JP2005220065A - Immunopotentiator - Google Patents

Immunopotentiator Download PDF

Info

Publication number
JP2005220065A
JP2005220065A JP2004028965A JP2004028965A JP2005220065A JP 2005220065 A JP2005220065 A JP 2005220065A JP 2004028965 A JP2004028965 A JP 2004028965A JP 2004028965 A JP2004028965 A JP 2004028965A JP 2005220065 A JP2005220065 A JP 2005220065A
Authority
JP
Japan
Prior art keywords
glucan
lactic acid
culture
aureobasidium
acid bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004028965A
Other languages
Japanese (ja)
Other versions
JP4369258B2 (en
Inventor
Naoyuki Moriya
直幸 守屋
Yukiko Moriya
▲祐▼生子 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aureo Co Ltd
Original Assignee
Aureo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004028965A priority Critical patent/JP4369258B2/en
Application filed by Aureo Co Ltd filed Critical Aureo Co Ltd
Priority to US10/531,463 priority patent/US20050272694A1/en
Priority to EP04717235A priority patent/EP1602377B1/en
Priority to KR1020057004241A priority patent/KR100649855B1/en
Priority to CNB2004800010385A priority patent/CN100341521C/en
Priority to AT04717235T priority patent/ATE519490T1/en
Priority to PCT/JP2004/002780 priority patent/WO2004078188A1/en
Priority to TWCOMPOSITIA priority patent/TWI282279B/en
Publication of JP2005220065A publication Critical patent/JP2005220065A/en
Priority to HK06103700A priority patent/HK1083590A1/en
Application granted granted Critical
Publication of JP4369258B2 publication Critical patent/JP4369258B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an immunopotentiator free from any side effects and having higher immunopotentiating ability. <P>SOLUTION: This immunopotentiator comprises, as active ingredients, a cultured product comprising β-1,3-1,6-glucan that is obtained by culturing fungi belonging to Aureobasidium sp. and lactobacillus. In this immunopotentiator, the fungi belonging to Aureobasidium sp. is preferably Aureobasidium pullulans M-1(FERM P-19213) and it is preferable that the lactobacillus is Enterococcus faecalis and has been subjected to heat sterilization. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、経口摂取することにより、免疫機能を向上させることができる免疫賦活剤に関し、詳しくは、アウレオバシジウム属(Aureobasidium sp.)に属する菌を培養して得られる培養物と、乳酸菌菌体とを有効成分として含有する免疫賦活剤に関する。 The present invention relates to an immunostimulant that can improve immune function by ingestion, and specifically, a culture obtained by culturing a bacterium belonging to the genus Aureobasidium ( Aureobasidium sp.), And a lactic acid bacterium It is related with the immunostimulant which contains a body as an active ingredient.

生体の免疫系は、外界からの細菌やウイルス等の微生物による感染や、生体内で発生する腫瘍等に対する防御機構として重要な役割を果している。免疫機能の低下は様々な疾病を誘発することから、疾患の予防や健康維持等の点からも免疫機能の向上を図ることは重要であると考えられる。   The immune system of the living body plays an important role as a defense mechanism against infection by microorganisms such as bacteria and viruses from the outside, and tumors generated in the living body. Since a decrease in immune function induces various diseases, it is considered important to improve the immune function from the viewpoints of disease prevention and health maintenance.

従来より、免疫機能を向上させる作用、すなわち免疫賦活能を有する素材として、例えば、β−グルカンや乳酸菌等が知られており、これらを有効成分として含む免疫賦活剤や健康食品等の開発が積極的に行われている。   Conventionally, β-glucan, lactic acid bacteria, and the like have been known as materials having an effect of improving immune function, that is, immunostimulatory activity, and active development of immunostimulants and health foods containing these as active ingredients has been active. Has been done.

例えば、β−グルカンを利用した免疫賦活剤として、下記特許文献1には、オウレオバシジウム プルランス(Aureobasidium pullulans)IFO4466菌株の培養上清から得られる、β−1,3結合グルコース残基を主鎖として、これにβ−1,6結合グルコース残基の分岐鎖を多数側鎖として有する数分子量1万〜500万の高分岐度β−グルカンが、経口的に高い抗腫瘍活性及び免疫賦活活性を有し、医薬、食品添加物、飼料添加物等として有用である旨が記載されている。 For example, as an immunostimulator using β-glucan, the following Patent Document 1 mainly contains β-1,3-linked glucose residues obtained from the culture supernatant of Aureobasidium pullulans IFO4466 strain. As a chain, a highly branched β-glucan having a molecular weight of 10,000 to 5,000,000 having many branched chains of β-1,6-linked glucose residues as side chains is highly antitumor activity and immunostimulatory activity. It is described that it is useful as a medicine, food additive, feed additive and the like.

また、下記特許文献2には、β−1,3−1,6グルカンを主成分とするアウレオバシジウム培養液が、各種疾病に対する医薬品として応用できる旨が記載されている。   Patent Document 2 below describes that an aureobasidium culture solution containing β-1,3-1,6 glucan as a main component can be applied as a medicine for various diseases.

一方、乳酸菌を利用した免疫賦活剤として、例えば、下記特許文献3には、Enterococcus faecalis AD101菌株の死菌体を主成分とする免疫調整剤が開示されている。 On the other hand, as an immunostimulant using lactic acid bacteria, for example, Patent Document 3 below discloses an immunomodulator mainly composed of dead cells of Enterococcus faecalis AD101 strain.

また、下記特許文献4には、エンテロコッカス属に属する乳酸菌および麹菌を液体培養によって培養された菌体を有効成分とすることを特徴とする免疫賦活素材が開示されている。   Patent Document 4 listed below discloses an immunostimulatory material characterized by using as an active ingredient a cell obtained by culturing lactic acid bacteria and koji molds belonging to the genus Enterococcus by liquid culture.

更に、β−グルカンと乳酸菌を併用したものとして、例えば、下記特許文献5には、β−グルカンを含有する素材と、乳酸産生菌の加熱処理菌体とを有効成分として含有することを特徴とする感染抑制組成物が開示されている。   Furthermore, as a combination of β-glucan and lactic acid bacteria, for example, the following Patent Document 5 includes a material containing β-glucan and a heat-treated cell of lactic acid-producing bacteria as active ingredients. An infection control composition is disclosed.

また、下記特許文献6には、体内におけるTNFをはじめとするサイトカインの産生を促進し、その作用を増強させ、抗体産生能或いは免疫作用全体を増強することによって各種感染症や腫瘍発生の予防に役立つ、低分子量の水溶性β−グルカンが開示されており、このβ−グルカンと乳酸菌を併用することが記載されている。
特開平6−340701号公報 特開2002−204687号公報 特開2001−48796号公報 特開2003−113114号公報 特開2003−40785号公報 特開2001−323001号公報
In addition, Patent Document 6 listed below promotes the production of cytokines including TNF in the body, enhances its action, and enhances antibody production ability or overall immune action, thereby preventing various infectious diseases and tumors. A useful low molecular weight water-soluble β-glucan is disclosed, and the combination of this β-glucan and lactic acid bacteria is described.
JP-A-6-340701 Japanese Patent Laid-Open No. 2002-204687 JP 2001-48796 A JP 2003-113114 A JP 2003-40785 A JP 2001-323001 A

しかしながら、上記のような従来の免疫賦活剤は、副作用が少ないものの、その有効性において満足しうるものは少なかった。   However, the conventional immunostimulants as described above have few side effects, but few are satisfactory in their effectiveness.

したがって、本発明の目的は、副作用がなく、より優れた免疫賦活能を有する免疫賦活剤を提供することにある。   Accordingly, an object of the present invention is to provide an immunostimulator having no side effects and having a superior immunostimulatory ability.

上記目的を達成するため、本発明の免疫賦活剤は、アウレオバシジウム属(Aureobasidium sp.)に属する菌を培養して得られるβ−1,3−1,6−グルカンを含む培養物と、乳酸菌菌体とを有効成分として含有することを特徴とする。 In order to achieve the above object, the immunostimulant of the present invention comprises a culture containing β-1,3-1,6-glucan obtained by culturing a bacterium belonging to the genus Aureobasidium ( Aureobasidium sp.), It contains lactic acid bacteria as an active ingredient.

本発明の免疫賦活剤は、アウレオバシジウム属(Aureobasidium sp.)に属する菌を培養して得られるβ−1,3−1,6−グルカンを含む培養物と、乳酸菌菌体とを含有することにより、これらの成分の相乗効果により、優れた免疫賦活効果が得られる。なお、β―1,3−1,6−グルカンは、小腸の腸管免疫を活性化し、乳酸菌菌体は、マクロファージ、T細胞及びB細胞の活性化を促進し、これらの作用によって相乗的な免疫賦活効果がもたらされるものと考えられる。 The immunostimulant of the present invention contains a culture containing β-1,3-1,6-glucan obtained by culturing a bacterium belonging to the genus Aureobasidium ( Aureobasidium sp.), And lactic acid bacteria. Thus, an excellent immunostimulatory effect is obtained by the synergistic effect of these components. Β-1,3-1,6-glucan activates intestinal immunity of the small intestine, and lactic acid bacteria promotes the activation of macrophages, T cells, and B cells. It is thought that the activation effect is brought about.

本発明の免疫賦活剤においては、前記アウレオバシジウム属(Aureobasidium sp.)に属する菌は、アウレオバシジウム プルランス M-1(Aureobasidium pullulans M-1)(FERM P-19213)であることが好ましい。この態様によれば、より生理活性の高いβ−1,3−1,6−グルカンを得ることができる。 In the immunostimulant of the present invention, the bacterium belonging to the genus Aureobasidium sp. Is preferably Aureobasidium pullulans M-1 (FERM P-19213). According to this aspect, β-1,3-1,6-glucan having higher physiological activity can be obtained.

また、固形分中に、前記培養物をβ−1,3−1,6−グルカン換算で5〜80質量%含有し、かつ前記乳酸菌菌体を10〜80質量%含有することが好ましい。   Moreover, it is preferable to contain 5-80 mass% of said cultures in conversion of (beta) -1,3-1,6-glucan and 10-80 mass% of said lactic acid bacteria in solid content.

更に、前記培養物は、固形分濃度が0.5〜5質量%であり、かつ、固形分中にβ−1,3−1,6−グルカンを10質量%以上含むものであることが好ましい。   Furthermore, it is preferable that the culture has a solid concentration of 0.5 to 5% by mass and contains β-1,3-1,6-glucan in the solid content of 10% by mass or more.

更にまた、前記乳酸菌はエンテロコッカス・フェカリス(Enterococcus faecalis)であることが好ましい。 Furthermore, the lactic acid bacterium is preferably Enterococcus faecalis .

これらの態様によれば、β−1,3−1,6−グルカンと乳酸菌菌体による相乗的な免疫賦活効果をより期待できる。   According to these aspects, a synergistic immunostimulatory effect by β-1,3-1,6-glucan and lactic acid bacteria can be expected more.

更にまた、前記乳酸菌は加熱殺菌されたものであることが好ましい。この態様によれば、加熱処理が必要な飲食品にも幅広く添加することができ、また、保存安定性が高く、飲食品や医薬品の原料として用いる場合の安全性も非常に高い免疫賦活剤を提供できる。   Furthermore, it is preferable that the lactic acid bacteria are heat-sterilized. According to this aspect, an immunostimulant that can be widely added to foods and drinks that require heat treatment, has high storage stability, and is extremely safe when used as a raw material for foods and drinks or pharmaceuticals. Can be provided.

本発明の免疫賦活剤は、アウレオバシジウム属(Aureobasidium sp.)に属する菌を培養して得られるβ−1,3−1,6−グルカンを含む培養物と、乳酸菌菌体とを含有することにより、これらの成分の相乗効果により、優れた免疫賦活効果が得られる。 The immunostimulant of the present invention contains a culture containing β-1,3-1,6-glucan obtained by culturing a bacterium belonging to the genus Aureobasidium ( Aureobasidium sp.), And lactic acid bacteria. Thus, an excellent immunostimulatory effect is obtained by the synergistic effect of these components.

本発明において、アウレオバシジウム属(Aureobasidium sp.)に属する菌を培養して得られる培養物(以下、単に培養物という。)としては、アウレオバシジウム属(Aureobasidiumsp.)に属し、β−1,3−1,6−グルカン生産能を有する菌を培養した培養液そのもの、該培養液の濃縮液、あるいは該培養液から水分を除いた固形物等を用いることができるが、好ましくは培養液そのもの又は該培養液の濃縮液が用いられ、その場合、固形分濃度が0.5〜5質量%であることが好ましく、1〜3質量%であることがより好ましい。 In the present invention, a culture obtained by culturing a bacterium belonging to the genus Aureobasidium ( Aureobasidium sp.) (Hereinafter simply referred to as culture) belongs to the genus Aureobasidium ( Aureobasidium sp.), Β- A culture solution in which a bacterium capable of producing 1,3-1,6-glucan is cultured, a concentrated solution of the culture solution, or a solid obtained by removing water from the culture solution can be used. The solution itself or a concentrated solution of the culture solution is used. In this case, the solid content concentration is preferably 0.5 to 5% by mass, and more preferably 1 to 3% by mass.

上記アウレオバシジウム属(Aureobasidium sp.)に属する菌としては、例えば、特開昭57−149301号公報、特公平5−4063号公報、特開2002−335926号公報等に記載された菌株を用いることができるが、本発明においては、アウレオバシジウム プルランス M-1(Aureobasidium pullulans M-1、独立行政法人産業技術総合研究所特許生物寄託センター寄託番号FERM P-19213)が好適に用いられる。なお、本発明において、β−1,3−1,6−グルカンとは、グルコースがβ−1,3結合した主鎖からβ−1,6結合でグルコースが分岐した構造を有するものを意味する。 As a bacterium belonging to the genus Aureobasidium sp., For example, the strains described in JP-A-57-149301, JP-B-5-4063, JP-A-2002-335926 and the like are used. However, in the present invention, Aureobasidium pullulans M-1 (independent administrative agency, National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary No. FERM P-19213) is preferably used. In the present invention, β-1,3-1,6-glucan means one having a structure in which glucose is branched by a β-1,6 bond from a main chain in which glucose is β-1,3 bonded. .

上記アウレオバシジウム属(Aureobasidium sp.)に属する菌の培養は、公知の方法(特開昭57−149301号公報等参照)に準じて行うことができる。すなわち、炭素源(ショ糖)0.5〜5.0質量%、N源0.1質量%、その他微量物質(例えば、ビタミン類、無機質)を加えた培地(pH5.2〜6.0)に菌を接種し、温度20〜30℃で2〜14日間通気培養、好ましくは通気撹拌培養すればよい。β−1,3−1,6−グルカンが生成されるにしたがって培養液の粘度が上昇し、粘性の高いジェル状になる。このようにして得られる培養液には、通常、0.6〜1.8質量%の固形分が含まれており、該固形分中にはβ−1,3−1,6−グルカンが5〜80質量%含まれている。また、β−1,3−1,6−グルカン以外にも、例えば、該グルカンの作用を助ける成分であるリン、カリウム、マグネシウム、ビタミンC等の他の有用成分も含まれているので、β−1,3−1,6−グルカンの有する生理活性効果を効率よく発揮できる。 Cultivation of the bacterium belonging to the genus Aureobasidium sp. Can be performed according to a known method (see JP-A-57-149301, etc.). That is, a medium (pH 5.2-6.0) containing 0.5 to 5.0% by mass of carbon source (sucrose), 0.1% by mass of N source, and other trace substances (for example, vitamins and inorganic substances). The inoculum is inoculated and aerated culture is performed at a temperature of 20 to 30 ° C. for 2 to 14 days, preferably aerated and stirred. As β-1,3-1,6-glucan is produced, the viscosity of the culture solution increases and becomes a highly viscous gel. The culture broth thus obtained usually contains 0.6 to 1.8% by mass of solid content, and 5-1, β-1,3-1,6-glucan is contained in the solid content. -80 mass% is contained. In addition to β-1,3-1,6-glucan, other useful components such as phosphorus, potassium, magnesium, and vitamin C, which are components that help the action of the glucan, are also included. The physiologically active effect of -1,3-1,6-glucan can be efficiently exhibited.

本発明においては、固形分中にβ−1,3−1,6−グルカンを10質量%以上含む培養物が好ましく用いられ、固形分中にβ−1,3−1,6−グルカンを20質量%以上含む培養物がより好ましく用いられる。培養物中のβ−1,3−1,6−グルカン濃度が低すぎると、該グルカンの生理活性効果が十分に期待できない。   In the present invention, a culture containing 10% by mass or more of β-1,3-1,6-glucan in the solid content is preferably used, and β-1,3-1,6-glucan in the solid content of 20%. A culture containing at least mass% is more preferably used. If the β-1,3-1,6-glucan concentration in the culture is too low, the bioactive effect of the glucan cannot be sufficiently expected.

なお、β−1,3−1,6−グルカンの定量は、例えば次のような方法で行うことができる。すなわち、培養液にアミラーゼ、アミログルコシダーゼ、プロテアーゼ等を用いて酵素処理を施し、蛋白質や、プルラン等のα−グルカンを除き、エタノール沈殿を行う。更に、ガラスフィルターでろ過し、高分子試料を得る。このとき、単糖を含む低分子物質を除くため、80%エタノールで充分に洗浄する。洗浄した高分子試料はアセトンで更に洗浄し、硫酸を加え、加水分解を行う。加水分解後、中和し、そのろ液を採取して、グルコースオキシダーゼ法によりブドウ糖を定量し、下記数式1に基づいて計算した値をグルカン量とする。
数式1:β−グルカン(g/100g)=ブドウ糖(g/100g)×0.9
Note that β-1,3-1,6-glucan can be quantified, for example, by the following method. That is, the culture solution is subjected to an enzyme treatment using amylase, amyloglucosidase, protease, or the like, and an α-glucan such as protein or pullulan is removed, followed by ethanol precipitation. Further, it is filtered through a glass filter to obtain a polymer sample. At this time, in order to remove low-molecular substances containing monosaccharides, the cells are thoroughly washed with 80% ethanol. The washed polymer sample is further washed with acetone, and sulfuric acid is added for hydrolysis. After hydrolysis, the solution is neutralized, the filtrate is collected, glucose is quantified by the glucose oxidase method, and the value calculated based on Equation 1 below is used as the glucan amount.
Formula 1: β-glucan (g / 100 g) = glucose (g / 100 g) × 0.9

また、β−1,3−1,6−グルカンの定量は、特公平3−48201号公報に記載された方法に準じて行うこともできる。すなわち、培養終了後、培養液を殺菌して、遠心分離して菌体を除去し、得られた溶液にクロロホルム/ブタノール混合液を10%(v/v)加えて振とう(Sevage法)した後、遠心処理してクロロホルムと不溶物を除去する。この操作を2回繰り返した後、エタノール沈殿により、沈殿物を回収して蒸留水に溶解し、酵素処理により、プルランを分解し、蒸留水中で透析を行い、透析液をエタノール沈殿して、沈殿物(β−1,3−1,6−グルカン)を回収して収量を求めればよい。   Further, β-1,3-1,6-glucan can be quantified according to the method described in Japanese Examined Patent Publication No. 3-48201. That is, after completion of the culture, the culture broth was sterilized and centrifuged to remove the cells, and 10% (v / v) chloroform / butanol mixture was added to the resulting solution and shaken (Sevage method). Thereafter, the mixture is centrifuged to remove chloroform and insoluble matters. After repeating this operation twice, the precipitate is recovered by ethanol precipitation and dissolved in distilled water, the pullulan is decomposed by enzyme treatment, dialyzed in distilled water, and the dialysate is ethanol precipitated to precipitate. The product (β-1,3-1,6-glucan) may be recovered to obtain the yield.

本発明においては、上記のようにして得られる培養液をそのまま加熱又は加圧加熱殺菌して用いてもよく、遠心分離等により菌体を分離除去した後殺菌して用いてもよい。また、必要に応じて濃縮したもの、更には乾燥したものを用いることもできる。なお、アウレオバシジウム属(Aureobasidium sp.)に属する菌の培養物は、増粘安定剤等の食品添加物として使用されているものであり安全性は高い。 In the present invention, the culture solution obtained as described above may be used as it is by sterilization by heating or pressure heating, or may be used after sterilization after separating and removing cells by centrifugation or the like. Moreover, what was concentrated as needed and also what was dried can also be used. In addition, the culture of the bacterium belonging to the genus Aureobasidium sp. Is used as a food additive such as a thickening stabilizer and has high safety.

一方、本発明で用いられる乳酸菌としては、食品に使用可能な乳酸菌であれば特に制限なく用いることができ、具体的には、エンテロコッカス・フェカリス(Enterococcus faecalis)、エンテロコッカス・フェシウム(Enterococcusfaecium)、ラクトバチルス・アシドフィルス(Lactobacillus acidophilus)、ラクトバチルス・カゼイ(Lactobacilluscasei)、ストレプトコッカス・クレモリス(Streptococcus cremoris)、ストレプトコッカス・ラクティス(Streptococcuslactis)、ストレプトコッカス・サーモフィラス(Streptococcus thermophilus)、ビフィドバクテリウム・ロンガム(BifidobacteriumLongum)、ビフィドバクテリウム・ブレーベ(Bifidobacterium breve)、ビフィドバクテリウム・ビフィダム(Bifidobacteriumbifidum)等が例示できる。上記乳酸菌は単独で用いてもよく、2種以上を併用してもよい。 On the other hand, the lactic acid bacteria used in the present invention, can be used without any particular limitation as long as the lactic acid bacteria that can be used in food, specifically, Enterococcus faecalis (Enterococcus faecalis), Enterococcus faecium (Enterococcusfaecium), Lactobacillus acidophilus (Lactobacillus acidophilus), Lactobacillus casei (Lactobacilluscasei), Streptococcus cremoris (Streptococcus cremoris), Streptococcus lactis (Streptococcuslactis), Streptococcus thermophilus (Streptococcus thermophilus), Bifidobacterium longum (BifidobacteriumLongum), Bifido bacterium breve (Bifidobacterium breve), Bifidobacterium bifidum (Bifidobacteriumbifidum) and the like. The said lactic acid bacteria may be used independently and may use 2 or more types together.

なお、エンテロコッカス・フェカリス(Enterococcus faecalis)、エンテロコッカス・フェシウム(Enterococcus faecium)は乳酸菌製剤等に用いられている乳酸菌であり、ラクトバチルス・カゼイ(Lactobacilluscasei)、ラクトバチルス・アシドフィルス(Lactobacillus acidophilus)は、チーズ、発酵乳、ヨーグルト、乳酸菌飲料等に用いられている乳酸菌であり、ストレプトコッカス・クレモリス(Streptococcuscremoris)、ストレプトコッカス・ラクティス(Streptococcus lactis)、ストレプトコッカス・サーモフィラス(Streptococcusthermophilus)は、チーズ、ヨーグルト等に用いられている乳酸菌であり、ビフィドバクテリウム・ロンガム(BifidobacteriumLongum)、ビフィドバクテリウム・ブレーベ(Bifidobacterium breve)、ビフィドバクテリウム・ビフィダム(Bifidobacteriumbifidum)は発酵乳等に用いられている乳酸菌である。したがって、これらの乳酸菌は、いずれも当業者が容易に入手できるものである。 In addition, Enterococcus faecalis ( Enterococcus faecalis ) and Enterococcus faecium ( Enterococcus faecium ) are lactic acid bacteria used for lactic acid bacteria preparations, etc., Lactobacillus casei ( Lactobacillus casei), Lactobacillus acidophilus ( Lactobacillus acidophilus ), cheese is a lactic acid bacteria fermented milk, yogurt, have been used in lactic acid bacteria beverages, and the like, Streptococcus cremoris (Streptococcuscremoris), Streptococcus lactis (Streptococcus lactis), Streptococcus thermophilus (Streptococcusthermophilus) is, cheese, lactic acid bacteria are used in yogurt, etc. Bifidobacterium Longum, Bifidobacterium breve , Bifidobacterium bifidum ( Bifido bacteriumbifidum ) is a lactic acid bacterium used in fermented milk. Therefore, any of these lactic acid bacteria can be easily obtained by those skilled in the art.

本発明においては、上記の乳酸菌の中でも、エンテロコッカス・フェカリス(Enterococcus faecalis)が特に好ましく用いられる。エンテロコッカス・フェカリス(Enterococcus faecalis)は、強い免疫賦活活性を有していることが知られており、上記培養物と併用することにより、β−1,3−1,6−グルカンとの相乗的な免疫賦活効果が期待できる。 In the present invention, among the above lactic acid bacteria, Enterococcus faecalis is particularly preferably used. Enterococcus faecalis (Enterococcus faecalis) are known to have a strong immunostimulatory activity, by combination with the above culture, synergistic with beta-1,3-1,6-glucan An immunostimulatory effect can be expected.

本発明において、上記乳酸菌は加熱殺菌されたものであることが好ましい。これにより、加熱処理が必要な飲食品にも幅広く添加することができ、また、保存安定性が高く、飲食品や医薬品の原料として用いる場合の安全性も非常に高くなる。   In the present invention, the lactic acid bacteria are preferably heat-sterilized. Thereby, it can be widely added to foods and drinks that require heat treatment, has high storage stability, and is extremely safe when used as a raw material for foods and drinks and pharmaceuticals.

上記乳酸菌の培養は常法にしたがって行えばよく、例えば、上記乳酸菌を常法にしたがって培養して得られた培養物から、濾過、遠心分離等の方法により菌体を回収し、水洗後、水等に懸濁して80〜115℃、30分〜3秒間加熱処理すればよい。加熱殺菌した乳酸菌は、必要に応じて濃縮、乾燥してから用いてもよい。   The lactic acid bacteria may be cultured according to a conventional method. For example, cells are collected from a culture obtained by culturing the lactic acid bacteria according to a conventional method by a method such as filtration or centrifugation, washed with water, It is sufficient to suspend it in a heat treatment at 80 to 115 ° C. for 30 minutes to 3 seconds. The heat-sterilized lactic acid bacteria may be used after being concentrated and dried as necessary.

本発明の免疫賦活剤は、例えば、上記アウレオバシジウム属(Aureobasidium sp.)に属する菌の培養液を殺菌したものに、上記乳酸菌の加熱殺菌菌体を混合して分散させることにより得ることができる。また、必要に応じて、錠剤、カプセル剤、粉末、顆粒、液状、ペースト状、ゼリー状等の各種形態とすることもできる。 The immunostimulant of the present invention can be obtained, for example, by sterilizing a culture solution of a bacterium belonging to the above genus Aureobasidium sp. And mixing and dispersing the sterilized bacterial body of the lactic acid bacterium. it can. Moreover, it can also be set as various forms, such as a tablet, a capsule, a powder, a granule, a liquid form, a paste form, and a jelly form, as needed.

本発明の免疫賦活剤は、固形分中に、上記培養物をβ−1,3−1,6−グルカン換算で5〜80質量%含有し、かつ上記乳酸菌菌体を10〜80質量%含有することが好ましく、更には上記培養物をβ−1,3−1,6−グルカン換算で25〜70質量%含有し、かつ上記乳酸菌菌体を20〜70質量%含有することがより好ましく、上記培養物をβ−1,3−1,6−グルカン換算で30〜60質量%含有し、かつ上記乳酸菌菌体を30〜60質量%含有することが最も好ましい。また、上記基本的成分以外に、香料、甘味料、ビタミン類、ミネラル類、オリゴ糖、増粘多糖類、デキストリン、植物エキス、その他の植物成分等を適宜含むことができる。   The immunostimulant of the present invention contains 5 to 80% by mass of the above culture in terms of β-1,3-1,6-glucan and 10 to 80% by mass of the above lactic acid bacteria in the solid content. More preferably, the culture is contained in an amount of 25 to 70% by mass in terms of β-1,3-1,6-glucan, and more preferably 20 to 70% by mass of the lactic acid bacteria. Most preferably, the culture contains 30-60% by mass in terms of β-1,3-1,6-glucan, and 30-60% by mass of the lactic acid bacteria. In addition to the above basic components, fragrances, sweeteners, vitamins, minerals, oligosaccharides, thickening polysaccharides, dextrins, plant extracts, other plant components, and the like can be included as appropriate.

本発明の免疫賦活剤の有効摂取量は、成人1日当たり、上記培養物をβ−1,3−1,6−グルカン換算で0.02〜0.50g、かつ上記乳酸菌菌体を0.10〜0.90gであり、好ましくは、上記培養物をβ−1,3−1,6−グルカン換算で0.06〜0.40g、かつ上記乳酸菌菌体を0.15〜0.45gである。   The effective intake of the immunostimulant of the present invention is 0.02-0.50 g of the culture in terms of β-1,3-1,6-glucan and 0.10 of the lactic acid bacteria per adult day. To 0.90 g, preferably 0.06 to 0.40 g in terms of β-1,3-1,6-glucan and 0.15 to 0.45 g of the lactic acid bacteria. .

また、本発明の免疫賦活剤は、例えば、清涼飲料、ゼリー飲料、果汁飲料、野菜ジュース、スープ、味噌汁、冷凍食品、その他の加工食品等の各種飲食品に配合することもできる。上記各飲食品における本免疫賦活剤の添加量は、上記の成人1日当たりの有効摂取量に基づいて設定すればよいが、通常、β−1,3−1,6グルカン換算で0.02〜0.50質量%が好ましく、0.06〜0.40質量%がより好ましい。また、乳酸菌菌体に関しては、0.10〜0.90質量%が好ましく、0.15〜0.45質量%がより好ましい。なお、添加方法は特に制限はなく、各飲食品に用いられる他の原料と一緒に最初から添加することもできる。   Moreover, the immunostimulant of this invention can also be mix | blended with various food / beverage products, such as a soft drink, jelly drink, fruit juice drink, vegetable juice, soup, miso soup, frozen food, and other processed foods, for example. The addition amount of the present immunostimulant in each of the foods and drinks may be set based on the effective daily intake per adult, but is usually 0.02 in terms of β-1,3-1,6-glucan. 0.50 mass% is preferable and 0.06-0.40 mass% is more preferable. Moreover, about lactic acid bacteria, 0.10-0.90 mass% is preferable, and 0.15-0.45 mass% is more preferable. In addition, there is no restriction | limiting in particular in the addition method, It can also add from the beginning with the other raw material used for each food-drinks.

(1)アウレオバシジウムの培養
アウレオバシジウム プルランス M-1(Aureobasidium pullulans M-1)(FERM P-19213)の前培養液を、ショ糖1%、アスコルビン酸0.2%、米糠0.2%を含む液体培地(pH5.3)に適量接種して、25℃、2日間、通気撹拌培養を行った。培養終了後、この培養液を121℃、15分間殺菌した。この培養液は固形分1質量%であり、該固形分中に35質量%のβ−1,3−1,6−グルカンを含んでいた。
(1) Cultivation of Aureobasidium Aureobasidium pullulans M-1 (FERM P-19213) pre-cultured solution was prepared with 1% sucrose, 0.2% ascorbic acid, 0.2% rice bran An appropriate amount was inoculated into a liquid medium (pH 5.3) containing 2%, and aerated and agitated culture was performed at 25 ° C. for 2 days. After completion of the culture, this culture solution was sterilized at 121 ° C. for 15 minutes. This culture solution had a solid content of 1% by mass, and contained 35% by mass of β-1,3-1,6-glucan in the solid content.

(2)エンテロコッカス・フェカリス(Enterococcus faecalis)の培養
エンテロコッカス・フェカリス(Enterococcus faecalis、IFO 16803)を、ロゴサ培地で37℃、24時間培養した前培養液を、酵母エキス4%、ポリペプトン3%、乳糖10%を含む液体培地に適量接種し、pHスタットを用いてpH6.8〜7.0に苛性ソーダ水溶液で調整しながら37℃、22〜24時間中和培養を行った。
(2) Enterococcus faecalis (Enterococcus faecalis) culturing Enterococcus faecalis (Enterococcus faecalis, IFO 16803) and, 37 ° C. in Rogosa medium, the preculture was incubated for 24 hours, yeast extract 4%, polypeptone 3%, lactose 10 An appropriate amount was inoculated into a liquid medium containing 1%, and neutralization culture was performed at 37 ° C. for 22 to 24 hours while adjusting with a sodium hydroxide aqueous solution to pH 6.8 to 7.0 using a pH stat.

培養終了後、連続遠心機で菌体を分離、回収した後、水を加えて元の液量まで希釈して再度連続遠心機で菌体を分離、回収した。この操作を合計4回繰り返して菌体を洗浄した。次いで、洗浄した菌体を適量の水に懸濁し、100℃、30分間殺菌した後、スプレードライヤーを用いて菌体を乾燥して加熱殺菌菌体粉末(5×1012cfu/g)を調製した。 After completion of the culture, the cells were separated and collected with a continuous centrifuge, then diluted with water to the original liquid volume, and again separated and collected with a continuous centrifuge. This operation was repeated a total of 4 times to wash the cells. Next, the washed cells are suspended in an appropriate amount of water, sterilized at 100 ° C. for 30 minutes, and then dried using a spray dryer to prepare a heat-sterilized cell powder (5 × 10 12 cfu / g). did.

(3)免疫賦活剤の調製
上記(1)で得られたアウレオバシジウム培養物1Lに、上記(2)で得られた乳酸菌の加熱殺菌菌体10gを加えて、均一に混合して免疫賦活剤を得た。
(3) Preparation of immunostimulatory agent 1 L of aureobasidium culture obtained in (1) above is added with 10 g of heat-sterilized bacterial cells of lactic acid bacteria obtained in (2) above, and mixed uniformly to immunostimulate. An agent was obtained.

実施例1で得られた免疫賦活剤を用いて、以下の方法により、初期感染防御効果について調べた。   Using the immunostimulant obtained in Example 1, the initial infection protective effect was examined by the following method.

(1)生存率の測定
1週間予備飼育を行ったBALB/cマウス(7週齢、雌)28匹(日本エスエルシー(株)より購入)を4群(各群7匹)に分け、各群に下記の被験物質をマウス1匹当り200μlずつ、1日1回試験期間中連続経口投与した。
(1) Measurement of survival rate 28 BALB / c mice (7 weeks old, female) that had been preliminarily bred for 1 week (purchased from Nippon SLC Co., Ltd.) were divided into 4 groups (7 mice for each group). The following test substances were orally administered to the group in an amount of 200 μl per mouse once daily during the test period.

試験群:上記免疫賦活剤
比較群1:アウレオバシジウム培養液(実施例1(1)で得られたもの)
比較群2:乳酸菌の加熱殺菌菌体(実施例1(2)で得られたもの)をPBSに懸濁したもの(1g菌体/100ml)
対照群:PBS
上記各被験物質を1週間連続経口投与した各群のマウスの尾静脈内に、細胞内寄生性細菌であるリステリア菌(Listeria monocytogenes、EGD株)を5.4×10cfu/200μl/マウス(2×LD50)となるように接種し、その後2週間経過観察を行い、各群のマウスの生存率及び平均生存期間を求めた。
Test group: The above immunostimulant Comparative group 1: Aureobasidium culture solution (obtained in Example 1 (1))
Comparative group 2: Heat-sterilized bacterial cells of lactic acid bacteria (obtained in Example 1 (2)) suspended in PBS (1 g bacterial cells / 100 ml)
Control group: PBS
Listeria monocytogenes (EGD strain) 5.4 × 10 4 cfu / 200 μl / mouse (inside the tail vein of each group of mice administered orally for 1 week) 2 × LD 50 ), followed by follow-up for 2 weeks, and the survival rate and average survival time of each group of mice were determined.

その結果を表1及び図1〜3に示す。なお、試験期間中、水及び飼料(商品名「粉末飼料CRF−1」、オリエンタル酵母株式会社製)は自由摂取とした。   The results are shown in Table 1 and FIGS. During the test period, water and feed (trade name “Powdered Feed CRF-1”, manufactured by Oriental Yeast Co., Ltd.) were freely ingested.

表1及び図1〜3から分かるように、試験群においては、1例が死亡(菌接種後6日目)したのみであり、試験終了時の生存率は85.7%であったが、対照群においては、全例が死亡(細菌接種4日目)し、試験終了時の生存率は0%であった。また、比較群1においては、2例が死亡(菌接種6日目に1例、7日目に1例)し、試験終了時の生存率は71.4%であった。また、比較群2においては、5例が死亡(菌接種4日目に3例、5日目に2例)し、試験終了時の生存率は28.6%であった。試験群と他の群間の有意差をMann-WhitneyのU検定を用いて検定したところ、試験群は対照群及び比較群2に対して危険率1%未満で有意差が認められた。   As can be seen from Table 1 and FIGS. 1-3, in the test group, only one case died (6 days after inoculation), and the survival rate at the end of the test was 85.7%. In the control group, all cases died (4 days after bacterial inoculation) and the survival rate at the end of the study was 0%. In Comparative Group 1, 2 cases died (1 case on the 6th day after inoculation and 1 case on the 7th day), and the survival rate at the end of the test was 71.4%. In Comparative Group 2, 5 cases died (3 cases on the 4th day after bacterial inoculation and 2 cases on the 5th day), and the survival rate at the end of the test was 28.6%. When the significant difference between the test group and other groups was tested using the Mann-Whitney U test, the test group was significantly different from the control group and the comparison group 2 with a risk rate of less than 1%.

また、平均生存期間に関しては、試験群においては12.7日であったのに対し、対照群が3.0日、比較群1が11.5日、比較群2が6.4日であった。試験群と他の群間の有意差をMann-WhitneyのU検定を用いて検定したところ、試験群は対照群及び比較群2に対して危険率1%未満で有意差が認められた。   The mean survival time was 12.7 days in the test group, whereas it was 3.0 days in the control group, 11.5 days in the comparison group 1, and 6.4 days in the comparison group 2. It was. When the significant difference between the test group and other groups was tested using the Mann-Whitney U test, the test group was significantly different from the control group and the comparison group 2 with a risk rate of less than 1%.

この結果から、本免疫賦活剤を経口摂取することにより、細菌感染における宿主の感染抵抗性を亢進させることが示唆された。   From these results, it was suggested that oral ingestion of this immunostimulant enhances infection resistance of the host in bacterial infection.

(2)臓器内菌数測定
上記(1)において、リステリア菌に対する感染抵抗性に本免疫賦活剤が作用をしていることが示唆されたため、菌排除の指標となる臓器内菌数の経時的変化について解析を行った。
(2) Measurement of the number of bacteria in the organ In the above (1), it was suggested that the present immunostimulant acts on the infection resistance against Listeria, so that The change was analyzed.

1週間予備飼育を行ったBALB/cマウス(7週齢、雌)を1群当り30匹使用し、上記と同様にして各被験物質を投与した。そして、上記各被験物質を1週間連続経口投与した各群のマウスの尾静脈内に、細胞内寄生性細菌であるリステリア菌(Listeriamonocytogenes、EGD株)を2.7×10cfu/200μl/マウス(1/10×LD50)となるように接種し、細菌接種後1日目、3日目、5日目、7日目及び10日目に逐日的に5匹ずつ各群のマウスを屠殺し、脾臓を回収した。 Thirty BALB / c mice (7 weeks old, female) that had been bred for one week were used per group, and each test substance was administered in the same manner as described above. In addition, 2.7 × 10 3 cfu / 200 μl / mouse of Listeria monocytogenes (EGD strain), which is an intracellular parasitic bacterium, is placed in the tail vein of each group of mice that have been orally administered each test substance for one week. (1/10 × LD 50 ) and 5 mice in each group were sacrificed every day on the 1st, 3rd, 5th, 7th and 10th days after bacterial inoculation The spleen was collected.

回収した脾臓をブレンダーにてすり潰してPBS 5ml中に再懸濁し、これを原液とした。この原液を10倍階段希釈法にて希釈し、原液及び各希釈系列液より100μl取り、TSA培地上に塗抹し37℃孵卵器にて16時間培養した。TSA培地上に発育した細菌集落数を測定し、臓器内菌数を算出した。臓器内菌数は、各群毎に平均値及び標準誤差を算出した。その結果を表2及び図4に示す。   The collected spleen was ground with a blender and resuspended in 5 ml of PBS to obtain a stock solution. This stock solution was diluted by a 10-fold serial dilution method, 100 μl was taken from the stock solution and each dilution series solution, smeared on TSA medium, and cultured in a 37 ° C. incubator for 16 hours. The number of bacterial colonies grown on the TSA medium was measured, and the number of bacteria in the organ was calculated. For the number of bacteria in the organ, an average value and a standard error were calculated for each group. The results are shown in Table 2 and FIG.

表2から分かるように、対照群では、細菌接種3日目に脾臓内の細菌数がピークとなり、その後は徐々に減少し菌接種10日目に検出限界付近(3.75±7.5CFU/脾臓)となった。一方、試験群においては、菌接種後1日目より菌の増加を認めたが、菌接種3日目は1日目とほぼ同等の菌数を示し、その後減少し菌接種10日目では27±25CFU/脾臓となった。比較群1及び比較群2では、菌接種後1日目より菌の増加を認め、菌接種3日目に脾臓内細菌数のピークを認め、その後徐々に菌は減少し、菌接種10日目には検出限界未満(<3.33CFU/脾臓)となった。   As can be seen from Table 2, in the control group, the number of bacteria in the spleen peaked on the third day after bacterial inoculation, and then gradually decreased, and near the detection limit (3.75 ± 7.5 CFU / day) on the tenth day after inoculation. Spleen). On the other hand, in the test group, an increase in the number of bacteria was observed from the first day after the inoculation, but the number of bacteria on the third day of the inoculation was almost the same as that on the first day, and then decreased and 27 days on the tenth day of the inoculation. ± 25 CFU / spleen. In Comparative Group 1 and Comparative Group 2, an increase in the bacteria was observed from the first day after the inoculation, the peak of the number of bacteria in the spleen was observed on the third day after the inoculation, and then the bacteria gradually decreased. Was below the detection limit (<3.33 CFU / spleen).

この結果から、本免疫賦活剤は感染早期での免疫機構に作用しており、感染抵抗性の亢進は、成熟T細胞による攻撃性の強い免疫機構よりも未熟型T細胞もしくは貪食細胞による非特異的免疫機構により行われている可能性が推測された。   From this result, the present immunostimulant acts on the immune mechanism in the early stage of infection, and the enhancement of infection resistance is nonspecific by immature T cells or phagocytic cells rather than the aggressive immune mechanism by mature T cells. It was speculated that it might be carried out by the immune system.

(3)細胞表面分子の解析
上記(1)、(2)において、生存率、生存期間及び臓器内菌数に差異が認められたため、リステリア菌に対する感染抵抗性に関与する生体側の細胞に関してフローサイトメータによる解析を行った。
(3) Analysis of cell surface molecule In (1) and (2) above, since differences in survival rate, survival period, and number of bacteria in the organ were observed, the flow of living body cells involved in infection resistance to Listeria Analysis with a cytometer was performed.

上記(2)の臓器内菌数測定と同時に腸間膜リンパ節(MLN)を回収した。回収したMLNをスライドガラスにてすり潰し、ステンレスメッシュにて余分な組織片を除去した後、リンパ球を1×10/mlとなるようにFACS用Hank’s液に再懸濁した。下記(a)〜(d)に示す4種類の染色パターンにてリンパ球を染色し、フローサイトメータ(Epics-XL;Beckman Coulter)を用いて細胞(T細胞中心)表面分子の解析を行った。その結果を表3及び図5に示す。
(a)Cy-chrome(Cy)標識抗CD3mAb(T細胞固有認識マーカー)/FITC標識抗TCRαβmAb(T細胞型別認識マーカー)/PE標識抗CD4mAb/biotin標識抗TCRγδ(T細胞型別認識マーカー)mAb
(b)Cy標識抗CD3mAb/FITC標識抗TCRαβmAb/PE標識抗CD4mAb/biotin標識抗CD69mAb(早期活性化マーカー)
(c)Cy標識抗CD3mAb/FITC標識抗TCRαβmAb/PE標識抗CD4mAb/biotin標識抗CD25mAb(IL-2Rα;活性化マーカー)
(d)Cy標識抗CD3mAb/FITC標識抗TCRαβmAb/PE標識抗CD122mAb(IL-2Rβ;活性化マーカー)/biotin標識抗CD4mAb
The mesenteric lymph node (MLN) was collected simultaneously with the measurement of the number of bacteria in the organ in (2) above. The collected MLN was crushed with a slide glass, excess tissue pieces were removed with a stainless mesh, and lymphocytes were resuspended in Hank's solution for FACS so that the concentration was 1 × 10 6 / ml. Lymphocytes were stained with the four types of staining patterns shown in the following (a) to (d), and cell (T cell center) surface molecules were analyzed using a flow cytometer (Epics-XL; Beckman Coulter). . The results are shown in Table 3 and FIG.
(A) Cy-chrome (Cy) -labeled anti-CD3 mAb (T cell-specific recognition marker) / FITC-labeled anti-TCRαβ mAb (T-cell type-specific recognition marker) / PE-labeled anti-CD4 mAb / biotin-labeled anti-TCRγδ (T-cell type-specific recognition marker) mAb
(B) Cy-labeled anti-CD3 mAb / FITC-labeled anti-TCRαβ mAb / PE-labeled anti-CD4 mAb / biotin-labeled anti-CD69 mAb (early activation marker)
(C) Cy-labeled anti-CD3 mAb / FITC-labeled anti-TCRαβ mAb / PE-labeled anti-CD4 mAb / biotin-labeled anti-CD25 mAb (IL-2Rα; activation marker)
(D) Cy-labeled anti-CD3 mAb / FITC-labeled anti-TCRαβ mAb / PE-labeled anti-CD122 mAb (IL-2Rβ; activation marker) / biotin-labeled anti-CD4 mAb

表3及び図5に示されるように、試験群、比較群1、2は、対照群に比べてCD4陽性αβ型T細胞の増加が認められた。特に、試験群においては、比較群1、2よりも増加の割合が多かった。なお、菌感染3日後においては、いずれの群もほぼ同様の割合を示した。一方、CD4陽性細胞中の活性化マーカーに関しては、CD25分子(IL−2Rα)、CD122分子(IL−2Rβ)及びCD69分子(早期活性化マーカー)いずれも各群を問わずほぼ同等の発現程度であった。   As shown in Table 3 and FIG. 5, the test group and comparative groups 1 and 2 showed an increase in CD4 positive αβ type T cells as compared to the control group. In particular, the rate of increase was higher in the test group than in Comparative Groups 1 and 2. In addition, in 3 days after fungal infection, all groups showed almost the same ratio. On the other hand, regarding the activation marker in CD4 positive cells, all of CD25 molecule (IL-2Rα), CD122 molecule (IL-2Rβ) and CD69 molecule (early activation marker) have almost the same expression level regardless of each group. there were.

この結果から、試験群では感染前と感染後もCD4陽性αβ型T細胞の著しい変化は認められなかったので、本免疫賦活剤による感染抵抗性の亢進は、分化の低い細胞集団の機能亢進によるものと推測された。   From this result, since no significant change in CD4 positive αβ type T cells was observed before and after infection in the test group, the enhancement of infection resistance by the immunostimulatory agent was due to the enhancement of the function of a cell group with low differentiation It was speculated.

なお、血液中のサイトカインに関して、市販のマウスインターフェロン−γ(IFN−γ)測定キット(米国 ゲンザイム社製)を用いて測定したところ、表4に示すように、試験群では感染3日目にIFN−γ量が高値を示した。CD4陽性αβ型T細胞の変化は認められなかったことより、IFN−γを産生している細胞はマクロファージの可能性が考えられた。   The cytokines in the blood were measured using a commercially available mouse interferon-γ (IFN-γ) measurement kit (manufactured by Genzyme, USA). As shown in Table 4, in the test group, IFN was observed on the third day of infection. -Γ amount showed a high value. Since no change in CD4 positive αβ type T cells was observed, it was considered that the cells producing IFN-γ could be macrophages.

本発明の免疫賦活剤は食品由来の成分を有効成分としているので安全性が高く、医薬品としてだけでなく、健康食品素材としても利用することができる。   Since the immunostimulant of the present invention uses food-derived ingredients as active ingredients, it is highly safe and can be used not only as a pharmaceutical product but also as a health food material.

リステリア菌摂取後の生存率と経過日数との関係を示す図表である。It is a graph which shows the relationship between the survival rate after Listeria monocytogenes intake, and elapsed days. リステリア菌摂取後の生存率に及ぼす被験物質の影響を示す図表である。It is a graph which shows the influence of the to-be-tested substance on the survival rate after inoculating Listeria monocytogenes. リステリア菌摂取後の平均生存日数と被験物質との関係を示す図表である。It is a graph which shows the relationship between the average survival days after Listeria monocytogenes intake, and a test substance. リステリア菌摂取後の脾臓内菌数の経時的変化に及ぼす被験物質の影響を示す図表である。It is a graph which shows the influence of the to-be-tested substance on the time-dependent change of the number of bacteria in a spleen after listeria bacteria ingestion. リステリア菌摂取後、フローサイトメータを用いて細胞表面分子の解析を行った結果を示す図表である。It is a graph which shows the result of having analyzed the cell surface molecule | numerator using the flow cytometer after Listeria monocytogenes ingestion.

Claims (6)

アウレオバシジウム属(Aureobasidium sp.)に属する菌を培養して得られるβ−1,3−1,6−グルカンを含む培養物と、乳酸菌菌体とを有効成分として含有することを特徴とする免疫賦活剤。 It contains a culture containing β-1,3-1,6-glucan obtained by culturing bacteria belonging to the genus Aureobasidium ( Aureobasidium sp.) And lactic acid bacteria as active ingredients. Immunostimulator. 前記アウレオバシジウム属(Aureobasidium sp.)に属する菌は、アウレオバシジウム プルランス M-1(Aureobasidium pullulans M-1)(FERM P-19213)である、請求項1に記載の免疫賦活剤。 The immunostimulant according to claim 1, wherein the bacterium belonging to the genus Aureobasidium sp. Is Aureobasidium pullulans M-1 (FERM P-19213). 固形分中に、前記培養物をβ−1,3−1,6−グルカン換算で5〜80質量%含有し、かつ前記乳酸菌菌体を10〜80質量%含有する、請求項1又は2に記載の免疫賦活剤。   The solid content contains 5 to 80% by mass of the culture in terms of β-1,3-1,6-glucan, and 10 to 80% by mass of the lactic acid bacteria. The immunostimulant described. 前記培養物は、固形分濃度が0.5〜5質量%であり、かつ、固形分中にβ−1,3−1,6−グルカンを10質量%以上含むものである、請求項1〜3のいずれか一つに記載の免疫賦活剤。   The culture according to claim 1, wherein the culture has a solid concentration of 0.5 to 5% by mass, and the solid content contains β-1,3-1,6-glucan of 10% by mass or more. The immunostimulant according to any one of the above. 前記乳酸菌はエンテロコッカス・フェカリス(Enterococcus faecalis)である、請求項1〜4のいずれか一つに記載の免疫賦活剤。 The lactic acid bacterium is Enterococcus faecalis (Enterococcus faecalis), immunostimulant according to any one of claims 1 to 4. 前記乳酸菌は加熱殺菌されたものである、請求項1〜5のいずれか一つに記載の免疫賦活剤。   The immunostimulant according to any one of claims 1 to 5, wherein the lactic acid bacteria are heat-sterilized.
JP2004028965A 2003-03-07 2004-02-05 Immunostimulator Expired - Lifetime JP4369258B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2004028965A JP4369258B2 (en) 2004-02-05 2004-02-05 Immunostimulator
EP04717235A EP1602377B1 (en) 2003-03-07 2004-03-04 Composition containing beta-glucan and constipation-relieving drug, immunopotentiator and skin moistening agent using the composition
KR1020057004241A KR100649855B1 (en) 2003-03-07 2004-03-04 Composition containing ?-glucan and constipation-relieving drug, immunopotentiator and skin moistening agent using the composition
CNB2004800010385A CN100341521C (en) 2003-03-07 2004-03-04 Composition containing beta-glucan and constipation-relieving drug, immunopotentiator and skin moistening agent using the composition
US10/531,463 US20050272694A1 (en) 2003-03-07 2004-03-04 Composition containing beta-glucan and constipation-relieving drug, immunopotentiatior, and skin moistening agent using the composition
AT04717235T ATE519490T1 (en) 2003-03-07 2004-03-04 BETA-GLUCAN COMPOSITION AND ANTI-OBSTIPATION RELIEVING AGENT, IMMUNOPOTENTIATOR AND SKIN MOISTURIZER USING THE COMPOSITION
PCT/JP2004/002780 WO2004078188A1 (en) 2003-03-07 2004-03-04 COMPOSITION CONTAINING β-GLUCAN AND CONSTIPATION-RELIEVING DRUG, IMMUNOPOTENTIATOR AND SKIN MOISTENING AGENT USING THE COMPOSITION
TWCOMPOSITIA TWI282279B (en) 2003-03-07 2004-03-05 A61p 37/04 200601 a i vhtw a61p 17/16 200601 a i vhtw
HK06103700A HK1083590A1 (en) 2003-03-07 2006-03-24 Composition containing beta-glucan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004028965A JP4369258B2 (en) 2004-02-05 2004-02-05 Immunostimulator

Publications (2)

Publication Number Publication Date
JP2005220065A true JP2005220065A (en) 2005-08-18
JP4369258B2 JP4369258B2 (en) 2009-11-18

Family

ID=34995976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028965A Expired - Lifetime JP4369258B2 (en) 2003-03-07 2004-02-05 Immunostimulator

Country Status (1)

Country Link
JP (1) JP4369258B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297322A (en) * 2006-04-28 2007-11-15 Toyobo Co Ltd Method for promoting cytokine production
JP2008050306A (en) * 2006-08-25 2008-03-06 Hayashibara Biochem Lab Inc Immunomodulator for animal
JP2009035732A (en) * 2007-07-20 2009-02-19 Korea Atomic Energy Research Inst Method for producing low molecular weight beta-glucan by radiation irradiation and low molecular weight beta-glucan produced by radiation irradiation
JP2010285421A (en) * 2009-05-15 2010-12-24 Daiso Co Ltd Effect promoter for lactobacillus having intestinal immunostimulatory activity
WO2011043435A1 (en) 2009-10-08 2011-04-14 株式会社アウレオ Therapeutic agent for influenza virus infectious diseases
JP2012126657A (en) * 2010-12-13 2012-07-05 Aureo Co Ltd Composition and method for preventing and treating mastitis
WO2014013793A1 (en) * 2012-07-17 2014-01-23 Miura Shigenobu METHOD FOR PRODUCING β-GLUCAN
TWI482642B (en) * 2009-05-27 2015-05-01 A kind of immunity regulatory composition and the structure using in immunotherapy
JP2016079118A (en) * 2014-10-15 2016-05-16 株式会社Adeka Immunomodulator, health supplement feed, and feed
JP2018016580A (en) * 2016-07-27 2018-02-01 株式会社東洋発酵 Immunostimulatory composition
JP2018076715A (en) * 2016-11-10 2018-05-17 大阪瓦斯株式会社 Petroleum recovery enhancement method
JP2020031580A (en) * 2018-08-30 2020-03-05 株式会社アウレオ HIGH β-GLUCAN PRODUCING STRAINS, β-GLUCAN MANUFACTURING PROCESSES AND METHODS FOR SCREENING HIGH β-GLUCAN PRODUCING STRAINS

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190083699A (en) 2018-01-05 2019-07-15 가부시키가이샤 아우레오 Composition for promoting thrombospondin 1 gene expression
WO2021049587A1 (en) 2019-09-11 2021-03-18 株式会社アウレオ Composition for enhancing effect of antibody drug

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297322A (en) * 2006-04-28 2007-11-15 Toyobo Co Ltd Method for promoting cytokine production
JP2008050306A (en) * 2006-08-25 2008-03-06 Hayashibara Biochem Lab Inc Immunomodulator for animal
JP2009035732A (en) * 2007-07-20 2009-02-19 Korea Atomic Energy Research Inst Method for producing low molecular weight beta-glucan by radiation irradiation and low molecular weight beta-glucan produced by radiation irradiation
JP2010285421A (en) * 2009-05-15 2010-12-24 Daiso Co Ltd Effect promoter for lactobacillus having intestinal immunostimulatory activity
TWI482642B (en) * 2009-05-27 2015-05-01 A kind of immunity regulatory composition and the structure using in immunotherapy
JP5560472B2 (en) * 2009-10-08 2014-07-30 株式会社アウレオ Influenza virus infection treatment
WO2011043435A1 (en) 2009-10-08 2011-04-14 株式会社アウレオ Therapeutic agent for influenza virus infectious diseases
JPWO2011043435A1 (en) * 2009-10-08 2013-03-04 株式会社アウレオ Influenza virus infection treatment
JP2012126657A (en) * 2010-12-13 2012-07-05 Aureo Co Ltd Composition and method for preventing and treating mastitis
JPWO2014013793A1 (en) * 2012-07-17 2016-06-30 重信 三浦 Process for producing β-glucan
US20150152454A1 (en) * 2012-07-17 2015-06-04 Shigenobu Miura Method for producing beta-glucan
WO2014013793A1 (en) * 2012-07-17 2014-01-23 Miura Shigenobu METHOD FOR PRODUCING β-GLUCAN
US9896706B2 (en) 2012-07-17 2018-02-20 Shigenobu Miura Method for producing β-glucan
JP2016079118A (en) * 2014-10-15 2016-05-16 株式会社Adeka Immunomodulator, health supplement feed, and feed
JP2018016580A (en) * 2016-07-27 2018-02-01 株式会社東洋発酵 Immunostimulatory composition
JP2021107446A (en) * 2016-07-27 2021-07-29 株式会社東洋発酵 Immunostimulatory composition
JP7165363B2 (en) 2016-07-27 2022-11-04 株式会社東洋発酵 Immunostimulatory composition
JP2018076715A (en) * 2016-11-10 2018-05-17 大阪瓦斯株式会社 Petroleum recovery enhancement method
JP2020031580A (en) * 2018-08-30 2020-03-05 株式会社アウレオ HIGH β-GLUCAN PRODUCING STRAINS, β-GLUCAN MANUFACTURING PROCESSES AND METHODS FOR SCREENING HIGH β-GLUCAN PRODUCING STRAINS

Also Published As

Publication number Publication date
JP4369258B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
Saadat et al. A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides
KR100649855B1 (en) Composition containing ?-glucan and constipation-relieving drug, immunopotentiator and skin moistening agent using the composition
Bajpai et al. Exopolysaccharide and lactic acid bacteria: Perception, functionality and prospects
JP5737646B2 (en) Antiallergic agent
WO2019112054A1 (en) Novel bifidobacterium bacteria and composition including novel bifidobacterium bacteria
EP3326633A1 (en) Immune system stimulating nutrition
JP4369258B2 (en) Immunostimulator
JP7179343B2 (en) Novel lactic acid strain and immunostimulant containing the same
JP5337535B2 (en) NK activity enhancer
JP4807941B2 (en) β-glucan
JP2010285421A (en) Effect promoter for lactobacillus having intestinal immunostimulatory activity
WO2017145415A1 (en) Immune development accelerator
JP4499979B2 (en) Composition for controlling pathogen infection
JP5610472B2 (en) Novel lactic acid bacteria and novel lactic acid bacteria-containing composition
JPH05252900A (en) Immunopotentiative composition
JP4054697B2 (en) Constipation improving agent
JP4064515B2 (en) IL-12 production inducing composition
US20060178340A1 (en) Composition comprising soluble glucan oligomer from saccharomyces cerevisiae is2 for immune activation or prevention and treatment of cancer and the preparation method thereof
JP7330854B2 (en) Bifidobacterium growth composition
JP5560472B2 (en) Influenza virus infection treatment
TWI230611B (en) Anti-infection composition and food containing such anti-infection composition
JP2018016580A (en) Immunostimulatory composition
JP4503946B2 (en) Immunostimulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090827

R150 Certificate of patent or registration of utility model

Ref document number: 4369258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250