JP2005219976A - Oxide superconductor and its manufacturing method - Google Patents

Oxide superconductor and its manufacturing method Download PDF

Info

Publication number
JP2005219976A
JP2005219976A JP2004030557A JP2004030557A JP2005219976A JP 2005219976 A JP2005219976 A JP 2005219976A JP 2004030557 A JP2004030557 A JP 2004030557A JP 2004030557 A JP2004030557 A JP 2004030557A JP 2005219976 A JP2005219976 A JP 2005219976A
Authority
JP
Japan
Prior art keywords
cuo
substrate
thin film
oxide superconductor
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004030557A
Other languages
Japanese (ja)
Inventor
Masao Naitou
方夫 内藤
Akio Tsukada
昭雄 束田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004030557A priority Critical patent/JP2005219976A/en
Publication of JP2005219976A publication Critical patent/JP2005219976A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To develop superconductivity by doping a three-valent element to La<SB>2</SB>CuO<SB>4</SB>having a structure of Nd<SB>2</SB>CuO<SB>4</SB>. <P>SOLUTION: The oxide superconductor characterised in that it is expressed by chemical formula: La<SB>2-x</SB>M<SB>x</SB>CuO<SB>4</SB>(0<x<2; M is one or more kinds selected from the group consisting of Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, and Y) and its crystal structure is the Nd<SB>2</SB>CuO<SB>4</SB>structure, is manufactured by setting La, M, and Cu metal raw materials in a super high vacuum chamber, heating a substrate, and introducing an active oxygen to form a metal oxide thin film on the substrate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は酸化物超伝導体及びその製造方法、さらに詳細にはNdCuO構造を有するLaCuOに対して、価数3価の元素のドーピングにより、超伝導を発現させる新しい酸化物超伝導体及びその製造方法に関する。 The present invention relates to an oxide superconductor and a method for producing the same, and more specifically, a new oxide that exhibits superconductivity by doping a trivalent element with La 2 CuO 4 having an Nd 2 CuO 4 structure. The present invention relates to a superconductor and a method for manufacturing the same.

NdCuO構造をとる酸化物超伝導体としては、一般式で(RE,Th)CuO(非特許文献1、2)、(RE,Ce)CuO(非特許文献3、4)で表される物質が過去に知られていた。ここでREはLa、Pr、Nd、Sm、Euのいずれかの希土類元素またはそれらの元素の混合物を表す。価数が4価のTh及びCeが3価の希土類元素を置換し、n型キャリヤを供給することにより、超伝導が発現するとされてきた。
J.T.Markert et al.,Solid State Commun.,70(1989)145. J.T.Markert et al.,Physica C,158(1989)178. Y.Tokura et al.,Nature,337(1989)345. H.Takagi et al.,Phys.Rev.Lett.62(1989)1197.
As an oxide superconductor having an Nd 2 CuO 4 structure, (RE, Th) 2 CuO 4 (Non-Patent Documents 1 and 2), (RE, Ce) 2 CuO 4 (Non-Patent Documents 3 and 4) ) Was known in the past. Here, RE represents a rare earth element of La, Pr, Nd, Sm, or Eu or a mixture of these elements. It has been reported that superconductivity is developed by replacing trivalent rare earth elements with tetravalent Th and Ce and supplying n-type carriers.
J. et al. T.A. Markert et al. , Solid State Commun. , 70 (1989) 145. J. et al. T.A. Markert et al. Physica C, 158 (1989) 178. Y. Tokuura et al. , Nature, 337 (1989) 345. H. Takagi et al. Phys. Rev. Lett. 62 (1989) 1197.

従来の技術では、NdCuO構造を有するRECuO(REはLa、Pr、Nd、Sm、Eu)の超伝導発現に価数4価の元素のドーピングが必要であった。このため、ドーパントがThとCeに限られていた。 In the prior art, doping of a tetravalent element was necessary for the superconductivity of RE 2 CuO 4 (RE is La, Pr, Nd, Sm, Eu) having an Nd 2 CuO 4 structure. For this reason, the dopant was limited to Th and Ce.

上記課題を解決するために、本発明による酸化物超伝導体は、化学式La2−xCuO(0<x<2;MをPr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、Yの1種以上)で表され、結晶構造がNdCuO構造をとることを特徴とする。 In order to solve the above problems, the oxide superconductor according to the present invention has a chemical formula La 2-x M x CuO 4 (0 <x <2; M represents Pr, Nd, Sm, Eu, Gd, Dy, Ho, One or more of Er, Tm, Yb, Lu, and Y), and the crystal structure has an Nd 2 CuO 4 structure.

また本発明による酸化物超伝導体の製造方法は、化学式La2−xCuO(0<x<2;MをPr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、Yの1種以上)を生成するための化学量論比に秤量した金属La、金属M、金属Cuを超高真空チャンバーに設置し、基板を加熱するとともに活性酸素を導入して前記基板上に金属酸化物薄膜を形成させることを特徴とする。 In addition, the method for producing an oxide superconductor according to the present invention has a chemical formula La 2-x M x CuO 4 (0 <x <2; M is Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, The metal La, metal M, and metal Cu weighed in a stoichiometric ratio for generating Yb, Lu, and Y) are placed in an ultra-high vacuum chamber, the substrate is heated, and active oxygen is introduced. A metal oxide thin film is formed on the substrate.

すなわち、本発明はNdCuO構造を有するLaCuOに対して、価数3価の元素のドーピングにより、超伝導を発現させることを目的とする。価数3価の元素としては、Pr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、Yのいずれか、又は、その混合とすることができる。 That is, an object of the present invention is to develop superconductivity for La 2 CuO 4 having an Nd 2 CuO 4 structure by doping a valence trivalent element. As the valence trivalent element, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Y, or a mixture thereof can be used.

NdCuO構造を有するLaCuOは、通常のバルク合成では安定化することができないが、低温薄膜合成により安定化できる。得られたLaCuO薄膜は金属的であるものの、結晶性が完全でないために、超伝導は示さない。しかし、少量のPr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、Yの1種以上をLaCuOに添加することにより、結晶性を向上させ、超伝導を発現することができる。 La 2 CuO 4 having an Nd 2 CuO 4 structure cannot be stabilized by ordinary bulk synthesis, but can be stabilized by low-temperature thin film synthesis. Although the obtained La 2 CuO 4 thin film is metallic, it does not exhibit superconductivity due to incomplete crystallinity. However, by adding a small amount of one or more of Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, and Y to La 2 CuO 4 , the crystallinity is improved and superconductivity is improved. Can be expressed.

従来、NdCuO構造を有するRECuOの超伝導発現には価数4価の元素のドーピングにより、n型キャリヤの供給が必須であると考えられてきた。本発明は、この従来概念を覆し、中性のドーピングによっても超伝導発現が可能なことを示した。 Conventionally, it has been considered that supply of n-type carriers is indispensable for the development of superconductivity of RE 2 CuO 4 having an Nd 2 CuO 4 structure by doping with a tetravalent element. The present invention overturns this conventional concept and shows that superconductivity can be developed even by neutral doping.

本発明によれば、化学式La2−xCuO(0<x<2;MをPr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、Yの1種以上)で表され、結晶構造がNdCuO構造をとることを特徴とする。 According to the present invention, the chemical formula La 2-x M x CuO 4 (0 <x <2; M is Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Y. The crystal structure is an Nd 2 CuO 4 structure.

また、前述のように少量のPr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、Yの1種以上をLaCuOに添加することにより、結晶性を向上させ、超伝導を発現することができる。 In addition, as described above, crystallinity is improved by adding a small amount of one or more of Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, and Y to La 2 CuO 4. And superconductivity can be developed.

本発明による酸化物超伝導体の製造方法によれば、化学式La2−xCuO(0<x<2;MをPr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、Yのいずれか)を生成するための化学量論比に秤量した金属La、金属M、金属Cuを超高真空チャンバーに設置し、基板を加熱するとともに活性酸素を導入して前記基板上に金属酸化物薄膜を形成させる(図1参照)。これによって反応性共蒸着によってLa2−xCuO(0<x<2;MをPr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、Yの1種以上)薄膜が形成される。 According to the method of manufacturing an oxide superconductor according to the present invention, the chemical formula La 2-x M x CuO 4 (0 <x <2; M is Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm. , Yb, Lu, or Y) are placed in an ultra-high vacuum chamber with metal La, metal M, and metal Cu weighed in a stoichiometric ratio to heat the substrate and introduce active oxygen. A metal oxide thin film is formed on the substrate (see FIG. 1). Thus, La 2 -x M x CuO 4 (0 <x <2; M is Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Y by reactive co-evaporation. Thus, a thin film is formed.

基板としては、たとえばチタン酸ストロンチウム(SrTiO)基板、アルミ酸ネオジムカルシウム(NdCaAlO)基板及びアルミ酸イットリウム(YAlO)基板を有効に使用することができる。基板温度は好ましくは450〜800℃である。450℃未満であると、結晶化しない恐れがあり、一方800℃を越えると、La2−xCuO相が形成されない恐れがある。最も好ましくは600〜700℃である。 As the substrate, for example, a strontium titanate (SrTiO 3 ) substrate, a neodymium calcium aluminate (NdCaAlO 4 ) substrate, and an yttrium aluminate (YAlO 3 ) substrate can be effectively used. The substrate temperature is preferably 450 to 800 ° C. If it is lower than 450 ° C., it may not be crystallized, while if it exceeds 800 ° C., the La 2−x M x CuO 4 phase may not be formed. Most preferably, it is 600-700 degreeC.

さらに活性酸素としては、たとえばオゾンまたは原子酸素が好ましく用いられる。この活性酸素の流量は、0.1〜10cc/分、好ましくは0.5〜5cc/分であるのがよい。0.1cc/分未満であると、La2−xCuOの相ができない。一般に、銅酸化物高温超伝導体ではCuは2+の高酸化状態にあるので、所望の相を得るためには、成長時に照射する活性酸素量の下限が存在する。5cc/分を越えると、結晶性が徐々に悪くなり、10cc/分を越えると使用可能な結晶性ではなくなると推定される。 Further, as active oxygen, for example, ozone or atomic oxygen is preferably used. The flow rate of this active oxygen is 0.1 to 10 cc / min, preferably 0.5 to 5 cc / min. If it is less than 0.1 cc / min, a phase of La 2-x M x CuO 4 cannot be formed. In general, Cu is in a high oxidation state of 2+ in a copper oxide high-temperature superconductor. Therefore, in order to obtain a desired phase, there is a lower limit of the amount of active oxygen irradiated during growth. If it exceeds 5 cc / min, the crystallinity gradually deteriorates, and if it exceeds 10 cc / min, it is estimated that the crystallinity is not usable.

以下実施例を説明する。後述の実施例は、本発明の例示であり、これによって限定されるものではない。   Examples will be described below. The following examples are illustrative of the present invention and are not limited thereby.

(1)M=Sm
オゾンを用いた反応性共蒸着法により、チタン酸ストロンチウム(SrTiO)基板、アルミ酸ネオジムカルシウム(NdCaAlO)基板及びアルミ酸イットリウム(YAlO)基板上にLa2−xSmCuO薄膜を作製した。ここで、基板温度は650℃で、オゾン流量1cc/分とした。
(1) M = Sm
La 2-x Sm x CuO 4 thin film was formed on a strontium titanate (SrTiO 3 ) substrate, neodymium calcium aluminate (NdCaAlO 4 ) substrate, and yttrium aluminate (YAlO 3 ) substrate by a reactive co-evaporation method using ozone. Produced. Here, the substrate temperature was 650 ° C., and the ozone flow rate was 1 cc / min.

図2は、同薄膜のx=0.15における超伝導転移を示したものであり、薄膜がTc〜21Kの超伝導体であることを示している。図3は、同薄膜のx=0.30におけるX線回折パターンであり、薄膜がNdCuO構造をとっていることを示している。ここで*印はYAlO基板からのピークを示している。 FIG. 2 shows the superconducting transition of the thin film at x = 0.15, indicating that the thin film is a superconductor of Tc to 21K. FIG. 3 is an X-ray diffraction pattern of the thin film at x = 0.30, which shows that the thin film has an Nd 2 CuO 4 structure. Here, * indicates a peak from the YAlO 3 substrate.

さらに、Smドープ量を系統的に変える実験を行い、超伝導が出現する組成範囲を調べた。図4に超伝導転移温度のx依存性を示す。図4はLa2−xSmCuO薄膜の超伝導転移温度(Tc)をSmの組成の関数としてプロットしたものである。○、□及び△は、それぞれチタン酸ストロンチウム(SrTiO)基板、アルミ酸ネオジムカルシウム(NdCaAlO)基板及びアルミ酸イットリウム(YAlO)基板上に作製した薄膜の結果を示している。0.15≦x≦0.30の範囲で超伝導が観測され、x=0.15近傍でTcは最高値の21.0Kとなる。 Furthermore, an experiment was conducted to systematically change the amount of Sm doping, and the composition range where superconductivity appeared was examined. FIG. 4 shows the x dependence of the superconducting transition temperature. FIG. 4 is a plot of the superconducting transition temperature (Tc) of a La 2-x Sm x CuO 4 thin film as a function of Sm composition. ○, □, and Δ show the results of the thin films formed on the strontium titanate (SrTiO 3 ) substrate, the neodymium calcium aluminate (NdCaAlO 4 ) substrate, and the yttrium aluminate (YAlO 3 ) substrate, respectively. Superconductivity is observed in the range of 0.15 ≦ x ≦ 0.30, and Tc reaches the maximum value of 21.0K in the vicinity of x = 0.15.

(2)M=Eu
オゾンを用いた反応性共蒸着法により、チタン酸ストロンチウム(SrTiO)基板、アルミ酸ネオジムカルシウム(NdCaAlO)基板及びアルミ酸イットリウム(YAlO)基板上にLa2−xEuCuO薄膜を作製した。ここで、基板温度は650℃で、オゾン流量1.5cc/分とした。図5は、同薄膜のx=0.15における超伝導転移を示したものであり、薄膜がTc〜20Kの超伝導体であることを示している。さらに、Euドープ量を系統的に変える実験を行い、超伝導が出現する組成範囲を調べた。図6に超伝導転移温度のx依存性を示す。図6はLa2−xEuCuO薄膜の超伝導転移温度(Tc)をEuの組成の関数としてプロットしたものである。○、□及び△は、それぞれチタン酸ストロンチウム(SrTiO)基板、アルミ酸ネオジムカルシウム(NdCaAlO)基板及びアルミ酸イットリウム(YAlO)基板上に作製した薄膜の結果を示している。0.15≦x≦0.30で超伝導が観測され、x=0.15付近で最高のTc=20.2Kが得られた。
(2) M = Eu
La 2-x Eu x CuO 4 thin film was formed on a strontium titanate (SrTiO 3 ) substrate, neodymium calcium aluminate (NdCaAlO 4 ) substrate, and yttrium aluminate (YAlO 3 ) substrate by a reactive co-evaporation method using ozone. Produced. Here, the substrate temperature was 650 ° C., and the ozone flow rate was 1.5 cc / min. FIG. 5 shows the superconducting transition of the thin film at x = 0.15, indicating that the thin film is a superconductor of Tc to 20K. Furthermore, an experiment was conducted to systematically change the Eu doping amount, and the composition range in which superconductivity appeared was examined. FIG. 6 shows the x dependence of the superconducting transition temperature. FIG. 6 is a plot of the superconducting transition temperature (Tc) of a La 2-x Eu x CuO 4 thin film as a function of Eu composition. ◯, □, and Δ show the results of the thin films formed on the strontium titanate (SrTiO 3 ) substrate, the neodymium calcium aluminate (NdCaAlO 4 ) substrate, and the yttrium aluminate (YAlO 3 ) substrate, respectively. Superconductivity was observed at 0.15 ≦ x ≦ 0.30, and the highest Tc = 20.2 K was obtained near x = 0.15.

(3)M=Y
オゾンを用いた反応性共蒸着法により、チタン酸ストロンチウム(SrTiO)基板、アルミ酸ネオジムカルシウム(NdCaAlO)基板及びアルミ酸イットリウム(YAlO)基板上にLa2−xCuO薄膜を作製した。ここで、基板温度は650℃で、オゾン流量2cc/分とした。図7は、同薄膜のx=0.09における超伝導転移を示したものであり、薄膜がTc〜19Kの超伝導体であることを示している。さらに、Yドープ量を系統的に変える実験を行い、超伝導が出現する組成範囲を調べた。図8に超伝導転移温度のx依存性を示す。図8はLa2−xCuO薄膜の超伝導転移温度(Tc)をYの組成の関数としてプロットしたものである。○、□及び△は、それぞれチタン酸ストロンチウム(SrTiO)基板。アルミ酸ネオジムカルシウム(NdCaAlO)基板及びアルミ酸イットリウム(YAlO)基板上に作製した薄膜の結果を示している。0.09≦x≦0.15で超伝導が観測され、x=0.09付近で最高のTc=19.3Kが得られた。
(3) M = Y
La 2-x Y x CuO 4 thin film is formed on a strontium titanate (SrTiO 3 ) substrate, neodymium calcium aluminate (NdCaAlO 4 ) substrate, and yttrium aluminate (YAlO 3 ) substrate by a reactive co-evaporation method using ozone. Produced. Here, the substrate temperature was 650 ° C., and the ozone flow rate was 2 cc / min. FIG. 7 shows the superconducting transition of the thin film at x = 0.09, indicating that the thin film is a superconductor of Tc to 19K. Furthermore, an experiment was conducted to systematically change the Y-doping amount, and the composition range in which superconductivity appeared was investigated. FIG. 8 shows the x dependence of the superconducting transition temperature. FIG. 8 is a plot of the superconducting transition temperature (Tc) of a La 2 -x Y x CuO 4 thin film as a function of Y composition. ○, □ and Δ are strontium titanate (SrTiO 3 ) substrates, respectively. Shows the aluminum neodymium calcium (NdCaAlO 4) substrate and an aluminum yttrium (YAlO 3) results of films prepared on a substrate. Superconductivity was observed at 0.09 ≦ x ≦ 0.15, and the highest Tc = 19.3K was obtained near x = 0.09.

(4)M=Lu
オゾンを用いた反応性共蒸着法により、チタン酸ストロンチウム(SrTiO)基板及びアルミ酸ネオジムカルシウム(NdCaAlO)基板上にLa2−xLuCuO薄膜を作製した。ここで、基板温度は650℃で、オゾン流量3cc/分とした。図8は、同薄膜のx=0.06における超伝導転移を示したものであり、薄膜がTc〜12Kの超伝導体であることを示している。さらに、Luドープ量を系統的に変える実験を行い、超伝導が出現する組成範囲を調べた。図10に超伝導転移温度のx依存性を示す。図10はLa2−xLuCuO薄膜の超伝導転移温度(Tc)をLuの組成の関数としてプロットしたものである。○及び□は、それぞれチタン酸ストロンチウム(SrTiO)基板及びアルミ酸ネオジムカルシウム(NdCaAlO)基板上に作製した薄膜の結果を示している。0.03≦x≦0.09で超伝導が観測され、x=0.06付近で最高のTc=11.7Kが得られた。
(4) M = Lu
La 2-x Lu x CuO 4 thin films were formed on a strontium titanate (SrTiO 3 ) substrate and a neodymium calcium aluminate (NdCaAlO 4 ) substrate by a reactive co-evaporation method using ozone. Here, the substrate temperature was 650 ° C., and the ozone flow rate was 3 cc / min. FIG. 8 shows the superconducting transition of the thin film at x = 0.06, indicating that the thin film is a superconductor of Tc to 12K. Furthermore, an experiment was conducted to systematically change the Lu doping amount, and the composition range in which superconductivity appeared was examined. FIG. 10 shows the x dependence of the superconducting transition temperature. FIG. 10 is a plot of the superconducting transition temperature (Tc) of a La 2-x Lu x CuO 4 thin film as a function of Lu composition. ○ and □ show the results of the thin films formed on the strontium titanate (SrTiO 3 ) substrate and the neodymium calcium aluminate (NdCaAlO 4 ) substrate, respectively. Superconductivity was observed at 0.03 ≦ x ≦ 0.09, and the highest Tc = 11.7 K was obtained near x = 0.06.

従来、NdCuO構造を有するRECuOの超伝導発現には価数4価の元素のドーピングにより、n型キャリヤの供給が必須であると考えられてきた。本発明は、この従来概念を覆し、中性のドーピングによっても超伝導発現が可能なことを示した。すなわち、新しい酸化物超伝導体およびその製造方法を提供する。 Conventionally, it has been considered that supply of n-type carriers is indispensable for the development of superconductivity of RE 2 CuO 4 having an Nd 2 CuO 4 structure by doping with a tetravalent element. The present invention overturns this conventional concept and shows that superconductivity can be developed even by neutral doping. That is, a new oxide superconductor and a manufacturing method thereof are provided.

本発明の製造方法を示すブロック図。The block diagram which shows the manufacturing method of this invention. 反応性共蒸着法により、アルミ酸イットリウム(YAlO)基板上に作製したLa1.85Sm0.15CuO薄膜の超伝導転移を示した図。By a reactive co-evaporation method, it showed superconducting transition of La 1.85 Sm 0.15 CuO 4 films prepared in an aluminum yttrium (YAlO 3) on the substrate Fig. La1.7Sm0.3CuOのX線回折パターンであり、薄膜がNdCuO構造をとっていることを示している。This is an X-ray diffraction pattern of La 1.7 Sm 0.3 CuO 4 , indicating that the thin film has an Nd 2 CuO 4 structure. La2−xSmCuO薄膜の超伝導転移温度(Tc)をSmの組成の関数としてプロットした図。Plotted La 2-x Sm x CuO 4 thin film superconducting transition temperature (Tc) as a function of the composition of Sm. 反応性共蒸着法により、アルミ酸イットリウム(YAlO)基板上に作製したLa1.85Eu0.15CuO薄膜の超伝導転移を示した図。By a reactive co-evaporation method, it showed superconducting transition of La 1.85 Eu 0.15 CuO 4 films prepared in an aluminum yttrium (YAlO 3) on the substrate Fig. La2−xEuCuO薄膜の超伝導転移温度(Tc)をEuの組成の関数としてプロットした図。Plotted La 2-x Eu x CuO 4 thin film superconducting transition temperature (Tc) as a function of the composition of the Eu. 反応性共蒸着法により、アルミ酸イットリウム(YAlO)基板上に作製したLa1.910.09CuO薄膜の超伝導転移を示した図。By a reactive co-evaporation method, it showed superconducting transition of La 1.91 Y 0.09 CuO 4 films prepared in an aluminum yttrium (YAlO 3) on the substrate Fig. La2−xCuO薄膜の超伝導転移温度(Tc)をYの組成の関数としてプロットした図。Plotted La 2-x Y x CuO 4 thin film superconducting transition temperature (Tc) as a function of the composition of Y. 反応性共蒸着法により、アルミ酸ネオジムカルシウム(NdCaAlO)基板上に作製したLa1.94Lu0.06CuO薄膜の超伝導転移を示した図。By a reactive co-evaporation method, it showed superconducting transition of La 1.94 Lu 0.06 CuO 4 films prepared in an aluminum neodymium calcium (NdCaAlO 4) on the substrate Fig. La2−xLuCuO薄膜の超伝導転移温度(Tc)をLuの組成の関数としてプロットした図。Plotted La 2-x Lu x CuO 4 thin film superconducting transition temperature (Tc) as a function of the composition of Lu.

Claims (5)

化学式La2−xCuO(0<x<2;MをPr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、Yの1種以上)で表され、結晶構造がNdCuO構造をとることを特徴とする酸化物超伝導体。 Represented by; formula La 2-x M x CuO 4 (M and Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, 1 or more Y 0 <x <2) An oxide superconductor having a crystal structure of Nd 2 CuO 4 . 化学式La2−xCuO(0<x<2;MをPr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Lu、Yのいずれか)を生成するための化学量論比に秤量した金属La、金属M、金属Cuを超高真空チャンバーに設置し、基板を加熱するとともに活性酸素を導入して前記基板上に金属酸化物薄膜を形成させることを特徴とする酸化物超伝導体の製造方法。 For generating a chemical formula La 2-x M x CuO 4 (0 <x <2; M is any of Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Y) The metal La, metal M, and metal Cu weighed in a stoichiometric ratio are placed in an ultra-high vacuum chamber, the substrate is heated, and active oxygen is introduced to form a metal oxide thin film on the substrate. A method for manufacturing an oxide superconductor. 前記基板は、チタン酸ストロンチウム(SrTiO)基板、アルミ酸ネオジムカルシウム(NdCaAlO)基板及びアルミ酸イットリウム(YAlO)基板上のいずれかであることを特徴とする請求項2記載の酸化物超伝導体の製造方法。 3. The oxide superlattice according to claim 2, wherein the substrate is any of a strontium titanate (SrTiO 3 ) substrate, a neodymium calcium aluminate (NdCaAlO 4 ) substrate, and an yttrium aluminate (YAlO 3 ) substrate. A method for manufacturing a conductor. 前記基板を450〜800℃に加熱することを特徴とする請求項2または3記載の酸化物超伝導体の製造方法。 The method of manufacturing an oxide superconductor according to claim 2 or 3, wherein the substrate is heated to 450 to 800 ° C. 活性酸素の流量は0.1〜10cc/分であることを特徴とする請求項2から4のいずれか1項記載の酸化物超伝導体の製造方法。 The method for producing an oxide superconductor according to any one of claims 2 to 4, wherein the flow rate of active oxygen is 0.1 to 10 cc / min.
JP2004030557A 2004-02-06 2004-02-06 Oxide superconductor and its manufacturing method Pending JP2005219976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004030557A JP2005219976A (en) 2004-02-06 2004-02-06 Oxide superconductor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004030557A JP2005219976A (en) 2004-02-06 2004-02-06 Oxide superconductor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005219976A true JP2005219976A (en) 2005-08-18

Family

ID=34995905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030557A Pending JP2005219976A (en) 2004-02-06 2004-02-06 Oxide superconductor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005219976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107882A (en) * 2007-10-30 2009-05-21 Nippon Telegr & Teleph Corp <Ntt> Superconductor and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107882A (en) * 2007-10-30 2009-05-21 Nippon Telegr & Teleph Corp <Ntt> Superconductor and its manufacturing method

Similar Documents

Publication Publication Date Title
Yoshizumi et al. Reactions of oxyfluoride precursors for the preparation of barium yttrium cuprate films
TWI452029B (en) An oxide sintered body, a sputtering target composed of the sintered body, a method for producing the sintered body, and a method for producing the sintered body sputtering target
Oka et al. Crystal engineering for novel functionalities with oxide thin film epitaxy
Gao et al. Out-of-plane effect on the superconductivity of Sr 2− x Ba x CuO 3+ δ with T c up to 98 K
JPH0259467A (en) Stable superconductive substance and its production
US8288321B2 (en) Layered compound, superconductor and method for producing same
JP2005219976A (en) Oxide superconductor and its manufacturing method
Tajima et al. Synthesis of Bi2223 by Low $ P_ {{\rm O} 2} $ Sintering
Aoba et al. Generation of Sr2Ca (n-1) CunOy phases (n= 5-7) by high pressure synthesis
Yazıcı et al. Effect of vanadium-titanium co-doping on the BPSCCO superconductor
JP5605750B2 (en) Raw material solution for oxide superconducting thin film production
Ueda et al. Synthesis of (Hg, Re) Ba2Can− 1CunO2+ 2n+ δ (n= 2, 3, 4) single crystals and their magnetization properties
JP2005053760A (en) Oxide superconductor and its manufacturing method
Altin et al. Effects of SnO on growth and physical properties of BSCCO whiskers
JP5334120B2 (en) Superconducting material, superconducting thin film, and manufacturing method thereof
Karpov et al. Plasma-Chemical Synthesis of YBa2Cu3O7–y/CuO Granular Composites
De Barros et al. Effect of substrate’s nature on the growth of HgBCCO thin films
JP4861290B2 (en) Superconductor and manufacturing method thereof
Maeda et al. Electrical and structural properties of (Pb0. 5Fe0. 5) Sr2 (RE0. 5Ca0. 5) Cu2Oz (RE: rare-earth element)
Sudra et al. Dysprosium doped Tl-1212 superconductors with varying Pb content
JPH0745357B2 (en) Superconducting fibrous single crystal and method for producing the same
JPH0848520A (en) Oxide superconductor and its production
Maeda et al. Synthesis and characterization of (Pb, Cu) Sr2 (RE, Ca) Cu2Oz (z≈ 7; RE: Sm, Eu or Gd)
JP2785977B2 (en) Method and apparatus for forming oxide high-temperature superconducting film by plasma-induced evaporation
Luo et al. Weak ferromagnetism in distorted T′-phase cuprates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070726

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203