JP2005220363A - High strength coated sintered alloy - Google Patents

High strength coated sintered alloy Download PDF

Info

Publication number
JP2005220363A
JP2005220363A JP2004026166A JP2004026166A JP2005220363A JP 2005220363 A JP2005220363 A JP 2005220363A JP 2004026166 A JP2004026166 A JP 2004026166A JP 2004026166 A JP2004026166 A JP 2004026166A JP 2005220363 A JP2005220363 A JP 2005220363A
Authority
JP
Japan
Prior art keywords
sintered alloy
coating
coated sintered
resistance
strength coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004026166A
Other languages
Japanese (ja)
Inventor
Itsuo Yazaki
逸夫 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2004026166A priority Critical patent/JP2005220363A/en
Publication of JP2005220363A publication Critical patent/JP2005220363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength coated sintered alloy having excellent breakage resistance and chipping resistance since, in a recent production field, full automation progresses, and improvement in the breakage resistance and chipping resistance of a cutting tool are required. <P>SOLUTION: The high strength coated sintered alloy having excellent breakage resistance and chipping resistance is obtained by coating the surface of a base body of a sintered alloy composed of: at least one kind of hard phase selected from the carbides and nitrides of the group 4a, 5a and 6a elements in the Periodic Table and their mutual solid solution; and a bonding phase containing, as a principal component, Ni, Co or an Ni-Co alloy with a film, wherein the average spacing of cracks in the film is 20 to 50 μm, and the standard deviation of the crack spacing in the film is ≤15 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐衝撃性、耐欠損性に優れる高強度被覆焼結合金に関し、特に切削工具又は耐摩耗工具に代表される工具用として最適な高強度被覆焼結合金に関するものである。 The present invention relates to a high-strength coated sintered alloy that is excellent in impact resistance and fracture resistance, and more particularly to a high-strength coated sintered alloy that is optimal for tools represented by cutting tools or wear-resistant tools.

超硬合金、サーメット等の焼結合金の基体の表面に高硬質な被膜を被覆してなる被覆焼結合金は、耐摩耗性に優れているため切削工具などに使用されている。被覆焼結合金にショットピーニング処理を施すと、ショットピーニング処理により生じたクラックにより被膜の残留引張応力が緩和し、耐チッピング性、耐欠損性が向上する。ショットピーニング処理を施した被覆焼結合金の従来技術として、被膜のクラック間隔の平均値が0.1μm以上、5.0μm未満である工具用部材がある(例えば、特許文献1参照。)。 A coated sintered alloy obtained by coating a surface of a base of a sintered alloy such as cemented carbide or cermet with a hard coating is used for a cutting tool because of its excellent wear resistance. When the coated sintered alloy is subjected to shot peening treatment, the residual tensile stress of the coating is relaxed by cracks generated by shot peening treatment, and chipping resistance and fracture resistance are improved. As a prior art of the coated sintered alloy subjected to the shot peening treatment, there is a tool member having an average value of the crack interval of the coating of 0.1 μm or more and less than 5.0 μm (for example, see Patent Document 1).

特開平5−116003号公報Japanese Patent Laid-Open No. 5-116003

近年の製造現場では無人化が進み、切削工具の耐欠損性、耐チッピング性の向上が求められてきた。そこで本発明は、耐欠損性、耐チッピング性に優れた高強度被覆焼結合金の提供を目的とするものである。 In recent years, unmanned production has progressed in manufacturing sites, and it has been demanded to improve chipping resistance and chipping resistance of cutting tools. Accordingly, an object of the present invention is to provide a high-strength coated sintered alloy having excellent fracture resistance and chipping resistance.

本発明者は、被覆焼結合金の切削性能における信頼性向上について検討を行ったところ、クラック間隔のばらつきを一定値以下に制御することにより、被覆焼結合金の耐欠損性、耐チッピング性のばらつきを抑制し、安定した工具寿命を得られることができた。 The present inventor has examined the reliability improvement in the cutting performance of the coated sintered alloy, and by controlling the variation in the crack interval to a certain value or less, the fracture resistance and chipping resistance of the coated sintered alloy can be reduced. The variation was suppressed, and a stable tool life could be obtained.

すなわち、本発明の高強度被覆焼結合金は、周期律表4a、5a、6a族元素の炭化物、窒化物およびこれらの相互固溶体の中から選ばれた少なくとも1種の硬質相と、Ni、CoまたはNi−Co合金を主成分とする結合相とからなる焼結合金の基体の表面に被膜を被覆した高強度被覆焼結合金において、該被膜の平均クラック間隔が20〜50μmであり、該被膜のクラック間隔の標準偏差が15μm以下であることを特徴とする。 That is, the high-strength coated sintered alloy of the present invention comprises at least one hard phase selected from carbides, nitrides and their mutual solid solutions of the periodic table 4a, 5a, 6a elements, Ni, Co Alternatively, in a high-strength coated sintered alloy in which a coating is coated on the surface of a sintered alloy base composed of a binder phase mainly composed of a Ni—Co alloy, the average crack interval of the coating is 20 to 50 μm, and the coating The standard deviation of the crack interval is 15 μm or less.

本発明の高強度被覆焼結合金の焼結合金の基体は、周期律表4a、5a、6a族元素の炭化物、窒化物およびこれらの相互固溶体の中から選ばれた少なくとも1種の硬質相と、Ni、CoまたはNi−Co合金を主成分とする結合相とからなる焼結合金である。硬質相として、例えばTiC、ZrC、HfC、VC、NbC、TaC、WC、Cr32、Mo2C、TiN、ZrN、HfN、VN、NbN、TaN、Ti(C,N)、(Ti,Ta)C、(Ti,Ta,W)C、(Ti,Ta,Nb,W)C、(Ti,Ta)(C,N)、(Ti,Ta,W)(C,N)を挙げることができる。また、本発明においてNi、CoまたはNi−Co合金を主成分とする結合相とは、Ni、Co、Ni−Co合金またはこれらに硬質相元素が20重量%以下固溶した合金を示す。焼結合金の中でも、WCを主成分とするWC基超硬合金と、TiCまたはTi(C,N)を主成分とするTi化合物基サーメットは、耐摩耗性に優れるため特に好ましい。その中でもWCを主成分とするWC基超硬合金は特に耐欠損性に優れるためさらに好ましい。 The sintered alloy base of the high-strength coated sintered alloy of the present invention comprises at least one hard phase selected from carbides, nitrides and mutual solid solutions of the periodic table 4a, 5a, and 6a group elements. , A sintered alloy comprising a binder phase mainly composed of Ni, Co or Ni—Co alloy. As the hard phase, for example, TiC, ZrC, HfC, VC, NbC, TaC, WC, Cr 3 C 2 , Mo 2 C, TiN, ZrN, HfN, VN, NbN, TaN, Ti (C, N), (Ti, (Ta) C, (Ti, Ta, W) C, (Ti, Ta, Nb, W) C, (Ti, Ta) (C, N), (Ti, Ta, W) (C, N) Can do. In the present invention, the binder phase mainly composed of Ni, Co, or Ni—Co alloy refers to Ni, Co, Ni—Co alloy, or an alloy in which a hard phase element is dissolved in 20 wt% or less. Among sintered alloys, a WC-based cemented carbide mainly composed of WC and a Ti compound-based cermet mainly composed of TiC or Ti (C, N) are particularly preferable because of excellent wear resistance. Among them, a WC-based cemented carbide mainly composed of WC is more preferable because it is particularly excellent in fracture resistance.

本発明の高強度被覆焼結合金の被膜は、周期律表4a、5a、6a族元素、Al、Siの炭化物、窒化物、酸化物、ホウ化物およびこれらの相互固溶体、ダイヤモンド、DLC並びに窒化硼素の中から選ばれた少なくとも1種からなる。具体的には、TiC、TiN、Ti(C,N)、(Ti,Al)N、(Ti,Si)N、Al23などを挙げることができる。被膜は1層からなる単層膜または2層以上からなる複層膜でも良く、被膜を被覆する方法としては化学蒸着法または物理蒸着法を挙げることできる。その中でも密着性が高く、残留引張応力が生じる化学蒸着法で被膜が被覆された高強度被覆焼結合金に本発明を応用すると耐欠損性を向上させる効果が高いため、さらに好ましい。 The high-strength coated sintered alloy film of the present invention comprises periodic table 4a, 5a, 6a group elements, Al, Si carbides, nitrides, oxides, borides and their mutual solid solutions, diamond, DLC and boron nitride. It consists of at least one selected from among the above. Specifically, TiC, TiN, Ti (C, N), (Ti, Al) N, (Ti, Si) N, Al 2 O 3 and the like can be mentioned. The coating may be a single-layer film composed of one layer or a multilayer film composed of two or more layers. Examples of the method for coating the film include chemical vapor deposition and physical vapor deposition. Among them, it is more preferable to apply the present invention to a high-strength coated sintered alloy having high adhesion and coated with a chemical vapor deposition method that generates residual tensile stress, because the effect of improving fracture resistance is high.

高強度被覆焼結合金の被膜の平均クラック間隔を小さくすると残留引張応力を小さくすることができる。被膜の残留引張応力を小さくすると高強度被覆焼結合金の耐欠損性、耐チッピング性を向上させる。本発明の高強度被覆焼結合金において被膜の平均クラック間隔が50μmを超えると耐欠損性、耐チッピング性を低下させ、逆に20μm未満とするとクラック間隔のばらつきを制御することが難しい。そのため、被膜の平均クラック間隔を20〜50μmとした。その中でも20〜40μmがさらに好ましく、その中でも20〜30μmがさらに好ましい。 When the average crack interval of the high-strength coated sintered alloy coating is reduced, the residual tensile stress can be reduced. Decreasing the residual tensile stress of the coating improves the fracture resistance and chipping resistance of the high strength coated sintered alloy. In the high-strength coated sintered alloy of the present invention, if the average crack interval of the coating exceeds 50 μm, the chipping resistance and chipping resistance are lowered, and conversely, if it is less than 20 μm, it is difficult to control the variation of the crack interval. Therefore, the average crack interval of the coating was set to 20 to 50 μm. Among them, 20 to 40 μm is more preferable, and 20 to 30 μm is more preferable among them.

被膜のクラック間隔のばらつきが大きいと、被膜の残留引張応力のばらつきが大きくなる。高強度被覆焼結合金を切削工具として用いた場合、残留引張応力の大きいところが刃先近くに存在したとき、残留引張応力の大きいところが破壊の起源となって欠損し、その被覆焼結合金の耐欠損性を低下させる。また、切削加工において被膜のクラック間隔のばらつきが大きいと耐欠損性の低い切削工具が混じるため、一定数切削加工して交換するという定数交換を行うことができず、製造現場の無人化に大きな障害となる。そのため、被膜のクラック間隔の標準偏差を15μm以下とした。その中でも12μm以下がさらに好ましい。 When the variation in the crack interval of the coating is large, the variation in the residual tensile stress of the coating becomes large. When a high-strength coated sintered alloy is used as a cutting tool, when a portion with a large residual tensile stress is present near the cutting edge, a portion with a large residual tensile stress breaks down as a cause of fracture, and the crack resistance of the coated sintered alloy Reduce sex. In addition, if the variation in crack spacing of the coating is large in cutting, cutting tools with low fracture resistance are mixed, so it is not possible to perform constant exchange by cutting and exchanging a certain number of times, which is great for unmanned production sites It becomes an obstacle. Therefore, the standard deviation of the crack interval of the coating is set to 15 μm or less. Among them, 12 μm or less is more preferable.

被膜のクラック間隔の測定方法としていくつか挙げることができる。例えば、クラック間隔を測定する面を鏡面研摩し、フッ硝酸にてエッチングしてクラックを容易に観察することができる。フッ硝酸を完全に除去した後に鏡面研磨面を75〜150倍の倍率で光学顕微鏡にて光顕写真を撮影する。得られた光顕写真に数本の線を引き、クラックとその線の交点間の距離を求め、それをクラック間隔とする。少なくとも50箇所のクラック間隔を求め、それらの値から平均クラック間隔およびクラック間隔の標準偏差を求めることができる。 There are several methods for measuring the crack interval of the coating. For example, the surface on which the crack interval is measured can be mirror polished and etched with hydrofluoric acid to easily observe the crack. After completely removing the fluorinated nitric acid, the mirror polished surface is photographed with an optical microscope at a magnification of 75 to 150 times. Several lines are drawn on the obtained photomicrograph to determine the distance between the crack and the intersection of the lines, and this is used as the crack interval. At least 50 crack intervals can be obtained, and the average crack interval and the standard deviation of the crack intervals can be obtained from these values.

本発明の高強度被覆焼結合金は、基体に被膜を被覆した後の冷却条件を制御することで得ることができる。具体的には、600〜1300℃の所定の被覆温度から500℃までを1〜100℃/時間の冷却速度で徐冷することで得られる。また、被膜を被覆した後に、所定の条件のショットピーニング処理することによっても得ることができる。具体的には直径φ300μmの鋳鉄球をショットピーニングのメディアに用いて、投射速度を0.1〜10m/s、メディアの投射角度を90度という条件のショットピーニング処理をすることで得られる。なお、これらの処理条件は一例であり、これらの冷却速度による徐冷やショットピーニング処理以外でも本発明品を得ることができる。 The high-strength coated sintered alloy of the present invention can be obtained by controlling the cooling conditions after the coating is applied to the substrate. Specifically, it is obtained by gradually cooling from a predetermined coating temperature of 600 to 1300 ° C. to 500 ° C. at a cooling rate of 1 to 100 ° C./hour. It can also be obtained by performing a shot peening process under a predetermined condition after coating the film. Specifically, a cast iron ball having a diameter of 300 μm is used as a shot peening medium, and a shot peening process is performed under conditions where the projection speed is 0.1 to 10 m / s and the projection angle of the medium is 90 degrees. In addition, these process conditions are an example, The product of this invention can be obtained other than the slow cooling and shot peening process by these cooling rates.

上記高強度被覆焼結合金は耐欠損性、耐チッピング性に優れるため、切削工具、耐摩耗工具などの工具として用いられることが好ましく、その中でも切削工具として用いられることは特に好ましい。 Since the high-strength coated sintered alloy is excellent in fracture resistance and chipping resistance, it is preferably used as a tool such as a cutting tool or wear-resistant tool, and among them, it is particularly preferable to be used as a cutting tool.

本発明の高強度被覆焼結合金は、従来の被覆焼結合金に比較して耐欠損性のばらつきが少ないという効果を奏する。そのため切削工具として用いた場合、耐欠損性に優れるとともに工具寿命が安定するという効果を奏する。 The high-strength coated sintered alloy of the present invention has the effect of less variation in fracture resistance than conventional coated sintered alloys. Therefore, when it is used as a cutting tool, it has the effect of being excellent in fracture resistance and stabilizing the tool life.

P30相当のWC基超硬合金を基体とし、研削加工によりCNMG120408形状とした後にブラシホーニング機によりR0.05mmの丸ホーニングを施した。その後、熱CVD法を用いて表1に示す被覆条件で下記に示す膜構成と平均膜厚の被膜を基体の表面に被覆した。
(基体側)0.5TiN-9.0Ti(C,N)-0.5(Ti,Al)(C,O)-3.0Al2O3-0.5TiN(外側)(μm)
A WC-based cemented carbide equivalent to P30 was used as a base, and a CNMG120408 shape was formed by grinding, followed by R0.05 mm round honing using a brush honing machine. Then, the film | membrane structure shown below and the film of average film thickness were coat | covered on the surface of the base | substrate on the coating conditions shown in Table 1 using the thermal CVD method.
(Substrate side) 0.5TiN-9.0Ti (C, N) -0.5 (Ti, Al) (C, O) -3.0Al 2 O 3 -0.5TiN (outside) (μm)

Figure 2005220363
Figure 2005220363

被膜を被覆した後、1000℃から500℃まで100℃/時間の冷却速度で冷却し500℃から室温まで自然冷却して本発明品1を得た。基体に本発明品1と同様の被覆条件で被覆した後に自然冷却して比較品1を得た。このとき1000℃から500℃までは200℃/時間以上の冷却速度を示した。比較品1に対し、粒径300μmの鋳鉄球を用い、投射速度10m/s、投射角度90度でショットピーニング処理して本発明品2を得た。また比較品1に対し粒径300μmの鋳鉄球を用い、投射速度50m/s、投射角度90度でショットピーニング処理して比較品2を得た。こうして得られた本発明品1、2および比較品1、2の平均クラック間隔およびクラック間隔の標準偏差を表2に示した。これらの試料について切削試験A、Bを行った。切削試験Aで耐欠損性を、切削試験Bで耐摩耗性を評価することができる。 After coating the film, it was cooled from 1000 ° C. to 500 ° C. at a cooling rate of 100 ° C./hour and naturally cooled from 500 ° C. to room temperature to obtain Product 1 of the present invention. The substrate was coated under the same coating conditions as the product 1 of the present invention, and then naturally cooled to obtain a comparative product 1. At this time, a cooling rate of 200 ° C./hour or more was exhibited from 1000 ° C. to 500 ° C. The comparative product 1 was cast peened at a projection speed of 10 m / s and a projection angle of 90 degrees using a cast iron ball having a particle size of 300 μm to obtain a product 2 of the present invention. A comparative product 2 was obtained by subjecting the comparative product 1 to shot peening at a projection speed of 50 m / s and a projection angle of 90 degrees using a cast iron ball having a particle size of 300 μm. Table 2 shows the average crack interval and standard deviation of the crack intervals of the products 1 and 2 of the present invention and the comparative products 1 and 2 thus obtained. Cutting tests A and B were performed on these samples. The cutting test A can evaluate the chipping resistance, and the cutting test B can evaluate the wear resistance.

(切削試験A)
外周断続旋削、
被削材S45C(4本溝付き)、
V=150m/min、
f=0.3mm/rev、
ap=2.0mm、
wet
(Cutting test A)
Circumferential intermittent turning,
Work material S45C (with 4 grooves),
V = 150m / min,
f = 0.3mm / rev,
ap = 2.0mm,
wet

(切削試験B)
外周連続旋削、
被削材S53C、
V=150m/min、
f=0.3mm/rev、
ap=1.5mm、
wet
切削試験A、Bの結果は表2に併記した。
(Cutting test B)
Peripheral continuous turning,
Work material S53C,
V = 150m / min,
f = 0.3mm / rev,
ap = 1.5mm,
wet
The results of cutting tests A and B are shown in Table 2.

Figure 2005220363
Figure 2005220363

平均クラック間隔が20〜35μm、クラック間隔の標準偏差が12〜14μmである本発明品1、2は、切削試験Aにおいて、比較品1、2に比べて欠損までの衝撃回数が2倍程度増加する。このことから本発明品1、2は耐欠損性に優れることが分かる。 In the products 1 and 2 according to the present invention, in which the average crack interval is 20 to 35 μm and the standard deviation of the crack interval is 12 to 14 μm, the number of impacts until the defect is increased by about twice in the cutting test A compared to the comparative products 1 and 2. To do. From this, it can be seen that the products 1 and 2 of the present invention are excellent in fracture resistance.

P30相当のWC基超硬合金を基体とし、研削加工によりSDKN42ZTN形状とした後にブラシホーニング機によりR0.05mmの丸ホーニングを施した。その後、熱CVD法を用いて表1に示す被覆条件で下記に示す膜構成と平均膜厚の被膜を基体の表面に被覆した。
(基体側)0.5TiN-4.5Ti(C,N)-0.5(Ti,Al)(C,O)-1.0Al2O3-0.5TiN(外側)(μm)
A WC-based cemented carbide equivalent to P30 was used as a base, and after grinding into an SDKN42ZTN shape, R0.05 mm round honing was performed with a brush honing machine. Then, the film | membrane structure shown below and the film of average film thickness were coat | covered on the surface of the base | substrate on the coating conditions shown in Table 1 using the thermal CVD method.
(Substrate side) 0.5TiN-4.5Ti (C, N) -0.5 (Ti, Al) (C, O) -1.0Al 2 O 3 -0.5TiN (outside) (μm)

被膜を被覆した後、1000℃から500℃まで100℃/時間の冷却速度で冷却し、500℃から室温まで自然冷却して本発明品3を得た。本発明品3と同様の被覆条件で被覆した後に自然冷却して比較品3を得た。比較品3に対して、粒径300μmの鋳鉄球を用い、投射速度10m/s、投射角度90度でショットピーニング処理して本発明品4を得た。また比較品3に対して粒径300μmの鋳鉄球を用い、投射速度50m/s、投射角度90度でショットピーニング処理して比較品4を得た。こうして得た本発明品3、4および比較品3、4の平均クラック間隔およびクラック間隔の標準偏差を表3に示した。これらの試料について切削試験Cを行った。切削試験Cにおける工具寿命および損傷形態を表3に併記した。 After the coating, the product was cooled from 1000 ° C. to 500 ° C. at a cooling rate of 100 ° C./hour and naturally cooled from 500 ° C. to room temperature to obtain Product 3 of the present invention. After coating under the same coating conditions as the product 3 of the present invention, it was naturally cooled to obtain a comparative product 3. The comparative product 3 was shot peened at a projection speed of 10 m / s and a projection angle of 90 degrees using a cast iron ball having a particle size of 300 μm to obtain a product 4 of the present invention. Moreover, the comparative product 3 was shot peened at a projection speed of 50 m / s and a projection angle of 90 degrees using a cast iron ball having a particle size of 300 μm to obtain a comparative product 4. Table 3 shows the average crack interval and standard deviation of the crack intervals of the products 3 and 4 of the present invention and the comparative products 3 and 4 thus obtained. A cutting test C was performed on these samples. Table 3 shows the tool life and the form of damage in the cutting test C.

(切削試験C)
正面フライス切削、
工具径120mm、一枚刃、センターカット、
被削材SCM440、
V=150m/min、
f=0.250mm/rev、
ap=2.0mm、
F=350m/min、
dry
(Cutting test C)
Face milling,
Tool diameter 120mm, single blade, center cut,
Work material SCM440,
V = 150m / min,
f = 0.250mm / rev,
ap = 2.0mm,
F = 350m / min,
dry

Figure 2005220363
Figure 2005220363

平均クラック間隔が35〜40μm、クラック間隔の標準偏差が12〜14μmである本発明品3、4は、切削試験Cにおいて比較品3、4に比べて工具寿命が1.4〜3倍程度増加する。これは本発明品3、4が耐欠損性、耐チッピング性に優れるためである。
The products 3 and 4 of the present invention having an average crack interval of 35 to 40 μm and a standard deviation of crack intervals of 12 to 14 μm increase the tool life by about 1.4 to 3 times in comparison with the comparative products 3 and 4 in the cutting test C. To do. This is because the products 3 and 4 of the present invention are excellent in chipping resistance and chipping resistance.

Claims (2)

周期律表4a、5a、6a族元素の炭化物、窒化物およびこれらの相互固溶体の中から選ばれた少なくとも1種の硬質相と、Ni、CoまたはNi−Co合金を主成分とする結合相とからなる焼結合金の基体の表面に被膜を被覆した高強度被覆焼結合金において、該被膜の平均クラック間隔が20〜50μmであり、該被膜のクラック間隔の標準偏差が15μm以下である高強度被覆焼結合金。 At least one hard phase selected from carbides, nitrides, and mutual solid solutions of Group 4a, 5a, and 6a elements of the periodic table, and a binder phase mainly composed of Ni, Co, or a Ni—Co alloy; In a high strength coated sintered alloy in which the surface of the sintered alloy substrate is coated with a coating, the coating has an average crack interval of 20 to 50 μm, and the standard deviation of the crack interval of the coating is 15 μm or less. Coated sintered alloy. 上記高強度被覆焼結合金は、切削工具として用いられる請求項1に記載の高強度被覆焼結合金。 The high-strength coated sintered alloy according to claim 1, wherein the high-strength coated sintered alloy is used as a cutting tool.
JP2004026166A 2004-02-03 2004-02-03 High strength coated sintered alloy Pending JP2005220363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004026166A JP2005220363A (en) 2004-02-03 2004-02-03 High strength coated sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004026166A JP2005220363A (en) 2004-02-03 2004-02-03 High strength coated sintered alloy

Publications (1)

Publication Number Publication Date
JP2005220363A true JP2005220363A (en) 2005-08-18

Family

ID=34996237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004026166A Pending JP2005220363A (en) 2004-02-03 2004-02-03 High strength coated sintered alloy

Country Status (1)

Country Link
JP (1) JP2005220363A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046757A (en) * 2008-08-21 2010-03-04 Sumitomo Electric Hardmetal Corp Cutting tool and method of manufacturing the same
WO2013042790A1 (en) * 2011-09-22 2013-03-28 株式会社タンガロイ Surface-coated cutting tool
WO2020127684A1 (en) * 2018-12-20 2020-06-25 Ab Sandvik Coromant Coated cutting tool

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046757A (en) * 2008-08-21 2010-03-04 Sumitomo Electric Hardmetal Corp Cutting tool and method of manufacturing the same
WO2013042790A1 (en) * 2011-09-22 2013-03-28 株式会社タンガロイ Surface-coated cutting tool
CN103826781A (en) * 2011-09-22 2014-05-28 株式会社图格莱 Surface-coated cutting tool
JPWO2013042790A1 (en) * 2011-09-22 2015-03-26 株式会社タンガロイ Coated cutting tool
US9566649B2 (en) 2011-09-22 2017-02-14 Tungaloy Corporation Coated cutting tool
WO2020127684A1 (en) * 2018-12-20 2020-06-25 Ab Sandvik Coromant Coated cutting tool

Similar Documents

Publication Publication Date Title
KR101168464B1 (en) Surface-covered cutting tool
JP5872747B1 (en) Surface coated cutting tool
JP5636052B2 (en) Coated cutting tool with platinum group metal concentration gradient and related process
JP6499258B2 (en) Cutting tool and manufacturing method
JP4690479B2 (en) Diamond coated tools
KR101722009B1 (en) Coated cutting tool
JP2018521862A (en) Tool with multilayer arc PVD coating
JP5124790B2 (en) Diamond coated cutting tool
KR101713884B1 (en) Coated cutting tool
CN108453273B (en) Coated cutting tool
US10640868B2 (en) Coated member
JP2009006470A (en) Dlc coated tool
JP5295325B2 (en) Surface coated cutting tool
KR20120128595A (en) Surface-coated cutting tool and manufacturing method thereof
KR20110003278A (en) Coated cutting tool insert
CN104870686A (en) Coated cutting tool and method for manufacturing the same
KR20120123246A (en) Surface-coated cutting tool and manufacturing method thereof
WO2013042790A1 (en) Surface-coated cutting tool
JP2017042901A (en) Surface-coated cutting tool
KR101503128B1 (en) Surface-coated cutting tool
JP5573635B2 (en) Diamond coated cutting tool
JP2012157915A (en) Surface coating cutting tool and its manufacturing method
JP2017013146A (en) Diamond-coated hard metal cutting tool for improving edge strength
JP2005220363A (en) High strength coated sintered alloy
JP4845615B2 (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061219

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081027

A02 Decision of refusal

Effective date: 20090309

Free format text: JAPANESE INTERMEDIATE CODE: A02