JP2005221254A - Axial force measuring instrument, axial force measuring device and axial force measuring method - Google Patents

Axial force measuring instrument, axial force measuring device and axial force measuring method Download PDF

Info

Publication number
JP2005221254A
JP2005221254A JP2004026912A JP2004026912A JP2005221254A JP 2005221254 A JP2005221254 A JP 2005221254A JP 2004026912 A JP2004026912 A JP 2004026912A JP 2004026912 A JP2004026912 A JP 2004026912A JP 2005221254 A JP2005221254 A JP 2005221254A
Authority
JP
Japan
Prior art keywords
axial force
fastened
force measuring
shaft
shaft member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004026912A
Other languages
Japanese (ja)
Inventor
Mitsufumi Kudo
充史 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juki Corp
Original Assignee
Juki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juki Corp filed Critical Juki Corp
Priority to JP2004026912A priority Critical patent/JP2005221254A/en
Publication of JP2005221254A publication Critical patent/JP2005221254A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an axial force measuring instrument, an axial force measuring device and an axial force measuring method capable of measuring the axial force when fastening onto an object a member to be fastened used actually by using a screw member used actually. <P>SOLUTION: When fastening the member to be fastened by the screw member onto a prescribed shaft, a groove part having a detection surface parallel to the direction wherein the screw member applies the axial force is formed on a shaft member of this axial force measuring instrument for measuring the axial force generated in the axial direction of the screw member, and a detection member is provided on the detection surface of the groove part, and a strain of the shaft member is detected. Then, this axial force measuring method for calculating the axial force by performing prescribed processing based on the detected strain is applied to this axial force measuring device equipped with the axial force measuring instrument. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、軸力測定器具、軸力測定装置及び軸力測定方法に関する。   The present invention relates to an axial force measuring instrument, an axial force measuring device, and an axial force measuring method.

従来、被締結部材を、軸などの対象物に固定する場合に、それらをねじやボルトなどのねじ部材によって締結して固定することがある。
図11は、対象物Tに被締結部材Sをねじ頭hを有するボルトBにより締結した状態を示すものである。その締結による固定強度を管理するため、それらを締結した際にボルトBに与えた締め付けトルクに基づき、ボルトBの軸方向に生じた軸力を測定する方法が知られている。
図12は、ボルトBの表面にひずみゲージ20を貼付するとともに、ねじ頭hに形成された貫通孔9にひずみゲージ20に接続されるリード線Lを挿通したものである。図13は、ボルトBの軸線に沿って形成された細孔99の内面にひずみゲージ20を貼付したものである。これらボルトBが被締結部材Sと対象物Tとを締結した際に生じた軸力によりボルトBが歪むひずみ量としての伸び量をひずみゲージ20が検出することによって、その軸力を測定するようになっている。
また、図14は、被締結部材Sと対象物Tとを締結したボルトBに対して超音波振動子Cにより超音波を作用させるとともに、その反射した超音波を検出することにより、そのボルトBのひずみ量を求めて、その軸力を測定するものである。
また、図15は、被締結部材Sと対象物Tとの間に、ロードワッシャWと呼ばれる圧電式圧力センサを配置し、ボルトBが被締結部材Sと対象物Tとを締結する際にロードワッシャWが締め付けられる力を検出して軸力を測定するものである。
Conventionally, when fixing a member to be fastened to an object such as a shaft, they are sometimes fastened and fixed by a screw member such as a screw or a bolt.
FIG. 11 shows a state in which the fastened member S is fastened to the object T by a bolt B having a screw head h. In order to manage the fixing strength due to the fastening, there is known a method for measuring the axial force generated in the axial direction of the bolt B based on the fastening torque applied to the bolt B when they are fastened.
In FIG. 12, the strain gauge 20 is attached to the surface of the bolt B, and the lead wire L connected to the strain gauge 20 is inserted into the through hole 9 formed in the screw head h. FIG. 13 shows the strain gauge 20 attached to the inner surface of the pore 99 formed along the axis of the bolt B. The axial force is measured by the strain gauge 20 detecting the amount of elongation as the amount of distortion of the bolt B due to the axial force generated when the bolt B fastens the fastened member S and the object T. It has become.
Further, FIG. 14 shows that the ultrasonic wave is applied by the ultrasonic vibrator C to the bolt B that fastens the member to be fastened S and the object T, and the reflected ultrasonic wave is detected to thereby detect the bolt B. The amount of strain is obtained and the axial force is measured.
Further, FIG. 15 shows that a piezoelectric pressure sensor called a load washer W is disposed between the fastened member S and the target T, and the bolt B is loaded when the fastened member S and the target T are fastened. The axial force is measured by detecting the force with which the washer W is tightened.

また、被締結部材としての第1のシャフトに、対象物である第2のシャフトをナットにより締結、固定する際に、第2のシャフトの表面に貼付したひずみゲージにより、その第2のシャフトのひずみ量を検出し、軸力を測定する方法が知られている(例えば、特許文献1参照。)。
特開2000−321157号公報
Further, when the second shaft, which is the object, is fastened and fixed to the first shaft as the fastened member with a nut, the strain gauge affixed to the surface of the second shaft is used to fix the second shaft. A method of detecting the amount of strain and measuring the axial force is known (for example, see Patent Document 1).
JP 2000-32157 A

しかしながら、図12〜15に示すような従来技術の場合、締結を行うボルトBはねじ頭hを有するものであり、そのねじ頭hが被締結部材Sに対向する面である座面が被締結部材Sを押す力の反作用による力として軸力が生じるため、その軸力を測定することができるが、図16に示すような、ねじ頭のない止めねじ6(通称イモネジ)による締結の場合、座面がないため、それらの測定方法を適用することは困難であるという問題があった。   However, in the case of the prior art as shown in FIGS. 12 to 15, the bolt B to be fastened has a screw head h, and the seat surface on which the screw head h faces the fastened member S is fastened. Since an axial force is generated as a reaction force of the force that presses the member S, the axial force can be measured, but in the case of fastening with a set screw 6 (commonly known as an imo screw) without a screw head as shown in FIG. Since there is no bearing surface, there is a problem that it is difficult to apply these measurement methods.

また、図12、図13に示すような従来技術の場合、そのボルトBはひずみ量の検出用のボルトであるので、実際に被締結部材Sと対象物Tを締結するボルトにおける軸力と、その測定した軸力との間に誤差が生じてしまうことがあるという問題があった。また、図15に示すような従来技術の場合、被締結部材Sと対象物Tとの間に軸力測定用のロードワッシャWを配置しているので、実際に締結を行う際の被締結部材Sと対象物Tの配置と異なるため、実際に被締結部材Sと対象物Tを締結する際の軸力と、その測定した軸力との間に誤差が生じてしまうことがあるという問題があった。   Moreover, in the case of the prior art as shown in FIGS. 12 and 13, the bolt B is a bolt for detecting the amount of strain, so the axial force in the bolt that actually fastens the fastened member S and the object T, There is a problem that an error may occur between the measured axial force. Further, in the case of the prior art as shown in FIG. 15, since the load washer W for measuring the axial force is disposed between the member to be fastened S and the object T, the member to be fastened when actually fastening is performed. Since there is a difference from the arrangement of S and the object T, there is a problem that an error may occur between the axial force when the member to be fastened S and the object T are actually fastened and the measured axial force. there were.

また、図12、図13に示すような従来技術の場合、図16に示すねじ頭のない止めねじ6など、小さなねじやボルトにはひずみゲージ20を貼付することができないので、その測定方法を適用することはできないという問題があった。また、図14に示すような従来技術の場合も、小さなねじやボルトに適用することは困難であるという問題があった。   In the case of the prior art as shown in FIGS. 12 and 13, the strain gauge 20 cannot be attached to a small screw or bolt such as the set screw 6 without a screw head shown in FIG. There was a problem that it could not be applied. In the case of the prior art as shown in FIG. 14, there is a problem that it is difficult to apply to a small screw or bolt.

また、上記特許文献1の場合、軸力に伴うひずみが生じる位置にひずみゲージを貼付することができる場合はよいが、そのような位置にひずみゲージを貼付することができない場合にはひずみ量の検出が行えず、この測定方法による軸力の測定は行えないという問題があった。   Moreover, in the case of the above-mentioned Patent Document 1, it is good if a strain gauge can be attached to a position where strain due to axial force occurs, but if the strain gauge cannot be attached to such a position, the strain amount There is a problem that the detection cannot be performed and the axial force cannot be measured by this measuring method.

本発明の課題は、対象物に対し、実際に固定する被締結部材を実際に使用するねじ部材を用いて締結する際の軸力を測定することができる軸力測定器具、軸力測定装置及び軸力測定方法を提供することである。   An object of the present invention is to provide an axial force measuring instrument, an axial force measuring device, and an axial force measuring device capable of measuring an axial force at the time of fastening to a target object using a screw member that actually uses a fastened member to be fastened. It is to provide an axial force measurement method.

以上の課題を解決するため、請求項1記載の発明は、所定の軸に対し、被締結部材をねじ部材により締結する際に、ねじ部材の軸方向に生じる軸力を測定するための軸力測定器具であって、被締結部材をねじ部材により締結する際に、ねじ部材が軸力を作用する方向と平行な検出面を有する溝部が形成された軸部材と、溝部の検出面に備えられ、軸部材のひずみを検出する検出部材と、を備えることを特徴とする。   In order to solve the above problems, the invention according to claim 1 is an axial force for measuring an axial force generated in an axial direction of a screw member when the member to be fastened is fastened to the predetermined shaft by the screw member. A measuring instrument comprising a shaft member formed with a groove portion having a detection surface parallel to a direction in which the screw member applies an axial force when the member to be fastened is fastened by the screw member, and a detection surface of the groove portion. And a detection member for detecting strain of the shaft member.

請求項1記載の発明によれば、軸部材には、ねじ部材が軸力を作用する方向と平行な検出面を有する溝部が形成されており、その溝部の検出面に検出部材が備えられているので、その検出部材は感度よく、軸部材のひずみを検出することができる。そして、その検出したひずみに基づき所定の処理を行うことにより、軸力を求めることができる。
従って、所定の軸に相当する軸部材に対し、実際に固定する被締結部材を実際に使用するねじ部材を用いて締結する場合の軸力を測定することができるので、より実際の締結に近い状態における軸力を測定することができる。
According to the first aspect of the present invention, the shaft member is formed with a groove portion having a detection surface parallel to the direction in which the screw member applies the axial force, and the detection member is provided on the detection surface of the groove portion. Therefore, the detection member can detect the distortion of the shaft member with high sensitivity. And axial force can be calculated | required by performing a predetermined process based on the detected distortion | strain.
Accordingly, the axial force when the fastening member that is actually fixed to the shaft member corresponding to the predetermined shaft is fastened by using the screw member that is actually used can be measured, which is closer to the actual fastening. The axial force in the state can be measured.

請求項2記載の発明は、所定の軸に対し、被締結部材をねじ部材により締結する際に、ねじ部材の軸方向に生じる軸力を測定するための軸力測定器具であって、所定の軸の軸線方向と垂直な面と同一の断面形状を有するとともに、被締結部材をねじ部材により締結する際に、ねじ部材が軸力を作用する方向と平行な検出面を有する溝部が形成された軸部材と、溝部の検出面に備えられ、軸部材のひずみを検出する検出部材と、を備えることを特徴とする。   The invention according to claim 2 is an axial force measuring instrument for measuring an axial force generated in the axial direction of the screw member when the member to be fastened is fastened to the predetermined shaft by the screw member. A groove portion having the same cross-sectional shape as the surface perpendicular to the axial direction of the shaft and having a detection surface parallel to the direction in which the screw member applies the axial force when the member to be fastened is fastened by the screw member is formed. A shaft member and a detection member that is provided on a detection surface of the groove and detects strain of the shaft member.

請求項2記載の発明によれば、軸部材には、ねじ部材が軸力を作用する方向と平行な検出面を有する溝部が形成されており、その溝部の検出面に検出部材が備えられているので、その検出部材は感度よく、軸部材のひずみを検出することができる。そして、その検出したひずみに基づき所定の処理を行うことにより、軸力を求めることができる。
特に、軸部材は、所定の軸の軸線方向と垂直な面と同一の断面形状を有しているので、所定の軸に対し実際に固定する被締結部材を、実際に使用するねじ部材を用いて、その軸部材に締結することができる。
従って、所定の軸に相当する軸部材に対し、実際に固定する被締結部材を実際に使用するねじ部材を用いて締結する場合の軸力を測定することができるので、より実際の締結に近い状態における軸力を測定することができる。
According to the second aspect of the present invention, the shaft member is formed with a groove portion having a detection surface parallel to the direction in which the screw member applies the axial force, and the detection member is provided on the detection surface of the groove portion. Therefore, the detection member can detect the distortion of the shaft member with high sensitivity. And axial force can be calculated | required by performing a predetermined process based on the detected distortion | strain.
In particular, since the shaft member has the same cross-sectional shape as the surface perpendicular to the axial direction of the predetermined axis, a screw member that is actually used is used as the member to be fastened to the predetermined axis. And can be fastened to the shaft member.
Accordingly, the axial force when the fastening member that is actually fixed to the shaft member corresponding to the predetermined shaft is fastened by using the screw member that is actually used can be measured, which is closer to the actual fastening. The axial force in the state can be measured.

請求項3記載の発明は、請求項1又は2に記載の軸力測定器具において、ねじ部材が軸部材に対し軸力を作用する位置に、その軸力が作用する方向と垂直な負荷作用面を有することを特徴とする。   A third aspect of the present invention is the axial force measuring instrument according to the first or second aspect, wherein the load acting surface is perpendicular to the direction in which the axial force acts at the position where the screw member acts on the axial member. It is characterized by having.

請求項3記載の発明によれば、請求項1又は2に記載の発明と同様の作用を奏するとともに、軸部材は、ねじ部材がその軸部材に対し軸力を作用する位置に、その軸力が作用する方向と垂直な負荷作用面を有するので、その軸力を所定の方向(例えば、軸部材の軸中心に向かう方向)に作用させやすくすることができる。
よって、その軸力に基づくより正確なひずみの検出を行うことができ、より正確な軸力の測定を行うことができる。
According to the invention described in claim 3, while having the same effect as that of the invention described in claim 1 or 2, the shaft member has the axial force at a position where the screw member applies the axial force to the shaft member. Therefore, the axial force can be easily applied in a predetermined direction (for example, a direction toward the axial center of the shaft member).
Therefore, more accurate strain detection based on the axial force can be performed, and more accurate axial force measurement can be performed.

請求項4記載の発明は、請求項1〜3の何れか一項に記載の軸力測定器具において、負荷作用面の軸部材の軸線方向の両端側に、負荷作用面より軸部材の軸中心側に窪んだ凹部を有することを特徴とする。   According to a fourth aspect of the present invention, in the axial force measuring instrument according to any one of the first to third aspects, the axial center of the shaft member from the load acting surface is closer to both ends in the axial direction of the shaft member of the load acting surface. It has the recessed part dented in the side, It is characterized by the above-mentioned.

請求項4記載の発明によれば、請求項1〜3の何れか一項に記載の発明と同様の作用を奏するとともに、軸部材は、負荷作用面の軸部材の軸線方向の両端側に、負荷作用面より軸部材の軸中心側に窪んだ凹部を有するので、負荷作用面に作用した軸力を検出部材に集中させて、その軸力に伴うひずみを感度よく検出することができる。
よって、その軸力に基づくより正確なひずみの検出を行い、より正確な軸力の測定を行うことができる。
According to the invention of claim 4, while having the same effect as that of the invention according to any one of claims 1 to 3, the shaft member is disposed at both ends in the axial direction of the shaft member of the load acting surface. Since the concave portion that is recessed toward the axial center of the shaft member from the load acting surface is provided, the axial force acting on the load acting surface can be concentrated on the detection member, and the strain accompanying the axial force can be detected with high sensitivity.
Therefore, more accurate strain detection based on the axial force can be performed, and more accurate axial force measurement can be performed.

請求項5記載の発明は、請求項1〜4の何れか一項に記載の軸力測定器具において、溝部は、軸部材の軸線を挟んで対向する位置に形成されているとともに、溝部のそれぞれの検出面に、検出部材が備えられることを特徴とする。   Invention of Claim 5 is an axial force measuring instrument as described in any one of Claims 1-4. WHEREIN: While a groove part is formed in the position which opposes on both sides of the axis of a shaft member, each of a groove part The detection surface is provided with a detection member.

請求項5記載の発明によれば、請求項1〜4の何れか一項に記載の発明と同様の作用を奏するとともに、溝部は、軸部材の軸線を挟んで対向する位置に形成されているとともに、溝部のそれぞれの検出面に検出部材が備えられている。つまり、各検出面に備えられた検出部材は、軸部材の軸線を挟んで対向する位置に配置されているので、軸部材に作用する軸力を感度よく検出することができる。
よって、その軸力に基づくより正確なひずみの検出を行い、より正確な軸力の測定を行うことができる。
According to the fifth aspect of the present invention, the same effect as that of any one of the first to fourth aspects of the present invention can be achieved, and the groove portion is formed at a position facing the axis of the shaft member. In addition, a detection member is provided on each detection surface of the groove. That is, since the detection members provided on the respective detection surfaces are arranged at positions facing each other across the axis of the shaft member, the axial force acting on the shaft member can be detected with high sensitivity.
Therefore, more accurate strain detection based on the axial force can be performed, and more accurate axial force measurement can be performed.

請求項6記載の発明は、請求項5に記載の軸力測定器具において、軸部材の軸線を挟んで対向する溝部を連通し、検出面と垂直な貫通孔を有することを特徴とする。   According to a sixth aspect of the present invention, in the axial force measuring instrument according to the fifth aspect of the present invention, there is provided a through-hole perpendicular to the detection surface that communicates with the groove portions facing each other across the axis of the shaft member.

請求項6記載の発明によれば、請求項5に記載の発明と同様の作用を奏するとともに、軸部材は、その軸部材の軸線を挟んで対向する溝部を連通し、検出面と垂直な貫通孔を有するので、負荷作用面に作用した軸力を検出部材に集中させて、その軸力に伴うひずみを感度よく検出することができる。
よって、その軸力に基づくより正確なひずみの検出を行い、より正確な軸力の測定を行うことができる。
According to the sixth aspect of the invention, the shaft member has the same effect as that of the fifth aspect of the invention, and the shaft member communicates with the groove portion opposed across the axis of the shaft member, and penetrates perpendicular to the detection surface. Since the hole is provided, the axial force acting on the load acting surface can be concentrated on the detection member, and the strain accompanying the axial force can be detected with high sensitivity.
Therefore, more accurate strain detection based on the axial force can be performed, and more accurate axial force measurement can be performed.

請求項7記載の発明は、請求項6に記載の軸力測定器具において、貫通孔内における軸部材の軸線方向と垂直な面に、軸部材のひずみを検出する検出部材を備えることを特徴とする。   The invention according to claim 7 is the axial force measuring instrument according to claim 6, further comprising a detection member that detects strain of the shaft member on a surface perpendicular to the axial direction of the shaft member in the through hole. To do.

請求項7記載の発明によれば、請求項6に記載の発明と同様の作用を奏するとともに、軸部材は、貫通孔内における軸部材の軸線方向と垂直な面に、軸部材のひずみを検出する検出部材を備えるので、溝部の検出面に備えられる一対の検出部材と、貫通孔内に備えられる一対の検出部材とが、角度を90度ずらして配置されることとなる。
よって、異なる向きにおいて、軸力に伴うひずみを検出することができるので、その軸力に伴うひずみを感度よく検出することができる。また、検出部材の数を増やしたことにより、ひずみの検出感度を向上させることができる。
従って、その軸力に基づくより正確なひずみの検出を行い、より正確な軸力の測定を行うことができる。
According to the seventh aspect of the invention, the shaft member has the same effect as that of the sixth aspect of the invention, and the shaft member detects the strain of the shaft member on a surface perpendicular to the axial direction of the shaft member in the through hole. Therefore, the pair of detection members provided on the detection surface of the groove and the pair of detection members provided in the through hole are arranged with the angle shifted by 90 degrees.
Therefore, since the strain accompanying the axial force can be detected in different directions, the strain accompanying the axial force can be detected with high sensitivity. Moreover, the detection sensitivity of distortion can be improved by increasing the number of detection members.
Therefore, more accurate strain detection based on the axial force can be performed, and more accurate axial force measurement can be performed.

請求項8記載の発明は、請求項1〜7の何れか一項に記載の軸力測定器具において、検出部材は、軸部材における圧縮ひずみを検出するひずみゲージであることを特徴とする。   The invention according to claim 8 is the axial force measuring instrument according to any one of claims 1 to 7, wherein the detection member is a strain gauge for detecting compressive strain in the shaft member.

請求項8記載の発明によれば、請求項1〜7の何れか一項に記載の発明と同様の作用を奏するとともに、検出部材は、軸部材における圧縮ひずみを検出するひずみゲージであるので、より好適に軸部材における圧縮ひずみを検出することができ、より正確な軸力の測定を行うことができる。
また、比較的安価な軸力測定器具とすることができる。
According to the invention described in claim 8, the same effect as the invention described in any one of claims 1 to 7 is achieved, and the detection member is a strain gauge that detects a compressive strain in the shaft member. More preferably, the compressive strain in the shaft member can be detected, and the axial force can be measured more accurately.
Moreover, it can be set as a relatively inexpensive axial force measuring instrument.

請求項9記載の発明は、請求項1〜8の何れか一項に記載の軸力測定器具において、軸部材は、有限要素法に基づき設定された形状を有することを特徴とする。   The invention according to claim 9 is the axial force measuring instrument according to any one of claims 1 to 8, wherein the shaft member has a shape set based on a finite element method.

請求項9記載の発明によれば、請求項1〜8の何れか一項に記載の発明と同様の作用を奏するとともに、軸部材は、有限要素法(FEM)に基づき設定された形状を有するので、その軸部材の形状は、被締結部材を実際に固定する所定の軸と見立てることができる。
よって、所定の軸に相当する軸部材に対し、実際に固定する被締結部材を実際に使用するねじ部材を用いて締結する場合の軸力を測定することができるので、より実際の締結に近い状態における軸力を測定することができる。
According to the ninth aspect of the present invention, the shaft member has a shape set based on the finite element method (FEM) while exhibiting the same effect as that of the first aspect of the present invention. Therefore, the shape of the shaft member can be regarded as a predetermined shaft that actually fixes the fastened member.
Therefore, since it is possible to measure the axial force when fastening using a screw member that actually uses a fastened member that is actually fixed to a shaft member corresponding to a predetermined shaft, it is closer to actual fastening. The axial force in the state can be measured.

請求項10記載の発明は、請求項1〜9の何れか一項に記載の軸力測定器具において、軸部材は、所定の軸と同一の材料により形成されていることを特徴とする。   According to a tenth aspect of the present invention, in the axial force measuring instrument according to any one of the first to ninth aspects, the shaft member is formed of the same material as the predetermined shaft.

請求項10記載の発明によれば、請求項1〜9の何れか一項に記載の発明と同様の作用を奏するとともに、軸部材は、所定の軸と同一の材料により形成されているので、その軸部材を、被締結部材を実際に固定する所定の軸と見立てることができる。
よって、所定の軸に相当する軸部材に対し、実際に固定する被締結部材を実際に使用するねじ部材を用いて締結する場合の軸力を測定することができるので、より実際の締結に近い状態における軸力を測定することができる。
According to the invention of claim 10, the same effect as that of the invention according to any one of claims 1 to 9 is achieved, and the shaft member is formed of the same material as the predetermined shaft. The shaft member can be regarded as a predetermined shaft that actually fixes the fastened member.
Therefore, since it is possible to measure the axial force when fastening using a screw member that actually uses a fastened member that is actually fixed to a shaft member corresponding to a predetermined shaft, it is closer to actual fastening. The axial force in the state can be measured.

請求項11記載の発明は、軸力測定装置であって、請求項1〜10の何れか一項に記載の軸力測定器具と、軸力測定器具の検出部材が検出したひずみに基づく検出信号を処理し、軸力を求める制御を行う制御部と、制御部により求められた軸力を表示する表示部と、を備えることを特徴とする。   Invention of Claim 11 is an axial force measuring apparatus, Comprising: The detection signal based on the distortion which the axial force measuring instrument as described in any one of Claims 1-10 and the detection member of an axial force measuring instrument detected And a display unit for displaying the axial force obtained by the control unit.

請求項11記載の発明によれば、軸力測定装置は、軸力測定器具と制御部と表示部を備えており、その制御部は、軸力測定器具の検出部材が検出したひずみに基づく検出信号を処理し、軸力を求めることができる。よって、その軸力に基づくひずみの検出を行うことにより、軸力の測定を容易に行うことができる。
また、表示部は、制御部により求められた軸力を表示することができるので、測定した軸力を容易に認識、確認することができる。
According to the invention of claim 11, the axial force measuring device includes an axial force measuring instrument, a control unit, and a display unit, and the control unit detects based on the strain detected by the detection member of the axial force measuring instrument. The signal can be processed to determine the axial force. Therefore, the axial force can be easily measured by detecting the strain based on the axial force.
Further, since the display unit can display the axial force obtained by the control unit, the measured axial force can be easily recognized and confirmed.

請求項12記載の発明は、軸力測定方法であって、請求項1〜10の何れか一項に記載の軸力測定器具の軸部材に、被締結部材をねじ部材により締結する際に、検出部材が検出したひずみに基づきねじ部材の軸方向に生じる軸力を測定することを特徴とする。   Invention of Claim 12 is an axial force measuring method, Comprising: When fastening a to-be-fastened member to the shaft member of the axial force measuring instrument as described in any one of Claims 1-10 with a screw member, The axial force generated in the axial direction of the screw member is measured based on the strain detected by the detection member.

請求項12記載の発明によれば、軸力測定方法は、軸力測定器具の軸部材に、被締結部材をねじ部材により締結する際に、検出部材が検出したひずみに基づきねじ部材の軸方向に生じる軸力を測定することができる。
よって、所定の軸に相当する軸部材に対し、実際に固定する被締結部材を実際に使用するねじ部材を用いて締結する場合の軸力を測定することができるので、より実際の締結に近い状態における軸力を測定することができる。
According to the invention described in claim 12, the axial force measuring method is the axial direction of the screw member based on the strain detected by the detecting member when the member to be fastened is fastened to the shaft member of the axial force measuring instrument by the screw member. Can be measured.
Therefore, since it is possible to measure the axial force when fastening using a screw member that actually uses a fastened member that is actually fixed to a shaft member corresponding to a predetermined shaft, it is closer to actual fastening. The axial force in the state can be measured.

請求項13記載の発明は、請求項12記載の軸力測定方法において、軸力測定器具の軸部材に、被締結部材をねじ部材により締結する際におけるねじ部材の締め付けトルクと、被締結部材をねじ部材により締結する際にねじ部材の軸方向に生じる軸力とを、予め相関させておき、その締め付けトルクに基づき軸力を測定することを特徴とする。   A thirteenth aspect of the present invention is the axial force measuring method according to the twelfth aspect, wherein the tightening torque of the screw member when the fastened member is fastened to the shaft member of the axial force measuring instrument by the screw member, and the fastened member The axial force generated in the axial direction of the screw member when fastened by the screw member is correlated in advance, and the axial force is measured based on the tightening torque.

請求項13記載の発明によれば、請求項12記載の発明と同様の作用を奏するとともに、軸力測定方法は、軸力測定器具の軸部材に、被締結部材をねじ部材により締結する際におけるねじ部材の締め付けトルクと、被締結部材をねじ部材により締結する際にねじ部材の軸方向に生じる軸力とを、予め相関させておくことにより、その締め付けトルクに基づき軸力を測定することができる。
よって、被締結部材をねじ部材により締結する際におけるねじ部材の締め付けトルクに基づいても、そのねじ部材の軸方向に生じる軸力を測定することができる。
According to the thirteenth aspect of the present invention, the same effect as that of the twelfth aspect of the invention can be achieved. The axial force can be measured based on the tightening torque by correlating in advance the tightening torque of the screw member and the axial force generated in the axial direction of the screw member when the member to be fastened is fastened by the screw member. it can.
Therefore, the axial force generated in the axial direction of the screw member can also be measured based on the tightening torque of the screw member when the member to be fastened is fastened by the screw member.

請求項1記載の発明によれば、軸部材には、ねじ部材が軸力を作用する方向と平行な検出面を有する溝部が形成されており、その溝部の検出面に検出部材が備えられているので、その検出部材は感度よく、軸部材のひずみを検出することができる。そして、その検出したひずみに基づき所定の処理を行うことにより、軸力を求めることができる。
従って、所定の軸に相当する軸部材に対し、実際に固定する被締結部材を実際に使用するねじ部材を用いて締結する場合の軸力を測定することができるので、より実際の締結に近い状態における軸力を測定することができる。
According to the first aspect of the present invention, the shaft member is formed with a groove portion having a detection surface parallel to the direction in which the screw member applies the axial force, and the detection member is provided on the detection surface of the groove portion. Therefore, the detection member can detect the distortion of the shaft member with high sensitivity. And axial force can be calculated | required by performing a predetermined process based on the detected distortion | strain.
Accordingly, the axial force when the fastening member that is actually fixed to the shaft member corresponding to the predetermined shaft is fastened by using the screw member that is actually used can be measured, which is closer to the actual fastening. The axial force in the state can be measured.

請求項2記載の発明によれば、軸部材には、ねじ部材が軸力を作用する方向と平行な検出面を有する溝部が形成されており、その溝部の検出面に検出部材が備えられているので、その検出部材は感度よく、軸部材のひずみを検出することができる。そして、その検出したひずみに基づき所定の処理を行うことにより、軸力を求めることができる。特に、軸部材は、所定の軸の軸線方向と垂直な面と同一の断面形状を有しているので、所定の軸に対し実際に固定する被締結部材を、実際に使用するねじ部材を用いて、その軸部材に締結することができる。
従って、所定の軸に相当する軸部材に対し、実際に固定する被締結部材を実際に使用するねじ部材を用いて締結する場合の軸力を測定することができるので、より実際の締結に近い状態における軸力を測定することができる。
According to the second aspect of the present invention, the shaft member is formed with a groove portion having a detection surface parallel to the direction in which the screw member applies the axial force, and the detection member is provided on the detection surface of the groove portion. Therefore, the detection member can detect the distortion of the shaft member with high sensitivity. And axial force can be calculated | required by performing a predetermined process based on the detected distortion | strain. In particular, since the shaft member has the same cross-sectional shape as the surface perpendicular to the axial direction of the predetermined axis, a screw member that is actually used is used as the member to be fastened to the predetermined axis. And can be fastened to the shaft member.
Accordingly, the axial force when the fastening member that is actually fixed to the shaft member corresponding to the predetermined shaft is fastened by using the screw member that is actually used can be measured, which is closer to the actual fastening. The axial force in the state can be measured.

請求項3記載の発明によれば、軸部材は、ねじ部材がその軸部材に対し軸力を作用する位置に、その軸力が作用する方向と垂直な負荷作用面を有するので、その軸力を所定の方向(例えば、軸部材の軸中心に向かう方向)に作用させやすくすることができる。
よって、その軸力に基づくより正確なひずみの検出を行うことができ、より正確な軸力の測定を行うことができる。
According to the third aspect of the present invention, the shaft member has the load acting surface perpendicular to the direction in which the axial force acts at the position where the screw member acts on the shaft member. Can be made to act in a predetermined direction (for example, a direction toward the axial center of the shaft member).
Therefore, more accurate strain detection based on the axial force can be performed, and more accurate axial force measurement can be performed.

請求項4記載の発明によれば、軸部材は、負荷作用面の軸部材の軸線方向の両端側に、負荷作用面より軸部材の軸中心側に窪んだ凹部を有するので、負荷作用面に作用した軸力を検出部材に集中させて、その軸力に伴うひずみを感度よく検出することができる。
よって、その軸力に基づくより正確なひずみの検出を行い、より正確な軸力の測定を行うことができる。
According to the fourth aspect of the present invention, the shaft member has the concave portions that are recessed toward the axial center side of the shaft member from the load acting surface on both end sides in the axial direction of the shaft member of the load acting surface. The acting axial force can be concentrated on the detection member, and the strain accompanying the axial force can be detected with high sensitivity.
Therefore, more accurate strain detection based on the axial force can be performed, and more accurate axial force measurement can be performed.

請求項5記載の発明によれば、溝部は、軸部材の軸線を挟んで対向する位置に形成されているとともに、溝部のそれぞれの検出面に検出部材が備えられている。つまり、各検出面に備えられた検出部材は、軸部材の軸線を挟んで対向する位置に配置されているので、軸部材に作用する軸力を感度よく検出することができる。
よって、その軸力に基づくより正確なひずみの検出を行い、より正確な軸力の測定を行うことができる。
According to the fifth aspect of the present invention, the groove portion is formed at a position facing each other across the axis of the shaft member, and a detection member is provided on each detection surface of the groove portion. That is, since the detection members provided on the respective detection surfaces are arranged at positions facing each other across the axis of the shaft member, the axial force acting on the shaft member can be detected with high sensitivity.
Therefore, more accurate strain detection based on the axial force can be performed, and more accurate axial force measurement can be performed.

請求項6記載の発明によれば、軸部材は、その軸部材の軸線を挟んで対向する溝部を連通し、検出面と垂直な貫通孔を有するので、負荷作用面に作用した軸力を検出部材に集中させて、その軸力に伴うひずみを感度よく検出することができる。
よって、その軸力に基づくより正確なひずみの検出を行い、より正確な軸力の測定を行うことができる。
According to the invention described in claim 6, since the shaft member communicates with the groove portions facing each other across the axis of the shaft member and has the through hole perpendicular to the detection surface, the axial force acting on the load acting surface is detected. By concentrating on the member, it is possible to detect the strain accompanying the axial force with high sensitivity.
Therefore, more accurate strain detection based on the axial force can be performed, and more accurate axial force measurement can be performed.

請求項7記載の発明によれば、軸部材は、貫通孔内における軸部材の軸線方向と垂直な面に、軸部材のひずみを検出する検出部材を備えるので、溝部の検出面に備えられる一対の検出部材と、貫通孔内に備えられる一対の検出部材とが、角度を90度ずらして配置されることとなる。
よって、異なる向きにおいて、軸力に伴うひずみを検出することができるので、その軸力に伴うひずみを感度よく検出することができる。また、検出部材の数を増やしたことにより、ひずみの検出感度を向上させることができる。従って、その軸力に基づくより正確なひずみの検出を行い、より正確な軸力の測定を行うことができる。
According to invention of Claim 7, since a shaft member is equipped with the detection member which detects the distortion | strain of a shaft member in the surface perpendicular | vertical to the axial direction of the shaft member in a through-hole, a pair with which the detection surface of a groove part is equipped. The detection member and the pair of detection members provided in the through hole are arranged with the angle shifted by 90 degrees.
Therefore, since the strain accompanying the axial force can be detected in different directions, the strain accompanying the axial force can be detected with high sensitivity. Moreover, the detection sensitivity of distortion can be improved by increasing the number of detection members. Therefore, more accurate strain detection based on the axial force can be performed, and more accurate axial force measurement can be performed.

請求項8記載の発明によれば、検出部材は、軸部材における圧縮ひずみを検出するひずみゲージであるので、より好適に軸部材における圧縮ひずみを検出することができ、より正確な軸力の測定を行うことができる。また、比較的安価な軸力測定器具とすることができる。   According to the invention described in claim 8, since the detection member is a strain gauge that detects the compressive strain in the shaft member, the compressive strain in the shaft member can be detected more suitably, and the axial force can be measured more accurately. It can be performed. Moreover, it can be set as a relatively inexpensive axial force measuring instrument.

請求項9記載の発明によれば、軸部材は、有限要素法(FEM)に基づき設定された形状を有するので、その軸部材の形状は、被締結部材を実際に固定する所定の軸と見立てることができる。
よって、所定の軸に相当する軸部材に対し、実際に固定する被締結部材を実際に使用するねじ部材を用いて締結する場合の軸力を測定することができるので、より実際の締結に近い状態における軸力を測定することができる。
According to the invention described in claim 9, since the shaft member has a shape set based on the finite element method (FEM), the shape of the shaft member is regarded as a predetermined shaft that actually fixes the fastened member. be able to.
Therefore, since it is possible to measure the axial force when fastening using a screw member that actually uses a fastened member that is actually fixed to a shaft member corresponding to a predetermined shaft, it is closer to actual fastening. The axial force in the state can be measured.

請求項10記載の発明によれば、軸部材は、所定の軸と同一の材料により形成されているので、その軸部材を、被締結部材を実際に固定する所定の軸と見立てることができる。
よって、所定の軸に相当する軸部材に対し、実際に固定する被締結部材を実際に使用するねじ部材を用いて締結する場合の軸力を測定することができるので、より実際の締結に近い状態における軸力を測定することができる。
According to the tenth aspect of the present invention, since the shaft member is made of the same material as the predetermined shaft, the shaft member can be regarded as a predetermined shaft that actually fixes the fastened member.
Therefore, since it is possible to measure the axial force when fastening using a screw member that actually uses a fastened member that is actually fixed to a shaft member corresponding to a predetermined shaft, it is closer to actual fastening. The axial force in the state can be measured.

請求項11記載の発明によれば、軸力測定装置は、軸力測定器具と制御部と表示部を備えており、その制御部は、軸力測定器具の検出部材が検出したひずみに基づく検出信号を処理し、軸力を求めることができる。よって、その軸力に基づくひずみの検出を行うことにより、軸力の測定を容易に行うことができる。また、表示部は、制御部により求められた軸力を表示することができるので、測定した軸力を容易に認識、確認することができる。   According to the invention of claim 11, the axial force measuring device includes an axial force measuring instrument, a control unit, and a display unit, and the control unit detects based on the strain detected by the detection member of the axial force measuring instrument. The signal can be processed to determine the axial force. Therefore, the axial force can be easily measured by detecting the strain based on the axial force. Further, since the display unit can display the axial force obtained by the control unit, the measured axial force can be easily recognized and confirmed.

請求項12記載の発明によれば、軸力測定方法は、軸力測定器具の軸部材に、被締結部材をねじ部材により締結する際に、検出部材が検出したひずみに基づきねじ部材の軸方向に生じる軸力を測定することができる。
よって、所定の軸に相当する軸部材に対し、実際に固定する被締結部材を実際に使用するねじ部材を用いて締結する場合の軸力を測定することができるので、より実際の締結に近い状態における軸力を測定することができる。
According to the invention described in claim 12, the axial force measuring method is the axial direction of the screw member based on the strain detected by the detecting member when the member to be fastened is fastened to the shaft member of the axial force measuring instrument by the screw member. Can be measured.
Therefore, since it is possible to measure the axial force when fastening using a screw member that actually uses a fastened member that is actually fixed to a shaft member corresponding to a predetermined shaft, it is closer to actual fastening. The axial force in the state can be measured.

請求項13記載の発明によれば、軸力測定方法は、軸力測定器具の軸部材に、被締結部材をねじ部材により締結する際におけるねじ部材の締め付けトルクと、被締結部材をねじ部材により締結する際にねじ部材の軸方向に生じる軸力とを、予め相関させておくことにより、その締め付けトルクに基づき軸力を測定することができる。
よって、被締結部材をねじ部材により締結する際におけるねじ部材の締め付けトルクに基づいても、そのねじ部材の軸方向に生じる軸力を測定することができる。
According to the thirteenth aspect of the present invention, the axial force measuring method includes the tightening torque of the screw member when the fastened member is fastened to the shaft member of the axial force measuring instrument by the screw member, and the fastened member by the screw member. By correlating in advance the axial force generated in the axial direction of the screw member when fastening, the axial force can be measured based on the tightening torque.
Therefore, the axial force generated in the axial direction of the screw member can also be measured based on the tightening torque of the screw member when the member to be fastened is fastened by the screw member.

以下、本発明の実施の形態を詳細に説明する。
本発明に係る軸力測定器具は、所定の軸に固定する被締結部材であるプーリやピニオンを、ねじ部材であるねじやボルトにより締結する際に、そのねじ部材の軸方向に生じる軸力を測定するためのものであり、その所定の軸に相当する軸部材に対し、実際に固定する被締結部材を実際のねじ部材を用いて締結する場合の軸力を測定することによって、実際の締結に則した状態において、容易に軸力測定を行うためのものである。
Hereinafter, embodiments of the present invention will be described in detail.
The axial force measuring instrument according to the present invention, when fastening a pulley or pinion that is a fastened member fixed to a predetermined shaft with a screw or bolt that is a screw member, generates an axial force generated in the axial direction of the screw member. It is for measuring, and the actual fastening is performed by measuring the axial force when fastening the actual fastening member to the shaft member corresponding to the predetermined shaft using the actual screw member. This is to easily measure the axial force in a state in accordance with the above.

図1は、本発明に係る軸力測定器具の斜視図である。図2は、図1のII−II線における一部断面斜視図である。図3は、軸力測定器具の側面図である。
図1〜図3に示されるように、軸力測定器具100は、軸部材10と、後述する軸部材10の溝部2a、2bに備えられる検出部材としてのひずみゲージ20とにより構成されている。
FIG. 1 is a perspective view of an axial force measuring instrument according to the present invention. 2 is a partial cross-sectional perspective view taken along line II-II in FIG. FIG. 3 is a side view of the axial force measuring instrument.
As shown in FIGS. 1 to 3, the axial force measuring instrument 100 includes a shaft member 10 and a strain gauge 20 as a detection member provided in grooves 2 a and 2 b of the shaft member 10 described later.

軸部材10は、被締結部材を固定する所定の軸の軸線方向と垂直な面と同一の断面形状を有する軸状の部材であり、この軸状の部材に後述する平面や溝部等が形成され、軸部材10となっている。この軸部材10は、その所定の軸と同一の材料により形成されている。
軸部材10には、軸部材10に被締結部材をねじ部材により締結する際に、そのねじ部材が軸部材10に対し軸力を作用する位置に、その軸力が作用する方向と垂直な面である負荷作用面1が形成されている。
その負荷作用面1の、軸部材10の軸線方向の両端側には、負荷作用面1より軸部材10の軸中心側に窪んだ凹部1a、1bがそれぞれ形成されている。
The shaft member 10 is a shaft-shaped member having the same cross-sectional shape as a surface perpendicular to the axial direction of a predetermined shaft for fixing the member to be fastened, and a flat surface, a groove portion, and the like described later are formed on the shaft-shaped member. The shaft member 10 is formed. The shaft member 10 is formed of the same material as the predetermined shaft.
A surface perpendicular to the direction in which the axial force acts on the shaft member 10 at a position where the screw member acts on the shaft member 10 when the member to be fastened is fastened to the shaft member 10 with the screw member. A load acting surface 1 is formed.
On both ends of the load acting surface 1 in the axial direction of the shaft member 10, recesses 1 a and 1 b that are recessed from the load acting surface 1 toward the axial center of the shaft member 10 are formed.

負荷作用面1は、ねじ部材が軸部材10に対し軸力を所定の方向(軸部材10の軸中心に向かう方向)に作用させやすくするための面であるとともに、ねじ部材を軸部材10に位置合わせする際の基準面として形成されている。
凹部1a、1bは、負荷作用面1に作用した軸力をひずみゲージ20に集中させ、その軸力に伴うひずみを感度よく検出するためのものである。
The load acting surface 1 is a surface for facilitating the application of an axial force to the shaft member 10 in a predetermined direction (direction toward the axial center of the shaft member 10), and the load member 1 is applied to the shaft member 10. It is formed as a reference surface for alignment.
The recesses 1a and 1b are for concentrating the axial force acting on the load acting surface 1 on the strain gauge 20 and detecting the strain accompanying the axial force with high sensitivity.

また、軸部材10には、その軸部材10の軸線を挟んで対向する位置に溝部2a、2bがそれぞれ形成されている。その溝部2a、2bには、軸部材10に被締結部材をねじ部材により締結する際に、そのねじ部材が軸部材10に対し軸力を作用する方向と平行な面である検出面22a、22bがそれぞれ形成されている。   Further, the shaft member 10 is formed with groove portions 2a and 2b at positions facing each other across the axis of the shaft member 10. In the groove portions 2a and 2b, when the member to be fastened is fastened to the shaft member 10 by the screw member, the detection surfaces 22a and 22b are surfaces parallel to the direction in which the screw member acts on the shaft member 10. Are formed respectively.

溝部2a、2bは、負荷作用面1に作用した軸力をひずみゲージ20に集中させ、その軸力に伴うひずみを感度よく検出するためのものであるとともに、軸部材10に備えられるひずみゲージ20が、軸部材10と被締結部材との締結の妨げにならないように収容するために形成されている。
検出面22a、22bは、負荷作用面1に作用した軸力に伴う圧縮ひずみを好適に検出するために形成された面である。
The groove portions 2a and 2b concentrate the axial force acting on the load acting surface 1 on the strain gauge 20, detect the strain accompanying the axial force with high sensitivity, and provide the strain gauge 20 on the shaft member 10. However, it is formed in order to accommodate the shaft member 10 and the fastened member so as not to hinder the fastening.
The detection surfaces 22a and 22b are surfaces formed in order to suitably detect the compressive strain accompanying the axial force that has acted on the load acting surface 1.

また、軸部材10には、軸部材10の先端部10aと溝部2a、2bとを連通するように、その軸部材10の軸線方向に平行な細孔9a、9bが形成されている。   The shaft member 10 is formed with pores 9a and 9b parallel to the axial direction of the shaft member 10 so as to communicate the tip portion 10a of the shaft member 10 and the groove portions 2a and 2b.

なお、軸部材10に形成された負荷作用面1、凹部1a,1b、溝部2a,2b等に伴う軸部材10の形状は、その軸部材10を、所定の被締結部材を実際に固定する所定の軸と見立てることができるように、有限要素法(FEM)により予め推定、設定された形状である。   The shape of the shaft member 10 associated with the load acting surface 1, the recesses 1a and 1b, the grooves 2a and 2b, etc. formed on the shaft member 10 is a predetermined value that actually fixes the predetermined member to be fastened. The shape is preliminarily estimated and set by the finite element method (FEM) so that it can be regarded as the axis of the above.

溝部2a、2bの検出面22a、22bには、それぞれひずみゲージ20が貼付されて備えられている。ひずみゲージ20のリード線(図示省略)は、軸部材10の細孔9a、9bを挿通させ、その先端部10a側に延出するようになっている。
ひずみゲージ20は、軸部材10のひずみを検出する検出部材である。本実施の形態においては、図2、図4に示すように、2つのひずみゲージ20が検出面22a、22bに貼付されて、軸部材10における溝部2a、2bを隔てる隔壁部10bを挟むように対向して備えられており、軸部材10における圧縮ひずみ、特に、隔壁部10bに作用する圧縮ひずみを検出するようになっている(図4参照)。このような圧縮ひずみをひずみゲージ20により検出するためには、図5に示す回路図のような回路であればよい。
Strain gauges 20 are attached to the detection surfaces 22a and 22b of the grooves 2a and 2b, respectively. A lead wire (not shown) of the strain gauge 20 is inserted through the pores 9a and 9b of the shaft member 10 and extends toward the tip portion 10a.
The strain gauge 20 is a detection member that detects the strain of the shaft member 10. In the present embodiment, as shown in FIGS. 2 and 4, two strain gauges 20 are attached to the detection surfaces 22a and 22b so as to sandwich the partition wall 10b that separates the grooves 2a and 2b in the shaft member 10. It is provided in opposition, and detects the compressive strain in the shaft member 10, especially the compressive strain which acts on the partition part 10b (refer FIG. 4). In order to detect such compressive strain by the strain gauge 20, a circuit such as the circuit diagram shown in FIG.

なお、隔壁部10bに作用する圧縮ひずみを検出するためには、検出面22a、22bの何れか一方にのみひずみゲージ20を備える構成であってもよい。ただし、ひずみゲージ20が1つであると、軸部材10に作用した軸力などの作用力により、隔壁部10bが撓むように曲がってしまった場合、ひずみゲージ20は隔壁部10a(検出面)が曲がる曲げひずみも検出してしまうので、正確な圧縮ひずみの検出が行えないという問題が生じることがある。
そこで、本実施の形態のように、2つのひずみゲージ20が隔壁部10bを挟むように対向して備えられていれば、隔壁部10bが撓むように曲がった場合、一方のひずみゲージ20は検出面が伸びるような正の曲げひずみを検出し、他方のひずみゲージ20は検出面が縮むような負の曲げひずみを検出することになるので、各ひずみゲージ20が正と負の異なるひずみを検出した場合は、軸部材10に作用する軸力が所定の方向(負荷作用面1に対して垂直な方向)に作用していないとして、エラー処理することができる。そして、各ひずみゲージ20が正や負の曲げひずみでない、隔壁部10bが検出面に平行な方向に圧縮される際のひずみを検出することにより、圧縮ひずみを検出することができる。
つまり、本実施の形態のように、2つのひずみゲージ20を隔壁部10bを挟むように対向して備えることにより、より正確な圧縮ひずみの検出が可能となっている。
In addition, in order to detect the compressive strain which acts on the partition part 10b, the structure provided with the strain gauge 20 only in any one of the detection surfaces 22a and 22b may be sufficient. However, if the number of strain gauges 20 is one, when the partition wall portion 10b is bent so as to bend due to an acting force such as an axial force applied to the shaft member 10, the strain gauge 20 has a partition wall portion 10a (detection surface). Since bending bending strain is also detected, there may be a problem that accurate compression strain cannot be detected.
Therefore, if the two strain gauges 20 are provided opposite to each other so as to sandwich the partition wall 10b as in the present embodiment, when the partition wall 10b is bent so as to bend, the one strain gauge 20 is detected. Is detected, and the other strain gauge 20 detects a negative bending strain such that the detection surface contracts. Therefore, each strain gauge 20 detects a strain different from positive and negative. In this case, it is possible to perform error processing on the assumption that the axial force acting on the shaft member 10 does not act in a predetermined direction (a direction perpendicular to the load acting surface 1). Then, each strain gauge 20 is not a positive or negative bending strain, and the compression strain can be detected by detecting the strain when the partition wall portion 10b is compressed in the direction parallel to the detection surface.
That is, as in the present embodiment, the two strain gauges 20 are provided so as to face each other with the partition wall portion 10b interposed therebetween, so that more accurate compression strain can be detected.

次に、軸力測定器具100を用いる軸力測定装置1000について説明する。
図6は、本発明に係る軸力測定器具100を備える軸力測定装置1000の内部構成を示すブロック図である。
図6に示すように、軸力測定装置1000は、軸力測定器具100と、制御部30と、表示部40と、を備えて構成されている。また、軸力測定器具100のひずみゲージ20と制御部30と表示部40とは、バスBによって接続されている。
Next, an axial force measuring apparatus 1000 that uses the axial force measuring instrument 100 will be described.
FIG. 6 is a block diagram showing an internal configuration of an axial force measuring apparatus 1000 including the axial force measuring instrument 100 according to the present invention.
As shown in FIG. 6, the axial force measuring device 1000 includes an axial force measuring instrument 100, a control unit 30, and a display unit 40. Further, the strain gauge 20, the control unit 30, and the display unit 40 of the axial force measuring instrument 100 are connected by a bus B.

制御部30は、CPU、RAM、ROM等を備えており、制御部30のCPUは、制御部30のROMに格納されたプログラムを読み出して制御部30のRAMに展開し、該プログラムに基づいて、軸力測定装置1000を構成する各部への指示やデータの送受信等を行う。
例えば、制御部30は、軸力測定器具100のひずみゲージ20が検出した圧縮ひずみに基づく検出信号を所定のプログラムにより処理し、軸力を算出する制御を行う。
なお、この所定のプログラムには、軸力測定器具100の軸部材10に軸力に相当する既知の負荷荷重を作用させた際に、軸力測定器具100のひずみゲージ20が検出した圧縮ひずみとの相関を予め求めたキャリブレーションのデータが格納されている。また、キャリブレーションのデータとしては、軸力測定器具100の軸部材10に対し、所定の被締結部材を所定のねじ部材により締結する際の締め付けトルクと、その際に軸力測定器具100のひずみゲージ20が検出した圧縮ひずみや軸力との相関を予め求めたものであってもよい。
The control unit 30 includes a CPU, a RAM, a ROM, and the like. The CPU of the control unit 30 reads a program stored in the ROM of the control unit 30 and develops the program in the RAM of the control unit 30, and based on the program. Then, instructions to each part constituting the axial force measuring apparatus 1000, transmission / reception of data, and the like are performed.
For example, the control unit 30 performs control to calculate the axial force by processing a detection signal based on the compressive strain detected by the strain gauge 20 of the axial force measuring instrument 100 using a predetermined program.
The predetermined program includes the compressive strain detected by the strain gauge 20 of the axial force measuring instrument 100 when a known load corresponding to the axial force is applied to the shaft member 10 of the axial force measuring instrument 100. The calibration data for which the correlation is previously obtained is stored. Further, as calibration data, the tightening torque when a predetermined fastening member is fastened to the shaft member 10 of the axial force measuring instrument 100 with a predetermined screw member, and the distortion of the axial force measuring instrument 100 at that time The correlation with the compressive strain or axial force detected by the gauge 20 may be obtained in advance.

表示部40は、例えば、液晶表示機構を備え、軸力測定器具100のひずみゲージ20が検出した圧縮ひずみに基づく検出信号や、制御部30により求められた軸力等を表示する。   The display unit 40 includes, for example, a liquid crystal display mechanism, and displays a detection signal based on the compressive strain detected by the strain gauge 20 of the axial force measuring instrument 100, an axial force obtained by the control unit 30, and the like.

次に、軸力測定器具100(軸力測定装置1000)を用いた軸力測定方法について説明する。
図7は、軸力測定装置1000における軸力測定器具100の軸部材10に、被締結部材50をねじ部材としての止めねじ60により固定した状態を示している。
図7に示すように、被締結部材50の軸孔50aに、軸部材10の先端部10aを挿入するとともに、軸部材10の負荷作用面1に対し、被締結部材50の締結孔50bが垂直になるように位置合わせする。
Next, an axial force measuring method using the axial force measuring instrument 100 (axial force measuring device 1000) will be described.
FIG. 7 shows a state where the fastened member 50 is fixed to the shaft member 10 of the axial force measuring instrument 100 in the axial force measuring apparatus 1000 with a set screw 60 as a screw member.
As shown in FIG. 7, the distal end portion 10 a of the shaft member 10 is inserted into the shaft hole 50 a of the fastened member 50, and the fastening hole 50 b of the fastened member 50 is perpendicular to the load acting surface 1 of the shaft member 10. Align so that

ここで、軸部材10の断面形状は、被締結部材50を実際に固定する所定の軸の軸線方向と垂直な面の断面形状と同一であるので、軸部材10は被締結部材50の締結孔50bに、所定の軸と同様に収まることができる。また、ひずみゲージ20は溝部2a、2bに備えられ、ひずみゲージ20のリード線(図示省略)は、軸部材10の細孔9a、9b内を挿通しているので、軸部材10を被締結部材50の締結孔50bに挿入する際に、軸部材10と被締結部材50との間で、それらが妨げにはならないようになっている。   Here, since the cross-sectional shape of the shaft member 10 is the same as the cross-sectional shape of the surface perpendicular to the axial direction of the predetermined shaft that actually fixes the fastened member 50, the shaft member 10 is the fastening hole of the fastened member 50. 50b can fit in the same way as the predetermined axis. Further, the strain gauge 20 is provided in the groove portions 2a and 2b, and the lead wire (not shown) of the strain gauge 20 is inserted through the pores 9a and 9b of the shaft member 10, so that the shaft member 10 is connected to the member to be fastened. When inserted into the 50 fastening holes 50b, the shaft member 10 and the fastened member 50 are not hindered.

次いで、被締結部材50の締結孔50bに止めねじ60をねじ込み、被締結部材50を軸部材10に対し締結する。
そして、被締結部材50を軸部材10に対し、止めねじ60により締結して固定する際に、その止めねじ60の軸方向に作用した軸力に伴い軸部材10の隔壁部10bに生じた圧縮ひずみをひずみゲージ20が検出する。その検出した圧縮ひずみに基づき軸力測定装置1000の制御部30が軸力を求め、表示部40に表示するなど測定結果を出力する。
Next, the set screw 60 is screwed into the fastening hole 50 b of the fastened member 50, and the fastened member 50 is fastened to the shaft member 10.
When the fastened member 50 is fastened and fixed to the shaft member 10 by the set screw 60, the compression generated in the partition wall portion 10b of the shaft member 10 due to the axial force acting in the axial direction of the set screw 60. The strain gauge 20 detects the strain. Based on the detected compressive strain, the control unit 30 of the axial force measuring apparatus 1000 obtains the axial force and outputs a measurement result such as displaying it on the display unit 40.

このように、本発明に係る軸力測定器具100は、所定の被締結部材を固定する所定の軸の軸線方向と垂直な面と同一の断面形状を有するとともに、その所定の軸と同一の材料により形成されている軸部材10を備えているので、所定の軸に相当する軸部材10に対し、実際の被締結部材を実際のねじ部材(止めねじ60)を用いて締結する場合の圧縮ひずみを検出することによって、より実際の締結に近い状態における圧縮ひずみの検出を行うことができ、その圧縮ひずみに基づいてより実際の締結に近い状態における軸力の測定を行うことができる。
特に、軸部材10の形状は、その軸部材10を、所定の被締結部材を実際に固定する所定の軸と見立てることができるように、有限要素法(FEM)により予め推定、設定された形状であるので、より正確な軸力の測定を行うことができる。
As described above, the axial force measuring instrument 100 according to the present invention has the same cross-sectional shape as the plane perpendicular to the axial direction of the predetermined axis for fixing the predetermined fastening member, and the same material as the predetermined axis. Since the shaft member 10 formed by the above is provided, the compressive strain in the case where the actual member to be fastened is fastened to the shaft member 10 corresponding to the predetermined shaft by using the actual screw member (set screw 60). By detecting this, it is possible to detect the compression strain in a state closer to actual fastening, and to measure the axial force in a state closer to actual fastening based on the compression strain.
In particular, the shape of the shaft member 10 is a shape preliminarily estimated and set by a finite element method (FEM) so that the shaft member 10 can be regarded as a predetermined shaft that actually fixes a predetermined fastened member. Therefore, more accurate axial force measurement can be performed.

また、軸力測定器具100を備える軸力測定装置1000において、所定のプログラムに、軸力測定器具100の軸部材10に軸力に相当する既知の負荷荷重を作用させた際に、軸力測定器具100のひずみゲージ20が検出した圧縮ひずみとの相関を予め求めたキャリブレーションのデータを格納しておくことにより、ひずみゲージ20が検出した圧縮ひずみに基づき軸力を算出することができる。また、所定のプログラムに、軸力測定器具100の軸部材10に対し、所定の被締結部材を所定のねじ部材(止めねじ60)により締結する際の締め付けトルクと、その際に軸力測定器具100のひずみゲージ20が検出した圧縮ひずみや軸力との相関を予め求めたキャリブレーションのデータを格納しておくことにより、締め付けトルク基づき軸力を算出することもできる。   Further, in the axial force measuring apparatus 1000 including the axial force measuring instrument 100, the axial force measurement is performed when a known load load corresponding to the axial force is applied to the shaft member 10 of the axial force measuring instrument 100 in a predetermined program. By storing calibration data obtained in advance with a correlation with the compressive strain detected by the strain gauge 20 of the instrument 100, the axial force can be calculated based on the compressive strain detected by the strain gauge 20. Further, in a predetermined program, a tightening torque for fastening a predetermined member to be fastened to the shaft member 10 of the axial force measuring instrument 100 with a predetermined screw member (set screw 60), and the axial force measuring instrument at that time The axial force can be calculated based on the tightening torque by storing calibration data obtained in advance in correlation with the compressive strain and axial force detected by the 100 strain gauges 20.

また、様々な被締結部材やその被締結部材を固定する所定の軸に応じて、軸径や軸の断面形状、軸を構成する材料等が異なる様々な軸部材を形成し、様々な軸力測定器具を用意することにより、様々な被締結部材や所定の軸に応じた軸力測定を容易に行うことができる。   In addition, various shaft members with different shaft diameters, shaft cross-sectional shapes, materials constituting the shaft, etc. are formed according to various members to be fastened and predetermined shafts to which the members to be fastened are fixed. By preparing the measuring instrument, it is possible to easily perform axial force measurement according to various fastened members and predetermined axes.

よって、本発明に係る軸力測定器具、軸力測定装置及び軸力測定方法は、所定の軸に相当する軸部材に対し、実際に固定する被締結部材を実際に使用するねじ部材を用いて、実際の締結に則した状態における軸力測定を行うことができる軸力測定器具、軸力測定装置及び軸力測定方法であるといえる。   Therefore, the axial force measuring instrument, the axial force measuring device, and the axial force measuring method according to the present invention use a screw member that actually uses a fastened member to be actually fixed to a shaft member corresponding to a predetermined shaft. It can be said that the axial force measuring instrument, the axial force measuring device, and the axial force measuring method are capable of measuring the axial force in a state in accordance with the actual fastening.

なお、本発明の適用は上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。   The application of the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.

例えば、軸力測定器具における軸部材は、図8(a)、(b)に示す軸部材11であってもよい。
軸部材11には、軸部材11の軸線を挟んで対向する位置に溝部3a、3bがそれぞれ形成されている。その溝部3a、3bには、軸部材11に被締結部材をねじ部材により締結する際に、そのねじ部材が軸部材10に対し軸力を作用する方向と平行な面である検出面33a、33bがそれぞれ形成されている。
この溝部3a、3bは、軸部材11に備えられるひずみゲージ20が、軸部材11と被締結部材との締結の妨げにならないように収容するために形成されている。
なお、軸部材11は、被締結部材を固定する所定の軸の軸線方向と垂直な面と同一の断面形状を有するとともに、その所定の軸と同一の材料により形成されている。
また、溝部3a、3bは、有限要素法に基づき定められた形状を有している。
For example, the shaft member 11 shown in FIGS. 8A and 8B may be the shaft member in the axial force measuring instrument.
In the shaft member 11, grooves 3a and 3b are formed at positions facing each other across the axis of the shaft member 11, respectively. In the grooves 3a and 3b, when the member to be fastened is fastened to the shaft member 11 with a screw member, the detection surfaces 33a and 33b are surfaces parallel to the direction in which the screw member acts on the shaft member 10. Are formed respectively.
The groove portions 3a and 3b are formed so that the strain gauge 20 provided in the shaft member 11 is accommodated so as not to hinder the fastening between the shaft member 11 and the fastened member.
The shaft member 11 has the same cross-sectional shape as a surface perpendicular to the axial direction of a predetermined shaft that fixes the member to be fastened, and is formed of the same material as the predetermined shaft.
Moreover, the groove parts 3a and 3b have a shape determined based on the finite element method.

このような形状の軸部材11を備える軸力測定器具であっても、所定の軸に相当する軸部材11に対し、実際の被締結部材を実際のねじ部材(止めねじ60)を用いて締結する場合の圧縮ひずみを検出することによって、より実際の締結に近い状態における圧縮ひずみの検出を行うことができ、その圧縮ひずみに基づいてより実際の締結に近い状態における軸力の測定を行うことができる。   Even in the axial force measuring instrument including the shaft member 11 having such a shape, an actual fastening member is fastened to the shaft member 11 corresponding to a predetermined shaft by using an actual screw member (set screw 60). By detecting the compressive strain, it is possible to detect the compressive strain in a state closer to the actual fastening, and to measure the axial force in a state closer to the actual fastening based on the compressive strain Can do.

また、例えば、軸力測定器具における軸部材は、図9に示す軸部材12であってもよい。
軸部材12は、軸部材10における溝部2a、2bを連通し、検出面22a、22bと垂直な貫通孔4が形成されたものである。
貫通孔4は、負荷作用面1に作用した軸力をひずみゲージ20に集中させ、その軸力に伴うひずみを感度よく検出するためのものである。
なお、軸部材12は、被締結部材を固定する所定の軸の軸線方向と垂直な面と同一の断面形状を有するとともに、その所定の軸と同一の材料により形成されている。
また、貫通孔4は、有限要素法に基づき定められた形状を有している。
Further, for example, the shaft member in the axial force measuring instrument may be the shaft member 12 shown in FIG.
The shaft member 12 communicates with the groove portions 2a and 2b in the shaft member 10 and is formed with a through hole 4 perpendicular to the detection surfaces 22a and 22b.
The through hole 4 is for concentrating the axial force acting on the load acting surface 1 on the strain gauge 20 and detecting the strain accompanying the axial force with high sensitivity.
The shaft member 12 has the same cross-sectional shape as the surface perpendicular to the axial direction of the predetermined shaft that fixes the member to be fastened, and is formed of the same material as the predetermined shaft.
The through hole 4 has a shape determined based on the finite element method.

このような形状の軸部材12を備える軸力測定器具であっても、所定の軸に相当する軸部材12に対し、実際の被締結部材を実際のねじ部材(止めねじ60)を用いて締結する場合の圧縮ひずみを検出することによって、より実際の締結に近い状態における圧縮ひずみの検出を行うことができ、その圧縮ひずみに基づいてより実際の締結に近い状態における軸力の測定を行うことができる。   Even in the axial force measuring instrument including the shaft member 12 having such a shape, an actual fastening member is fastened to the shaft member 12 corresponding to a predetermined shaft by using an actual screw member (set screw 60). By detecting the compressive strain, the compression strain in the state closer to the actual fastening can be detected, and the axial force in the state closer to the actual fastening is measured based on the compression strain. Can do.

また、図10に示すように、軸部材12の貫通孔4内における、軸部材12の軸線方向と垂直な面に軸部材12のひずみを検出するひずみゲージ20を備えるようにしてもよい。
このように、2つのひずみゲージ20が対向するひずみゲージ対を、角度を90度ずらして配置するとともに、ひずみゲージ20の数を増やすことにより、圧縮ひずみの検出感度を向上させることができる。
Further, as shown in FIG. 10, a strain gauge 20 that detects strain of the shaft member 12 may be provided on a surface perpendicular to the axial direction of the shaft member 12 in the through hole 4 of the shaft member 12.
As described above, the strain gauge pairs in which the two strain gauges 20 face each other are arranged with the angle shifted by 90 degrees, and the number of the strain gauges 20 is increased, so that the detection sensitivity of the compressive strain can be improved.

なお、軸部材の形状は、上述の実施の形態に限定されるものではないので、円形断面であることやその軸径のサイズなど、他の形状、サイズであってもよい。
また、軸部材の溝部等の形状も、上述の実施の形態に限定されるものではなく、他の形状であってもよい。
また、ひずみゲージ20の数や貼付位置も任意である。
The shape of the shaft member is not limited to the above-described embodiment, and may be other shapes and sizes such as a circular cross section and the size of the shaft diameter.
Further, the shape of the groove portion or the like of the shaft member is not limited to the above-described embodiment, and may be another shape.
Moreover, the number of the strain gauges 20 and the sticking position are also arbitrary.

また、その他、具体的な細部構造等についても適宜に変更可能であることは勿論である。   In addition, it is needless to say that other specific detailed structures can be appropriately changed.

本発明に係る軸力測定器具の斜視図である。It is a perspective view of the axial force measuring instrument according to the present invention. 図1のII−II線における一部断面斜視図である。It is a partial cross section perspective view in the II-II line of FIG. 本発明に係る軸力測定器具の側面図である。It is a side view of the axial force measuring instrument which concerns on this invention. ひずみゲージの配置を示す説明図である。It is explanatory drawing which shows arrangement | positioning of a strain gauge. ひずみゲージに関する回路図である。It is a circuit diagram regarding a strain gauge. 本発明に係る軸力測定装置の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the axial force measuring apparatus which concerns on this invention. 軸部材に被締結部材を止めねじにより固定した状態を示す説明図である。It is explanatory drawing which shows the state which fixed the to-be-fastened member to the shaft member with the set screw. 軸部材の変形例を示す斜視図(a)と、(a)のb−b線における一部断面斜視図(b)である。It is the perspective view (a) which shows the modification of a shaft member, and the partial cross section perspective view (b) in the bb line of (a). 軸部材の変形例を示す斜視図である。It is a perspective view which shows the modification of a shaft member. ひずみゲージの配置例を示す説明図である。It is explanatory drawing which shows the example of arrangement | positioning of a strain gauge. 対象物に被締結部材をボルトにより締結した状態を示す説明図である。It is explanatory drawing which shows the state which fastened the to-be-fastened member to the target object with the volt | bolt. 従来技術としての、軸力測定用のボルトを示す側面図である。It is a side view which shows the volt | bolt for axial force measurement as a prior art. 従来技術としての、軸力測定用のボルトを示す断面図である。It is sectional drawing which shows the volt | bolt for axial force measurement as a prior art. 従来技術としての、軸力測定方法を示す説明図である。It is explanatory drawing which shows the axial force measuring method as a prior art. 従来技術としての、軸力測定方法を示す説明図(a)と、ロードワッシャの斜視図(b)である。It is explanatory drawing (a) which shows the axial force measuring method as a prior art, and a perspective view (b) of a load washer. 対象物に被締結部材を止めねじにより締結した状態を示す説明図である。It is explanatory drawing which shows the state which fastened the to-be-fastened member to the target object with the set screw.

符号の説明Explanation of symbols

1000 軸力測定装置
100 軸力測定器具
10、11、12 軸部材
1 負荷作用面
1a、1b 凹部
2a、2b 溝部
22a、22b 検出面
3a、3b 溝部
33a、33b 検出面
4 貫通孔
20 ひずみゲージ(検出部材)
30 制御部
40 表示部
50 被締結部材
60 止めねじ(ねじ部材)
1000 Axial force measuring device 100 Axial force measuring instrument 10, 11, 12 Shaft member 1 Load acting surface 1a, 1b Recess 2a, 2b Groove 22a, 22b Detection surface 3a, 3b Groove 33a, 33b Detection surface 4 Through hole 20 Strain gauge ( Detection member)
30 Control part 40 Display part 50 Fastened member 60 Set screw (screw member)

Claims (13)

所定の軸に対し、被締結部材をねじ部材により締結する際に、前記ねじ部材の軸方向に生じる軸力を測定するための軸力測定器具であって、
前記被締結部材を前記ねじ部材により締結する際に、前記ねじ部材が軸力を作用する方向と平行な検出面を有する溝部が形成された軸部材と、
前記溝部の検出面に備えられ、前記軸部材のひずみを検出する検出部材と、
を備えることを特徴とする軸力測定器具。
An axial force measuring instrument for measuring an axial force generated in the axial direction of the screw member when the member to be fastened is fastened to the predetermined shaft by the screw member,
A shaft member in which a groove portion having a detection surface parallel to a direction in which the screw member acts an axial force when the fastened member is fastened by the screw member;
A detection member that is provided on a detection surface of the groove and detects strain of the shaft member;
An axial force measuring instrument comprising:
所定の軸に対し、被締結部材をねじ部材により締結する際に、前記ねじ部材の軸方向に生じる軸力を測定するための軸力測定器具であって、
前記所定の軸の軸線方向と垂直な面と同一の断面形状を有するとともに、前記被締結部材を前記ねじ部材により締結する際に、前記ねじ部材が軸力を作用する方向と平行な検出面を有する溝部が形成された軸部材と、
前記溝部の検出面に備えられ、前記軸部材のひずみを検出する検出部材と、
を備えることを特徴とする軸力測定器具。
An axial force measuring instrument for measuring an axial force generated in the axial direction of the screw member when the member to be fastened is fastened to the predetermined shaft by the screw member,
A detection surface that has the same cross-sectional shape as a surface perpendicular to the axial direction of the predetermined axis and that is parallel to the direction in which the screw member acts an axial force when the member to be fastened is fastened by the screw member. A shaft member formed with a groove having,
A detection member that is provided on a detection surface of the groove and detects strain of the shaft member;
An axial force measuring instrument comprising:
前記ねじ部材が前記軸部材に対し軸力を作用する位置に、その軸力が作用する方向と垂直な負荷作用面を有することを特徴とする請求項1又は2に記載の軸力測定器具。   The axial force measuring instrument according to claim 1, wherein the screw member has a load acting surface perpendicular to a direction in which the axial force acts at a position where the screw member acts on the shaft member. 前記負荷作用面の前記軸部材の軸線方向の両端側に、前記負荷作用面より前記軸部材の軸中心側に窪んだ凹部を有することを特徴とする請求項1〜3の何れか一項に記載の軸力測定器具。   4. The recess according to claim 1, wherein the load acting surface has concave portions that are recessed toward the axial center side of the shaft member from the load acting surface at both ends in the axial direction of the shaft member. The axial force measuring instrument as described. 前記溝部は、前記軸部材の軸線を挟んで対向する位置に形成されているとともに、前記溝部のそれぞれの検出面に、前記検出部材が備えられることを特徴とする請求項1〜4の何れか一項に記載の軸力測定器具。   The groove portion is formed at a position facing each other across the axis of the shaft member, and the detection member is provided on each detection surface of the groove portion. The axial force measuring instrument according to one item. 前記軸部材の軸線を挟んで対向する溝部を連通し、前記検出面と垂直な貫通孔を有することを特徴とする請求項5に記載の軸力測定器具。   The axial force measuring instrument according to claim 5, further comprising a through hole that communicates with a groove portion opposed across the axis of the shaft member and is perpendicular to the detection surface. 前記貫通孔内における前記軸部材の軸線方向と垂直な面に、前記軸部材のひずみを検出する検出部材を備えることを特徴とする請求項6に記載の軸力測定器具。   The axial force measuring instrument according to claim 6, further comprising: a detection member that detects a strain of the shaft member on a surface perpendicular to the axial direction of the shaft member in the through hole. 前記検出部材は、前記軸部材における圧縮ひずみを検出するひずみゲージであることを特徴とする請求項1〜7の何れか一項に記載の軸力測定器具。   The axial force measuring instrument according to claim 1, wherein the detection member is a strain gauge that detects compressive strain in the shaft member. 前記軸部材は、有限要素法に基づき設定された形状を有することを特徴とする請求項1〜8の何れか一項に記載の軸力測定器具。   The axial force measuring instrument according to any one of claims 1 to 8, wherein the shaft member has a shape set based on a finite element method. 前記軸部材は、前記所定の軸と同一の材料により形成されていることを特徴とする請求項1〜9の何れか一項に記載の軸力測定器具。   The axial force measuring instrument according to any one of claims 1 to 9, wherein the shaft member is formed of the same material as the predetermined shaft. 請求項1〜10の何れか一項に記載の軸力測定器具と、
前記軸力測定器具の前記検出部材が検出したひずみに基づく検出信号を処理し、軸力を求める制御を行う制御部と、
前記制御部により求められた軸力を表示する表示部と、
を備えることを特徴とする軸力測定装置。
The axial force measuring instrument according to any one of claims 1 to 10,
A control unit that processes a detection signal based on the strain detected by the detection member of the axial force measuring instrument and performs control to obtain axial force;
A display unit for displaying the axial force obtained by the control unit;
An axial force measuring device comprising:
請求項1〜10の何れか一項に記載の軸力測定器具の軸部材に、被締結部材をねじ部材により締結する際に、前記検出部材が検出したひずみに基づき前記ねじ部材の軸方向に生じる軸力を測定することを特徴とする軸力測定方法。   When the member to be fastened is fastened to the shaft member of the axial force measuring instrument according to any one of claims 1 to 10 by a screw member, the axial direction of the screw member is based on the strain detected by the detection member. A method of measuring an axial force, characterized by measuring an axial force generated. 前記軸力測定器具の軸部材に、被締結部材をねじ部材により締結する際における前記ねじ部材の締め付けトルクと、被締結部材をねじ部材により締結する際に前記ねじ部材の軸方向に生じる軸力とを、予め相関させておき、その締め付けトルクに基づき軸力を測定することを特徴とする請求項12記載の軸力測定方法。   The tightening torque of the screw member when the fastened member is fastened to the shaft member of the axial force measuring instrument by the screw member, and the axial force generated in the axial direction of the screw member when the fastened member is fastened by the screw member Are measured in advance, and the axial force is measured based on the tightening torque.
JP2004026912A 2004-02-03 2004-02-03 Axial force measuring instrument, axial force measuring device and axial force measuring method Pending JP2005221254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004026912A JP2005221254A (en) 2004-02-03 2004-02-03 Axial force measuring instrument, axial force measuring device and axial force measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004026912A JP2005221254A (en) 2004-02-03 2004-02-03 Axial force measuring instrument, axial force measuring device and axial force measuring method

Publications (1)

Publication Number Publication Date
JP2005221254A true JP2005221254A (en) 2005-08-18

Family

ID=34997021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004026912A Pending JP2005221254A (en) 2004-02-03 2004-02-03 Axial force measuring instrument, axial force measuring device and axial force measuring method

Country Status (1)

Country Link
JP (1) JP2005221254A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015027937A1 (en) * 2013-08-28 2015-03-05 中国商用飞机有限责任公司 Force transducer, and large-load measuring method capable of multi-angle calibration for airplane
WO2019240012A1 (en) * 2018-06-13 2019-12-19 株式会社NejiLaw Fitting structure
CN114623967A (en) * 2022-05-17 2022-06-14 哈尔滨船舶锅炉涡轮机研究所(中国船舶集团有限公司第七0三研究所) Preparation method of axial force measuring ring
WO2022162899A1 (en) * 2021-01-29 2022-08-04 日本電信電話株式会社 U-bolt, construction method, and measurement device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015027937A1 (en) * 2013-08-28 2015-03-05 中国商用飞机有限责任公司 Force transducer, and large-load measuring method capable of multi-angle calibration for airplane
WO2019240012A1 (en) * 2018-06-13 2019-12-19 株式会社NejiLaw Fitting structure
JP2019215272A (en) * 2018-06-13 2019-12-19 株式会社NejiLaw Fitting structure
JP7089275B2 (en) 2018-06-13 2022-06-22 株式会社NejiLaw Mating structure
WO2022162899A1 (en) * 2021-01-29 2022-08-04 日本電信電話株式会社 U-bolt, construction method, and measurement device
CN114623967A (en) * 2022-05-17 2022-06-14 哈尔滨船舶锅炉涡轮机研究所(中国船舶集团有限公司第七0三研究所) Preparation method of axial force measuring ring
CN114623967B (en) * 2022-05-17 2022-07-29 哈尔滨船舶锅炉涡轮机研究所(中国船舶集团有限公司第七0三研究所) Preparation method of axial force measuring ring

Similar Documents

Publication Publication Date Title
US8141263B2 (en) Apparatus for measuring an inside diameter of a hole of a workpiece
US6698298B2 (en) Torque wrench for further tightening inspection
JP6010733B2 (en) Plate-shaped specimen evaluation test unit and fixing jig used therefor
JP2006275650A (en) Six axial tension sensor
WO2011093078A1 (en) Moment calibrating apparatus for multi-component force gauge and method of moment calibration
US11085840B2 (en) Apparatus and method for measuring axial force of bolt
JP4877665B2 (en) 3-axis force sensor
US6928885B1 (en) Torque-indicating wrench
WO2007146724A1 (en) Method and apparatus for shear strain testing of strain sensors
CN106132637B (en) A kind of method of installation process for nipple
US7093496B2 (en) Non-intrusive pressure sensing device
JP2005221254A (en) Axial force measuring instrument, axial force measuring device and axial force measuring method
JP2011179952A (en) Bolt axial force detection system and bolt axial force detection method
JP6215182B2 (en) Fatigue test method, fatigue test piece, and fatigue test apparatus
JP2005539230A (en) Measurement of torsional strain using a simple-to-use clip device (SAW)
EP3465123B1 (en) Sensor for measuring a tightening force applied on a screw-assembly member
JPH10170362A (en) Method and apparatus for measuring screw tightening force
EP2574894A2 (en) System, apparatus and method for in situ fastener preload measurement
TW202026113A (en) Torsion and pressure detecting device and electric driver with the same
JP4088342B2 (en) Method for determining the axial load of an elongated member
JPH1123392A (en) Triaxial load measuring apparatus for steering wheel
JP2005297133A (en) Fastening tool, and method for measuring axial force of bolt
JP3920689B2 (en) Measuring gauge and its usage
CN106500908B (en) Angle-adjustable torque lever device
JP2008126331A (en) Structure of finger of robot hand, force feeling sensor, and robot hand