JP2005221778A - Coated optical fiber and its manufacturing method - Google Patents

Coated optical fiber and its manufacturing method Download PDF

Info

Publication number
JP2005221778A
JP2005221778A JP2004029735A JP2004029735A JP2005221778A JP 2005221778 A JP2005221778 A JP 2005221778A JP 2004029735 A JP2004029735 A JP 2004029735A JP 2004029735 A JP2004029735 A JP 2004029735A JP 2005221778 A JP2005221778 A JP 2005221778A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber core
curable resin
core wire
ultraviolet curable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004029735A
Other languages
Japanese (ja)
Other versions
JP3858895B2 (en
Inventor
Yoshihisa Kato
善久 加藤
Hideyuki Suzuki
秀幸 鈴木
Yoshinobu Kurosawa
芳宜 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004029735A priority Critical patent/JP3858895B2/en
Publication of JP2005221778A publication Critical patent/JP2005221778A/en
Application granted granted Critical
Publication of JP3858895B2 publication Critical patent/JP3858895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated optical fiber which is capable of obtaining a stable rewinding property and enhancing the tight adhesion of a colored layer formed on the surface, and to provide a manufacturing method of the coated optical fiber. <P>SOLUTION: The coated optical fiber 1 is constituted by covering the circumference of a glass fiber 2 with a covering layer 3 having a surface 3a of the average surface roughness 0.5 to 10 nm and the maximum vertical difference ≤50 nm and forming a colored layer 4 on the surface 3a. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ガラスファイバを紫外線硬化樹脂層によって被覆した光ファイバ心線およびその製造方法に関し、特に、安定した巻替性が得られるとともに、表面に形成される着色層の密着性を向上させた光ファイバ心線およびその製造方法に関する。   The present invention relates to an optical fiber core wire in which a glass fiber is coated with an ultraviolet curable resin layer and a method for manufacturing the same, and in particular, stable rewindability is obtained and adhesion of a colored layer formed on the surface is improved. The present invention relates to an optical fiber core and a manufacturing method thereof.

従来、光ファイバのコーティング材として紫外線硬化樹脂が主に用いられ、ファイバの線引速度の高速化、線引長の長尺化が進んでいる(例えば、特許文献1参照。)。   Conventionally, ultraviolet curable resin has been mainly used as a coating material for optical fibers, and the fiber drawing speed has been increased and the drawing length has been increased (for example, see Patent Document 1).

通常、線引後の品質チェックとして、巻替を兼ねたプルーフテストが行われる。プルーフテストは、光ファイバのガラスに強度の低い欠陥部分の有無を調べる試験で、一定の張力を加えて巻替を実施する。このプルーフテストもファイバを高速で走行させるため、ファイバ表面に摩擦による静電気が発生しやすい。   Usually, as a quality check after drawing, a proof test that also serves as rewinding is performed. The proof test is a test for examining the presence or absence of a defect portion having a low strength in the glass of an optical fiber, and rewinding is performed by applying a certain tension. Since this proof test also runs the fiber at high speed, static electricity due to friction tends to occur on the fiber surface.

そのため、光ファイバの巻き乱れが生じ、伝送損失が増加するという問題があり、通常、静電気除去装置を取り付けて対処している(例えば、特許文献2参照。)。   For this reason, there is a problem that the optical fiber is disturbed and transmission loss is increased, and this is usually dealt with by installing a static eliminating device (see, for example, Patent Document 2).

また、光ファイバ心線の表面のタック性(べたつき)が強いと、巻乱れが生じやすくなるので、表面の滑性や平滑性を付与するためレベリング剤などの添加剤が紫外線硬化樹脂に配合されたりしている。
特開2000−193855号公報 特開平8−110417号公報
In addition, when the tackiness (stickiness) of the surface of the optical fiber core is strong, winding disturbance is likely to occur. Therefore, additives such as a leveling agent are blended in the UV curable resin in order to impart surface lubricity and smoothness. It is.
JP 2000-193855 A JP-A-8-110417

しかし、静電気除去装置の除電性能を安定して保つには、センサーのメンテナンスを頻繁に行う必要があること、周囲の湿度に大きく影響を受けることがあり、除電効果が十分に発揮されない場合が多い。そのため、巻替時に巻乱れが生じ、伝送損失が増加して、再度巻替を実施する必要や、ひどい場合には廃却する必要があるなどの問題がある。   However, in order to keep the static elimination performance of the static eliminator stable, it is necessary to frequently perform sensor maintenance, and it may be greatly affected by the surrounding humidity, and the static elimination effect is often not fully demonstrated. . For this reason, there is a problem that winding disturbance occurs at the time of rewinding, transmission loss increases, and rewinding needs to be performed again.

また、表面に滑性を付与するためにコーティング材中に滑剤などの添加剤を多く配合すると、光ファイバ心線外層に識別のために設けられる着色層との密着カが低下する問題がある。着色層の密着カが弱い着色光ファイバ心線を複数本並べて、紫外線硬化樹脂などで一括被覆されたテープファイバおいては、端末施工時に被覆層を一括して除去する際に着色層の剥がれが生じ、識別不良が起こる。さらに、温水中では、着色層と下層との間にブリスタが発生し、伝送損失が増加するという問題が発生する。   Further, when a lot of additives such as a lubricant are blended in the coating material in order to impart lubricity to the surface, there is a problem that the adhesion between the outer layer of the optical fiber core wire and the colored layer provided for identification decreases. In the case of tape fibers in which multiple colored optical fiber cores with weak adhesion of the colored layer are lined up and covered with UV-curing resin, etc., the colored layer will not peel off when the coating layer is removed at the time of terminal construction. Resulting in poor identification. Furthermore, in warm water, a blister occurs between the colored layer and the lower layer, which causes a problem that transmission loss increases.

従って、本発明の目的は、安定した巻替性が得られるとともに、表面に形成される着色層の密着性を向上させた光ファイバ心線およびその製造方法を提供することにある。   Accordingly, it is an object of the present invention to provide an optical fiber core and a method for manufacturing the same, in which stable rewindability is obtained and adhesion of a colored layer formed on the surface is improved.

本発明は、上記目的を達成するため、ガラスファイバの外周に紫外線硬化樹脂層を形成した光ファイバ心線において、前記紫外線硬化樹脂層は、その表面の平均面粗さが0.5〜10nm、最大高低差が50nm以下であることを特徴とする光ファイバ心線を提供する。   In order to achieve the above object, the present invention provides an optical fiber core in which an ultraviolet curable resin layer is formed on the outer periphery of a glass fiber, and the ultraviolet curable resin layer has an average surface roughness of 0.5 to 10 nm. An optical fiber core having a maximum height difference of 50 nm or less is provided.

上記紫外線硬化樹脂層は、その表面の平均面粗さが0.5〜5nm、最大高低差が20nm以下であるのが好ましい。   The ultraviolet curable resin layer preferably has an average surface roughness of 0.5 to 5 nm and a maximum height difference of 20 nm or less.

本発明は、上記目的を達成するため、ガラスファイバの外周に紫外線硬化樹脂を塗布し、
未硬化の前記紫外線硬化樹脂が塗布された前記ガラスファイバを、不活性ガスが流入する石英管内に通過させるとともに、前記ガラスファイバに前記石英管を通して紫外線を照射することにより、前記未硬化の紫外線硬化樹脂を硬化させて光ファイバ心線を製造する光ファイバ心線の製造方法において、前記石英管内に流入する前記不活性ガス中の酸素濃度を所定の量に調整することにより、前記紫外線硬化樹脂の表面を粗化することを特徴とする光ファイバ心線の製造方法を提供する。
In order to achieve the above object, the present invention applies an ultraviolet curable resin to the outer periphery of the glass fiber,
The glass fiber coated with the uncured ultraviolet curable resin is passed through a quartz tube into which an inert gas flows, and the glass fiber is irradiated with ultraviolet light through the quartz tube, thereby uncured ultraviolet curing. In an optical fiber core manufacturing method for manufacturing an optical fiber core by curing a resin, by adjusting an oxygen concentration in the inert gas flowing into the quartz tube to a predetermined amount, An optical fiber core manufacturing method characterized by roughening the surface is provided.

前記不活性ガス中の酸素濃度を5000〜50000ppmに調整することが好ましい。   It is preferable to adjust the oxygen concentration in the inert gas to 5000 to 50000 ppm.

本発明の光ファイバ心線によれば、ガラスファイバを保護する紫外線硬化樹脂層の表面の平均面粗さを0.5〜10nm、最大高低差を50nm以下とすることにより、良好な巻替性が得られるとともに、その表面に形成される着色層の密着性が向上する。   According to the optical fiber core wire of the present invention, good rewindability can be obtained by setting the average surface roughness of the surface of the ultraviolet curable resin layer protecting the glass fiber to 0.5 to 10 nm and the maximum height difference to 50 nm or less. And the adhesion of the colored layer formed on the surface is improved.

紫外線硬化樹脂層の表面の平均面粗さを0.5〜5nm、最大高低差を20nm以下とすることにより、より安定した巻替性が得られる。   By setting the average surface roughness of the surface of the ultraviolet curable resin layer to 0.5 to 5 nm and the maximum height difference to 20 nm or less, more stable rewindability can be obtained.

本発明の光ファイバ心線の製造方法によれば、ガラスファイバを保護する紫外線硬化樹脂の表面を粗化することにより、良好な巻替性が得られるとともに、その表面に形成される着色層の密着性が向上する。   According to the method for producing an optical fiber core of the present invention, by roughening the surface of the ultraviolet curable resin that protects the glass fiber, good rewindability can be obtained, and the colored layer formed on the surface can be obtained. Adhesion is improved.

紫外線硬化樹脂を硬化させる際に供給する不活性ガス中の酸素濃度を5000〜50000ppmに調整することにより、所望の表面粗さが得られる。   The desired surface roughness can be obtained by adjusting the oxygen concentration in the inert gas supplied when the ultraviolet curable resin is cured to 5000 to 50000 ppm.

図1は、本発明の実施の形態に係る着色光ファイバ心線を示す。この着色光ファイバ心線1は、同図(a)に示すように、ガラスファイバ2の周囲を、平均面粗さ0.5〜10nm、最大高低差は50nm以下の表面3aを有する被覆層3で被覆し、その表面3aに着色層4を形成したものである。なお、同図(b)は、着色層4を形成する前の光ファイバ心線1aを示す。   FIG. 1 shows a colored optical fiber core according to an embodiment of the present invention. As shown in FIG. 2A, the colored optical fiber core 1 has a coating layer 3 having a surface 3a having an average surface roughness of 0.5 to 10 nm and a maximum height difference of 50 nm or less around the glass fiber 2. And a colored layer 4 is formed on the surface 3a. In addition, the same figure (b) shows the optical fiber core wire 1a before forming the colored layer 4. FIG.

ガラスファイバ2は、例えば、石英ガラスからなり、情報通信等の伝達に用いられるものであるが、材料は特に限定するものではない。   The glass fiber 2 is made of, for example, quartz glass and is used for transmission of information communication and the like, but the material is not particularly limited.

被覆層3は、例えば、比較的柔らかい紫外線硬化樹脂からなる第1の被覆層30、および比較的硬い紫外線硬化樹脂からなる第2の被覆層31の2層構造を有する。なお、第1および第2の被覆層30,31の材料は、同じものでもよく、また光ファイバに用いられるものであれば、特に限定するものではなく、例えば、ウレタンクリレート、エステルクリレート、エポキシクリレート等の市販のものを用いることができる。   The covering layer 3 has, for example, a two-layer structure of a first covering layer 30 made of a relatively soft UV curable resin and a second covering layer 31 made of a relatively hard UV curable resin. In addition, the material of the 1st and 2nd coating layers 30 and 31 may be the same, and will not be specifically limited if it is used for an optical fiber, For example, urethane acrylate, ester acrylate, Commercially available products such as epoxy acrylate can be used.

被覆層3の表面3aの平均面粗さを0.5〜10nm、最大高低差を50nm以下とするのは、0.5nmより粗さが小さいと、巻替性や識別のために施される着色層4に対する密着効果が得られないためである。また、平均面粗さが10nmより大きいと、巻替時に巻き乱れが生じやすくなるためである。さらに表面3aの粗さの最大高低差が50nmより大きいと、巻替時に巻き乱れが生じやすくなるためである。好ましくは平均面粗さが0.5〜5nm、最大高低差が20nm以下がよい。   The average surface roughness of the surface 3a of the coating layer 3 is set to 0.5 to 10 nm, and the maximum height difference is set to 50 nm or less. If the roughness is smaller than 0.5 nm, it is applied for rewinding and identification. This is because the adhesion effect to the colored layer 4 cannot be obtained. Further, if the average surface roughness is larger than 10 nm, winding disturbance is likely to occur during rewinding. Furthermore, if the maximum height difference of the roughness of the surface 3a is larger than 50 nm, turbulence is likely to occur during rewinding. Preferably, the average surface roughness is 0.5 to 5 nm and the maximum height difference is 20 nm or less.

図2は、被覆層3となる紫外線硬化樹脂を硬化するための紫外線照射装置を示し、(a)は1灯式、(b)は2灯式を示す。図2(a)示す紫外線照射装置10Aは、一対の反射板11A,11Bによって筒状に仕切られた空間内に、その長手方向に沿って第1の被覆層30あるいは第2の被覆層31となる紫外線硬化樹脂が塗布された光ファイバ心線1aを通過させる石英管12を配置し、石英管12の近傍にこれと平行に紫外線照射ランプ13を配置し、不活性ガスを不活性ガス導入路14から石英管12内に導入し、不活性ガス排出路15から排出するようにしている。   FIG. 2 shows an ultraviolet irradiation device for curing the ultraviolet curable resin that becomes the coating layer 3, wherein (a) shows a one-lamp type and (b) shows a two-lamp type. The ultraviolet irradiation device 10A shown in FIG. 2 (a) includes a first coating layer 30 or a second coating layer 31 along the longitudinal direction in a space partitioned in a cylindrical shape by a pair of reflectors 11A and 11B. The quartz tube 12 that passes the optical fiber core wire 1a coated with the ultraviolet curable resin is disposed, the ultraviolet irradiation lamp 13 is disposed in parallel with the quartz tube 12 in the vicinity thereof, and the inert gas is introduced into the inert gas introduction path. 14 is introduced into the quartz tube 12 and discharged from the inert gas discharge passage 15.

図2(b)に示す紫外線照射装置10Bは、紫外線照射ランプ13を2つ用いたものであり、他は図2(a)に示す紫外線照射装置10Aと同様に構成されている。必要に応じて図2(a)に示す紫外線照射装置10Aと図2(b)に示す紫外線照射装置10Bとを使い分けるのが好ましい。   The ultraviolet irradiation device 10B shown in FIG. 2 (b) uses two ultraviolet irradiation lamps 13, and the other configuration is the same as the ultraviolet irradiation device 10A shown in FIG. 2 (a). It is preferable that the ultraviolet irradiation device 10A shown in FIG. 2A and the ultraviolet irradiation device 10B shown in FIG.

紫外線照射ランプ13としては、低圧水銀ランプ、高圧放電ランプ、メタルハライドランプ等の市販のランプを用いることができる。好ましくは、メタルハライドランプが望ましい。また、有電極タイプ及び無電極タイプのいずれを用いてもよい。   As the ultraviolet irradiation lamp 13, a commercially available lamp such as a low-pressure mercury lamp, a high-pressure discharge lamp, or a metal halide lamp can be used. Preferably, a metal halide lamp is desirable. Either an electrode type or an electrodeless type may be used.

不活性ガスとして、例えば、酸素濃度が5000〜50000ppmの窒素ガスを用いる。不活性ガス中の酸素濃度を5000〜50000ppmとするのは、5000ppmより少ないと、光ファイバ心線1aの表面3aの粗さが小さく、粗化効果が得られないからである。また、50000ppmより多いと、表面3aの粗さが大きくなり、さらに表面3aの硬化性が著しく低下し、表面3aの粘着が生じやすくなり、光ファイバ心線1をボビンに巻き取った場合に、心線1a同士がくっついたり、巻乱れが生じる等の不具合が出るためである。好ましくは、10000〜30000ppmが良い。   As the inert gas, for example, nitrogen gas having an oxygen concentration of 5000 to 50000 ppm is used. The reason why the oxygen concentration in the inert gas is set to 5000 to 50000 ppm is that when it is less than 5000 ppm, the roughness of the surface 3a of the optical fiber core wire 1a is small, and a roughening effect cannot be obtained. On the other hand, when the content is more than 50000 ppm, the roughness of the surface 3a is increased, the curability of the surface 3a is remarkably reduced, and the surface 3a is easily adhered. When the optical fiber core wire 1 is wound around a bobbin, This is because problems such as the cores 1a sticking to each other or winding disorder occur. Preferably, 10000-30000 ppm is good.

次に、上記紫外線照射装置10A,10Bを用いた着色光ファイバ心線1の製造方法の一例を説明する。ガラスファイバ2に紫外線硬化樹脂を塗布し、それを図2(a)に示す紫外線照射装置10Aの不活性ガスが供給される石英管12内に通過させながら、紫外線照射ランプ13から光ファイバ心線1aに紫外線を照射して未硬化の紫外線硬化樹脂を硬化させ、光ファイバ心線1a上の第1の被覆層30を形成する。   Next, an example of a manufacturing method of the colored optical fiber core wire 1 using the ultraviolet irradiation devices 10A and 10B will be described. An optical fiber core wire is applied from the ultraviolet irradiation lamp 13 while applying an ultraviolet curable resin to the glass fiber 2 and passing it through the quartz tube 12 to which the inert gas of the ultraviolet irradiation apparatus 10A shown in FIG. An uncured ultraviolet curable resin is cured by irradiating 1a with ultraviolet rays to form a first coating layer 30 on the optical fiber core wire 1a.

次に、硬化した第1の被覆層30上に紫外線硬化樹脂を塗布し、ガラスファイバ2に紫外線硬化樹脂を塗布し、それを図2(b)に示す紫外線照射装置10Bの不活性ガスが供給される石英管12内に通過させながら、2つの紫外線照射ランプ13から光ファイバ心線1aに紫外線を照射して未硬化の紫外線硬化樹脂を硬化させ、光ファイバ心線1a上の第2の被覆層31を形成する。これにより、被覆層3の表面3aの平均面粗さが0.5〜10nm、最大高低差が50nm以下の光ファイバ心線1aが得られる。   Next, an ultraviolet curable resin is applied onto the cured first coating layer 30, and an ultraviolet curable resin is applied to the glass fiber 2, which is supplied by the inert gas of the ultraviolet irradiation device 10 </ b> B shown in FIG. While passing through the quartz tube 12, the optical fiber core 1a is irradiated with ultraviolet rays from the two ultraviolet irradiation lamps 13 to cure the uncured ultraviolet curable resin, and the second coating on the optical fiber core 1a. Layer 31 is formed. Thereby, the optical fiber core wire 1a having an average surface roughness of the surface 3a of the coating layer 3 of 0.5 to 10 nm and a maximum height difference of 50 nm or less is obtained.

次に、硬化した第2の被覆層31上に着色層4を形成することにより、着色光ファイバ心線1が得られる。   Next, the colored optical fiber core wire 1 is obtained by forming the colored layer 4 on the cured second coating layer 31.

図3、図4、図5は、複数の図1(a)に示す着色光ファイバ心線1をテープ材5によって被覆したテープファイバを示す。図3は、2本の着色光ファイバ心線1を用いた2心テープファイバ20A、図4は、4本の着色光ファイバ心線1を用いた4心テープファイバ20B、図5は、8本の着色光ファイバ心線1を用いた8心テープファイバ20Cをそれぞれ示す。   3, 4, and 5 illustrate a tape fiber in which a plurality of colored optical fiber cores 1 illustrated in FIG. 1A are covered with a tape material 5. 3 shows a two-core tape fiber 20A using two colored optical fiber cores 1, FIG. 4 shows a four-core tape fiber 20B using four colored optical fiber cores 1, and FIG. 8 core tape fibers 20C using the colored optical fiber core wire 1 are respectively shown.

本発明の実施例1に係る光ファイバ心線の製造方法を説明する。この実施例1は、紫外線照射装置10A,10Bの石英管12内に流す窒素ガス中の酸素濃度を10000ppmとし、この窒素ガスを光ファイバ心線1aの走行方向と逆方向に流しながら、光ファイバ心線1aを構成する第1の被覆層30に対して図2(a)に示す6kWの1灯式の紫外線照射装置10A(ランプ長250mm)を用い、第1の被覆層30が硬化した光ファイバ心線1aを構成する第2の被覆層31に対して図2(b)に示す6kWの2灯式の紫外線照射装置10B(ランプ長各250mm)を用い、線引速度1200m/分で図1(b)に示す光ファイバ心線1aを550km線引した。この光ファイバ心線1aについて、走査型プローブ顕微鏡(SPI3800N ステーション セイコーインスツルメンツ(株)製)で被覆層3の表面3aの平均面粗さと最大高低差を調べた。また、プルーフ兼巻替装置にて、25km巻きボビンを20個準備し、OTDR(Optical Time Domain Refractmeter)装置にて段差の発生有無を調べた。次に、着色工程で、光ファイバ心線1aに着色層4を施した図1(a)に示す着色光ファイバ心線1を作製し、1000m束を3つ用意し、60℃温水中に浸漬(端末は温水槽の外に出して)して、伝送損失の経時変化を30日間測定した。   An optical fiber core manufacturing method according to Example 1 of the present invention will be described. In the first embodiment, the oxygen concentration in the nitrogen gas flowing into the quartz tubes 12 of the ultraviolet irradiation apparatuses 10A and 10B is set to 10,000 ppm, and this nitrogen gas is allowed to flow in the direction opposite to the traveling direction of the optical fiber core 1a. Light obtained by curing the first coating layer 30 using the 6 kW single-lamp ultraviolet irradiation device 10A (lamp length 250 mm) shown in FIG. 2A for the first coating layer 30 constituting the core wire 1a. The second coating layer 31 constituting the fiber core wire 1a is drawn at a drawing speed of 1200 m / min using a 6 kW two-lamp ultraviolet irradiation device 10B (lamp length of 250 mm) shown in FIG. 2B. The optical fiber core wire 1a shown in 1 (b) was drawn by 550 km. About this optical fiber core wire 1a, the average surface roughness and the maximum height difference of the surface 3a of the coating layer 3 were investigated with the scanning probe microscope (SPI3800N station Seiko Instruments Co., Ltd. product). In addition, 20 25-km bobbins were prepared using a proof and rewinding device, and the presence or absence of a step was examined using an OTDR (Optical Time Domain Refractometer) device. Next, in the coloring step, a colored optical fiber core 1 shown in FIG. 1A in which a colored layer 4 is applied to the optical fiber core 1a is prepared, and three 1000 m bundles are prepared and immersed in warm water at 60 ° C. (The terminal was taken out of the hot water tank), and the change over time in the transmission loss was measured for 30 days.

本発明の実施例2に係る光ファイバ心線の製造方法を説明する。この第2の実施例は、紫外線照射装置10A,10Bの石英管12内に流す窒素ガス中の酸素濃度を20000ppmとし、光ファイバ1aを構成する第1の被覆層30に対して図2(a)に示す6kWの1灯式の紫外線照射装置10A(ランプ長250mm)、第2の被覆層31に対して図2(b)に示す6kWの2灯式の紫外線照射装置10B(ランプ長各250mm)を用い、線引速度1200m/分で550km線引して得た光ファイバ心線1aを、実施例1と同様にサンプルを作製して試験を行った。   A method for manufacturing an optical fiber core according to Embodiment 2 of the present invention will be described. In the second embodiment, the oxygen concentration in the nitrogen gas flowing into the quartz tubes 12 of the ultraviolet irradiation devices 10A and 10B is 20000 ppm, and the first coating layer 30 constituting the optical fiber 1a is shown in FIG. 6 kW single-lamp ultraviolet irradiation device 10A (lamp length 250 mm) shown in FIG. 2B, and 6 kW dual-lamp ultraviolet irradiation device 10B (lamp length 250 mm each) shown in FIG. ), A sample was prepared and tested in the same manner as in Example 1 for the optical fiber core wire 1a obtained by drawing 550 km at a drawing speed of 1200 m / min.

本発明の実施例3に係る光ファイバ心線の製造方法を説明する。この第3の実施例は、紫外線照射装置10A,10Bの石英管12内に流す窒素ガス中の酸素濃度を30000ppmとし、光ファイバ心線1aを構成する第1の被覆層30に対して図2(a)に示す6kWの1灯式の紫外線照射装置10A(ランプ長250mm)、第2の被覆層31に対して図2(b)に示す6kWの2灯式の紫外線照射装置10B(ランプ長各250mm)を用い、線引速度1200m/分で550km線引して得た光ファイバ心線1aを、実施例1と同様にサンプルを作製して試験を行った。   An optical fiber core manufacturing method according to Example 3 of the present invention will be described. In the third embodiment, the oxygen concentration in the nitrogen gas flowing into the quartz tubes 12 of the ultraviolet irradiation devices 10A and 10B is 30000 ppm, and the first coating layer 30 constituting the optical fiber core 1a is shown in FIG. 6A single lamp type ultraviolet irradiation device 10A (lamp length 250 mm) shown in FIG. 2A, and 6 kW double lamp type ultraviolet irradiation device 10B (lamp length shown in FIG. 2B) with respect to the second coating layer 31. Each of the optical fiber cores 1a obtained by drawing 550 km at a drawing speed of 1200 m / min using 250 mm) was prepared and tested in the same manner as in Example 1.

比較例1Comparative Example 1

比較例1に係る光ファイバ心線の製造方法を説明する。この比較例1は、紫外線照射装置10A,10Bの石英管12内に流す窒素ガス中の酸素濃度を4000ppmとし、光ファイバ心線1aを構成する第1の被覆層30に対して図2(a)に示す6kWの1灯式の紫外線照射装置10A(ランプ長250mm)、第2の被覆層31に対して図2(b)に示す6kWの2灯式の紫外線照射装置10B(ランプ長各250mm)を用い、線引速度1200m/分で550km線引して得た光ファイバ心線1aを、実施例1と同様にサンプルを作製して試験を行った。   The manufacturing method of the optical fiber core wire which concerns on the comparative example 1 is demonstrated. In Comparative Example 1, the oxygen concentration in the nitrogen gas flowing into the quartz tubes 12 of the ultraviolet irradiation apparatuses 10A and 10B is set to 4000 ppm, and the first coating layer 30 constituting the optical fiber core wire 1a is illustrated in FIG. 6 kW single-lamp ultraviolet irradiation device 10A (lamp length 250 mm) shown in FIG. 2B, and 6 kW dual-lamp ultraviolet irradiation device 10B (lamp length 250 mm each) shown in FIG. ), A sample was prepared and tested in the same manner as in Example 1 for the optical fiber core wire 1a obtained by drawing 550 km at a drawing speed of 1200 m / min.

比較例2Comparative Example 2

比較例2に係る光ファイバ心線の製造方法を説明する。この比較例2は、紫外線照射装置10A,10Bの石英管12内に流す窒素ガス中の酸素濃度を60000ppmとし、光ファイバ心線1aを構成する第1の被覆層30に対して図2に示す6kW1灯式の紫外線照射装置10A(ランプ長250mm)、第2の被覆層31に対して図3に示す6kW2灯式の紫外線照射装置10B(ランプ長各250mm)を用い、線引速度1200m/分で550km線引して得た光ファイバ心線1aを、実施例1と同様にサンプルを作製して試験を行った。   The manufacturing method of the optical fiber core wire which concerns on the comparative example 2 is demonstrated. In Comparative Example 2, the oxygen concentration in the nitrogen gas flowing into the quartz tubes 12 of the ultraviolet irradiation apparatuses 10A and 10B is 60000 ppm, and the first coating layer 30 constituting the optical fiber core 1a is shown in FIG. A 6 kW 1 lamp type ultraviolet irradiation apparatus 10A (lamp length 250 mm) and a 6 kW 2 lamp type ultraviolet irradiation apparatus 10B (lamp length 250 mm each) shown in FIG. 3 for the second coating layer 31, and a drawing speed of 1200 m / min. A sample of the optical fiber core wire 1a obtained by drawing at 550 km in the same manner as in Example 1 was tested.

Figure 2005221778
表1は、実施例1,2,3および比較例1,2で測定を行った段差発生数と60℃温水浸漬時の伝送損失結果を示す。
Figure 2005221778
Table 1 shows the number of steps generated in Examples 1, 2, and 3 and Comparative Examples 1 and 2 and the transmission loss result when immersed in 60 ° C. warm water.

表1から明らかなように、実施例1,2および3では、巻替に伴うOTDR段差の発生数が、比較例1,2に比べて少なく、また60℃温水浸漬時に伝送損失の増加も生じにくいものが得られている。   As is apparent from Table 1, in Examples 1, 2 and 3, the number of OTDR steps generated due to rewinding is smaller than in Comparative Examples 1 and 2, and an increase in transmission loss occurs when immersed in hot water at 60 ° C. Difficult things have been obtained.

図6は、実施例2の酸素濃度20000ppmで線引き作製した光ファイバ心線1aの表面3aの表面粗さを走査型プローブ顕微鏡(SPI3800Nセイコーインスツルメンツ(株)製)で測定した一例を示す。図6(a)は、5×5μmの領域の表面粗さ、図6(b)は、あるライン上の表面粗さのプロファイルを示す。   FIG. 6 shows an example in which the surface roughness of the surface 3a of the optical fiber core wire 1a drawn with an oxygen concentration of 20000 ppm in Example 2 was measured with a scanning probe microscope (SPI3800N manufactured by Seiko Instruments Inc.). FIG. 6A shows the surface roughness of a 5 × 5 μm region, and FIG. 6B shows the profile of the surface roughness on a certain line.

これから明らかなように光ファイバ心線1aの表面3aの平均面粗さを0.5〜10nmとすることにより、巻替性に優れた光ファイバ心線を得ることができる。   As is clear from this, by setting the average surface roughness of the surface 3a of the optical fiber core 1a to 0.5 to 10 nm, it is possible to obtain an optical fiber core excellent in rewindability.

(a)は、本発明の実施の形態に係る着色光ファイバ心線の断面図、(b)は、着色層を形成する前の光ファイバ心線の断面図である。(A) is sectional drawing of the colored optical fiber cable which concerns on embodiment of this invention, (b) is sectional drawing of the optical fiber cable before forming a colored layer. 本発明の実施の形態に係る光ファイバ心線の紫外線硬化樹脂を硬化させるための紫外線照射装置を示し、(a)は1灯式の紫外線照射装置を示す図、(b)は2灯式の紫外線照射装置を示す図である。The ultraviolet irradiation apparatus for hardening the ultraviolet curable resin of the optical fiber core wire which concerns on embodiment of this invention is shown, (a) is a figure which shows a 1 lamp type ultraviolet irradiation apparatus, (b) is a 2 lamp type It is a figure which shows an ultraviolet irradiation device. 本発明の実施の形態に係る着色光ファイバ心線を2本用いたテープファイバを示す断面図である。It is sectional drawing which shows the tape fiber using two colored optical fiber core wires which concern on embodiment of this invention. 本発明の実施の形態に係る着色光ファイバ心線を4本用いたテープファイバを示す断面図である。It is sectional drawing which shows the tape fiber using four colored optical fiber core wires which concern on embodiment of this invention. 本発明の実施の形態に係る着色光ファイバ心線を8本用いたテープファイバを示す断面図である。It is sectional drawing which shows the tape fiber using eight colored optical fiber core wires which concern on embodiment of this invention. 本発明の実施例2の酸素濃度20000ppmで線引き作製した光ファイバ心線1aの表面3aの表面粗さを走査型プローブ顕微鏡による測定結果を示し、(a)は、5×5μmの領域の表面粗さ、(b)は、あるライン上の表面粗さのプロファイルを示す写真である。The surface roughness of the surface 3a of the optical fiber core wire 1a drawn with an oxygen concentration of 20000 ppm in Example 2 of the present invention is shown by a scanning probe microscope, and (a) shows the surface roughness of a 5 × 5 μm region. (B) is a photograph showing a profile of surface roughness on a certain line.

符号の説明Explanation of symbols

1 着色光ファイバ心線
1a 光ファイバ心線
2 ガラスファイバ
3 被覆層
3a 被覆層の表面
4 着色層
5 テープ材
10A,10B 紫外線照射装置
11A,11B 反射板
12 石英管
13 紫外線照射ランプ
14 不活性ガス導入路
15 不活性ガス排出路
20A,20B,20C テープファイバ
30 第1の被覆層
31 第2の被覆層
DESCRIPTION OF SYMBOLS 1 Colored optical fiber core wire 1a Optical fiber core wire 2 Glass fiber 3 Coating layer 3a Surface of coating layer 4 Colored layer 5 Tape material 10A, 10B Ultraviolet irradiation apparatus 11A, 11B Reflector plate 12 Quartz tube 13 Ultraviolet irradiation lamp 14 Inert gas Introduction path 15 Inert gas discharge paths 20A, 20B, 20C Tape fiber 30 First coating layer 31 Second coating layer

Claims (4)

ガラスファイバの外周に紫外線硬化樹脂層を形成した光ファイバ心線において、
前記紫外線硬化樹脂層は、その表面の平均面粗さが0.5〜10nm、最大高低差が50nm以下であることを特徴とする光ファイバ心線。
In an optical fiber core wire in which an ultraviolet curable resin layer is formed on the outer periphery of the glass fiber,
The ultraviolet curable resin layer has an average surface roughness of 0.5 to 10 nm and a maximum height difference of 50 nm or less.
前記紫外線硬化樹脂層は、その表面の平均面粗さが0.5〜5nm、最大高低差が20nm以下であることを特徴とする請求項1記載の光ファイバ心線。   The optical fiber core wire according to claim 1, wherein the ultraviolet curable resin layer has an average surface roughness of 0.5 to 5 nm and a maximum height difference of 20 nm or less. ガラスファイバの外周に紫外線硬化樹脂を塗布し、
前記紫外線硬化樹脂が塗布された前記ガラスファイバを、不活性ガスが流入する石英管内に通過させるとともに、前記ガラスファイバに前記石英管を通して紫外線を照射することにより、未硬化の前記紫外線硬化樹脂を硬化させて光ファイバ心線を製造する光ファイバ心線の製造方法において、
前記石英管内に流入する前記不活性ガス中の酸素濃度を所定の量に調整することにより、前記紫外線硬化樹脂の表面を粗化することを特徴とする光ファイバ心線の製造方法。
Apply UV curable resin to the outer periphery of the glass fiber,
The glass fiber coated with the ultraviolet curable resin is passed through a quartz tube into which an inert gas flows, and the glass fiber is irradiated with ultraviolet rays through the quartz tube to cure the uncured ultraviolet curable resin. In the manufacturing method of the optical fiber core wire to manufacture the optical fiber core wire,
A method of manufacturing an optical fiber core, wherein the surface of the ultraviolet curable resin is roughened by adjusting an oxygen concentration in the inert gas flowing into the quartz tube to a predetermined amount.
前記不活性ガス中の酸素濃度を5000〜50000ppmに調整することを特徴とする請求項3記載の光ファイバ心線の製造方法。   The method for manufacturing an optical fiber core wire according to claim 3, wherein the oxygen concentration in the inert gas is adjusted to 5000 to 50000 ppm.
JP2004029735A 2004-02-05 2004-02-05 Optical fiber core and manufacturing method thereof Expired - Lifetime JP3858895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004029735A JP3858895B2 (en) 2004-02-05 2004-02-05 Optical fiber core and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004029735A JP3858895B2 (en) 2004-02-05 2004-02-05 Optical fiber core and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005221778A true JP2005221778A (en) 2005-08-18
JP3858895B2 JP3858895B2 (en) 2006-12-20

Family

ID=34997454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004029735A Expired - Lifetime JP3858895B2 (en) 2004-02-05 2004-02-05 Optical fiber core and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3858895B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256322A (en) * 2006-03-20 2007-10-04 Furukawa Electric Co Ltd:The Coated optical fiber and coated optical fiber ribbon, and its manufacturing method
JP2009237479A (en) * 2008-03-28 2009-10-15 Furukawa Electric Co Ltd:The Coated optical fiber tape
JP2009237480A (en) * 2008-03-28 2009-10-15 Furukawa Electric Co Ltd:The Optical fiber ribbon
JP7407633B2 (en) 2020-03-23 2024-01-04 古河電気工業株式会社 Ultraviolet irradiation equipment and optical fiber manufacturing equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256322A (en) * 2006-03-20 2007-10-04 Furukawa Electric Co Ltd:The Coated optical fiber and coated optical fiber ribbon, and its manufacturing method
JP2009237479A (en) * 2008-03-28 2009-10-15 Furukawa Electric Co Ltd:The Coated optical fiber tape
JP2009237480A (en) * 2008-03-28 2009-10-15 Furukawa Electric Co Ltd:The Optical fiber ribbon
JP7407633B2 (en) 2020-03-23 2024-01-04 古河電気工業株式会社 Ultraviolet irradiation equipment and optical fiber manufacturing equipment

Also Published As

Publication number Publication date
JP3858895B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
US5703988A (en) Coated optical fiber and fabrication process therefor
KR100324176B1 (en) Manufacturing method of optical fiber tape core wire
US11846407B2 (en) Bare optical fiber manufacturing method
JP3858895B2 (en) Optical fiber core and manufacturing method thereof
JP2003206156A (en) Method for manufacturing optical fiber, optical fiber and apparatus for manufacturing optical fiber
JPH09105823A (en) Processing method for optical fiber dispenser using bonding agent which can be cured with ultraviolet ray
JP2614949B2 (en) Optical fiber coating forming method and coating forming apparatus
JP4082189B2 (en) Optical fiber
JP2016124731A (en) Method for producing optical fiber
JP2004168628A (en) Primary coated optical fiber and method of manufacturing the same
JP2009190804A (en) Guide roller, and filamentary body manufacturing method
CN111433168B (en) Method and apparatus for manufacturing optical fiber
JP4947617B2 (en) Optical fiber core and optical fiber ribbon
JP2003212607A (en) Process for manufacturing optical fiber
JP2006312563A (en) Curing method for optical fiber coating, ultra-violet-curing device, and method of and apparatus for producing optical fiber
JP3804389B2 (en) Optical fiber manufacturing method
CN1197215A (en) Optical fiber coating method
JP3408591B2 (en) Optical fiber manufacturing method
JP2022161561A (en) Optical fiber ribbon, and manufacturing method of optical fiber ribbon
JP2006133669A (en) Primary coated optical fiber, dyed secondary coated optical fiber using the same, secondary optical fiber ribbon and optical fiber cable
JP2003252654A (en) Method for manufacturing optical fiber
JP2008523440A (en) Pneumatic fiber optic unit manufacturing method for preventing deterioration of coating layer characteristics and gas chamber used therefor
JP2004354457A (en) Optical fiber
JP2004067465A (en) Method for curing ultraviolet curing resin and coater for ultraviolet curing resin
JP2002196156A (en) Coated optical fiber and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Ref document number: 3858895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350