JP4947617B2 - Optical fiber core and optical fiber ribbon - Google Patents

Optical fiber core and optical fiber ribbon Download PDF

Info

Publication number
JP4947617B2
JP4947617B2 JP2005361835A JP2005361835A JP4947617B2 JP 4947617 B2 JP4947617 B2 JP 4947617B2 JP 2005361835 A JP2005361835 A JP 2005361835A JP 2005361835 A JP2005361835 A JP 2005361835A JP 4947617 B2 JP4947617 B2 JP 4947617B2
Authority
JP
Japan
Prior art keywords
optical fiber
layer
contact angle
curable resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005361835A
Other languages
Japanese (ja)
Other versions
JP2007163954A (en
Inventor
哲夫 佐藤
悦宏 新子谷
浩二 望月
啓祐 宇井
康雄 中島
敦義 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2005361835A priority Critical patent/JP4947617B2/en
Publication of JP2007163954A publication Critical patent/JP2007163954A/en
Application granted granted Critical
Publication of JP4947617B2 publication Critical patent/JP4947617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光ファイバケーブルに収納される光ファイバ心線に関するものである。特に紫外線硬化性樹脂組成物の硬化物により被覆された光ファイバ素線に、着色剤を含む紫外線硬化性樹脂組成物を塗布して硬化させ光ファイバ心線とした際に、被覆層と着色層との良好な密着性を有する光ファイバ心線を提供する。   The present invention relates to an optical fiber core housed in an optical fiber cable. In particular, when an optical fiber strand coated with a cured product of an ultraviolet curable resin composition is coated with an ultraviolet curable resin composition containing a colorant and cured to form an optical fiber core, a coating layer and a colored layer An optical fiber core having good adhesion to the fiber is provided.

光ファイバ素線は、通常、ガラス光ファイバの外周に2層の被覆、即ち一次被覆層(プライマリ層)、二次被覆層(セカンダリ層)を有している。ケーブル内で用いられる場合、光ファイバ素線は、識別のためにその外周に着色層を付加して光ファイバ心線とし、さらに複数本の心線を透明な紫外線硬化樹脂で一括被覆することで光ファイバテープ心線として提供されることがある。このテープ心線は接続の際、テープ層を除去して複数本の独立した心線として用いる。しかしながら、テープ層と着色層との密着力が強すぎる、もしくは着色層とセカンダリ層との密着力が弱すぎる場合には、テープ心線から心線を取り出すためにテープ層を除去する際に同時に着色層も剥がれてしまい、光ファイバ着色心線として使用できなくなる。   The optical fiber strand usually has two coatings on the outer periphery of the glass optical fiber, that is, a primary coating layer (primary layer) and a secondary coating layer (secondary layer). When used in a cable, an optical fiber strand is formed by adding a colored layer to the outer periphery for identification to form an optical fiber core wire, and further covering a plurality of core wires with a transparent UV curable resin at once. Sometimes provided as an optical fiber ribbon. When this tape core is connected, the tape layer is removed and used as a plurality of independent cores. However, if the adhesive force between the tape layer and the colored layer is too strong, or if the adhesive force between the colored layer and the secondary layer is too weak, at the same time when removing the tape layer to take out the core wire from the tape core wire The colored layer is also peeled off and cannot be used as an optical fiber colored core.

被覆材の密着力は、その下地となる紫外線硬化樹脂の表面状態に大きく依存し、表面状態は紫外線硬化時の条件、具体的には雰囲気ガスや紫外線照度,照射量に影響される。この表面状態を評価する技術として、「特許文献1」では紫外線硬化樹脂のシートを作製し、その表面に滴下した水滴の接触角より評価する方法を提供している。また「特許文献2」では、実際の光ファイバ素線を複数本並べ、その表面に滴下した水滴の接触角より評価する方法を提供している。   The adhesion of the coating material depends greatly on the surface state of the ultraviolet curable resin as the base, and the surface state is influenced by the conditions during ultraviolet curing, specifically, atmospheric gas, ultraviolet illuminance, and irradiation dose. As a technique for evaluating this surface state, “Patent Document 1” provides a method of producing a sheet of an ultraviolet curable resin and evaluating it from the contact angle of water droplets dropped on the surface. Further, “Patent Document 2” provides a method of arranging a plurality of actual optical fiber strands and evaluating them based on the contact angle of water droplets dropped on the surface thereof.

特開2004-219240号公報JP 2004-219240 A 特開2004-233662号公報JP 2004-233662 A

光ファイバ素線は、識別のための着色剤を含む被覆層樹脂や、オーバーコート材と呼ばれる被覆層樹脂によって被覆され、光ファイバ心線として用いられる。これら被覆層樹脂と光ファイバ素線との密着力が低いと、光ファイバ心線の取扱中に着色層がはがれてしまい、光ファイバ着色心線として使用できなくなる。さらに、複数本の光ファイバ心線をテープ層樹脂により一括被覆した光ファイバテープ心線において着色層樹脂と光ファイバ素線との密着力が低いと、光ファイバテープ心線から各々の光ファイバ心線を取り出す際(テープからの光ファイバ心線の単身分離の際)にテープ層樹脂の除去とともに着色層樹脂がはがれてしまい、単心分離不良と呼ばれる問題が生じる。   The optical fiber is coated with a coating layer resin containing a colorant for identification or a coating layer resin called an overcoat material, and used as an optical fiber core. When the adhesion between the coating layer resin and the optical fiber is low, the colored layer is peeled off during handling of the optical fiber core, and cannot be used as the optical fiber core. Furthermore, if the adhesive force between the colored layer resin and the optical fiber strand is low in an optical fiber tape core in which a plurality of optical fiber cores are collectively covered with the tape layer resin, each optical fiber core is separated from the optical fiber tape core. When the wire is taken out (single separation of the optical fiber core from the tape), the color layer resin is peeled off together with the removal of the tape layer resin, which causes a problem called single-fiber separation failure.

光ファイバ素線の被覆層樹脂の表面状態を、ウィルヘルミ法による動的接触角を用いて評価し、光ファイバ素線の純水に対する前進接触角αと純水に対する後退接触角βとの差(α−β)が29°以上である光ファイバ素線を用いる。また、そのような光ファイバ素線を着色層樹脂にて被覆して光ファイバ心線とし、さらに光ファイバ心線をテープ層樹脂により一括被覆することで光ファイバテープ心線とする。光ファイバ素線の被覆層樹脂は紫外線硬化性樹脂からなり、最外被覆層の硬化処理時の紫外線照射量、酸素濃度雰囲気を制御することで所望の(α−β)の値を得ている。   The surface condition of the coating resin of the optical fiber is evaluated using the dynamic contact angle by the Wilhelmi method, and the difference between the advancing contact angle α for pure water and the receding contact angle β for pure water ( An optical fiber strand having α−β) of 29 ° or more is used. Further, such an optical fiber is coated with a colored layer resin to form an optical fiber core, and further, the optical fiber core is collectively coated with a tape layer resin to form an optical fiber tape. The coating layer resin of the optical fiber is made of an ultraviolet curable resin, and a desired value (α−β) is obtained by controlling the ultraviolet ray irradiation amount and the oxygen concentration atmosphere during the curing process of the outermost coating layer. .

ガラス光ファイバに被覆層樹脂を被覆した光ファイバ素線において、純水に対する前進接触角αと後退接触角βとの差(α−β)が29°以上である光ファイバ素線を用いることで、良好な着色密着力を有する光ファイバ心線を提供することができた。またそのような光ファイバ心線を一括被覆することで、単身分離性に優れた光ファイバテープ心線を提供することができた。   By using an optical fiber in which the difference (α−β) between the advancing contact angle α and the receding contact angle β with respect to pure water is 29 ° or more in an optical fiber strand obtained by coating a glass optical fiber with a coating layer resin It was possible to provide an optical fiber core having good colored adhesion. Also, by coating such optical fiber cores at once, an optical fiber tape core excellent in single separability could be provided.

第1図は、本発明に係わる、光ファイバテープ心線の一実施の形態を示す模式的断面図である。光ファイバテープ心線8は複数本の光ファイバ心線6を紫外線硬化性樹脂組成物からなるテープ層樹脂7にて一括被覆したものであり、光ファイバ心線6は着色剤を含む紫外線硬化性樹脂組成物からなる着色層樹脂5を光ファイバ素線4の外周に被覆したものである。光ファイバ素線は、ガラス光ファイバ1を第一次被覆層(プライマリ層2)と第二次被覆層(セカンダリ層3)で被覆したものである。一般的には、プライマリ層はヤング率3MPa以下、セカンダリ層はヤング率500MPa以上の樹脂が用いられている。本発明では、この光ファイバテープ心線8に、純水に対する動的接触角の前進接触角αと後退接触角βの差(α−β)が29°以上である光ファイバ素線4を用いることを特徴とする。   FIG. 1 is a schematic sectional view showing an embodiment of an optical fiber ribbon according to the present invention. The optical fiber core wire 8 is obtained by collectively coating a plurality of optical fiber core wires 6 with a tape layer resin 7 made of an ultraviolet curable resin composition. The optical fiber core wire 6 is an ultraviolet curable material containing a colorant. A colored layer resin 5 made of a resin composition is coated on the outer periphery of the optical fiber 4. The optical fiber is a glass optical fiber 1 covered with a primary coating layer (primary layer 2) and a secondary coating layer (secondary layer 3). In general, a resin having a Young's modulus of 3 MPa or less is used for the primary layer and a Young's modulus of 500 MPa or more is used for the secondary layer. In the present invention, an optical fiber 4 having a difference (α−β) of 29 ° or more between the advancing contact angle α and the receding contact angle β of the dynamic contact angle with respect to pure water is used for the optical fiber ribbon 8. It is characterized by that.

本発明の光ファイバ素線4は一例として、以下の方法で製造される。あらかじめ用意した所定の屈折率分布を有する光ファイバ用母材を図3に示す線引き方法により線引きする。具体的には、まず、光ファイバ用母材41を加熱炉42により加熱溶融させ、外径約125μmのガラス光ファイバ1に線引きした。このガラス光ファイバ1上に、樹脂被覆用のダイス43にてプライマリ層2用の紫外線硬化型樹脂を塗布し、引き続き所定の酸素濃度雰囲気に調整された紫外線照射室44にて紫外線を照射してこれを硬化させ、プライマリ層2を形成した。更に、ダイス45にてセカンダリ層用の紫外線硬化型樹脂を塗布し、引き続き所定の酸素濃度雰囲気に調整された紫外線照射室46にて紫外線を照射して硬化させ、セカンダリ層を形成し、外径約250μmの光ファイバ素線4を得、これをボビン47に巻き取った。   The optical fiber 4 of the present invention is manufactured by the following method as an example. An optical fiber preform having a predetermined refractive index distribution prepared in advance is drawn by a drawing method shown in FIG. Specifically, first, the optical fiber preform 41 was heated and melted by the heating furnace 42 and drawn to the glass optical fiber 1 having an outer diameter of about 125 μm. On this glass optical fiber 1, an ultraviolet curable resin for the primary layer 2 is applied with a resin-coated die 43, and subsequently irradiated with ultraviolet rays in an ultraviolet irradiation chamber 44 adjusted to a predetermined oxygen concentration atmosphere. This was cured to form the primary layer 2. Further, an ultraviolet curable resin for the secondary layer is applied with a die 45, and subsequently cured by irradiating with an ultraviolet ray in an ultraviolet irradiation chamber 46 adjusted to a predetermined oxygen concentration atmosphere to form a secondary layer. An optical fiber 4 having a thickness of about 250 μm was obtained and wound around a bobbin 47.

第2図は光ファイバ素線4の動的接触角の測定方法についての説明図である。動的接触角は自動表面張力計(K100, KRUSS社製)を用いて測定した。測定環境は温度25℃、湿度50%である。光ファイバ素線4は両面テープを用いて自動表面張力計のプローブ部11に固定されている。この光ファイバ素線4を表面張力が既知の液体10に一定速度で浸漬していくときの接触角を前進接触角αと呼び、逆に液体10から一定速度で引き上げるときの接触角を後退接触角βと呼ぶ。前進接触角および後退接触角は、純水の表面張力を72.8として、ウィルヘルミ法により算出される。ウィルヘルミ法の詳細については、たとえば、石井淑夫、他著、「ぬれ技術ハンドブック 〜基礎・測定評価・データ〜」、株式会社テクノシステム、2001年10月25日、P6〜9、P483〜485 などに記載されている。
光ファイバ素線4の表面状態は周囲の環境によっても変化するため、光ファイバ素線4は接触角の測定前に、温度25℃、湿度50%の環境下で状態調整を行う必要がある。
FIG. 2 is an explanatory diagram of a method for measuring the dynamic contact angle of the optical fiber 4. The dynamic contact angle was measured using an automatic surface tension meter (K100, manufactured by KRUSS). The measurement environment is a temperature of 25 ° C. and a humidity of 50%. The optical fiber 4 is fixed to the probe portion 11 of the automatic surface tension meter using a double-sided tape. The contact angle when the optical fiber 4 is immersed in the liquid 10 having a known surface tension at a constant speed is called a forward contact angle α, and conversely, the contact angle when the optical fiber 4 is pulled up from the liquid 10 at a constant speed is receding contact. Called the angle β. The advancing contact angle and the receding contact angle are calculated by the Wilhelmi method with the surface tension of pure water being 72.8. For details on the Wilhelmi method, see, for example, Ishii Ikuo, et al., “Wet Technology Handbook: Basics, Measurement Evaluation, Data”, Techno System, Inc., October 25, 2001, P6-9, P483-485, etc. Are listed.
Since the surface state of the optical fiber 4 varies depending on the surrounding environment, it is necessary to adjust the state of the optical fiber 4 in an environment of a temperature of 25 ° C. and a humidity of 50% before measuring the contact angle.

表1は、第1図のセカンダリ層3形成時の紫外線照射量および酸素濃度と、光ファイバ心線6を形成するための光ファイバ素線4の純水に対する動的接触角(α、β)およびその差(α−β)、さらに光ファイバ心線6にした際の着色密着力を示す。着色密着力は、ナイロンたわしを用いたしごき試験により評価される。より具体的には、2cm程度の大きさに切断した市販のナイロンたわし2枚で光ファイバ心線6を挟み、ナイロンたわしに均一に20Nの荷重を加えた状態で光ファイバ心線をスライドさせる。 Table 1 shows the ultraviolet ray irradiation amount and oxygen concentration when forming the secondary layer 3 in FIG. 1 and the dynamic contact angles (α, β) with respect to pure water of the optical fiber 4 for forming the optical fiber core wire 6. And the difference ((alpha)-(beta)) and the coloring contact | adhesion power at the time of setting it as the optical fiber core wire 6 are shown. The colored adhesion is evaluated by a ironing test using a nylon scrubber. More specifically, the optical fiber core wire 6 is sandwiched between two commercially available nylon scissors cut to a size of about 2 cm 2 , and the optical fiber core wire is slid in a state where a load of 20 N is uniformly applied to the nylon scrubber. .

着色密着力が良好な場合は着色層5は剥離せず、ナイロンたわしにより着色層5の表面の一部が削られるのみであるが、着色密着力が弱い場合は数回のしごきにより着色層5がセカンダリ被覆層3からが剥離する。測定は5回行い、平均で3回以下のしごき回数で着色層5が剥離する光ファイバ心線6は製品には採用できない。このような場合、表1では×と表している。平均のしごき回数が7回以上で剥離する光ファイバ心線6は、着色密着力が単身分離不良を防ぐのに十分なほど強いと判断される。このような場合、表1では○と表している。平均のしごき回数が4〜6回で剥離する光ファイバ心線は、テープ層7と着色層5との密着力が強い場合は単身分離不良を起こす可能性があり、表1では△と表している。前進接触角αは光ファイバ素線9の純水に対するぬれやすさを示し、後退接触角βは純水にぬれたあとの光ファイバ素線9のはじきやすさを示す。すなわち、動的接触角の差(α−β)が大きいと、純水に対してぬれやすい表面と言える。   When the colored adhesion is good, the colored layer 5 is not peeled off, and only a part of the surface of the colored layer 5 is shaved by nylon scrubbing, but when the colored adhesion is weak, the colored layer 5 is obtained by several times of squeezing. Is peeled off from the secondary coating layer 3. The measurement is performed five times, and the optical fiber core wire 6 from which the colored layer 5 is peeled off with an average number of times of ironing three times or less cannot be adopted as a product. In such a case, it is represented as x in Table 1. The optical fiber core wire 6 that peels off when the average number of squeezing times is 7 times or more is judged to be strong enough to prevent coloring separation failure from occurring. In such a case, in Table 1, it is represented as “◯”. An optical fiber core that peels off when the average number of squeezing times is 4 to 6 may cause a single-separation failure when the adhesion between the tape layer 7 and the colored layer 5 is strong. Yes. The advancing contact angle α indicates how easily the optical fiber 9 is wetted with pure water, and the receding contact angle β indicates how easily the optical fiber 9 is repelled after being wetted with pure water. That is, when the difference (α−β) in dynamic contact angle is large, it can be said that the surface is easily wetted with pure water.

Figure 0004947617
Figure 0004947617

原理的には、純水に替えて直接的に硬化前の着色層用の紫外線硬化性樹脂組成物を用いて動的接触角を測定すれば、光ファイバ素線4の着色層用紫外線硬化性樹脂組成物に対するぬれやすさが評価できる。光ファイバ素線4に着色層用紫外線硬化性樹脂組成物が良好に塗られれば、安定した密着力が発現され、良好な着色密着力が得られると考えられる。よって、着色層用紫外線硬化性樹脂組成物に対する光ファイバ素線の動的接触角は、硬化後の密着力の指針に成り得ると考えられる。しかしながら一般的には、着色層用紫外線硬化性樹脂組成物は粘度が高いため後退接触角βの測定時に光ファイバ素線4に着色層用紫外線硬化性樹脂組成物5が付着してしまい、実際には測定することができない。   In principle, if the dynamic contact angle is measured directly using an ultraviolet curable resin composition for a colored layer before curing instead of pure water, the ultraviolet curable for the colored layer of the optical fiber 4 is obtained. The wettability with respect to the resin composition can be evaluated. If the colored layer UV curable resin composition is satisfactorily applied to the optical fiber 4, it is considered that a stable adhesion is exhibited and a good colored adhesion is obtained. Therefore, it is thought that the dynamic contact angle of the optical fiber with respect to the ultraviolet curable resin composition for the colored layer can serve as a guideline for the adhesion after curing. In general, however, the UV curable resin composition for the colored layer has a high viscosity, and therefore the UV curable resin composition 5 for the colored layer adheres to the optical fiber 4 when the receding contact angle β is measured. Cannot be measured.

一方、本発明では測定可能である純水に対する動的接触角と着色密着力との相関関係を見出すことにより、着色密着力の改善を実現している。   On the other hand, in the present invention, the coloring adhesion strength is improved by finding the correlation between the dynamic contact angle for pure water and the coloring adhesion strength that can be measured.

セカンダリ被覆層3の樹脂硬化の際における紫外線照射量と酸素濃度を種々に変化させ、前進接触角αと後退接触角βの測定を行った。結果を表1に示されている。表1に示されたように、純水に対する動的接触角の差(α―β)と、着色密着力には明らかに相関が見られる。すなわち、(α−β)が28°のとき着色密着力は×であり、(α−β)が29°以上では着色密着力は△、また(α−β)が39°以上では着色密着力は○である。このことから純水に対する動的接触角の値は、紫外線硬化性樹脂組成物に対する動的接触角の代替値として利用可能であることが分かる。   The advancing contact angle α and the receding contact angle β were measured by variously changing the ultraviolet irradiation amount and the oxygen concentration during the resin curing of the secondary coating layer 3. The results are shown in Table 1. As shown in Table 1, there is a clear correlation between the difference in dynamic contact angle with respect to pure water (α−β) and the color adhesion. That is, when (α-β) is 28 °, the color adhesion is x, when (α-β) is 29 ° or more, the color adhesion is Δ, and when (α-β) is 39 ° or more, the color adhesion is Is ○. This shows that the value of the dynamic contact angle for pure water can be used as an alternative value for the dynamic contact angle for the ultraviolet curable resin composition.

動的接触角の差(α―β)を調整する手段としては、セカンダリ層3の硬化時の照射量、および酸素濃度が挙げられる。表1に示されるように一定の照度条件下では、(α―β)は硬化時の酸素濃度が高くなるにつれて大きくなる傾向がある。また一定の酸素濃度下では、(α―β)は硬化時の照射量が低くなるにつれて大きくなる傾向がある。高酸素濃度の雰囲気下で硬化させた紫外線硬化性樹脂組成物の表面には、酸素阻害による紫外線硬化性樹脂組成物の未反応基(非極性基)および、酸素の取り込みにより生成した水酸基(極性基)が存在すると考えられる。また照射量が低い場合にも、表面に紫外線硬化性樹脂組成物の未反応基が存在すると考えられる。これらの表面状態は周囲の環境によっても変わり、空気中では非極性基(未反応基)が表面を覆い、水中では逆に極性基(水酸基)が表面へ移動すると考えられる。純水に対する動的接触角の差(α−β)はこの極性・非極性基の表面での移動のしやすさを測定していると考えており、そのため紫外線硬化性樹脂組成物からなる硬化物表面の硬化性のみならず、硬化物表面の表面状態を示す指標として利用することが可能である。   Examples of means for adjusting the difference (α−β) in the dynamic contact angle include the irradiation amount during curing of the secondary layer 3 and the oxygen concentration. As shown in Table 1, under constant illuminance conditions, (α−β) tends to increase as the oxygen concentration during curing increases. Under a constant oxygen concentration, (α−β) tends to increase as the irradiation dose during curing decreases. On the surface of the ultraviolet curable resin composition cured in an atmosphere of high oxygen concentration, unreacted groups (nonpolar groups) of the ultraviolet curable resin composition due to oxygen inhibition and hydroxyl groups (polarity) generated by oxygen incorporation Group) is considered to exist. Even when the irradiation amount is low, it is considered that unreacted groups of the ultraviolet curable resin composition exist on the surface. These surface states vary depending on the surrounding environment, and it is considered that a nonpolar group (unreacted group) covers the surface in air, and a polar group (hydroxyl group) moves to the surface in water. The difference in the dynamic contact angle with respect to pure water (α-β) is considered to measure the ease of movement of this polar / nonpolar group on the surface. It can be used as an index indicating not only the curability of the product surface but also the surface state of the cured product surface.

以上から良好な着色密着力および単身分離性を得るためには、(α―β)は29°以上である必要があり、そのためにはセカンダリ層3の硬化時の酸素濃度を高くする、または紫外線照射量を少なくすることが有効であることがわかる。ただし、これらの操作により被覆層樹脂の表面硬化性を下げすぎると、光ファイバ素線の表面が柔らかくなり傷つきやすくなる問題を生じ、また被覆層樹脂の摩擦性が上がることから光ファイバ素線のボビン巻き取り時の巻き不良などの問題が生じる。ボビンへの巻き取り時の巻き不良を考慮すれば、動的接触角の差(α−β)は60°以下が好ましい。   From the above, in order to obtain good coloring adhesion and single separability, (α−β) needs to be 29 ° or more. For this purpose, the oxygen concentration at the time of curing the secondary layer 3 is increased, or ultraviolet rays are used. It can be seen that reducing the dose is effective. However, if the surface curability of the coating layer resin is lowered too much by these operations, the surface of the optical fiber strand becomes soft and easily damaged, and the friction property of the coating layer resin increases. Problems such as poor winding during bobbin winding occur. Considering winding failure at the time of winding onto the bobbin, the difference in dynamic contact angle (α−β) is preferably 60 ° or less.

本発明に係わる、光ファイバテープ心線の一実施の形態を示す模式的断面図である。It is typical sectional drawing which shows one Embodiment of the optical fiber tape core wire concerning this invention. 光ファイバ素線の動的接触角の測定方法についての説明図である。It is explanatory drawing about the measuring method of the dynamic contact angle of an optical fiber strand. 一般的な光ファイバ素線の製造方法を示す図である。It is a figure which shows the manufacturing method of a general optical fiber strand.

符号の説明Explanation of symbols

1 ガラス光ファイバ
2 第一次被覆層(プライマリ層)
3 第二次被覆層(セカンダリ層)
4 光ファイバ素線
5 着色層
6 光ファイバ心線
7 テープ層
8 光ファイバテープ心線
1 Glass optical fiber 2 Primary coating layer (primary layer)
3 Secondary coating layer (secondary layer)
4 Optical fiber strand 5 Colored layer 6 Optical fiber core wire 7 Tape layer 8 Optical fiber tape core wire

Claims (1)

ガラス光ファイバ上に樹脂被覆用ダイスにて少なくとも1層以上紫外線硬化樹脂を塗布し、引き続き所定の酸素雰囲気に調整された紫外線照射室にて紫外線を照射して前記紫外線硬化樹脂を硬化させ、被覆層を形成し、これをボビンに巻き取った後、着色工程に供せられる光ファイバ素線の製造方法において、
前記光ファイバ素線のウィルヘルミ法にて算出した、純水に対する前進接触角αと後退接触角βとの差(α−β)を測定する工程と、
測定された前記(α−β)に基づいて、前記(α−β)が36°以上60°以下となるように前記被覆層の最外層の樹脂硬化時の酸素濃度および/または紫外線照射量を調整する工程とを有することを特徴とする光ファイバ素線の製造方法。
At least one layer of UV curable resin is coated on a glass optical fiber with a resin coating die, and then the UV curable resin is cured by irradiating with UV in an UV irradiation chamber adjusted to a predetermined oxygen atmosphere. In a method for manufacturing an optical fiber that is subjected to a coloring step after forming a layer and winding it on a bobbin,
Calculating the difference (α−β) between the advancing contact angle α and the receding contact angle β with respect to pure water, calculated by the Wilhelmi method of the optical fiber ;
Based on the measured (α-β), the oxygen concentration and / or the amount of UV irradiation at the time of resin curing of the outermost layer of the coating layer is adjusted so that the (α-β) is 36 ° or more and 60 ° or less. method for manufacturing an optical fiber, characterized by a step of adjusting.
JP2005361835A 2005-12-15 2005-12-15 Optical fiber core and optical fiber ribbon Active JP4947617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005361835A JP4947617B2 (en) 2005-12-15 2005-12-15 Optical fiber core and optical fiber ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005361835A JP4947617B2 (en) 2005-12-15 2005-12-15 Optical fiber core and optical fiber ribbon

Publications (2)

Publication Number Publication Date
JP2007163954A JP2007163954A (en) 2007-06-28
JP4947617B2 true JP4947617B2 (en) 2012-06-06

Family

ID=38246889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005361835A Active JP4947617B2 (en) 2005-12-15 2005-12-15 Optical fiber core and optical fiber ribbon

Country Status (1)

Country Link
JP (1) JP4947617B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6490805B2 (en) * 2015-12-01 2019-03-27 古河電気工業株式会社 Optical fiber ribbon and optical fiber cable

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128309A (en) * 1986-11-18 1988-05-31 Mitsubishi Cable Ind Ltd Optical fiber
JPH0776118B2 (en) * 1986-12-17 1995-08-16 古河電気工業株式会社 Manufacturing method of coated optical fiber
JPS6413105A (en) * 1987-07-07 1989-01-18 Sumitomo Electric Industries Optical fiber and its production
JPH04268521A (en) * 1991-02-25 1992-09-24 Sumitomo Electric Ind Ltd Production of colored coated optical fiber
JPH09142889A (en) * 1995-11-20 1997-06-03 Japan Synthetic Rubber Co Ltd Method for forming colored cured coating film
JPH11202167A (en) * 1998-01-13 1999-07-30 Sumitomo Electric Ind Ltd Colored coated optical fiber and its manufacture
US6195491B1 (en) * 1999-04-29 2001-02-27 Lucent Technologies, Inc. Optical fiber ribbon having differentially enhanced matrix to ink adhesion
JP2002107590A (en) * 2000-09-29 2002-04-10 Sumitomo Electric Ind Ltd Coated optical fiber ribbon and its manufacturing method
JP2002116358A (en) * 2000-10-04 2002-04-19 Sumitomo Electric Ind Ltd Coated optical fiber tape and method for producing the same
JP2002196201A (en) * 2000-12-27 2002-07-12 Fujikura Ltd Coated optical fiber tape
JP2004219240A (en) * 2003-01-15 2004-08-05 Fujikura Ltd Method of evaluating surface condition of ultraviolet-curing resin

Also Published As

Publication number Publication date
JP2007163954A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP6490805B2 (en) Optical fiber ribbon and optical fiber cable
JP2011128377A (en) Optical fiber core
EP2385027B1 (en) Method for making tight-buffered optical fiber having improved fiber access

JPH0431365B2 (en)
WO2008012926A1 (en) Optical fiber
JP5954296B2 (en) Optical fiber core
JP2007272060A (en) Optical fiber ribbon and optical fiber cable
JP2001056423A (en) Optical fiber
JP2007322893A (en) Optical fiber core wire and its evaluation method
US5945173A (en) Method of making optical fiber ribbon
JP5465741B2 (en) Optical fiber core, optical fiber tape core and optical cable
JP4947617B2 (en) Optical fiber core and optical fiber ribbon
CN107942432A (en) The production method and optical fiber of optical fiber
JPWO2018025896A1 (en) Optical fiber and method of manufacturing optical fiber
JP2010217800A (en) Optical fiber
WO2009113361A1 (en) Optical fiber core
JP4845007B2 (en) Optical fiber core wire, optical fiber tape core wire and manufacturing method thereof
WO2002075419A1 (en) Split type optical fiber tape core
JP5082173B2 (en) Split type optical fiber ribbon
JPH11302039A (en) Production of colored optical fiber
JP3858895B2 (en) Optical fiber core and manufacturing method thereof
EP4306494A1 (en) Colored optical fiber core wire, optical fiber ribbon, single-core fiber assembly cable, optical fiber ribbon cable, and method for producing same
JP2002201048A (en) Coated optical fiber
JPH07309633A (en) Method of augmenting tensile strength of polymer-coated optical fiber
JP2010112711A (en) Imitative evaluation method for adhesiveness of optical fiber to colored resin layer and method for manufacturing colored coated fiber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101101

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4947617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350