performed once when the apparatus is assembled, and that there is no need to readjust each time the light source 1 is replaced or the polarization maintaining fiber 7 to which light is incident. .

以下、さらに少し詳しく説明する。1/4波長板8はその光軸(すなわち光線が通り抜ける方向)に直交する面内に速い軸および遅い軸と呼ばれる2つの軸をもち、これらの軸は互いに直交している。また、偏光子5はやはり光軸に直交する面内に特定の電界振動方向をもつ光のみを透過させる透過軸を1つもつ。1/4波長板8の速い軸と偏光子5の透過軸が45°の角度をなすように配置し、これら2つの光学素子の光軸を一致させると、1/4波長板8側から入射する任意の偏光状態の光に対して、その偏光主軸の方向によらず、偏光子5出射光のパワーが一定不変となる。   A more detailed explanation is given below. The quarter-wave plate 8 has two axes called a fast axis and a slow axis in a plane perpendicular to its optical axis (that is, the direction in which the light passes), and these axes are perpendicular to each other. The polarizer 5 also has one transmission axis that transmits only light having a specific electric field oscillation direction in a plane orthogonal to the optical axis. If the fast axis of the quarter wave plate 8 and the transmission axis of the polarizer 5 are arranged at an angle of 45 ° and the optical axes of these two optical elements are aligned, the light enters from the quarter wave plate 8 side. For light in any polarization state, the power of the light emitted from the polarizer 5 remains constant regardless of the direction of the polarization main axis.

この著しい特性については、入射光が直線偏光の場合については本発明者による「偏光面回転装置」と題する特許1287596号(特公昭55−12563号公報)に開示されている。さらに、この原理の一般論ならびに実験的検証結果については、たとえば本発明者による「受動光学素子で構成する定偏光変換装置」(電子情報通信学会光ファイバ応用技術研究会技術報告OFT2001−3、2001年5月)および“Polarization state fixer composed of passive optical devices”、(JOSA A、Vol.20、No.2、pp.342−346、2003)に開示されている。これら論文によれば、1/4波長板への入射光が直線偏光に限らず任意の楕円偏光であっても、その偏光主軸の回転によらず、偏光子を出射する光は直線偏光となり、その偏光方向とパワーは常に一定に保たれることが、理論・実験ともに明らかにされている。   This remarkable characteristic is disclosed in Japanese Patent No. 1287596 (Japanese Patent Publication No. 55-12563) entitled “Polarization plane rotating device” by the present inventor when the incident light is linearly polarized light. Furthermore, for the general theory of this principle and the experimental verification results, for example, “Constant polarization conversion device composed of passive optical elements” by the present inventor (Technical Report OFFT 2001-3, 2001, Optical Fiber Application Technology Research Group, IEICE) May) and “Polarization state fixer composed of passive optical devices” (JOSA A, Vol. 20, No. 2, pp. 342-346, 2003). According to these papers, even if the incident light to the quarter-wave plate is not limited to linearly polarized light but arbitrary elliptically polarized light, the light emitted from the polarizer becomes linearly polarized light regardless of the rotation of the polarization main axis, It has been clarified in both theory and experiment that the polarization direction and power are always kept constant.

本発明はこの性質を活用するものである。すなわち、前述したように、光源1から光ファイバコード2により導かれて第1のレンズ3を出射する平行光束は通常楕円偏光であり、その偏光主軸方向は未知である。さらに光ファイバコード2のねじれなどにより、偏光主軸方向には時間的な変動も生じる。しかしながら、上述した1/4波長板8と偏光子5の作用により、偏光子5出射光は常に一定のパワーをもち、また当然ながら偏光子5の透過軸方向に偏光主軸をもつ直線偏光が出射される。   The present invention takes advantage of this property. That is, as described above, the parallel light beam guided from the light source 1 by the optical fiber cord 2 and emitted from the first lens 3 is usually elliptically polarized light, and its polarization principal axis direction is unknown. Further, due to the twist of the optical fiber cord 2 or the like, temporal fluctuations also occur in the polarization main axis direction. However, due to the action of the ¼ wavelength plate 8 and the polarizer 5 described above, the light emitted from the polarizer 5 always has a constant power, and naturally, linearly polarized light having the polarization main axis in the transmission axis direction of the polarizer 5 is emitted. Is done.

偏光子5を出射した光は、第2のレンズ6により偏波保持光ファイバ7のコアに集光される。その際、偏波保持光ファイバ7の速い軸あるいは遅い軸のいずれかと偏光子5の透過軸を一致させる。この一致させるプロセスを容易に実行可能とするために、本発明の好適形態では、1/4波長板8および偏光子5を一体に保持して光軸のまわりに回転可能とする1/4波長板・偏光子一体回転機構9を備えた。なお、これに代えて、あるいはこれと共に、偏波保持光ファイバ7の速い軸を光軸のまわりに回転可能とする偏波保持光ファイバ回転機構(図示省略)を備えてもよい。かかる偏波保持光ファイバ回転機構を備えると、1/4波長板8と偏光子5は固定したままとし、波長保持光ファイバ7の偏光主軸を回転させることによっても前記一致させるプロセスを実行することができる。   The light emitted from the polarizer 5 is condensed on the core of the polarization maintaining optical fiber 7 by the second lens 6. At that time, either the fast axis or the slow axis of the polarization maintaining optical fiber 7 is matched with the transmission axis of the polarizer 5. In order to make this matching process easily feasible, in the preferred embodiment of the present invention, the quarter wavelength plate 8 and the polarizer 5 are held together and can be rotated around the optical axis. A plate / polarizer integrated rotation mechanism 9 was provided. Instead of or in addition to this, a polarization maintaining optical fiber rotating mechanism (not shown) that allows the fast axis of the polarization maintaining optical fiber 7 to rotate around the optical axis may be provided. With such a polarization-maintaining optical fiber rotating mechanism, the ¼ wavelength plate 8 and the polarizer 5 remain fixed, and the process of matching is also performed by rotating the polarization main axis of the wavelength-maintaining optical fiber 7. Can do.

この偏光子透過軸を偏波保持光ファイバの速い軸あるいは遅い軸と一致させるプロセス自体は従来法と同様であり、例えば、次のようにして実行される。図4に示すように、偏波保持光ファイバ7の出射端に透過軸方向θが回転可能な検光子10(素子としては偏光子5と全く同じであるが、その使い方により検光子と呼ばれる。)を配置し、これを透過した光パワーを受光器11で測定すると、図5に示すように、受光パワーP(φ)は検光子透過軸方向φに依存して変化する。θを固定し、φを変化させたときの受光パワーの最小値をPmin(θ)とすると、図6に示すようにPmin(θ)はθにより変化する。そこで偏光子透過軸θを回転させPmin(θ)を最小とする角度位置θで偏光子を固定する。 The process itself for matching the polarizer transmission axis with the fast axis or the slow axis of the polarization maintaining optical fiber is the same as that in the conventional method, and is performed, for example, as follows. As shown in FIG. 4, an analyzer 10 whose transmission axis direction θ is rotatable at the exit end of the polarization-maintaining optical fiber 7 (which is exactly the same as the polarizer 5 as an element, but is called an analyzer depending on how it is used). ) And the optical power transmitted therethrough is measured by the light receiver 11, the received light power P (φ) changes depending on the analyzer transmission axis direction φ as shown in FIG. Assuming that θ is fixed and the minimum value of the received light power when φ is changed is Pmin (θ), Pmin (θ) changes with θ as shown in FIG. Therefore, the polarizer transmission axis θ is rotated to fix the polarizer at an angular position θ 0 that minimizes Pmin (θ).

本発明は、光ファイバ通信や光計測の分野に利用することができる。   The present invention can be used in the fields of optical fiber communication and optical measurement.

従来法による偏波保持光ファイバへの光入射装置の光学系を示す模式図である。It is a schematic diagram which shows the optical system of the light-injection apparatus to the polarization maintaining optical fiber by a conventional method. 偏光子透過パワーの偏光子透過軸方向依存性を示す特性図である。It is a characteristic view which shows the polarizer transmission axis direction dependence of polarizer transmission power. 本発明の実施形態の1例の光学系を示す模式図である。It is a schematic diagram which shows the optical system of an example of embodiment of this invention. 偏光子透過軸と偏波保持光ファイバの偏光主軸の合致方法を示す説明図である。It is explanatory drawing which shows the matching method of the polarizer transmission axis and the polarization main axis of a polarization maintaining optical fiber. 検光子透過パワーの検光子透過軸回転角φ依存性を示す特性図である。FIG. 6 is a characteristic diagram showing dependence of analyzer transmission power on analyzer transmission axis rotation angle φ. 検光子透過最小パワーの偏光子透過軸θ依存性を示す特性図である。FIG. 6 is a characteristic diagram showing dependency of analyzer transmission minimum power on a polarizer transmission axis θ.

符号の説明Explanation of symbols

1 光源
2 光ファイバコード
3 第1のレンズ
4 1/2波長板
5 偏光子
6 第2のレンズ
7 偏波保持光ファイバ
8 1/4波長板
9 1/4波長板・偏光子一体回転機構
10 検光子
11 受光器
DESCRIPTION OF SYMBOLS 1 Light source 2 Optical fiber cord 3 1st lens 4 1/2 wavelength plate 5 Polarizer 6 2nd lens 7 Polarization-maintaining optical fiber 8 1/4 wavelength plate 9 1/4 wavelength plate and polarizer integrated rotation mechanism 10 Analyzer 11 Receiver

Claims (3)

光源から出射した光を平行光束として出力する第1のレンズと、前記平行光束を順次通過させる1/4波長板および偏光子と、該偏光子からの出射光を偏波保持光ファイバに入射させる第2のレンズとを有してなり、前記1/4波長板の速い軸と前記偏光子の透過軸は互いに45°の角度をなし、かつ前記偏光子の透過軸を前記偏波保持光ファイバの速い軸と平行または直交させたことを特徴とする偏波保持光ファイバへの光入射装置。   A first lens that outputs light emitted from a light source as a parallel light beam, a quarter-wave plate and a polarizer that sequentially pass the parallel light beam, and light emitted from the polarizer are incident on a polarization-maintaining optical fiber A fast axis of the quarter-wave plate and a transmission axis of the polarizer are at an angle of 45 °, and the transmission axis of the polarizer is the polarization-maintaining optical fiber. A light incident device for a polarization-maintaining optical fiber, characterized in that it is parallel or orthogonal to the fast axis. 前記1/4波長板および偏光子を一体に保持して光軸のまわりに回転可能とする1/4波長板・偏光子一体回転機構を有することを特徴とする請求項1記載の偏波保持光ファイバへの光入射装置。   2. The polarization maintaining device according to claim 1, further comprising a 1/4 wavelength plate / polarizer integrated rotation mechanism that integrally holds the 1/4 wavelength plate and the polarizer and is rotatable around an optical axis. Light incident device to optical fiber. 前記偏波保持光ファイバの速い軸を光軸のまわりに回転可能とする偏波保持光ファイバ回転機構を有することを特徴とする請求項1または2記載の偏波保持光ファイバへの光入射装置。   3. A light-injecting device for a polarization-maintaining optical fiber according to claim 1, further comprising a polarization-maintaining optical fiber rotating mechanism capable of rotating a fast axis of the polarization-maintaining optical fiber around the optical axis. .
JP2004031564A 2004-02-09 2004-02-09 Light injection device for polarization maintaining optical fiber Expired - Lifetime JP4706017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004031564A JP4706017B2 (en) 2004-02-09 2004-02-09 Light injection device for polarization maintaining optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004031564A JP4706017B2 (en) 2004-02-09 2004-02-09 Light injection device for polarization maintaining optical fiber

Publications (2)

Publication Number Publication Date
JP2005221913A true JP2005221913A (en) 2005-08-18
JP4706017B2 JP4706017B2 (en) 2011-06-22

Family

ID=34997573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004031564A Expired - Lifetime JP4706017B2 (en) 2004-02-09 2004-02-09 Light injection device for polarization maintaining optical fiber

Country Status (1)

Country Link
JP (1) JP4706017B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102289075A (en) * 2011-08-02 2011-12-21 中国科学院上海光学精密机械研究所 Device and method for generating polarization-state-adjustable hollow light beam
JP2012137583A (en) * 2010-12-27 2012-07-19 Nippon Telegr & Teleph Corp <Ntt> Polarization multiplexing optical modulator
JP2013015858A (en) * 2012-09-18 2013-01-24 Hewlett-Packard Development Company L P Polarization maintenance large core hollow waveguide
KR101287950B1 (en) * 2011-08-17 2013-07-19 (주)에이앤아이 Circular or elliptical polarization conversion device for laser process and method for processing laser using that
CN107402454A (en) * 2017-08-31 2017-11-28 东南大学 The non-linear ellipse inclined rotating device of radial variations is realized based on elliptical polarization vectorial field

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05257106A (en) * 1992-03-13 1993-10-08 Ando Electric Co Ltd Optical coupler with polarization maintaining optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05257106A (en) * 1992-03-13 1993-10-08 Ando Electric Co Ltd Optical coupler with polarization maintaining optical fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137583A (en) * 2010-12-27 2012-07-19 Nippon Telegr & Teleph Corp <Ntt> Polarization multiplexing optical modulator
CN102289075A (en) * 2011-08-02 2011-12-21 中国科学院上海光学精密机械研究所 Device and method for generating polarization-state-adjustable hollow light beam
KR101287950B1 (en) * 2011-08-17 2013-07-19 (주)에이앤아이 Circular or elliptical polarization conversion device for laser process and method for processing laser using that
JP2013015858A (en) * 2012-09-18 2013-01-24 Hewlett-Packard Development Company L P Polarization maintenance large core hollow waveguide
CN107402454A (en) * 2017-08-31 2017-11-28 东南大学 The non-linear ellipse inclined rotating device of radial variations is realized based on elliptical polarization vectorial field
CN107402454B (en) * 2017-08-31 2020-07-31 东南大学 Device for realizing radial variation nonlinear ellipsometry rotation based on ellipsometry vector light field

Also Published As

Publication number Publication date
JP4706017B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
US9835869B2 (en) Universal polarization converter
Mao et al. Ultrafast all-fiber based cylindrical-vector beam laser
Chartier et al. Measurement of the elliptical birefringence of single-mode optical fibers
US5479094A (en) Polarization insensitive current and magnetic field optic sensor
Kim et al. Spin Hall effect under arbitrarily polarized or unpolarized light
RU2012157326A (en) MIRROR COMPENSATING BINFRACTION IN OPTICAL FIBER AND CURRENT SENSOR
US20150102802A1 (en) Optical fiber current sensor
JP4706017B2 (en) Light injection device for polarization maintaining optical fiber
JP2001041983A (en) Photo-voltage sensor
WO2019066050A1 (en) Magnetic sensor element and magnetic sensor device
Dong et al. Measurement of Stokes parameters of terahertz radiation in terahertz time‐domain spectroscopy
JP4427651B2 (en) Polarization-maintaining optical fiber with circular polarization compatibility
Salas-Alcántara et al. Polarimetric Mueller-Stokes analysis of photonic crystal fibers with mechanically induced long-period gratings
Nascimento et al. Novel optical current sensor for metering and protection in high power applications
Lutz A passive fiber-optic depolarizer
US10866438B2 (en) Faraday-based polarization scrambler
Yu Fully variable elliptical phase retarder composed of two linear phase retarders
Zhang et al. Complete polarization controller based on magneto-optic crystals and fixed quarter wave plates
US6268962B1 (en) Reeder rotator
JP4951793B2 (en) Polarization plane rotating mirror
Phoenix et al. Full polarization control of fiber-delivered light in a dilution refrigerator
KR101061336B1 (en) In-line Optical Isolator
Wang et al. One degree of freedom fiber ring depolarizer
JPH0566362A (en) Polarization independent type optical isolator
Mikhailov et al. In-line high-speed all-fiber polarimeter with true real-time acquisition for sensor systems based on fast polarization rotation

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070201

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20100706

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

RD02 Notification of acceptance of power of attorney

Effective date: 20110124

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110214