JP2005221253A - Signal injection and extraction apparatus - Google Patents

Signal injection and extraction apparatus Download PDF

Info

Publication number
JP2005221253A
JP2005221253A JP2004026831A JP2004026831A JP2005221253A JP 2005221253 A JP2005221253 A JP 2005221253A JP 2004026831 A JP2004026831 A JP 2004026831A JP 2004026831 A JP2004026831 A JP 2004026831A JP 2005221253 A JP2005221253 A JP 2005221253A
Authority
JP
Japan
Prior art keywords
current
frequency
signal
winding
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004026831A
Other languages
Japanese (ja)
Other versions
JP4114615B2 (en
Inventor
Kenichi Hirotsu
研一 弘津
Yoshihisa Asao
芳久 浅尾
Masahiro Kuwabara
雅裕 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004026831A priority Critical patent/JP4114615B2/en
Publication of JP2005221253A publication Critical patent/JP2005221253A/en
Application granted granted Critical
Publication of JP4114615B2 publication Critical patent/JP4114615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a signal injection and extraction apparatus optimum for performing noncontact injection and extraction of a signal current into and from a conductor through which a current other than the signal current flows. <P>SOLUTION: The signal injection and extraction apparatus is provided with: a ferromagnetic body 2 arranged in the outer circumference of the conductor 300 through which a commercial current (a current of a first frequency) flows; a signal injection and extraction winding 3 (a first winding) and a cancel winding 4 (a second winding) arranged in the ferromagnetic body 2; and an amplifier 5 connected to the cancel winding 4 and capable of amplifying the commercial current flowing through the winding 3. The amplifier 5 is provided with: a filter part 6 for passing the commercial current and interrupting the signal current; an amplifying part 7 serially arranged in the filter part 6; and an impedance element 8 arranged in parallel in the filter part 6 and the amplifying part 7. The current of the first frequency flowing through the cancel winding 4 is amplified, and only a magnetic field by the commercial current impressed on the ferromagnetic body 2 is canceled. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、導体に非接触で電気信号(信号電流)の注入/抽出を行う信号注入抽出装置に関するものである。特に、電力供給用の電流といった信号電流以外の電流が導体に流れている場合であっても、信号電流をより確実に導体に注入/導体から抽出することができ、通信性能の低下を低減することができる信号注入抽出装置に関する。   The present invention relates to a signal injection extraction device that performs injection / extraction of an electric signal (signal current) without contact with a conductor. In particular, even when a current other than the signal current, such as a power supply current, is flowing through the conductor, the signal current can be more reliably injected / extracted from the conductor, thereby reducing deterioration in communication performance. The present invention relates to a signal injection extraction device that can

従来、導体に非接触で電気信号の注入/抽出を行う信号注入抽出装置が用いられている。このような信号注入抽出装置として、例えば、特許文献1に示すようなフェライトコアと巻線とを用いたものがある。図2は、従来の信号注入抽出装置の構成を模式的に示す説明図である。以下、図において同一符号は同一物を示す。図2に示す信号注入抽出装置100は、導体300の外周を囲むように配置されるリング状のフェライトコア101と、コア101の外周に巻き付けられる二つの巻線、信号注入抽出巻線102、キャンセル巻線103とを具える。信号注入抽出巻線102は、別途信号電流の送信装置や信号電流の受信装置、或いは送受信装置(いずれも図示せず)が取り付けられて、高周波数の信号電流を導体300に注入/導体300に伝送される信号電流を抽出するものである。キャンセル巻線103は、導体300に流れる低周波数(通常、50Hz又は60Hz)の商用電流によりコア101に生じる磁界を打ち消すためのキャンセル電流を流すものである。   2. Description of the Related Art Conventionally, a signal injection extraction device that performs injection / extraction of electrical signals without contact with a conductor has been used. As such a signal injection extraction device, for example, there is one using a ferrite core and a winding as shown in Patent Document 1. FIG. 2 is an explanatory view schematically showing a configuration of a conventional signal injection extraction apparatus. In the drawings, the same reference numerals denote the same items. The signal injection extraction apparatus 100 shown in FIG. 2 includes a ring-shaped ferrite core 101 arranged so as to surround the outer periphery of the conductor 300, two windings wound around the outer periphery of the core 101, a signal injection extraction winding 102, and a cancel. Winding 103 is provided. The signal injection extraction winding 102 has a signal current transmission device, a signal current reception device, or a transmission / reception device (both not shown) attached, and injects a high frequency signal current into the conductor 300 / to the conductor 300. The signal current to be transmitted is extracted. The cancel winding 103 flows a cancel current for canceling the magnetic field generated in the core 101 by a commercial current having a low frequency (usually 50 Hz or 60 Hz) flowing through the conductor 300.

例えば、導体300に商用電流が流れているときに導体300に商用周波数よりも高周波数の信号電流を注入する場合、商用電流によりフェライトコア101に磁界Aが発生し印加される。この磁界Aによりキャンセル巻線103には、商用周波数と同等の周波数の誘導電流が磁界Aを打ち消す方向に流れるため、商用電流により生じた磁界Aによって、フェライトコア101が飽和磁化されることがない。従って、高周波数の信号電流を信号注入抽出巻線102に流すと、磁界Aが打ち消されている状態であることで信号電流によりフェライトコア101に磁界Bが発生し印加され、この磁界Bとコア101の透磁率とに応じて導体300に高周波数の信号電流が流れる。即ち、導体300に高周波数の電気信号が注入される。   For example, when a signal current having a frequency higher than the commercial frequency is injected into the conductor 300 while a commercial current is flowing through the conductor 300, a magnetic field A is generated and applied to the ferrite core 101 by the commercial current. Due to this magnetic field A, an induced current having a frequency equivalent to the commercial frequency flows in the cancel winding 103 in a direction that cancels the magnetic field A. Therefore, the ferrite core 101 is not saturated and magnetized by the magnetic field A generated by the commercial current. . Therefore, when a high-frequency signal current is passed through the signal injection and extraction winding 102, the magnetic field B is generated and applied to the ferrite core 101 by the signal current because the magnetic field A is cancelled. Depending on the magnetic permeability of 101, a high-frequency signal current flows through the conductor 300. That is, a high frequency electrical signal is injected into the conductor 300.

一方、導体300に商用電流と共に高周波数の信号電流が流れているときに信号電流を抽出する場合、フェライトコア101には、商用電流による磁界Aと、信号電流による磁界Bとが発生し、印加される。しかし、キャンセル巻線103に流れる誘導電流によって磁界Aが打ち消されるため、フェライトコア101は、商用電流により飽和磁化されることがない。また、巻線103のインダクタンスと表皮効果による巻線103の電気抵抗の実効的な増加とにより、キャンセル巻線103において磁界Bを打ち消す方向の誘導電流の発生が抑制される。従って、磁界Bとコア101の透磁率とに応じて信号注入抽出巻線102に高周波数の信号電流が流れる。即ち、導体300から高周波数の電気信号が抽出される。   On the other hand, when the signal current is extracted when a high-frequency signal current is flowing along with the commercial current in the conductor 300, the ferrite core 101 generates and applies the magnetic field A due to the commercial current and the magnetic field B due to the signal current. Is done. However, since the magnetic field A is canceled by the induced current flowing through the cancel winding 103, the ferrite core 101 is not saturated by the commercial current. In addition, due to the inductance of the winding 103 and the effective increase of the electrical resistance of the winding 103 due to the skin effect, generation of an induced current in the direction that cancels the magnetic field B in the cancel winding 103 is suppressed. Therefore, a high-frequency signal current flows through the signal injection and extraction winding 102 in accordance with the magnetic field B and the magnetic permeability of the core 101. That is, a high frequency electrical signal is extracted from the conductor 300.

このように上記信号注入抽出装置は、導体に流れる商用電流によらず、高周波数の信号電流を安定したレベルで注入/抽出することができる。   As described above, the signal injection and extraction apparatus can inject / extract a high-frequency signal current at a stable level regardless of the commercial current flowing through the conductor.

また、特許文献1には、キャンセル巻線を短絡したリング状とせず、巻線に特定周波数の電流を流すための電流回路を巻線の両端に接続した信号注入抽出装置が開示されている。この装置は、キャンセル巻線に特定周波数の電流I1を積極的に流して、導体に流れる電流I1と同じ周波数の電流I2による磁界を打ち消し、電流I2によりフェライトコアが飽和磁化されるのを抑制するものである。 Patent Document 1 discloses a signal injection and extraction device in which a current circuit for causing a current of a specific frequency to flow through a winding is connected to both ends of the winding without making the cancel winding short-circuited. This device actively flows a current I 1 having a specific frequency through the cancel winding, cancels the magnetic field due to the current I 2 having the same frequency as the current I 1 flowing through the conductor, and the ferrite core is saturated and magnetized by the current I 2. It is what suppresses.

特開2001-319815号公報JP 2001-319815 A

しかし、上記従来の信号注入抽出装置では、キャンセル巻線に、高周波数の信号電流により印加された磁界Aを打ち消す方向の誘導電流が発生して、通信性能を低下させる恐れがある。図2に示す信号注入抽出装置では、キャンセル巻線103のインダクタンスと表皮効果とにより磁界Aを打ち消す方向の誘導電流の発生を抑制する構成であるため、インダクタンスや表皮効果によっては、同誘導電流の発生を十分に抑制できない恐れがある。従って、信号電流による磁界を打ち消さず、商用電流による磁界を打ち消して、信号電流をより確実に注入/抽出することが可能な装置が望まれている。   However, in the conventional signal injection and extraction apparatus, an induced current in a direction that cancels the magnetic field A applied by the high-frequency signal current is generated in the cancel winding, which may deteriorate the communication performance. The signal injection extraction device shown in FIG. 2 is configured to suppress the generation of an induced current in the direction that cancels out the magnetic field A by the inductance of the cancel winding 103 and the skin effect, so depending on the inductance and the skin effect, Occurrence may not be sufficiently suppressed. Therefore, there is a demand for an apparatus that can more reliably inject / extract signal current by canceling the magnetic field due to commercial current without canceling the magnetic field due to signal current.

そこで、本発明の主目的は、導体に信号電流と異なる周波数の電流が流れていても、信号電流の注入/抽出をより確実に行うことができる信号注入抽出装置を提供することにある。   Accordingly, a main object of the present invention is to provide a signal injection extraction apparatus that can perform injection / extraction of a signal current more reliably even when a current having a frequency different from that of the signal current flows through a conductor.

本発明は、信号電流と異なる周波数の電流を増幅する増幅回路を具えて、増幅させた電流により、信号電流と異なる周波数の電流による磁界を打ち消すことで上記目的を達成する。   The present invention includes an amplifier circuit that amplifies a current having a frequency different from that of the signal current, and achieves the above object by canceling out the magnetic field generated by the current having a frequency different from that of the signal current.

即ち、本発明信号注入抽出装置は、第一周波数の電流が流れる導体の外周に配置される強磁性体と、前記強磁性体に配置されて、前記第一周波数と異なる第二周波数の信号電流を前記導体に注入/前記導体から第二周波数の信号電流を抽出する第一巻線と、前記強磁性体に配置されて、前記第一周波数の電流が流れる第二巻線と、前記第二巻線に接続される増幅回路とを具える。そして、前記増幅回路は、第一周波数の電流を通過させ、第二周波数の信号電流を遮断させるフィルタ部と、前記フィルタ部に直列に配置される増幅部と、前記フィルタ部及び増幅部に並列に配置されるインピーダンス素子とを具えることを特徴とする。以下、本発明を詳しく説明する。   That is, the signal injection extraction device of the present invention includes a ferromagnetic body disposed on the outer periphery of a conductor through which a current of a first frequency flows, and a signal current of a second frequency that is disposed on the ferromagnetic body and is different from the first frequency. A first winding for injecting into the conductor / extracting a signal current of a second frequency from the conductor, a second winding disposed in the ferromagnetic material and through which the current of the first frequency flows, and the second And an amplifier circuit connected to the winding. The amplifying circuit includes a filter unit that allows a first frequency current to pass therethrough and a second frequency signal current to be cut off, an amplifying unit that is arranged in series with the filter unit, and a parallel to the filter unit and the amplifying unit. And an impedance element disposed on the substrate. The present invention will be described in detail below.

第一周波数と第二周波数とは異なるものとする。特に、第二周波数は、信号電流として使用されるため、第一周波数と比較して高い周波数とすることが好ましい。即ち、第一周波数を低周波数、第二周波数を高周波数とすることが好ましい。特に、第一周波数としては、商用周波数が挙げられる。具体的には、例えば、50Hz又は60Hzが挙げられる。従って、導体に流れる第一周波数の電流として、商用電流が挙げられる。一方、第二周波数は、通信特性に優れる高周波数とすることが好ましい。具体的には、例えば、導体が電力供給用電線の導体であり、この電線に電気信号を伝送して通信を行う電力線搬送通信を行う場合、第二周波数としては、1.7MHz以上50MHz以下、特に、1.7MHz以上30MHz以下とすることが挙げられる。   The first frequency and the second frequency are different. In particular, since the second frequency is used as a signal current, it is preferable that the second frequency be higher than the first frequency. That is, it is preferable that the first frequency is a low frequency and the second frequency is a high frequency. In particular, the first frequency includes a commercial frequency. Specifically, 50 Hz or 60 Hz is mentioned, for example. Therefore, a commercial current is mentioned as a current of the first frequency flowing through the conductor. On the other hand, the second frequency is preferably a high frequency excellent in communication characteristics. Specifically, for example, when the conductor is a conductor of a power supply electric wire and performs power line carrier communication for transmitting an electric signal to the electric wire and performing communication, the second frequency is 1.7 MHz to 50 MHz, particularly 1.7 MHz to 30 MHz.

導体の外周に配置する強磁性体は、高い透磁率を有し、高い周波数の領域でも低損失の特性を有するフェライトコアが好ましい。フェライトコアは、導体の外周に配置し易いようにリング状であることが好ましく、一体構造でもよいが、半割れ片などの分割片を組み合わせてリング状とする構成とすると、より配置し易くて好ましい。なお、リング状とは、中心部に孔を有する環状であればよく、円形に限らない。   The ferromagnetic material disposed on the outer periphery of the conductor is preferably a ferrite core having a high magnetic permeability and a low loss characteristic even in a high frequency region. The ferrite core is preferably in a ring shape so that it can be easily placed on the outer periphery of the conductor, and may have an integral structure, but if it is configured by combining a split piece such as a half-cracked piece into a ring shape, it will be easier to place. preferable. The ring shape may be any ring shape having a hole at the center, and is not limited to a circle.

第一巻線及び第二巻線は、電流を流すことが可能な導体部を有するものであればよく、例えば、一般的に用いられている被覆付電線、エナメル線、裸線、銅板などを利用してもよい。断面積、巻数、長さなどは、第一周波数、第二周波数の電流の大きさや、導体の大きさなどに応じて適宜選択するとよい。   The first winding and the second winding only have to have a conductor portion through which a current can flow. For example, a commonly used coated wire, enameled wire, bare wire, copper plate, etc. May be used. The cross-sectional area, the number of turns, the length, and the like may be appropriately selected according to the magnitude of the current at the first frequency and the second frequency, the size of the conductor, and the like.

そして、本発明の最も特徴とするところは、第二巻線に接続される増幅回路を具える点にある。この増幅回路は、第一周波数の電流により強磁性体に印加される第一磁界を打ち消し、第二周波数の信号電流により強磁性体に印加される第二磁界を打ち消しにくい(或いは、打ち消さない)ように、第一磁界を打ち消す方向に流れる第一周波数の電流を特に増幅させるものである。このような機能を果たすべく、フィルタ部と増幅部とを直列に、インピーダンス素子をこれらに並列に具える。なお、本発明において増幅とは、電流値などの値を増加することのみを意味するものでなく、増幅回路の入力を1対1に通過させることができる、いわゆるバッファとしての機能なども含むものでもよく、広く増幅回路の機能を利用することをいうものとする。   The most characteristic feature of the present invention is that it includes an amplifier circuit connected to the second winding. This amplifying circuit cancels the first magnetic field applied to the ferromagnet by the first frequency current and hardly cancels (or does not cancel) the second magnetic field applied to the ferromagnet by the second frequency signal current. Thus, the current of the first frequency flowing in the direction to cancel the first magnetic field is specifically amplified. In order to perform such a function, a filter unit and an amplification unit are provided in series, and an impedance element is provided in parallel thereto. In the present invention, the term “amplification” does not only mean increasing a value such as a current value, but also includes a function as a so-called buffer that can pass the input of the amplifier circuit one-to-one. However, it means that the function of the amplifier circuit is widely used.

フィルタ部は、第二巻線に接続されて、第二周波数の信号電流を遮断し、第一周波数の電流を通過させるものである。このようなフィルタ部として、例えば、第一周波数が低周波数であり、第二周波数が高周波数である場合、低周波数の電流を通過させるローパスフィルタや、特定の周波数帯域の電流を遮断するバンドエリミネーションフィルタなどが挙げられる。ローパスフィルタとしては、例えば、抵抗とコンデンサとを組み合わせたRCフィルタなどが挙げられる。RCフィルタとする場合、フィルタ部を通過する第一周波数の電流値がフィルタ部に並列に具えるインピーダンス素子を通過する第一周波数の電流値と比較して十分に小さくなるようにR(抵抗値)を十分に大きくすることが好ましい。   The filter unit is connected to the second winding to cut off the signal current of the second frequency and pass the current of the first frequency. As such a filter unit, for example, when the first frequency is a low frequency and the second frequency is a high frequency, a low-pass filter that allows a low-frequency current to pass through, or a band elimination that blocks a current in a specific frequency band. For example, a nation filter. Examples of the low-pass filter include an RC filter that combines a resistor and a capacitor. In the case of an RC filter, R (resistance value) is set so that the current value of the first frequency passing through the filter section is sufficiently smaller than the current value of the first frequency passing through the impedance element provided in parallel with the filter section. ) Is preferably sufficiently large.

インピーダンス素子は、第二周波数の信号電流に対して大きなインピーダンスとなるもの、即ち、第一周波数の電流に対しては小さなインピーダンスとなるものである。このような素子を具えることで、第一周波数の電流を増幅回路に流し易くし、第二周波数の信号電流を増幅回路に流れにくくする。インピーダンス素子として、例えば、抵抗やインダクタ、抵抗とインダクタとを組み合わせたものが挙げられる。   The impedance element has a large impedance for the signal current of the second frequency, that is, a small impedance for the current of the first frequency. By providing such an element, the current of the first frequency is easily passed through the amplifier circuit, and the signal current of the second frequency is less likely to flow through the amplifier circuit. Examples of the impedance element include a resistor, an inductor, and a combination of a resistor and an inductor.

増幅部は、上記インピーダンス素子を通過した第一周波数の電流を増幅率に応じて増幅するものであり、入力側(フィルタ部側)に入力抵抗、出力側に出力抵抗及び増幅度を大きくするための電源などを具えるものが挙げられる。一般の演算増幅器を利用してもよい。フィルタ部と増幅部とは、強磁性体側からみて、フィルタ部、増幅部の順で配置する。   The amplifying unit amplifies the current of the first frequency that has passed through the impedance element according to the amplification factor, in order to increase the input resistance on the input side (filter unit side), the output resistance on the output side, and the amplification factor. There are things that have a power source. A general operational amplifier may be used. The filter unit and the amplification unit are arranged in the order of the filter unit and the amplification unit when viewed from the ferromagnetic material side.

上記構成により、第二巻線を流れる第一周波数の電流に対して、上記フィルタ部の両端に生じる出力電圧は、入力電圧がほぼそのまま現れるため、インピーダンス素子を通過した第一周波数の電流を増幅部にて増幅させることができる。即ち、増幅回路に入力された第一周波数の電流はそのまま増幅部に流れ込み、増幅部を通過して第二巻線に流れる。一方、第二周波数の電流に対しては、インピーダンス素子により増幅回路を流れにくくすると共に、フィルタ部により遮断する。この構成により、フィルタ部の両端に生じる出力電圧が入力電圧と比較して非常に小さくなり、インピーダンス素子を通過した第二周波数の電流は、増幅部にてほとんど増幅されない。   With the above configuration, the output voltage generated at both ends of the filter section with respect to the current of the first frequency flowing through the second winding appears as it is, so the current of the first frequency that has passed through the impedance element is amplified. It can be amplified in the part. That is, the current of the first frequency input to the amplifier circuit flows directly into the amplifier, passes through the amplifier, and flows to the second winding. On the other hand, the current of the second frequency is made difficult to flow through the amplifier circuit by the impedance element and is blocked by the filter unit. With this configuration, the output voltage generated at both ends of the filter unit becomes very small compared to the input voltage, and the current of the second frequency that has passed through the impedance element is hardly amplified in the amplification unit.

上記構成を具える本発明は、増幅回路により、導体に印加される第一周波数の電流による磁界を効率よく打ち消す反面、第二周波数の電流による磁界をほとんど打ち消さない、或いは全く打ち消さない。そのため、本発明は、第一周波数の電流が流れる導体に対して、第二周波数の信号電流をより確実に注入/抽出することができ、通信性能の劣化を低減することができる。   The present invention having the above configuration efficiently cancels the magnetic field caused by the current of the first frequency applied to the conductor by the amplifier circuit, but hardly cancels the magnetic field caused by the current of the second frequency. Therefore, the present invention can more reliably inject / extract the signal current of the second frequency with respect to the conductor through which the current of the first frequency flows, and can reduce the deterioration of the communication performance.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

図1(A)は、本発明信号注入抽出装置を模式的に示す概略構成図、(B)は、同装置のフィルタ部の回路図、(C)は、同装置の増幅回路図である。本発明信号注入抽出装置1は、導体300に非接触で電気信号の注入/抽出を行うものであり、導体300の外周に配置される強磁性体2と、強磁性体2に配置される信号注入抽出巻線(第一巻線)3及びキャンセル巻線(第二巻線)4と、キャンセル巻線4に接続される増幅回路5とを具える。本例では、第一周波数を商用周波数(通常、50Hz又は60Hz)とし、第二周波数を1.7MHzとし、商用周波数の電流を商用電流、1.7MHzの電流を単に信号電流と呼ぶ。以下、詳しく説明する。   FIG. 1A is a schematic configuration diagram schematically showing a signal injection extraction device of the present invention, FIG. 1B is a circuit diagram of a filter unit of the device, and FIG. 1C is an amplifier circuit diagram of the device. The signal injection extraction device 1 of the present invention performs injection / extraction of electrical signals in a non-contact manner with respect to the conductor 300, and includes a ferromagnetic body 2 disposed on the outer periphery of the conductor 300 and a signal disposed on the ferromagnetic body 2. An injection extraction winding (first winding) 3 and a cancellation winding (second winding) 4 and an amplification circuit 5 connected to the cancellation winding 4 are provided. In this example, the first frequency is a commercial frequency (usually 50 Hz or 60 Hz), the second frequency is 1.7 MHz, the commercial frequency current is called a commercial current, and the 1.7 MHz current is simply called a signal current. This will be described in detail below.

(強磁性体)
本例において、強磁性体2は、半割れの円弧片を組み合わせてリング状となるフェライトコアを用いた。
(Ferromagnetic material)
In this example, the ferromagnetic body 2 is a ferrite core that is formed into a ring shape by combining half-arc pieces.

(信号注入抽出巻線)
信号注入抽出巻線3は、導体300に流れる信号電流を抽出し、別途取り付けられる信号送信装置(図示せず)からの信号電流を導体300に注入するものである。本例では、一般的に用いられている被覆付電線を用い、二ターン巻きとした。この巻線3による信号電流の抽出は、以下のように行う。導体300に流れる信号電流により強磁性体2に磁界が生じて印加され、この磁界と強磁性体2の透磁率とに応じて、巻線3に高周波数(1.7MHz)の電流(誘導電流)が流れる。即ち、電気信号が抽出される。一方、この巻線3による信号電流の注入は、以下のように行う。巻線3に別途取り付けられた信号送信装置(図示せず)からの信号電流を巻線3に流すことで、強磁性体2に磁界が生じて印加される。この磁界と強磁性体2の透磁率とに応じて、導体300に高周波数(1.7MHz)電流(誘導電流)が流れる。即ち、電気信号が注入される。
(Signal injection extraction winding)
The signal injection extraction winding 3 extracts a signal current flowing through the conductor 300 and injects a signal current from a signal transmission device (not shown) attached separately into the conductor 300. In this example, a commonly used covered electric wire was used, and two-turn winding was used. The extraction of the signal current by the winding 3 is performed as follows. A magnetic field is generated and applied to the ferromagnetic material 2 by the signal current flowing through the conductor 300, and a high-frequency (1.7 MHz) current (inductive current) is applied to the winding 3 according to the magnetic field and the magnetic permeability of the ferromagnetic material 2. Flows. That is, an electrical signal is extracted. On the other hand, the signal current is injected by the winding 3 as follows. By applying a signal current from a signal transmission device (not shown) separately attached to the winding 3 to the winding 3, a magnetic field is generated and applied to the ferromagnetic body 2. A high frequency (1.7 MHz) current (inductive current) flows through the conductor 300 according to the magnetic field and the magnetic permeability of the ferromagnetic body 2. That is, an electrical signal is injected.

(キャンセル巻線)
導体300に信号電流と異なる周波数の電流(第一周波数の電流;本例では、商用電流)が流れている場合、商用電流により強磁性体2に磁界が生じて印加される。この磁界により強磁性体2が飽和磁化を起こすと、信号電流を注入/抽出することが困難になる、或いはできなくなる。そこで、強磁性体2が導体300に流れる商用電流により飽和磁化することを抑制するために、商用電流により生じる磁界を打ち消す方向にキャンセル電流を流す。このキャンセル電流を流す部材として、本発明では、キャンセル巻線4を具える。本例では、一般的に用いられている被覆付電線を用い、一ターン巻きとした。
(Cancel winding)
When a current having a frequency different from the signal current (current of the first frequency; in this example, a commercial current) flows through the conductor 300, a magnetic field is generated in the ferromagnetic body 2 by the commercial current and applied. When the ferromagnetic material 2 is saturated by this magnetic field, it becomes difficult or impossible to inject / extract the signal current. Therefore, in order to prevent the ferromagnetic material 2 from being saturated and magnetized by the commercial current flowing through the conductor 300, a cancel current is passed in a direction to cancel the magnetic field generated by the commercial current. In the present invention, the cancel winding 4 is provided as a member for passing the cancel current. In this example, a commonly used covered electric wire was used, and one turn was used.

(増幅回路)
<全体構成>
そして、本発明は、上記キャンセル電流が導体に印加される商用電流による磁界(第一磁界)を特に打ち消し、導体に印加される信号電流による磁界(第二磁界)を打ち消さないように、キャンセル巻線4に流れる商用周波数の電流を増幅して、第一磁界をより確実に打ち消すための増幅回路5をキャンセル巻線4に接続させている。増幅回路5は、フィルタ部6と、フィルタ部6に直列に配置される増幅部7と、フィルタ部6及び増幅部7に並列に配置されるインピーダンス素子8とを具える。
(Amplifier circuit)
<Overall configuration>
The present invention particularly cancels the magnetic field (first magnetic field) caused by the commercial current applied to the conductor and cancels the magnetic field caused by the signal current applied to the conductor (second magnetic field). An amplifying circuit 5 for amplifying a commercial frequency current flowing through the wire 4 and canceling the first magnetic field more reliably is connected to the cancel winding 4. The amplifier circuit 5 includes a filter unit 6, an amplifier unit 7 arranged in series with the filter unit 6, and an impedance element 8 arranged in parallel with the filter unit 6 and the amplifier unit 7.

<フィルタ部>
フィルタ部6は、導体300に流れる商用電流にて生じる第一磁界による誘導電流(商用周波数の電流)を通過させ、導体300に流れる信号電流にて生じる第二磁界による誘導電流(1.7MHz以上の電流)を遮断するものである。本例では、低周波数の電流を通過させ、高周波数の電流を遮断可能なローパスフィルタとした。具体的には、抵抗R1とコンデンサCとを具えるものとした。この構成により、図1(B)に示すように入力電圧をVi、コンデンサCの両端に現れる電圧をVA、コンデンサCの容量CA、角周波数をω、抵抗R1の抵抗値をRとすると、入力電圧Viの増幅度VA/Viは、以下のように表される。
<Filter section>
The filter unit 6 allows an induced current (current of commercial frequency) generated by the first magnetic field generated by the commercial current flowing in the conductor 300 to pass, and an induced current (1.7 MHz or higher) generated by the signal current flowing in the conductor 300. Current). In this example, a low-pass filter that allows a low-frequency current to pass and blocks a high-frequency current is used. Specifically, the resistor R 1 and the capacitor C are provided. With this configuration, as shown in FIG. 1 (B), the input voltage is V i , the voltage appearing across the capacitor C is V A , the capacitance C A of the capacitor C, the angular frequency is ω, and the resistance value of the resistor R 1 is R Then, the amplification degree V A / V i of the input voltage V i is expressed as follows.

Figure 2005221253
Figure 2005221253

従って、例えば、R=1kΩ、CA=0.1μF、商用周波数を50Hzとすると、商用周波数に対して増幅度は、V1A/Vi≒1.0となる。従って、V1A≒Viとなり、商用周波数の電流がフィルタ部6を流れた場合、コンデンサCの両端の電圧V1Aは、入力電圧Viがほぼそのままの大きさで表れる。一方、信号周波数を1.7MHzとすると、この周波数に対して増幅度は、V2A/Vi≒0.0009となる。従って、V2A≒0となり、1.7MHzの電流がフィルタ部6を流れた場合、コンデンサCの両端の電圧V2Aは、ほとんど生じない。即ち、周波数が低い電流では、フィルタ部6(コンデンサC)の両端に電圧が生じ、周波数が高い電流では、フィルタ部6(コンデンサC)の両端に電圧がほとんど生じない。 Therefore, for example, if R = 1 kΩ, C A = 0.1 μF, and the commercial frequency is 50 Hz, the amplification factor is V 1A / V i ≈1.0 with respect to the commercial frequency. Therefore, V 1A ≈V i , and when a commercial frequency current flows through the filter unit 6, the voltage V 1A across the capacitor C appears as the input voltage V i is almost as it is. On the other hand, when the signal frequency is 1.7 MHz, the amplification degree is V 2A / V i ≈0.0009 with respect to this frequency. Therefore, when V 2A ≈0 and a 1.7 MHz current flows through the filter unit 6, the voltage V 2A across the capacitor C hardly occurs. That is, at a current having a low frequency, a voltage is generated at both ends of the filter unit 6 (capacitor C), and at a current having a high frequency, a voltage is hardly generated at both ends of the filter unit 6 (capacitor C).

<増幅部>
増幅部7は、導体300に流れる商用電流にて生じる第一磁界による誘導電流(商用周波数の電流)を増幅するものであり、強磁性体2側からみてフィルタ部6、増幅部7と並ぶように、フィルタ部6と直列に具える。本例において増幅部7は、入力側(フィルタ部6側)に入力抵抗R2、出力側に出力抵抗R3及び増幅度を大きくするための電源7aを具える構成とした。この構成により、入力抵抗R2に生じた電圧をVA、電源7aの増幅率をA、増幅部7の両端に現れる電圧(出力電圧)をVoとすると、出力電圧Voは、Vo=-A*VAと表される。即ち、入力抵抗R2に生じた電圧(VA)に応じて出力電圧Voは変化する。例えば、上記と同様にR=1kΩ、CA=0.1μF、商用周波数を50Hzとすると、V1A≒Viより、商用周波数の電流による出力電圧V1o=(-A)*V1A=(-A)*Viとなる。一方、信号周波数を1.7MHzとすると、V2A≒0より、1.7MHzの電流による出力電圧V2o=0となる。
<Amplification unit>
The amplifying unit 7 amplifies an induced current (current of commercial frequency) due to the first magnetic field generated by the commercial current flowing through the conductor 300, and is aligned with the filter unit 6 and the amplifying unit 7 when viewed from the ferromagnetic material 2 side. In addition, the filter unit 6 is provided in series. In this example, the amplifying unit 7 includes an input resistor R 2 on the input side (filter unit 6 side), an output resistor R 3 on the output side, and a power source 7a for increasing the amplification degree. With this configuration, assuming that the voltage generated at the input resistor R 2 is V A , the amplification factor of the power supply 7a is A, and the voltage (output voltage) appearing at both ends of the amplifier 7 is V o , the output voltage V o is V o = -A * V A That is, the output voltage V o changes according to the voltage (V A ) generated at the input resistor R 2 . For example, similarly to the R = 1kΩ, C A = 0.1μF , the commercial frequency is 50Hz, V 1A ≒ V i from the output voltage due to the commercial frequency current V 1o = (- A) * V 1A = (- A) * V i On the other hand, when the signal frequency is 1.7 MHz, the output voltage V 2o = 0 due to the current of 1.7 MHz is obtained from V 2A ≈0 .

<インピーダンス素子>
インピーダンス素子8は、上記フィルタ部6及び増幅部7と並列に具える。本例においてインピーダンス素子8は、抵抗としたが、インダクタや、抵抗とインダクタとを組み合わせたものとしてもよい。即ち、インピーダンス素子8は、導体300に流れる信号電流にて生じる第二磁界による誘導電流(1.7MHz以上の電流)に対して大きな抵抗となり、導体300に流れる商用電流にて生じる第一磁界による誘導電流(商用周波数の電流)に対して、低抵抗となるものが好ましい。
<Impedance element>
The impedance element 8 is provided in parallel with the filter unit 6 and the amplification unit 7. Although the impedance element 8 is a resistor in this example, it may be an inductor or a combination of a resistor and an inductor. That is, the impedance element 8 has a large resistance to the induced current (current of 1.7 MHz or more) caused by the second magnetic field generated by the signal current flowing through the conductor 300, and is induced by the first magnetic field generated by the commercial current flowing through the conductor 300. What has low resistance to current (current at commercial frequency) is preferable.

上記構成を具える増幅回路に商用周波数の電流I1、1.7MHzの電流I2が通過する際の挙動について説明する。まず、導体300に流れる商用電流にて印加される第一磁界による誘導電流(電流I1)がキャンセル巻線4に流れると、この電流I1は、フィルタ部6の抵抗R1により、インピーダンス素子8側に流れる電流I1aと、フィルタ部6側に流れる電流I1bとに分かれる。このとき、入力電圧をVi、出力電圧をVo、インピーダンス素子8のインピーダンスをZ、増幅部7の増幅度をAとし、上記V1o=(-A)*Viを用いると、電流I1aは、以下のように表される。また、入力インピーダンスZ1iは、以下のように表される。なお、本例では、I1a≫I1bとなるような抵抗値Rを有する抵抗R1を用いている。 A behavior when a commercial frequency current I 1 and a 1.7 MHz current I 2 pass through an amplifier circuit having the above configuration will be described. First, when an induced current (current I 1 ) due to the first magnetic field applied by the commercial current flowing in the conductor 300 flows in the cancel winding 4, this current I 1 is generated by the impedance element by the resistor R 1 of the filter unit 6. It is divided into a current I 1a flowing on the 8 side and a current I 1b flowing on the filter unit 6 side. At this time, when the input voltage is V i , the output voltage is V o , the impedance of the impedance element 8 is Z, the amplification degree of the amplification unit 7 is A, and V 1o = (− A) * V i is used, the current I 1a is expressed as follows. Further, the input impedance Z 1i is expressed as follows. In this example, a resistor R 1 having a resistance value R such that I 1a >> I 1b is used.

Figure 2005221253
Figure 2005221253

上記の式から、商用周波数の電流I1に対して、入力インピーダンスZ1iが小さくなっており、電流I1は、増幅回路に流れ易い。また、電流I1の大部分(電流I1a)がインピーダンス素子8を通過する。そして、インピーダンス素子8を通過した電流I1aは、上記のように増幅部7の増幅機能によりキャンセル巻線4に流れる。即ち、電流I1は増幅回路によりほぼそのままキャンセル巻線4に流れることになる。この電流I1aにより、導体300に流れる商用電流による磁界を打ち消すことができる。 From the above equation, with respect to the current I 1 of the commercial frequency, it is smaller input impedance Z 1i, current I 1 is likely to flow to the amplifier circuit. Also, most of the current I 1 (current I 1a) is passed through the impedance element 8. Then, the current I 1a that has passed through the impedance element 8 flows to the cancel winding 4 by the amplification function of the amplification unit 7 as described above. That is, the current I 1 flows through the cancel winding 4 almost as it is by the amplifier circuit. With this current I 1a , the magnetic field due to the commercial current flowing through the conductor 300 can be canceled out.

一方、導体300に流れる信号電流にて生じる第二磁界による1.7MHzの電流(電流I2)がキャンセル巻線4に流れた場合、上記電流I1と同様にインピーダンス素子8側に流れる電流I2aとフィルタ部6側に流れる電流I2bとに分かれる。このとき、電流I2aは、上記V2o=0を用いて以下のように表される。また、入力インピーダンスZ2i=Zとなる。 On the other hand, when a 1.7 MHz current (current I 2 ) due to the second magnetic field generated by the signal current flowing in the conductor 300 flows in the cancel winding 4, the current I 2a flowing in the impedance element 8 side in the same manner as the current I 1 described above. And current I 2b flowing to the filter unit 6 side. At this time, the current I 2a is expressed as follows using the above V 2o = 0. Further, the input impedance Z 2i = Z.

Figure 2005221253
Figure 2005221253

上記のように高周波数の電流I2に対しては、入力インピーダンスZ2iが大きいことから、電流I2は、増幅回路5に流れにくいものとなっている。即ち、電流I2は、増幅回路によりキャンセル巻線4にほとんど流れないことになる。従って、電流I2は、導体300に流れる1.7MHzの電流による磁界をほとんど打ち消すことがない、或いは全くない。 As described above, since the input impedance Z 2i is large with respect to the high-frequency current I 2 , the current I 2 is difficult to flow through the amplifier circuit 5. That is, the current I 2 hardly flows to the cancel winding 4 by the amplifier circuit. Therefore, the current I 2 hardly cancels out the magnetic field due to the 1.7 MHz current flowing through the conductor 300 or not at all.

このように本発明は、導体に流れる信号周波数以外の電流による磁界を増幅回路にて打ち消すと共に、信号電流による磁界を増幅回路にて打ち消すことを抑制することができる。従って、本発明は、より確実に信号電流の注入/抽出を行うことができ、通信特性の劣化を効果的に抑制することができる。   As described above, the present invention can cancel the magnetic field caused by the current other than the signal frequency flowing through the conductor in the amplifier circuit and can suppress the magnetic field caused by the signal current from being canceled by the amplifier circuit. Therefore, according to the present invention, signal current can be injected / extracted more reliably, and deterioration of communication characteristics can be effectively suppressed.

本発明は、導体に信号電流と異なる周波数の電流が流れている場合、例えば、電力線搬送通信を行う場合などにおいて、導体に信号電流の注入/抽出を行うのに最適である。   The present invention is optimal for injecting / extracting a signal current to / from a conductor when a current having a frequency different from that of the signal current flows through the conductor, for example, when performing power line carrier communication.

本発明信号注入抽出装置の概略を示す説明図であり、(A)は、全体構成図、(B)は、同装置のフィルタ部の回路図、(C)は、同装置の増幅回路図である。It is an explanatory diagram showing an outline of the signal injection extraction device of the present invention, (A) is an overall configuration diagram, (B) is a circuit diagram of a filter portion of the device, (C) is an amplifier circuit diagram of the device is there. 従来の信号注入装置の構成を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the conventional signal injection apparatus.

符号の説明Explanation of symbols

1 信号注入抽出装置 2 強磁性体 3 信号注入抽出巻線 4 キャンセル巻線
5 増幅回路 6 フィルタ部 7 増幅部 7a 電源 8 インピーダンス素子
100 信号注入抽出装置 101 フェライトコア 102 信号注入抽出巻線
103 キャンセル巻線 104 電流発生回路 300 導体
1 Signal injection extraction device 2 Ferromagnetic material 3 Signal injection extraction winding 4 Canceling winding
5 Amplifier 6 Filter 7 Amplifier 7a Power supply 8 Impedance element
100 Signal injection extraction device 101 Ferrite core 102 Signal injection extraction winding
103 Cancel winding 104 Current generation circuit 300 Conductor

Claims (3)

第一周波数の電流が流れる導体の外周に配置される強磁性体と、
前記強磁性体に配置されて、前記第一周波数と異なる第二周波数の信号電流を前記導体に注入/前記導体から第二周波数の信号電流を抽出する第一巻線と、
前記強磁性体に配置されて、前記第一周波数の電流が流れる第二巻線と、
前記第二巻線に接続される増幅回路とを具え、
前記増幅回路は、
第一周波数の電流を通過させ、第二周波数の信号電流を遮断させるフィルタ部と、
前記フィルタ部に直列に配置される増幅部と、
前記フィルタ部及び増幅部に並列に配置されるインピーダンス素子とを具えることを特徴とする信号注入抽出装置。
A ferromagnetic body disposed on the outer periphery of a conductor through which a current of a first frequency flows;
A first winding disposed in the ferromagnetic body for injecting a signal current of a second frequency different from the first frequency into the conductor / extracting a signal current of a second frequency from the conductor;
A second winding disposed in the ferromagnetic body and through which the current of the first frequency flows;
An amplification circuit connected to the second winding,
The amplifier circuit is
A filter section for passing a current at a first frequency and blocking a signal current at a second frequency;
An amplification unit arranged in series with the filter unit;
An apparatus for extracting and injecting signals, comprising: an impedance element arranged in parallel with the filter unit and the amplification unit.
第一周波数の電流は、商用電流であり、第二周波数は、商用周波数よりも高い周波数であることを特徴とする請求項1に記載の信号注入抽出装置。   2. The signal injection extraction apparatus according to claim 1, wherein the current of the first frequency is a commercial current, and the second frequency is a frequency higher than the commercial frequency. 第二周波数は、1.7MHz〜50MHzであることを特徴とする請求項1に記載の信号注入抽出装置。   2. The signal injection extraction apparatus according to claim 1, wherein the second frequency is 1.7 MHz to 50 MHz.
JP2004026831A 2004-02-03 2004-02-03 Signal injection extraction device Expired - Fee Related JP4114615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004026831A JP4114615B2 (en) 2004-02-03 2004-02-03 Signal injection extraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004026831A JP4114615B2 (en) 2004-02-03 2004-02-03 Signal injection extraction device

Publications (2)

Publication Number Publication Date
JP2005221253A true JP2005221253A (en) 2005-08-18
JP4114615B2 JP4114615B2 (en) 2008-07-09

Family

ID=34997020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004026831A Expired - Fee Related JP4114615B2 (en) 2004-02-03 2004-02-03 Signal injection extraction device

Country Status (1)

Country Link
JP (1) JP4114615B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2037202A1 (en) * 2006-07-05 2009-03-18 Sumitomo Metal Industries Limited Metal tube for thermal cracking reaction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2037202A1 (en) * 2006-07-05 2009-03-18 Sumitomo Metal Industries Limited Metal tube for thermal cracking reaction
EP2037202A4 (en) * 2006-07-05 2013-11-06 Nippon Steel & Sumitomo Metal Corp Metal tube for thermal cracking reaction

Also Published As

Publication number Publication date
JP4114615B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
US7460681B2 (en) Radio frequency shielding for receivers within hearing aids and listening devices
KR100808252B1 (en) Coil block and electronic device with the filtering coil block
CN101552381B (en) Antenna amplifier, in particular for a magnetic resonance antenna
CA2782926A1 (en) Reduced q low frequency antenna
MXPA01010135A (en) Monitoring leakage currents from high-voltage devices.
US8379898B2 (en) Transmission facility for a hearing apparatus with film conductor shielding and naturally shielded coil
JP5754779B2 (en) Noise suppression circuit and noise suppression method
US20100135513A1 (en) Radio frequency shielding for receivers within hearing aids and listening devices
CN115696889A (en) Electromagnetic wave shielding filter
JP4114615B2 (en) Signal injection extraction device
CN110907867B (en) Magnetic focusing device for giant magneto-impedance sensor and giant magneto-impedance sensor
JP2003318031A (en) Noise filter
EP3157101B1 (en) Electromagnetic device
JPH0817638A (en) High frequency choke coil
JP4310234B2 (en) Condenser microphone
JP6210464B2 (en) electric circuit
KR100996139B1 (en) non-intrusive blocking filter for power line communication and control method thereof
JP4462189B2 (en) Signal injection / extraction equipment
JP2010272809A (en) Common mode choke coil and signal transmission circuit using the same
JP6538628B2 (en) Filter circuit and wireless power transmission system
JP2012023430A (en) Signal coupling apparatus for plc
JP2004356917A (en) Signal impressing and extracting device for power line carrier communication, and power line carrier communication system
JP5404336B2 (en) Condenser microphone
KR20140081224A (en) Common mode filter having signal compensating function
JP4581089B2 (en) Conductive electromagnetic noise suppression device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4114615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees