JP2004356917A - Signal impressing and extracting device for power line carrier communication, and power line carrier communication system - Google Patents

Signal impressing and extracting device for power line carrier communication, and power line carrier communication system Download PDF

Info

Publication number
JP2004356917A
JP2004356917A JP2003151762A JP2003151762A JP2004356917A JP 2004356917 A JP2004356917 A JP 2004356917A JP 2003151762 A JP2003151762 A JP 2003151762A JP 2003151762 A JP2003151762 A JP 2003151762A JP 2004356917 A JP2004356917 A JP 2004356917A
Authority
JP
Japan
Prior art keywords
power line
signal
extraction
core
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003151762A
Other languages
Japanese (ja)
Other versions
JP3788443B2 (en
Inventor
Yoshihisa Asao
芳久 浅尾
Kenichi Hirotsu
研一 弘津
Masahiro Kuwabara
雅裕 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003151762A priority Critical patent/JP3788443B2/en
Publication of JP2004356917A publication Critical patent/JP2004356917A/en
Application granted granted Critical
Publication of JP3788443B2 publication Critical patent/JP3788443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a signal injecting and extracting device capable of impressing a high-frequency communication signal into a power line where a commercial current of commercial frequency is caused to flow at a stable level or extracting the high-frequency signal from the power line at a stable level. <P>SOLUTION: Provided are an annular ferromagnetic material core arranged surrounding one set of a plurality of power lines for feeding a multi-phase AC current or a plurality of annular ferromagnetic material cores 21, 22 and 23 arranged surrounding a plurality of power lines 110, 120 and 130, and high-frequency communication signals are impressed and extracted through signal impression/extraction coils 31, 32 and 33 arranged on the outer peripheral surface of the annular ferromagnetic material core and magnetic flux saturation in the cores due to a commercial current is suppressed by a method of providing coils 51, 52 and 53 for cancellation and so on. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、電力線搬送通信に用いる信号注入抽出装置に関し、より特定的には、電力線の導体に非接触の状態で高周波信号を注入し、または非接触の状態で電力線から高周波信号を抽出する高周波信号注入抽出装置に関するものである。
【0002】
【従来の技術】
従来、非接触の状態で電力線に交流電流などの電気信号を注入し、または電力線から電気信号を抽出するために、強磁性体のコアを用いたトランス構造の装置が用いられている。図8は特許文献1に記載の従来の信号注入抽出装置の構成を概念的に示す斜視図である。図8に示すように、信号注入抽出装置100は、電力線101の周りを囲むように配置された強磁性体コア102を備えている。高周波信号を注入または抽出するために、強磁性体コア102として高い透磁率を有しかつ高い周波数の領域で低損失の特性を示すフェライトコアが用いることが多い。環状の強磁性体コア102は電力線への着脱を容易にするために半割れ構造にするなど、一体構造でなくてもよい。強磁性体コア102の外周面の周囲には信号注入抽出用巻線103が配置されている。
【0003】
【特許文献1】
特開2001−319815号公報
【0004】
信号注入抽出装置100を用いて電力線101に高周波信号を注入する場合には、巻線103に注入したい信号として高周波電流を流す。巻線103に流れる高周波電流によって強磁性体コア102の内部には磁束が生じ、この磁束と強磁性体コア102の透磁率に応じて、電力線101に高周波電流が誘導されることにより、高周波信号が注入される。
【0005】
また、図8に示される装置100を用いて電力線101に流れる高周波電流すなわち高周波信号を抽出する場合は、電力線101に流れる高周波電流によって強磁性体コア102内に磁束が発生し、この磁束と強磁性体コア102の透磁率に応じて巻線103に誘導される高周波電流すなわち高周波信号を抽出する。
【0006】
電力線搬送通信システム(以下PLCと呼ぶ。)は、商用周波数(一般的には50Hzまたは60Hz)の商用電流が流れる電力線に、通信信号としての高周波信号(数kHzから高いものでは数十MHz以上に及ぶ)を重畳して通信を行うものである。このようなPLCは、専用の通信回線を使用することなく、各家屋等に引き込まれた既設の電力線(配電線あるいは電灯線とも呼ばれる。)を利用して、大容量のデータ送受信が出来るシステムとして注目されている。
【0007】
PLCでは商用電流の流れる既設の電力線に高周波信号を注入し、また逆に高周波信号と商用電流の重畳した電力線から高周波信号だけを通信信号として抽出する必要がある。この場合、信号の注入抽出装置にとっては、商用電流は商用周波数の信号として高周波信号と同様に作用する。すなわち、例えば信号の抽出において抽出される信号は、コアや巻線の周波数特性による大きさの差はあるものの、商用周波数の成分と高周波成分が重畳した信号となる。
【0008】
PLCにおける高周波信号の注入抽出に前述のような強磁性体コアと巻線を用いた信号注入抽出装置を適用する場合、電力線に流れる商用電流の大きさと、電力線に重畳されて流れる高周波信号電流の大きさが桁違いに異なるために問題が生じる。
【0009】
電力線からの信号抽出を例に説明する。電力線に流れる電流によって電力線の周囲に生じる磁界によって、強磁性体コア内には磁束が生じる。この磁束をうち消す向きに巻線に電流が誘導されることにより、結果として電力線に流れる電流と同じ信号が巻線から抽出されることになる。ここで、抽出される信号の大きさは巻線の構成により異なる。電力線には大きな商用電流信号と微弱な高周波信号が重畳されて流れているため、強磁性体コアと巻線とによって決まる周波数特性が双方の信号に対して同じ感度特性であれば、抽出される信号は同じ比率の重畳信号として検出される。通信のためには高周波信号だけを抽出したいのであるから、信号注入抽出装置にはフィルターを設ける等により周波数特性を持たせて、低周波である商用周波信号をカットし、高周波信号のみを通す工夫がなされて使用される。
【0010】
ところが、この構成においては強磁性体コアの飽和特性が問題となる。強磁性体コアには飽和特性があり、コア中に一定以上の磁束が生じると、それ以上の磁束が誘起されないという磁気飽和が起こる。上述の通り、商用電流信号と高周波信号には大きなレベル差があるため、商用電流信号によって磁気飽和が生じると、それにさらに加えて高周波信号に対応する磁束がコア内に生じることが出来ず、結果として巻線に高周波信号が抽出されないという問題がある。
【0011】
このため、磁気飽和を生じにくくする工夫として、閉じた環状である強磁性体コアに切れ目(ギャップ付きコアとも呼ばれる。)を入れる方法や、本願発明者等の考案による磁界キャンセル用巻線を用いる方法(特許文献1)などが提案されている。
【0012】
【発明が解決しようとする課題】
しかし、これらの方法では商用電流信号による磁束飽和を抑制する効果と共に、必要な高周波信号の損失も大きくなるという不都合を伴う。すなわち高周波信号に対しても磁束を小さくする効果が生じ、注入抽出される信号の大きさが小さくなる(別な言い方をすれば、高周波信号に対する結合損失が大きい)のである。また、商用電流の有無や大きさによって磁束飽和が生じたり生じなかったりするために、注入抽出される高周波信号のレベルが変動するという問題があった。
【0013】
このような問題の解決のため、本願発明では強磁性体コアの磁気飽和を抑制し、かつ高周波信号の結合損失が小さい信号注入抽出装置を提供する。
【0014】
【課題を解決するための手段】
本願発明では複数相の交流電流が流れる電力線への高周波信号の注入抽出を対象としており、複数相交流電流を通電するための一組の複数の電力線の周囲を取り囲むように配置された環状強磁性体コアと、環状強磁性体コアの中心孔を貫通するように当該環状強磁性体コアの外周面に配置された信号注入抽出用巻線とを備える信号注入抽出装置とした。(請求項1)
【0015】
複数相交流電流とは、n相(nは2以上の自然数)の位相の電流を一組とする交流電流であり、一般的に用いられているのは単相交流(相数が2つ)あるいは三相交流である。電力線は相数に対応する本数を一組に構成されており、各電力線には単相の場合は位相が180度異なる電流、三相の場合は位相がそれぞれ120度異なる電流が流れる。これらの一組の電力線がまとめて中心孔を貫通するように電力線の周囲を囲むコアを設けると、各電力線を流れる電流により生じる磁界によってコア内に誘起される磁束は、互いに位相の異なる電流による磁束によって打ち消し合って理想的にはゼロとなるため、磁気飽和によって高周波信号の注入抽出が出来なくなるという問題が生じないという効果がある。
【0016】
高周波信号は、コアに設けた信号注入抽出用巻線を介して、一組の各電力線のそれぞれに同相の信号として注入抽出される。
【0017】
また、複数相交流電流を通電するための一組の複数の電力線の、それぞれの電力線の周囲を囲むように配置された複数の環状強磁性体コアと、該複数の環状強磁性体コアの少なくとも一つの環状強磁性体コアの中心孔を貫通するようにコアの外周面に配置された信号注入抽出用線巻線と、上記複数の環状強磁性体コアのうちの少なくとも2つの環状強磁性体コアの中心孔を貫通するような閉曲線を形成する打ち消し用巻線とを備える信号注入抽出装置としてもよい。(請求項2)
【0018】
この構成によれば、環状強磁性体コア(以下、単に「コア」と呼ぶ。)に生じた磁束が互いにうち消されることによって磁気飽和の発生が抑制され、磁気飽和によって高周波信号の注入抽出が出来なくなるという問題が生じ難くなるという効果がある。この場合、複数相一括でコアを設ける場合に比べてコアが2つあるいは3つと複数必要になるが、各コアを小さくできるメリットがある。また、電力線が互いに間隔をおいて配置されているなどの理由で、一括して貫通するようにコアを設けることが接地場所やコアの大きさの点で困難な場合には特に効果的である。
【0019】
打ち消し用巻線は互いに隣り合う2つのコアの中心孔を貫通するように設け、その貫通の方向は、それぞれのコアに生じる磁束によって誘導される電流の向きが互いに逆方向になるように配置するのが効果的である。(請求項3)
【0020】
各相電流は位相の異なる同一周波数の電流であり、それぞれ隣り合うコアが貫通した打ち消し用巻線には位相の異なる電流が重畳して誘導される。全相の電流を重畳すると互いにうち消しあうことにより理想的には大きさはゼロになることから、コアへの当該交流電流により生じる磁束が打ち消されることになる。その結果磁気飽和が生じなくなるのである。
【0021】
信号注入抽出用巻線は、各コアに個別に設けても、1本の曲線を構成するように1本の信号注入抽出用巻線が複数のコアの中心孔を通るように外周面に配置される形態にしても良い。いずれの場合でも、信号注入抽出用巻線は、各相の電力線に高周波信号が同相で注入抽出される向きに配置されることが必要である。(請求項4)
【0022】
これは、例えば信号の注入の場合を例にすると、信号注入抽出用巻線に流れる高周波信号電流によって各コアに生じる磁束が同相であり、かかる磁束によって打ち消し用巻線に誘導される高周波電流が同じ打ち消し用巻線を貫通する他のコアに生じた磁束によって誘導される高周波電流と、互いに打ち消し合うことを意味する。したがって高周波電流に対しては打ち消し用巻線は、注入抽出を妨げることがないのである。
【0023】
また信号注入抽出用巻線は、いずれか1相のコアのみに設けてもよい。この場合でも、磁気飽和が抑制された結果として、信号注入抽出用線によって注入あるいは抽出される高周波信号は商用周波数の交流電流の影響を受けることがないという効果は同様に得られる。高周波信号電流に対しても打ち消し用巻線が注入抽出を阻害する向きに作用することになる不利益はあるが、打ち消し用巻線が他のコアをも貫通する形態で設けられていることにより、高周波信号に対するインピーダンスが比較的高くなり、高周波信号の注入抽出が阻害される程度は大きくはない。全体の装置構成が比較的簡素化出来るメリットを重視する場合には、この構成が好ましい。
【0024】
以上のような信号注入抽出装置を用いて、複数相交流電流を通電するための一組の電力線のうち、少なくとも1本の電力線を伝送路として利用するPLCとすれば、電力線を流れる商用電流の大きさによる通信品質への影響を低減し、かつ通信信号の注入抽出損失を低減した電力線搬送通信システムとすることが可能である。(請求項5)
【0025】
【実施の形態】
(実施の形態1)
配電用の交流電流は一般に単相あるいは三相の複数相交流電流であり、配電線は各相電流を流すための一組の電力線で構成されている。以下、三相交流を例に説明するが、n相の場合に一般化して考えることが可能である。
【0026】
図1は、三相交流を通電する一組の電力線が貫通するようにコアを設けた構成を、電力線の延線方向に垂直な断面方向の断面図で示したものである。三相交流を通電する3本の電力線110、120、130は、それぞれ導体と絶縁体を主な構成要素として構成された一般的な電力線である。3本の電力線が貫通するように環状強磁性体コア20が設けられている。当該コアの外周面には信号注入抽出用巻線30が設けられており、通信装置40につながっている。ここでコアの外周面に巻線を設けるとは、環状コアの中心孔を少なくとも1回は貫通するように線を配置することを言い、巻数すなわちコアの中心孔を貫通する回数は信号注入抽出の所望の感度に応じて設計可能である。コアは電力線に沿う方向(図の紙面垂直方向)に奥行き長さを持つが、その長さは任意に設計可能である。また、各断面寸法は適用する電力線の寸法に合わせて設計可能である。コアの材質はフェライトや鉄が用いられるが、一般に強磁性体と呼ばれる材料であれば特に限定されるものではない。
【0027】
3本の電力線には、商用周波数の交流電流であって、360度を相数の3で等分した120度ずつ位相が異なり、大きさのほぼ等しい商用電流が流れている。それぞれの商用電流により電力線の周囲には磁界が形成され、コア20内に磁束が誘起される。1本の電力線を流れる商用電流によって誘起される磁束のみを考えると、正弦波形状で時間的に変化する交流磁束であり、コアの飽和特性によっては磁束が飽和する場合もあり得る。しかし、他相の電力線を流れる電流に起因する磁束がそれに重畳されるために、磁束は互いに打ち消し合わされ、理想的にはゼロとなる。理想的には、というのは、各電力線のインピーダンス特性等の要因により各相の商用電流の大きさが厳密には一致していなかったり、位相差が厳密には120度からずれている場合もあり得るためであり、本発明の説明においては理想的な状態を考えればよい。
【0028】
かかる状態において、通信装置40からの高周波信号を信号注入抽出用巻線30に通電すれば、高周波信号電流によってコア内に磁束が誘起され、当該磁束によって各電力線には高周波信号電流が誘導される(信号注入)。逆に、電力線に重畳して流れる高周波信号電流によって電力線の周囲に生じる磁界によりコア20には磁束が誘起され、当該磁束によって信号注入抽出用巻線30には高周波信号が誘導されるのである(信号抽出)。
【0029】
なお、電力線は絶縁体の外周に導電体からなる遮蔽層を有している場合があり、遮蔽層は接地されていることが多い。遮蔽層は導体を流れる電流により外部に生じる磁界を遮蔽するための層であるため、遮蔽層の外側では磁界が非常に微弱になっている。したがって、遮蔽層を有する電力線において上記の説明におけるコアを設置する部分は各電力線の遮蔽層を除去した部分である。例えば、電力線の接続箱、変圧器、開閉器等の接続部分近傍では遮蔽層が除去されていたり、また除去可能な部分が多い。また、遮蔽層は各相の電力線に個別に設けられている場合と、3相を一括して3本の導体を取り囲む形で設けられている場合があるが、いずれであっても適用には問題ない。
【0030】
通信装置において高周波信号を注入抽出するための2つの端子の内の1端は接地側として電力線の遮蔽層に接続されることが多い。その意味で図1では接地80を図示している。したがって、電力線に注入された信号は、電力線と遮蔽層の間で電力線をあたかも通信用の同軸ケーブルのように伝搬することになる。遮蔽層を有しない電力線の場合に、接地に相当する別な接地電線を併設してもよい。この場合には高周波信号は各電力線と接地電線間を伝搬する。
【0031】
(実施の形態2)
図2は本発明の別な形態を説明するものである。図2では3本の電力線110,120,130のそれぞれが個別に貫通するように3つのコア21,22,23が設けられている。また、隣り合うコアが貫通するような曲線を描いて打ち消し用巻線51,52,53がそれぞれ設けられている。打ち消し用巻線はn相の交流電流ではn×(n−1)/2の組み合わせ本数だけ構成可能であるが、3相交流(n=3)の場合は3本となる。また、各コアには通信装置40につながる信号注入抽出用巻線31,32,33が個別に設けられている。図では信号注入抽出用巻線の一端は接地につながるように記載しているが、通信装置40の信号入出力端での接地と電気的にはつながっており、図1の場合と同じように信号注入抽出用巻線は通信装置を介して閉曲線を構成している。
【0032】
電力線110を流れる商用電流により電力線の周囲には磁界が形成され、コア21内には磁束が誘起される。同様にコア22,23にもそれぞれ電力線120,130を流れる商用電流によって磁束が誘起される。それぞれに誘起される磁束は、正弦波形状の交流磁束であり、これだけを考えるとコアの飽和特性によっては磁束が飽和する場合もあり得る。しかし、隣り合うコアを打ち消し巻線51,52,53でそれぞれ結合することによって、位相の異なる磁束により、誘起される電流が打ち消し合うように作用し、各コア内に商用電流によって誘起された磁束は飽和し難くなるのである。
【0033】
かかる状態において、通信装置40からの高周波信号を信号注入抽出用巻線31,32,33に通電すれば、高周波信号電流によってコア内に磁束が誘起され、当該磁束によって各電力線には高周波信号電流が誘導される(信号注入)。逆に、電力線110、120,130に重畳して流れる高周波信号電流によって電力線の周囲に生じる磁界によりコア21,22,23には磁束が誘起され、当該磁束によって信号注入抽出用巻線31,32,33には高周波信号が誘導されるのである(信号抽出)。なお、図2において遮蔽層につながる接地側はそれぞれ接地記号にて表現した。ここで、高周波信号は、各コアに対して同位相で磁束を生じる方向に巻く必要がある。同位相方向に巻くことにより、打ち消し巻線によって打ち消されることを免れるのである。この原理について、上述の商用電流による磁束の打ち消しと合わせて簡単のために単相交流で図示説明する。
【0034】
図3は高周波信号の注入抽出において打ち消し巻線が影響しないことを説明する図である。単相交流を流す2本の電力線110,120が貫通するようにコア21,22が設けられ、2つのコアを結合する打ち消し巻線51が設けられている。高周波信号の信号注入抽出用巻線31、32は、2つのコアに同位相で信号を注入抽出できるように巻かれている。同位相にという意味は、高周波信号電流によってコアに誘起される磁束が電力線に誘導する電流の向きが同じ向きになるようにということである。図3では、通信装置40から流される高周波信号電流は巻線31への電流iと巻線32への電流iに分流する。iによりコア21には磁束φが誘起され、またiによってコア22には磁束φが誘起される。図ではφとφの向きはいずれも時計回りの方向であり、これらの磁束から電力線に誘導される電流は図の手前側から奥側に向かう方向となる。
【0035】
この場合の打ち消し巻線51の作用を説明する。磁束φにより打ち消し巻線51には、φを打ち消そうとする向きに電流Iが誘導される。また磁束φによっても同様に巻線51に電流Iが誘導される。電流Iの向きと、電流Iの向きは、図のように逆方向となるため、結果として51には電流が流れない。したがって、コア内の磁束φおよびφを打ち消そうとする磁束は生じず、高周波信号電流は阻害されることなく電力線に注入されるのである。電力線に重畳していた高周波電流を抽出する場合も誘導の関係が逆になるだけで同じ考え方となる。
【0036】
次に図4において商用電流によりコア内に生じる磁束が打ち消され、磁束の飽和が生じないことを説明する。電力線とコアおよび打ち消し巻線の構成は図3の場合と同様であり、通信装置および信号注入抽出用巻線は記載していない。一組の電力線110および120に流れる単相交流電流は位相が180度異なる正弦波電流である。図ではこれを電流の向きで示しており、電力線110の電流jの向きが図の奥から手前方向、電力線120を流れる電流jは手前から奥方向とした。この場合、jにより誘起されるコア内の磁束φは図の矢印のように反時計方向であり、同様にjにより誘起される磁束φは図のごとく時計方向である。打ち消し巻線51にはφおよびφによって、それぞれを打ち消す向きに電流IとIが誘導される。これらの誘導電流IとIは同じ向きであるため、結果として、打ち消し巻き線内には、I+Iの誘導電流が流れることになる。従って、かかる誘導電流によってそれぞれのコア21,22内にはφおよびφを打ち消す向きの磁束が生じ、磁束が打ち消されることで磁束の飽和が抑制されるのである。
【0037】
以上の図3および図4での説明を合わせることで、商用電流による磁束を打ち消して磁束の飽和を抑制し、かつ高周波電流は打ち消すこと無く注入抽出が出来ることになる。説明は単相交流について行ったが、三相になっても考え方は同様であり、全相の電流が重畳することによる打ち消しの効果を得ることが可能である。
【0038】
(実施の形態3)
次に、図5は別な実施の形態を示した図である。図2と比べて信号注入抽出用巻線の構成が異なるのみで、その余の構成は同じである。図2と同じ符号を用いており、説明は省略する。
【0039】
信号注入抽出用巻線30は1本であり、各コアの中心孔を順に通るような閉曲線を描くように配置されている。ここで重要なことは、各コアに対して信号が同位相になる向きに配置されていることである。これにより、図3にて説明した場合と同様に、注入あるいは抽出される信号はそれぞれの打ち消し巻線によって打ち消されてしまうことなく、注入抽出が可能になるのである。
【0040】
図2のように各コアに個別に信号注入抽出用巻線を設ける場合に比べて構成が簡素化出来るメリットがある。
【0041】
(実施の形態4)
図6はさらに別な実施の形態を示した図である。図2と比べて信号注入抽出用巻線の構成が異なるのみで、その余の構成は同じである。図2と同じ符号を用いており、説明は省略する。
【0042】
信号注入抽出用巻線30は1本であり、複数のコアの内の1つのコアの中心孔のみを通るような閉曲線を描くように配置されている。したがって、信号が注入抽出できるのは1本の電力線(図では電力線130)のみである。電力線搬送通信においては、必ずしも全ての電力線を信号伝送に用いる必要は無いため、このような構成も可能である。この場合でも商用電流による磁束の飽和を抑制する効果を得ながら、通信を行うことができる。
【0043】
この場合、図3にて説明したような高周波信号電流が打ち消し巻線によって打ち消し合うことを免れることは出来ないが、打ち消し巻線51,52,53および他のコア21,22と共に形成される磁気回路により、高周波信号に対するインピーダンスは大きくなり、そのためコア23内の高周波信号に対応した磁束を打ち消そうとする磁束の損失が大きくなることで、高周波信号の注入抽出において受ける損失が小さくなるという効果がある。さらに図2や図5のように各コアを信号注入抽出用に用いる場合に比べて構成が簡素化出来るメリットがある。
【0044】
(実施の形態5)
図7は、上記のような信号注入抽出装置を利用したPLCのシステム構成例を説明するために、2地点間での通信として説明する図である。信号注入抽出装置としては図6にて説明した構成のものを例示に用いたが、もちろん他の実施の形態による信号注入抽出装置を用いた場合でもよい。
【0045】
図7の構成を説明する。電力線は3本が1組となって三相交流の商用電流を流すものである。説明の便宜上、各ケーブルの遮蔽層210,220,230とそれらに覆われる導体と絶縁体からなる部分110,120,130を分けて示している。電力線の任意の一地点には通信装置40と信号注入抽出装置90が設けられる。信号注入抽出装置90はそれぞれの電力線に設けられたコア21,22,23と、それらを連結するように設けられた打ち消し巻線51,52,53、および通信装置40からの高周波通信信号を流す信号注入抽出用巻線30から構成されている。一方電力線の他の地点には通信装置41と信号注入抽出装置91が設けられている。信号注入抽出装置91の説明は省略する。信号注入抽出用巻線の一端は遮蔽層220に接続されており、かかる遮蔽層は接地されている。
【0046】
上記の構成において、通信装置40から通信装置41へ信号を伝送する場合を説明する。通信装置40は伝送したい高周波信号電流を信号注入抽出用巻線30に流す。信号注入抽出用巻線30に流れた電流によってコア23中に誘起された磁束によって、それを打ち消す向きに電力線120には高周波信号電流が誘導によって流れる。ここで、信号注入抽出装置90は既に説明したように3つのコアとそれらを連結する打ち消し巻線によって構成されているため、商用電流によって磁束飽和が生じることが無く、高周波信号の注入が商用電流の大きさに影響されることは無い。
【0047】
信号は電力線120とその遮蔽層220によって構成される同軸ケーブルを伝搬し、信号注入抽出装置91の地点に至る。信号注入抽出装置91では電力線120を流れる高周波信号によりコアに磁束が誘起され、かかる磁束を打ち消す向きに信号注入抽出用巻線31に高周波信号電流が生じるため、通信装置41が当該高周波信号を受信することが出来る。ここでも信号注入抽出装置91は3つのコアとそれらを連結する打ち消し巻線によって構成されているため、商用電流によって磁束飽和が生じることが無く、高周波信号の注入が商用電流の大きさに影響されることは無い。
【0048】
【発明の効果】
以上のように本発明によれば、商用電流信号による磁束飽和を抑制することによって商用電流の大きさに影響を抑制し、また高周波信号に対する結合損失は小さいPLC用の信号注入抽出装置およびそれを利用した電力線搬送通信システムを提供することが可能である。
【図面の簡単な説明】
【図1】この発明の実施の形態として信号注入抽出装置の構成を概念的に示す図である。
【図2】この発明の異なる実施の形態として信号注入抽出装置の構成を概念的に示す図である。
【図3】この発明の原理の一つとして高周波信号電流と磁束の関係を概念的に説明する図である。
【図4】この発明の原理の一つとして商用周波電流と磁束の関係を概念的に説明する図である。
【図5】この発明の別な実施の形態として信号注入抽出装置の構成を概念的に示す図である。
【図6】この発明のさらに別な実施の形態として信号注入抽出装置の構成を概念的に示す図である。
【図7】本発明の信号注入抽出装置を用いた電力線搬送通信システムの構成を説明する概念図である。
【図8】従来の信号注入抽出装置を概念的に示す図である。
【符号の説明】
20,21,22,23 環状強磁性体コア
30,31,32,33 信号注入抽出用巻線
40,41 通信装置
51,52,53 打ち消し用巻線
80 接地
90,91 信号注入抽出装置
100 信号注入抽出装置
101 電力線
102 強磁性体コア
103 信号注入抽出用巻線
110,120,130 電力線
210,220,230 遮蔽層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a signal injection and extraction device used for power line carrier communication, and more specifically, a high frequency signal for injecting a high frequency signal into a conductor of a power line in a non-contact state or extracting a high frequency signal from a power line in a non-contact state. The present invention relates to a signal injection extraction device.
[0002]
[Prior art]
Conventionally, in order to inject an electric signal such as an alternating current into a power line in a non-contact state or to extract an electric signal from the power line, an apparatus having a transformer structure using a ferromagnetic core has been used. FIG. 8 is a perspective view conceptually showing a configuration of a conventional signal injection / extraction apparatus described in Patent Document 1. As shown in FIG. 8, the signal injection / extraction apparatus 100 includes a ferromagnetic core 102 arranged so as to surround a power line 101. In order to inject or extract a high-frequency signal, a ferrite core having high magnetic permeability and exhibiting low-loss characteristics in a high-frequency region is often used as the ferromagnetic core 102. The annular ferromagnetic core 102 does not have to be an integral structure such as a half-split structure to facilitate attachment and detachment to and from a power line. A signal injection / extraction winding 103 is arranged around the outer peripheral surface of the ferromagnetic core 102.
[0003]
[Patent Document 1]
JP 2001-319815 A
[0004]
When a high-frequency signal is injected into the power line 101 using the signal injection / extraction device 100, a high-frequency current is supplied to the winding 103 as a signal to be injected. A magnetic flux is generated inside the ferromagnetic core 102 by the high-frequency current flowing through the winding 103, and a high-frequency current is induced in the power line 101 according to the magnetic flux and the magnetic permeability of the ferromagnetic core 102. Is injected.
[0005]
When a high-frequency current flowing through the power line 101, that is, a high-frequency signal is extracted by using the device 100 shown in FIG. 8, a magnetic flux is generated in the ferromagnetic core 102 by the high-frequency current flowing through the power line 101. A high-frequency current, that is, a high-frequency signal induced in the winding 103 according to the magnetic permeability of the magnetic core 102 is extracted.
[0006]
A power line carrier communication system (hereinafter referred to as a PLC) is provided with a high frequency signal as a communication signal (several kHz to several tens MHz or higher) on a power line through which a commercial current of a commercial frequency (generally 50 Hz or 60 Hz) flows. ) Is superimposed for communication. Such a PLC is a system capable of transmitting and receiving a large amount of data using an existing power line (also referred to as a distribution line or a power line) drawn into each house or the like without using a dedicated communication line. Attention has been paid.
[0007]
In a PLC, it is necessary to inject a high-frequency signal into an existing power line through which a commercial current flows, and to extract only a high-frequency signal as a communication signal from a power line on which the high-frequency signal and the commercial current are superimposed. In this case, for the signal injection and extraction device, the commercial current acts as a commercial frequency signal in the same manner as a high frequency signal. That is, for example, a signal extracted in signal extraction is a signal in which a commercial frequency component and a high frequency component are superimposed, although there is a difference in magnitude due to the frequency characteristics of the core and the winding.
[0008]
When a signal injection / extraction device using a ferromagnetic core and a winding as described above is applied to the injection and extraction of a high-frequency signal in a PLC, the magnitude of the commercial current flowing through the power line and the high-frequency signal current flowing through the power line are superimposed. Problems arise because the sizes differ by orders of magnitude.
[0009]
An example will be described in which a signal is extracted from a power line. A magnetic field is generated in the ferromagnetic core by a magnetic field generated around the power line by a current flowing through the power line. When a current is induced in the winding in such a direction as to cancel the magnetic flux, the same signal as the current flowing through the power line is extracted from the winding. Here, the magnitude of the extracted signal differs depending on the configuration of the winding. Since a large commercial current signal and a weak high-frequency signal are superimposed and flowing on the power line, if the frequency characteristic determined by the ferromagnetic core and the winding is the same sensitivity characteristic for both signals, it is extracted. The signals are detected as superimposed signals of the same ratio. Because we want to extract only high-frequency signals for communication, the signal injection and extraction device is provided with a filter to provide frequency characteristics to cut low-frequency commercial frequency signals and pass only high-frequency signals. Is used.
[0010]
However, in this configuration, the saturation characteristic of the ferromagnetic core becomes a problem. The ferromagnetic core has a saturation characteristic. When a magnetic flux of a certain level or more is generated in the core, magnetic saturation occurs in which no more magnetic flux is induced. As described above, since there is a large level difference between the commercial current signal and the high-frequency signal, when magnetic saturation occurs due to the commercial current signal, a magnetic flux corresponding to the high-frequency signal cannot be additionally generated in the core. As a result, there is a problem that a high-frequency signal is not extracted to the winding.
[0011]
For this reason, a method of making a cut (also referred to as a core with a gap) in a closed annular ferromagnetic core, or a magnetic field canceling winding devised by the inventors of the present application is used as a device for making magnetic saturation less likely to occur. A method (Patent Document 1) and the like have been proposed.
[0012]
[Problems to be solved by the invention]
However, these methods have the effect of suppressing magnetic flux saturation due to the commercial current signal and the disadvantage of increasing the loss of necessary high-frequency signals. That is, the effect of reducing the magnetic flux also occurs for the high-frequency signal, and the magnitude of the signal to be injected and extracted is reduced (in other words, the coupling loss for the high-frequency signal is large). In addition, there is a problem that the level of the high-frequency signal to be injected and extracted fluctuates because magnetic flux saturation occurs or does not occur depending on the presence or magnitude of the commercial current.
[0013]
In order to solve such a problem, the present invention provides a signal injection / extraction apparatus which suppresses magnetic saturation of a ferromagnetic core and has small coupling loss of a high-frequency signal.
[0014]
[Means for Solving the Problems]
The present invention is directed to injecting and extracting a high-frequency signal into a power line through which a multi-phase AC current flows, and a ring-shaped ferromagnetic ferromagnetic member arranged to surround a set of a plurality of power lines for supplying the multi-phase AC current. The signal injection / extraction device includes a body core and a signal injection / extraction winding disposed on the outer peripheral surface of the annular ferromagnetic core so as to penetrate the center hole of the annular ferromagnetic core. (Claim 1)
[0015]
The multi-phase alternating current is an alternating current in which n-phase (n is a natural number of 2 or more) phase currents is a set, and a single-phase alternating current (two phases) is generally used. Or three-phase alternating current. The number of power lines corresponding to the number of phases is configured as a set, and a current having a phase difference of 180 degrees flows through each power line, and a current having a phase difference of 120 degrees flows through each power line in the case of three phases. If a core surrounding the power line is provided so that these one set of power lines pass through the center hole, the magnetic flux induced in the core by the magnetic field generated by the current flowing through each power line will be caused by the currents having different phases from each other. Since the magnetic flux cancels each other and ideally becomes zero, there is an effect that the problem that injection and extraction of a high-frequency signal cannot be performed due to magnetic saturation does not occur.
[0016]
The high-frequency signal is injected and extracted as an in-phase signal to each of a set of power lines via a signal injection and extraction winding provided in the core.
[0017]
Further, a plurality of annular ferromagnetic cores arranged to surround the periphery of each power line of a set of a plurality of power lines for supplying a multi-phase AC current, and at least one of the plurality of annular ferromagnetic cores A signal injection / extraction wire winding disposed on the outer peripheral surface of one annular ferromagnetic core so as to penetrate the center hole of one annular ferromagnetic core; and at least two annular ferromagnetic materials of the plurality of annular ferromagnetic cores The signal injection extraction device may include a canceling winding that forms a closed curve passing through the center hole of the core. (Claim 2)
[0018]
According to this configuration, the magnetic flux generated in the annular ferromagnetic core (hereinafter, simply referred to as “core”) is canceled out by each other, so that the occurrence of magnetic saturation is suppressed. This has the effect that the problem of being unable to do so is less likely to occur. In this case, two or three cores are required as compared with the case where a core is provided in a plurality of phases collectively, but there is an advantage that each core can be made smaller. In addition, it is particularly effective when it is difficult to provide a core so as to penetrate all at once, for example, because the power lines are arranged at intervals from each other, in terms of the grounding location and the size of the core. .
[0019]
The canceling winding is provided so as to penetrate the center holes of two cores adjacent to each other, and the direction of the penetration is arranged such that the directions of currents induced by magnetic fluxes generated in the respective cores are opposite to each other. Is effective. (Claim 3)
[0020]
The phase currents are currents of the same frequency having different phases, and currents having different phases are superposed and induced on the canceling windings penetrated by the adjacent cores. When the currents of all phases are superimposed on each other, the magnitudes ideally become zero by canceling each other out, so that the magnetic flux generated by the alternating current to the core is canceled out. As a result, magnetic saturation does not occur.
[0021]
Even if the signal injection / extraction windings are individually provided for each core, they are arranged on the outer peripheral surface so that one signal injection / extraction winding passes through the center holes of a plurality of cores so as to form one curve. May be performed. In any case, the signal injection and extraction winding needs to be arranged in a direction in which the high-frequency signal is injected and extracted in the same phase on the power line of each phase. (Claim 4)
[0022]
This is because, for example, in the case of signal injection, the magnetic flux generated in each core by the high-frequency signal current flowing through the signal injection and extraction winding is in phase, and the high-frequency current induced in the canceling winding by the magnetic flux is This means that high-frequency currents induced by magnetic fluxes generated in other cores penetrating the same cancellation winding cancel each other out. Therefore, for high-frequency current, the canceling winding does not hinder the injection and extraction.
[0023]
The signal injection / extraction winding may be provided only on the core of any one phase. Also in this case, as a result of the suppression of the magnetic saturation, the effect that the high-frequency signal injected or extracted by the signal injection / extraction line is not affected by the alternating current of the commercial frequency can be similarly obtained. There is a disadvantage that the canceling winding acts on the high-frequency signal current in a direction that hinders the injection and extraction, but because the canceling winding is provided in a form that penetrates other cores as well. However, the impedance to the high-frequency signal becomes relatively high, and the degree of hindering the injection and extraction of the high-frequency signal is not large. This configuration is preferable when importance is attached to the merit that the overall device configuration can be relatively simplified.
[0024]
Using a signal injection / extraction device as described above, if a PLC uses at least one power line as a transmission line among a set of power lines for supplying a multi-phase AC current, the commercial current flowing through the power line can be reduced. It is possible to provide a power line carrier communication system in which the influence on the communication quality due to the size is reduced, and the injection and extraction loss of the communication signal is reduced. (Claim 5)
[0025]
Embodiment
(Embodiment 1)
The AC current for power distribution is generally a single-phase or three-phase multi-phase AC current, and the distribution line is composed of a set of power lines for flowing each phase current. Hereinafter, three-phase alternating current will be described as an example, but it is possible to generalize the case of n-phase.
[0026]
FIG. 1 is a cross-sectional view of a configuration in which a core is provided so that a set of power lines for supplying three-phase alternating current passes therethrough, in a cross-sectional direction perpendicular to the extending direction of the power lines. The three power lines 110, 120, and 130 for supplying three-phase alternating current are general power lines each including a conductor and an insulator as main components. An annular ferromagnetic core 20 is provided so that three power lines pass therethrough. A signal injection / extraction winding 30 is provided on the outer peripheral surface of the core, and is connected to the communication device 40. Here, providing the winding on the outer peripheral surface of the core means that a wire is arranged so as to penetrate the center hole of the annular core at least once, and the number of turns, that is, the number of times of passing through the center hole of the core is determined by signal injection extraction. Can be designed according to the desired sensitivity. The core has a depth in the direction along the power line (perpendicular to the plane of the drawing), but the length can be arbitrarily designed. Each cross-sectional dimension can be designed according to the size of the power line to be applied. The material of the core is ferrite or iron, but is not particularly limited as long as the material is generally called a ferromagnetic material.
[0027]
On the three power lines, a commercial current of an alternating current of a commercial frequency, which is different in phase by 120 degrees obtained by equally dividing 360 degrees by the number of phases of 3 and is almost equal in magnitude, flows. A magnetic field is formed around the power line by each commercial current, and a magnetic flux is induced in the core 20. Considering only the magnetic flux induced by the commercial current flowing through one power line, the magnetic flux is an AC magnetic flux that changes with time in a sine wave shape, and the magnetic flux may be saturated depending on the saturation characteristics of the core. However, since the magnetic flux due to the current flowing through the power line of the other phase is superimposed on the magnetic flux, the magnetic fluxes cancel each other out, and ideally become zero. Ideally, this means that the magnitude of the commercial current of each phase does not exactly match or the phase difference deviates strictly from 120 degrees due to factors such as the impedance characteristics of each power line. This is possible, and an ideal state may be considered in the description of the present invention.
[0028]
In this state, when a high-frequency signal from the communication device 40 is applied to the signal injection / extraction winding 30, magnetic flux is induced in the core by the high-frequency signal current, and the magnetic flux induces a high-frequency signal current in each power line. (Signal injection). Conversely, a magnetic field generated around the power line by a high-frequency signal current flowing superimposed on the power line induces a magnetic flux in the core 20, and the magnetic flux induces a high-frequency signal in the signal injection / extraction winding 30 ( Signal extraction).
[0029]
In some cases, the power line has a shield layer made of a conductor on the outer periphery of the insulator, and the shield layer is often grounded. Since the shielding layer is a layer for shielding a magnetic field generated outside due to a current flowing through the conductor, the magnetic field is extremely weak outside the shielding layer. Therefore, in the power line having the shielding layer, the portion where the core is provided in the above description is a portion where the shielding layer of each power line is removed. For example, in the vicinity of a connection portion of a power line connection box, a transformer, a switch, or the like, a shielding layer is removed or many portions can be removed. In addition, the shielding layer may be provided individually for the power lines of each phase, or may be provided so as to enclose the three conductors collectively in three phases. no problem.
[0030]
In a communication device, one end of two terminals for injecting and extracting a high-frequency signal is often connected to a shielding layer of a power line as a ground side. In that sense, the grounding 80 is shown in FIG. Therefore, the signal injected into the power line propagates between the power line and the shielding layer as if it were a coaxial cable for communication. In the case of a power line having no shielding layer, another ground wire corresponding to ground may be provided. In this case, the high-frequency signal propagates between each power line and the ground wire.
[0031]
(Embodiment 2)
FIG. 2 illustrates another embodiment of the present invention. In FIG. 2, three cores 21, 22, 23 are provided such that each of the three power lines 110, 120, 130 penetrates individually. In addition, canceling windings 51, 52, and 53 are provided, respectively, by drawing a curve through which adjacent cores penetrate. The number of canceling windings can be configured by n × (n−1) / 2 in the case of n-phase alternating current, but becomes three in the case of three-phase alternating current (n = 3). Also, signal injection / extraction windings 31, 32, 33 connected to the communication device 40 are individually provided in each core. In the figure, one end of the signal injection / extraction winding is described as being connected to the ground, but is electrically connected to the ground at the signal input / output terminal of the communication device 40, as in the case of FIG. The signal injection / extraction winding forms a closed curve via the communication device.
[0032]
A magnetic field is formed around the power line by the commercial current flowing through the power line 110, and a magnetic flux is induced in the core 21. Similarly, magnetic flux is induced in the cores 22 and 23 by the commercial current flowing through the power lines 120 and 130, respectively. The magnetic flux induced in each case is a sinusoidal AC magnetic flux, and considering this alone, the magnetic flux may be saturated depending on the saturation characteristics of the core. However, by coupling the adjacent cores with the canceling windings 51, 52, and 53, respectively, the currents induced by the magnetic fluxes having different phases act so as to cancel each other, and the magnetic flux induced by the commercial current in each core. Is less likely to saturate.
[0033]
In this state, when a high-frequency signal from the communication device 40 is supplied to the signal injection / extraction windings 31, 32, and 33, a magnetic flux is induced in the core by the high-frequency signal current, and the magnetic flux causes a high-frequency signal current to flow through each power line. Is induced (signal injection). Conversely, magnetic fluxes are induced in the cores 21, 22, 23 by a magnetic field generated around the power lines due to the high-frequency signal current flowing superimposed on the power lines 110, 120, 130, and the magnetic flux induces the signal injection / extraction windings 31, 32. , 33 are guided by a high-frequency signal (signal extraction). In FIG. 2, the ground sides connected to the shielding layer are represented by ground symbols. Here, the high-frequency signal needs to be wound in a direction in which a magnetic flux is generated in the same phase with respect to each core. By winding in the same phase direction, it is prevented from being canceled by the canceling winding. This principle will be illustrated and described with a single-phase alternating current for simplicity, together with the above-described cancellation of magnetic flux by the commercial current.
[0034]
FIG. 3 is a diagram for explaining that the canceling winding does not affect the injection and extraction of the high-frequency signal. Cores 21 and 22 are provided so that two power lines 110 and 120 through which a single-phase AC flows penetrate, and a canceling winding 51 that connects the two cores is provided. The signal injection and extraction windings 31 and 32 for high frequency signals are wound around two cores so that signals can be injected and extracted in the same phase. The phrase “in phase” means that the magnetic flux induced in the core by the high-frequency signal current has the same direction as the current induced in the power line. In FIG. 3, the high-frequency signal current flowing from the communication device 40 is the current i A And current i to winding 32 B Divert to i A The magnetic flux φ A Is induced, and i B The magnetic flux φ B Is induced. In the figure, φ A And φ B Are clockwise directions, and the current induced on the power line from these magnetic fluxes is from the near side to the far side in the figure.
[0035]
The operation of the canceling winding 51 in this case will be described. Magnetic flux φ A The cancellation winding 51 has φ A Current I in the direction to cancel A Is induced. Also the magnetic flux φ B Similarly, the current I B Is induced. Current I A And the current I B Is reversed as shown in the figure, and as a result, no current flows through 51. Therefore, the magnetic flux φ in the core A And φ B Is not generated, and the high-frequency signal current is injected into the power line without hindrance. When extracting a high-frequency current superimposed on a power line, the same concept is used, except that the relation of induction is reversed.
[0036]
Next, referring to FIG. 4, it will be described that the magnetic flux generated in the core by the commercial current is canceled and the saturation of the magnetic flux does not occur. The configurations of the power line, the core, and the canceling winding are the same as those in FIG. 3, and the communication device and the signal injection and extraction winding are not described. The single-phase alternating current flowing through the pair of power lines 110 and 120 is a sinusoidal current having a phase difference of 180 degrees. In the figure, this is indicated by the direction of the current, and the current j 1 Is the direction from the back of the figure to the front, and the current j flowing through the power line 120 2 Is from the front to the back. In this case, j 1 Magnetic flux φ in the core induced by 1 Is counterclockwise as indicated by the arrow in the figure, and j 2 Magnetic flux φ induced by 2 Is clockwise as shown in the figure. The cancellation winding 51 has φ 1 And φ 2 The current I in the direction to cancel each 1 And I 2 Is induced. These induced currents I 1 And I 2 Are in the same direction, and consequently, I 1 + I 2 Will flow. Therefore, φ is generated in each of the cores 21 and 22 by the induced current. 1 And φ 2 Is generated, and the saturation of the magnetic flux is suppressed by canceling the magnetic flux.
[0037]
By combining the above description with FIGS. 3 and 4, the magnetic flux due to the commercial current is canceled to suppress the saturation of the magnetic flux, and the high-frequency current can be injected and extracted without canceling. Although the description has been given of a single-phase alternating current, the concept is the same even in the case of three-phase alternating current, and it is possible to obtain a canceling effect due to superposition of currents of all phases.
[0038]
(Embodiment 3)
Next, FIG. 5 is a diagram showing another embodiment. Only the configuration of the signal injection / extraction winding is different from that of FIG. 2, and the remaining configuration is the same. The same reference numerals as in FIG. 2 are used, and the description is omitted.
[0039]
The signal injection / extraction winding 30 is one, and is arranged so as to draw a closed curve passing through the center holes of the respective cores in order. What is important here is that the signals are arranged in such a direction as to be in phase with each core. As a result, similarly to the case described with reference to FIG. 3, the signal to be injected or extracted can be injected and extracted without being canceled by the respective canceling windings.
[0040]
There is an advantage that the configuration can be simplified as compared with a case where signal injection / extraction windings are individually provided for each core as shown in FIG.
[0041]
(Embodiment 4)
FIG. 6 is a diagram showing still another embodiment. Only the configuration of the signal injection / extraction winding is different from that of FIG. 2, and the remaining configuration is the same. The same reference numerals as in FIG. 2 are used, and the description is omitted.
[0042]
The signal injection / extraction winding 30 is one, and is arranged so as to draw a closed curve passing only through the center hole of one of the plurality of cores. Therefore, a signal can be injected and extracted from only one power line (power line 130 in the figure). In power line carrier communication, such a configuration is also possible because not all power lines need be used for signal transmission. Also in this case, communication can be performed while obtaining the effect of suppressing the saturation of the magnetic flux due to the commercial current.
[0043]
In this case, it is inevitable that the high-frequency signal currents described with reference to FIG. 3 are canceled by the canceling windings, but the magnetic field formed with the canceling windings 51, 52, 53 and the other cores 21, 22 is not eliminated. By the circuit, the impedance for the high-frequency signal is increased, so that the loss of the magnetic flux for canceling the magnetic flux corresponding to the high-frequency signal in the core 23 is increased, so that the loss received in the injection and extraction of the high-frequency signal is reduced. There is. Further, there is an advantage that the configuration can be simplified as compared with the case where each core is used for signal injection extraction as shown in FIGS.
[0044]
(Embodiment 5)
FIG. 7 is a diagram illustrating communication between two points in order to explain an example of a PLC system configuration using the above-described signal injection and extraction device. The signal injection / extraction device having the configuration described with reference to FIG. 6 is used as an example, but a signal injection / extraction device according to another embodiment may be used.
[0045]
The configuration of FIG. 7 will be described. The power lines are a set of three lines through which a three-phase AC commercial current flows. For convenience of explanation, the shielding layers 210, 220, and 230 of each cable and the portions 110, 120, and 130 that are covered by the conductors and insulators are separately illustrated. A communication device 40 and a signal injection / extraction device 90 are provided at an arbitrary point on the power line. The signal injection / extraction device 90 flows high-frequency communication signals from the cores 21, 22, 23 provided on the respective power lines, the canceling windings 51, 52, 53 provided to connect them, and the communication device 40. It comprises a signal injection / extraction winding 30. On the other hand, a communication device 41 and a signal injection / extraction device 91 are provided at other points on the power line. The description of the signal injection and extraction device 91 is omitted. One end of the signal injection / extraction winding is connected to a shielding layer 220, and the shielding layer is grounded.
[0046]
In the above configuration, a case where a signal is transmitted from the communication device 40 to the communication device 41 will be described. The communication device 40 causes a high-frequency signal current to be transmitted to flow through the signal injection / extraction winding 30. By the magnetic flux induced in the core 23 by the current flowing through the signal injection / extraction winding 30, a high-frequency signal current flows through the power line 120 by induction in such a direction as to cancel the magnetic flux. Here, since the signal injection / extraction device 90 is constituted by the three cores and the canceling windings connecting them as described above, no magnetic flux saturation occurs due to the commercial current, and the injection of the high-frequency signal is performed by the commercial current. It is not affected by the size of.
[0047]
The signal propagates through the coaxial cable constituted by the power line 120 and its shielding layer 220, and reaches the point of the signal injection / extraction device 91. In the signal injection / extraction device 91, a magnetic flux is induced in the core by a high-frequency signal flowing through the power line 120, and a high-frequency signal current is generated in the signal injection / extraction winding 31 in such a direction as to cancel the magnetic flux, so that the communication device 41 receives the high-frequency signal. You can do it. Also in this case, since the signal injection / extraction device 91 is constituted by three cores and a canceling winding connecting them, no magnetic flux saturation occurs due to the commercial current, and the injection of the high-frequency signal is affected by the magnitude of the commercial current. Never.
[0048]
【The invention's effect】
As described above, according to the present invention, the influence of the magnitude of the commercial current is suppressed by suppressing the magnetic flux saturation caused by the commercial current signal, and the coupling loss for the high-frequency signal is small. It is possible to provide a power line carrier communication system using the same.
[Brief description of the drawings]
FIG. 1 is a diagram conceptually showing a configuration of a signal injection and extraction device as an embodiment of the present invention.
FIG. 2 is a diagram conceptually showing a configuration of a signal injection and extraction device as a different embodiment of the present invention.
FIG. 3 is a diagram conceptually illustrating a relationship between a high-frequency signal current and a magnetic flux as one of the principles of the present invention.
FIG. 4 is a diagram conceptually illustrating a relationship between a commercial frequency current and a magnetic flux as one of the principles of the present invention.
FIG. 5 is a diagram conceptually showing a configuration of a signal injection and extraction device as another embodiment of the present invention.
FIG. 6 is a diagram conceptually showing a configuration of a signal injection and extraction device as still another embodiment of the present invention.
FIG. 7 is a conceptual diagram illustrating a configuration of a power line carrier communication system using the signal injection and extraction device of the present invention.
FIG. 8 is a diagram conceptually showing a conventional signal injection and extraction device.
[Explanation of symbols]
20,21,22,23 Annular ferromagnetic core
30,31,32,33 Signal injection extraction winding
40, 41 communication device
51,52,53 Winding for canceling
80 ground
90,91 signal injection and extraction device
100 signal injection extraction device
101 Power line
102 Ferromagnetic core
103 Winding for signal injection extraction
110, 120, 130 Power line
210, 220, 230 shielding layer

Claims (5)

複数相交流電流を通電するための一組の複数の電力線の周囲を取り囲むように配置された環状強磁性体コアと、該環状強磁性体コアの中心孔を貫通するように該環状強磁性体コアの外周面に配置された信号注入抽出用巻線とを備える電力線搬送通信用の信号注入抽出装置。An annular ferromagnetic core arranged to surround a set of a plurality of power lines for passing a multi-phase alternating current, and the annular ferromagnetic material penetrating a center hole of the annular ferromagnetic core A signal injection / extraction device for power line carrier communication, comprising: a signal injection / extraction winding disposed on an outer peripheral surface of a core. 複数相交流電流を通電するための一組の複数の電力線の、それぞれの電力線の周囲を囲むように配置された複数の環状強磁性体コアと、該複数の環状強磁性体コアの少なくとも一つの環状強磁性体コアの中心孔を貫通するように該環状強磁性体コア外周面に配置された信号注入抽出用線巻線と、上記複数の環状強磁性体コアのうちの少なくとも2つの環状強磁性体コアの中心孔を貫通するような閉曲線を形成する打ち消し用巻線とを備える電力線搬送通信用の信号注入抽出装置。A plurality of ring-shaped ferromagnetic cores of a set of a plurality of power lines for passing a multi-phase alternating current, the plurality of ring-shaped ferromagnetic cores arranged so as to surround each power line; and at least one of the plurality of ring-shaped ferromagnetic cores A signal injection and extraction wire winding disposed on the outer peripheral surface of the annular ferromagnetic core so as to penetrate a center hole of the annular ferromagnetic core; A signal injection / extraction device for power line carrier communication, comprising: a canceling winding forming a closed curve passing through a center hole of a magnetic core. n相(nは2以上の自然数)の相からなる交流電流を通電するための一組の複数の電力線の、それぞれの電力線の周囲を囲むように配置されたn個の環状強磁性体コアから任意に選ばれる2つの環状強磁性体コアからなるn×(n−1)/2個の環状強磁性体コアの組み合わせにおいて、前記打ち消し用巻線は、それぞれの組み合わせを形成する2つの環状強磁性体コアの中心孔を貫通するような閉曲線で構成されたn×(n−1)/2本の巻線であって、当該2つの環状強磁性体コア内に誘起される磁束によって前記打ち消し用巻線に誘導される電流の向きが互いに同方向になるように配置されていることを特徴とする、請求項2に記載の電力線搬送通信用の信号注入抽出装置。A set of a plurality of power lines for passing an alternating current composed of n phases (n is a natural number of 2 or more) is formed of n annular ferromagnetic cores arranged so as to surround each power line. In a combination of nx (n-1) / 2 annular ferromagnetic cores composed of two arbitrarily selected annular ferromagnetic cores, the canceling winding is formed of two annular ferromagnetic cores forming each combination. Nx (n-1) / 2 windings formed by a closed curve penetrating the center hole of the magnetic core, wherein the canceling is performed by a magnetic flux induced in the two annular ferromagnetic cores. 3. The signal injection and extraction device for power line carrier communication according to claim 2, wherein the directions of currents induced in the power windings are arranged in the same direction. 前記信号注入抽出用巻線は、前記複数の電力線に同位相で信号が注入できるように設けられていることを特徴とする、請求項2または請求項3に記載の電力線搬送通信用の信号注入抽出装置。The signal injection for power line carrier communication according to claim 2 or 3, wherein the signal injection and extraction winding is provided so that signals can be injected into the plurality of power lines in the same phase. Extraction device. 複数相交流電流を通電するための一組の電力線のうち、少なくとも1本の電力線を伝送路として利用し、請求項1乃至請求項4のいずれかに記載の信号注入抽出装置を用いて信号の注入または抽出をすることを特徴とする電力線搬送通信システム。A signal injection and extraction device according to any one of claims 1 to 4, wherein at least one power line of a set of power lines for supplying a multi-phase alternating current is used as a transmission line. A power line communication system for performing injection or extraction.
JP2003151762A 2003-05-29 2003-05-29 Signal injection extraction apparatus for power line carrier communication and power line carrier communication system Expired - Fee Related JP3788443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003151762A JP3788443B2 (en) 2003-05-29 2003-05-29 Signal injection extraction apparatus for power line carrier communication and power line carrier communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151762A JP3788443B2 (en) 2003-05-29 2003-05-29 Signal injection extraction apparatus for power line carrier communication and power line carrier communication system

Publications (2)

Publication Number Publication Date
JP2004356917A true JP2004356917A (en) 2004-12-16
JP3788443B2 JP3788443B2 (en) 2006-06-21

Family

ID=34047160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151762A Expired - Fee Related JP3788443B2 (en) 2003-05-29 2003-05-29 Signal injection extraction apparatus for power line carrier communication and power line carrier communication system

Country Status (1)

Country Link
JP (1) JP3788443B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300364A (en) * 2006-04-28 2007-11-15 Toyo Networks & System Integration Co Ltd Power line communication system
JP2010136108A (en) * 2008-12-04 2010-06-17 Smk Corp Coupler between different phase lines
CN112260412A (en) * 2020-09-27 2021-01-22 合肥新线通信科技有限公司 Communication circuit, power supply circuit, communication and power supply circuit based on multiple shielding layers
JP6870754B1 (en) * 2020-01-15 2021-05-12 住友電気工業株式会社 Communication system and communication equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300364A (en) * 2006-04-28 2007-11-15 Toyo Networks & System Integration Co Ltd Power line communication system
JP4706044B2 (en) * 2006-04-28 2011-06-22 ネッツエスアイ東洋株式会社 Power line communication system
JP2010136108A (en) * 2008-12-04 2010-06-17 Smk Corp Coupler between different phase lines
JP4652442B2 (en) * 2008-12-04 2011-03-16 Smk株式会社 Interphase wire coupler
JP6870754B1 (en) * 2020-01-15 2021-05-12 住友電気工業株式会社 Communication system and communication equipment
WO2021145040A1 (en) * 2020-01-15 2021-07-22 住友電気工業株式会社 Communication system and communication device
CN112260412A (en) * 2020-09-27 2021-01-22 合肥新线通信科技有限公司 Communication circuit, power supply circuit, communication and power supply circuit based on multiple shielding layers
CN112260412B (en) * 2020-09-27 2022-12-27 合肥新线通信科技有限公司 Communication circuit, power supply circuit, communication and power supply circuit based on multiple shielding layers

Also Published As

Publication number Publication date
JP3788443B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
AU2005299964A1 (en) Inductive coupler for power line communications
WO2006064499B1 (en) Magnetic induction device
US6885270B2 (en) Wire core inductive devices having a biassing magnet and methods of making the same
JP6604917B2 (en) Common mode choke coil
JP2006508589A (en) Inductive coupler structure for power line transmission
KR101198031B1 (en) Electromagnetic field shielding transformer which has the separation type of multiple magnetic field
JP4832454B2 (en) Power line carrier communication equipment
JP2008306550A (en) Power line carriage communication system, and capacitive signal coupling apparatus
JP3788443B2 (en) Signal injection extraction apparatus for power line carrier communication and power line carrier communication system
US6642828B2 (en) Airgapped magnetic component
JP2003318031A (en) Noise filter
JPS5941297B2 (en) power transformer
JP7228774B2 (en) binding device
JP2010272809A (en) Common mode choke coil and signal transmission circuit using the same
JP5140022B2 (en) Signal coupling device for power line carrier communication
JP2008124552A (en) Power line communication device
EP3128663A1 (en) Active screening for an electrical machine
JP2001319815A (en) Signal input and output device
JPH07297035A (en) Noise removal unit and transmission system using that unit
JP2012064777A (en) Noise filter, cable with noise filter, and printed wiring board with noise filter
JP6792477B2 (en) Transformer
RU2061975C1 (en) Noise-proof transformer
JPH03119610A (en) Power source line for preventing noise obstruction
JPWO2004112274A1 (en) Signal injection/extraction device
JP4114615B2 (en) Signal injection extraction device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees