JP2005219299A - Laminate made of synthetic resin and its manufacturing method - Google Patents

Laminate made of synthetic resin and its manufacturing method Download PDF

Info

Publication number
JP2005219299A
JP2005219299A JP2004028297A JP2004028297A JP2005219299A JP 2005219299 A JP2005219299 A JP 2005219299A JP 2004028297 A JP2004028297 A JP 2004028297A JP 2004028297 A JP2004028297 A JP 2004028297A JP 2005219299 A JP2005219299 A JP 2005219299A
Authority
JP
Japan
Prior art keywords
synthetic resin
transparent
resin
layer
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004028297A
Other languages
Japanese (ja)
Inventor
Tokiaki Iwakiri
常昭 岩切
Hidehiko Kamano
英彦 鎌野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP2004028297A priority Critical patent/JP2005219299A/en
Publication of JP2005219299A publication Critical patent/JP2005219299A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Landscapes

  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent laminate made of a synthetic resin excellent in scratch resistance, abrasion resistance and weatherability, and its manufacturing method. <P>SOLUTION: The laminate made of the synthetic resin is manufacture by bonding at least one side of a transparent synthetic resin layer (A) formed by injection molding and the surface of the transparent resin base material (b-1) of a laminated substrate (B), which is obtained by providing an acrylic resin layer (b-2) containing an ultraviolet absorber to one side of the transparent resin base material (b-1), and has a cured film layer (b-3) formed by coating the acrylic resin layer (b-2) of the laminated substrate (B) with a thermosetting polyorganosiloxane composition which substantially contains no monomer-dimer components and comprises 0.01-3% of a trimer component, 1-15% of a tetramer component, 1-13% of a pentamer and 69-97% of a hexamer and has a number average polymerization degree of 8-100. This laminate is excellent in transparency, surface hardness, scratch resistance, abrasion resistance and weatherability and has excellent appearance and a hue. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、合成樹脂製積層体及び合成樹脂製積層体の製造方法に関し、さらに詳しくは、表面に硬化皮膜層を有する透明性、耐擦傷性、耐摩耗性、耐候性に優れた透明合成樹脂製積層体及び該合成樹脂製積層体の製造方法に関する。   The present invention relates to a synthetic resin laminate and a method for producing a synthetic resin laminate, and more specifically, a transparent synthetic resin having a cured film layer on the surface and excellent in transparency, scratch resistance, abrasion resistance, and weather resistance. The present invention relates to a laminate and a method for producing the synthetic resin laminate.

透明合成樹脂基材は、加工の自由性及び軽量性に優れていることからガラスに代わる構造材料として広く使用されてきており、例えば、計器カバー、グレージング、ランプレンズ等の自動車用途、携帯電話、モバイルの携帯端末のハウジング、表示板等のOA・電気・電子用途、温室被覆材、アーケード、採光用屋根材等の建材用途、歩道の腰板、高速道路のフェンス等の道路資材、銘板等の産業資材用途に幅広く用いられている。   Transparent synthetic resin base materials have been widely used as structural materials to replace glass because of their excellent processing freedom and lightness. For example, automotive covers such as instrument covers, glazings, and lamp lenses, mobile phones, OA / electrical / electronic applications such as mobile terminal housings, display boards, etc., greenhouse materials, arcades, building materials such as daylighting roofing materials, sidewalk lumbar boards, road materials such as highway fences, nameplates, etc. Widely used for materials.

しかしながら、耐擦傷性、耐摩耗性、耐候性等の表面特性が不十分であることからその用途は制限されており、合成樹脂基材の表面特性を改良することが切望されている。表面特性の改良方法としては、合成樹脂成形品の表面を表面処理剤で被覆する方法があり、例えば、多官能アクリル系の光硬化性樹脂や、メラミン系またはポリオルガノシロキサン系の熱硬化性樹脂からなる硬化皮膜層を合成樹脂基材の表面に形成する方法が提案されている。   However, since the surface properties such as scratch resistance, abrasion resistance, weather resistance and the like are insufficient, the use thereof is limited, and there is a strong demand for improving the surface properties of the synthetic resin base material. As a method for improving the surface characteristics, there is a method of coating the surface of a synthetic resin molded article with a surface treatment agent, for example, a polyfunctional acrylic photo-curing resin, a melamine-based or polyorganosiloxane-based thermosetting resin. There has been proposed a method of forming a cured film layer made of the above material on the surface of a synthetic resin substrate.

これらの中では、ポリオルガノシロキサンで被覆した製品が耐摩耗性、耐薬品性に優れており、ポリオルガノシロキサンによるコーティングが有用とされている。しかし、ポリオルガノシロキサンによるコーティングは合成樹脂に対しては密着性に問題があり、特に屋外で長時間に亘って用いられる場合には、コーティング層が合成樹脂層から剥がれ落ちるという不具合があった。   Among these, products coated with polyorganosiloxane are excellent in wear resistance and chemical resistance, and coating with polyorganosiloxane is considered useful. However, the coating with polyorganosiloxane has a problem in adhesion to the synthetic resin, and particularly when used outdoors for a long time, there is a problem that the coating layer is peeled off from the synthetic resin layer.

密着性を改良する方法としては、接着性良好な各種ポリマーを塗料に配合する方法が例えば特許文献1に記載されているが、表面硬度が低下し、場合によっては塗料の耐候性を著しく低下させる。耐候性を向上させるためには、高濃度のUV吸収剤を添加する方法があるが、耐摩耗性を著しく低下させる不具合がある。従って、表面硬度及び耐候性を要求する用途では、一般にアクリル系プライマーを用いる2コート方式が用いられるが、作業工程が長くなり生産性が低下しやすい。
また表面硬度及び耐候性、耐磨耗性など改良した合成樹脂積層体として、例えば、透明合成樹脂層(a)の少なくとも一方の面に、耐紫外線性透明合成樹脂層(b)及び硬化皮膜層(c)が順次積層された合成樹脂積層体が特許文献2に、または透明合成樹脂層(a)の少なくとも一方の面に、透明合成樹脂中間層(b)を介して、耐紫外線性透明合成樹脂層(c)および硬化皮膜層(d)が積層された合成樹脂積層体が特許文献3に、それぞれ記載されている。また、プラスチック基材の少なくとも一方の面に紫外線吸収剤を含有するアクリル樹脂層を設けた積層板のアクリル樹脂層にポリオルガノシロキサンを塗布、硬化させたプラスチック積層板において、連続重合法で製造されたアクリル樹脂を使用したプラスチック積層板が特許文献4に記載されている。
As a method for improving the adhesion, for example, Patent Document 1 describes a method of blending various polymers having good adhesion to the paint, but the surface hardness is lowered, and in some cases, the weather resistance of the paint is remarkably lowered. . In order to improve the weather resistance, there is a method of adding a high concentration UV absorber, but there is a problem that the wear resistance is remarkably lowered. Therefore, in applications requiring surface hardness and weather resistance, a two-coat method using an acrylic primer is generally used, but the work process becomes long and the productivity tends to decrease.
Further, as a synthetic resin laminate having improved surface hardness, weather resistance, abrasion resistance, etc., for example, an ultraviolet resistant transparent synthetic resin layer (b) and a cured coating layer are formed on at least one surface of the transparent synthetic resin layer (a). The synthetic resin laminate in which (c) is sequentially laminated is disclosed in Patent Document 2 or on at least one surface of the transparent synthetic resin layer (a) via the transparent synthetic resin intermediate layer (b). Patent Document 3 discloses a synthetic resin laminate in which a resin layer (c) and a cured film layer (d) are laminated. In addition, a plastic laminate in which polyorganosiloxane is applied and cured on an acrylic resin layer of a laminate provided with an acrylic resin layer containing an ultraviolet absorber on at least one surface of a plastic substrate is manufactured by a continuous polymerization method. Patent Document 4 describes a plastic laminate using an acrylic resin.

特開平7−90224号公報JP-A-7-90224 特開2001−334610号公報JP 2001-334610 A 特開2001−315271号公報JP 2001-315271 A 特開2003−11293号公報JP 2003-11293 A

本発明の目的は、従来技術における上記問題を解決し、耐擦傷性、耐摩耗性及び耐候性に優れ、且つ透明な合成樹脂製積層体及び該合成樹脂製積層体の製造方法を提供することにある。   An object of the present invention is to solve the above-mentioned problems in the prior art, and to provide a transparent synthetic resin laminate having excellent scratch resistance, abrasion resistance and weather resistance, and a method for producing the synthetic resin laminate. It is in.

本発明は、上述の問題を解決するためになされたものであり、その要旨は、射出成形により形成される透明合成樹脂層(A)の少なくとも一方の面と、透明樹脂基材(b−1)の片面に紫外線吸収剤を含有するアクリル樹脂層(b−2)を設けた積層基板の該アクリル樹脂被覆層に、特定の熱硬化型ポリオルガノシロキサン組成物を塗布して、硬化させてなる皮膜層(b−3)を有する樹脂積層板(B)の透明樹脂基材(b−1)面とを接合させてなる合成樹脂製積層体及びその製造法に係る。   The present invention has been made to solve the above-mentioned problems, and the gist thereof is that at least one surface of the transparent synthetic resin layer (A) formed by injection molding and a transparent resin substrate (b-1). ) Is coated with a specific thermosetting polyorganosiloxane composition on the acrylic resin coating layer of the laminated substrate provided with an acrylic resin layer (b-2) containing an ultraviolet absorber on one side and cured. The present invention relates to a synthetic resin laminate obtained by bonding a transparent resin substrate (b-1) surface of a resin laminate (B) having a coating layer (b-3) and a method for producing the same.

さらに、射出成形により形成される透明合成樹脂層(A)、透明樹脂基材(b−1)、アクリル樹脂層(b−2)、皮膜層(b−3)の線膨張係数を種々変更したものを塗膜化してその性能を評価したところ、各層間の線膨張係数の差が10×10−5/℃以下である合成樹脂製積層体は、より厳しい耐候性試験後においても耐擦傷性、密着性に優れていることを見出し、本発明を完成させた。 Furthermore, the linear expansion coefficients of the transparent synthetic resin layer (A), the transparent resin substrate (b-1), the acrylic resin layer (b-2), and the coating layer (b-3) formed by injection molding were variously changed. When the performance was evaluated by forming a coating film, a laminate made of a synthetic resin having a difference in linear expansion coefficient between each layer of 10 × 10 −5 / ° C. or less is scratch resistant even after a severe weather resistance test. As a result, the present invention was completed.

すなわち、本発明は、射出成形により形成される透明合成樹脂層(A)の少なくとも一方の面と、透明樹脂基材(b−1)の片面に紫外線吸収剤を含有するアクリル樹脂層(b−2)を設けた積層基板の該アクリル樹脂被覆層に、1〜2量体成分は実質的に存在せず、3量体成分が0.01〜3%、4量体成分が1〜15%、5量体成分が1〜13%、6量体以上が69〜97%であって、数平均重合度が8〜100である熱硬化型ポリオルガノシロキサン組成物を塗布して、硬化させてなる硬化皮膜層(b−3)を有する樹脂積層板(B)の透明樹脂基材(b−1)面とを接合させてなることを特徴とする合成樹脂製積層体に関する。   That is, the present invention provides an acrylic resin layer (b-) containing an ultraviolet absorber on at least one surface of the transparent synthetic resin layer (A) formed by injection molding and one surface of the transparent resin substrate (b-1). 1) The dimer component is not substantially present in the acrylic resin coating layer of the laminated substrate provided with 2), the trimer component is 0.01 to 3%, and the tetramer component is 1 to 15%. A thermosetting polyorganosiloxane composition having a pentamer component of 1 to 13%, a hexamer of 69 to 97% and a number average degree of polymerization of 8 to 100 is applied and cured. It is related with the synthetic resin laminated body formed by joining the transparent resin base material (b-1) surface of the resin laminated board (B) which has a cured film layer (b-3) which becomes.

また、上記樹脂積層板(B)における硬化皮膜層(b−3)が金型内表面の少なくとも一方の面に接するよう樹脂積層板(B)を配置し、次いで該金型内へ射出成形により形成される透明合成樹脂層(A)を構成する透明合成樹脂を射出注入し、樹脂積層板(B)における透明樹脂基材(b−1)面と射出成形により形成される透明合成樹脂層(A)とを接合させて積層一体化することを特徴とする合成樹脂製積層体の製造方法に関する。   Further, the resin laminate (B) is disposed so that the cured coating layer (b-3) in the resin laminate (B) is in contact with at least one surface of the inner surface of the mold, and then injected into the mold by injection molding. A transparent synthetic resin layer (A) to be formed is injected and injected with a transparent synthetic resin layer (B), and a transparent synthetic resin layer (B-1) surface and a transparent synthetic resin layer (B) formed by injection molding ( The present invention relates to a method for producing a synthetic resin laminate, wherein A) is joined and laminated and integrated.

さらに、本発明の合成樹脂製積層体は、射出成形により形成される透明合成樹脂層(A)、透明樹脂基材(b−1)、アクリル樹脂層(b−2)、皮膜層(b−3)の各層間の線膨張係数の差が10×10−5/℃以下であることを特徴とする。
なお、本明細書において、以下、透明合成樹脂製積層体を単に「積層体」と呼称することがある。
Furthermore, the synthetic resin laminate of the present invention comprises a transparent synthetic resin layer (A) formed by injection molding, a transparent resin substrate (b-1), an acrylic resin layer (b-2), and a coating layer (b- 3) The difference in linear expansion coefficient between the respective layers is 10 × 10 −5 / ° C. or less.
In the present specification, hereinafter, a transparent synthetic resin laminate may be simply referred to as a “laminate”.

本発明の積層体は、透明性に優れ、表面硬度に優れ、かつ耐擦傷性、耐摩耗性、耐候性に優れており、さらに外観および色調にも優れており、計器カバー、グレージング、ランプレンズ、ルーフ窓用ガラス等の自動車用途、携帯電話、モバイルの携帯端末のハウジング、表示板等のOA・電気・電子用途、温室被覆材、アーケード、採光用屋根材等の建材用途、歩道の腰板、高速道路のフェンス等の道路資材、銘板等の産業資材用途の各種の用途において有用である。   The laminate of the present invention is excellent in transparency, surface hardness, scratch resistance, abrasion resistance, weather resistance, and also in appearance and color tone, instrument cover, glazing, lamp lens , Automotive applications such as glass for roof windows, mobile phone, mobile terminal housings, OA / electrical / electronic applications such as display boards, greenhouse coating materials, arcades, building materials such as daylighting roofing materials, sidewalk lumbars, It is useful in various applications such as road materials such as highway fences and industrial materials such as nameplates.

本発明の積層体を構成する射出成形により形成される透明合成樹脂層(A)の透明合成樹脂および透明樹脂基材(b−1)の透明合成樹脂としては、それぞれ、ポリカーボネート樹脂(PC)、ポリエステルポリカーボネート樹脂、メタクリル樹脂(PMMA)、MS樹脂(MMA−SM共重合樹脂)、非晶質ポリオレフィン系樹脂(APO)、透明ABS樹脂、透明ポリスチレン樹脂(透明PS)、特殊アクリル樹脂、アクリロニトリル−スチレン樹脂(AS)、ポリアリレート樹脂(PAR)、ポリサルフォン樹脂(PSF)、ポリエーテルサルフォン樹脂(PES)、透明エポキシ樹脂、TPX樹脂(ポリ−4−メチルペンテン−1)、フッ素化ポリイミド樹脂、透明フッ素樹脂、透明フェノキシ樹脂、含硫黄ウレタン樹脂、ノルボルネン系樹脂などが挙げられ、特に好ましくはポリカーボネート樹脂(PC)が挙げられる。   As the transparent synthetic resin of the transparent synthetic resin layer (A) formed by injection molding constituting the laminate of the present invention and the transparent synthetic resin of the transparent resin substrate (b-1), respectively, polycarbonate resin (PC), Polyester polycarbonate resin, methacrylic resin (PMMA), MS resin (MMA-SM copolymer resin), amorphous polyolefin resin (APO), transparent ABS resin, transparent polystyrene resin (transparent PS), special acrylic resin, acrylonitrile-styrene Resin (AS), polyarylate resin (PAR), polysulfone resin (PSF), polyethersulfone resin (PES), transparent epoxy resin, TPX resin (poly-4-methylpentene-1), fluorinated polyimide resin, transparent Fluorine resin, transparent phenoxy resin, sulfur-containing urethane resin, norvol Such as down resin. Particularly preferred examples include a polycarbonate resin (PC) is.

本発明の積層体における射出成形により形成される透明合成樹脂層(A)の厚みは、好ましくは0.8〜30mmである。0.8mm以下では、樹脂の充填が困難になりやすく、30mm以上では製品賦形が困難となる。射出成形により形成された透明合成樹脂層の厚みは、より好ましくは1〜20mmであり、最も好ましくは1.2〜10mmである。   The thickness of the transparent synthetic resin layer (A) formed by injection molding in the laminate of the present invention is preferably 0.8 to 30 mm. If it is 0.8 mm or less, filling of the resin tends to be difficult, and if it is 30 mm or more, product shaping becomes difficult. The thickness of the transparent synthetic resin layer formed by injection molding is more preferably 1 to 20 mm, and most preferably 1.2 to 10 mm.

該射出成形により形成される透明合成樹脂層(A)における透明合成樹脂のヘイズは、厚さ1mmの成形品での測定で好ましくは10%以下である。ヘイズが10%以上であると積層体における透明性が不十分となりやすい。射出成形により形成された透明合成樹脂のヘイズは、厚さ1mmの成形品での測定で、より好ましくは8%以下であり、最も好ましくは5%以下である。   The haze of the transparent synthetic resin in the transparent synthetic resin layer (A) formed by the injection molding is preferably 10% or less as measured with a molded product having a thickness of 1 mm. When the haze is 10% or more, the transparency in the laminate tends to be insufficient. The haze of the transparent synthetic resin formed by injection molding is more preferably 8% or less, and most preferably 5% or less, as measured with a molded product having a thickness of 1 mm.

本発明の積層体における透明樹脂基材(b−1)を形成する透明合成樹脂のヘイズは、厚さ1mmの成形品での測定で好ましくは10%以下である。ヘイズが10%以上であると積層体における透明性が不十分となりやすい。透明樹脂基材(b−1)を形成する透明合成樹脂のヘイズは、厚さ1mmの成形品での測定で、より好ましくは8%以下であり、最も好ましくは5%以下である。   The haze of the transparent synthetic resin forming the transparent resin substrate (b-1) in the laminate of the present invention is preferably 10% or less as measured with a molded product having a thickness of 1 mm. When the haze is 10% or more, the transparency in the laminate tends to be insufficient. The haze of the transparent synthetic resin forming the transparent resin substrate (b-1) is more preferably 8% or less, and most preferably 5% or less, as measured with a molded product having a thickness of 1 mm.

本発明に係る積層体を構成する射出成形により形成される透明合成樹脂層(A)の透明合成樹脂および透明樹脂基材(b−1)を形成する透明合成樹脂のヘイズは、同一又は近似していることが成形品の透明性を確保する上から重要であり、両者のヘイズが大きく異なる場合には成形品の透明性が低下し好ましくない。したがって、上記透明合成樹脂層(A)を形成する透明合成樹脂と透明樹脂基材(b−1)を形成する透明合成樹脂はこれらの点を考慮して選択される。   The transparent synthetic resin of the transparent synthetic resin layer (A) formed by injection molding constituting the laminate according to the present invention and the haze of the transparent synthetic resin forming the transparent resin substrate (b-1) are the same or approximate. It is important from the viewpoint of ensuring the transparency of the molded product. If the hazes of the two are greatly different, the transparency of the molded product is lowered, which is not preferable. Therefore, the transparent synthetic resin forming the transparent synthetic resin layer (A) and the transparent synthetic resin forming the transparent resin substrate (b-1) are selected in consideration of these points.

本発明の射出成形により形成される透明合成樹脂層(A)の透明合成樹脂および透明樹脂基材(b−1)を形成する透明合成樹脂は、それぞれ、透明性を損なわない程度にベンゾトリアゾール系化合物、ベンゾフェノン系化合物、ベンゾエート系化合物、サリシレート系化合物、トリアリールトリアジン系化合物等の有機系紫外線吸収剤や、酸化チタン、酸化亜鉛、酸化セリウム等無機系紫外線遮蔽剤を含有してもよく、また、他の光安定剤、酸化防止剤、熱安定剤、帯電防止剤、熱線反射剤、熱線吸収剤、難燃剤、滑剤、顔料、フィラー等を含んでいてもよい。   The transparent synthetic resin of the transparent synthetic resin layer (A) formed by the injection molding of the present invention and the transparent synthetic resin forming the transparent resin substrate (b-1) are benzotriazole-based to the extent that transparency is not impaired. It may contain organic UV absorbers such as compounds, benzophenone compounds, benzoate compounds, salicylate compounds, triaryltriazine compounds, and inorganic UV shielding agents such as titanium oxide, zinc oxide, and cerium oxide. Other light stabilizers, antioxidants, heat stabilizers, antistatic agents, heat ray reflectors, heat ray absorbers, flame retardants, lubricants, pigments, fillers, and the like may be included.

透明樹脂基材(b−1)を形成する透明合成樹脂が、紫外線吸収剤を含有する場合、透明合成樹脂の紫外線吸収剤含有量は、使用する紫外線吸収剤の紫外線吸収能及び透明樹脂基材(b−1)の厚みによるが、透明合成樹脂に対して好ましくは0.5重量%未満である。本発明の積層体においては紫外線吸収剤がアクリル樹脂層(b−2)を形成するアクリル樹脂に含有されており、該アクリル樹脂層の耐紫外線性を十分に保持することにより、透明樹脂基材(b−1)における透明合成樹脂の紫外線吸収剤含有量を0.5重量%以上にしても本発明の積層体の耐候性に顕著な効果は認められない。   When the transparent synthetic resin forming the transparent resin substrate (b-1) contains an ultraviolet absorber, the ultraviolet absorber content of the transparent synthetic resin depends on the ultraviolet absorbing ability of the ultraviolet absorber used and the transparent resin substrate. Although it depends on the thickness of (b-1), it is preferably less than 0.5% by weight with respect to the transparent synthetic resin. In the laminate of the present invention, an ultraviolet absorber is contained in the acrylic resin forming the acrylic resin layer (b-2), and the transparent resin base material is obtained by sufficiently maintaining the ultraviolet resistance of the acrylic resin layer. Even if the content of the ultraviolet absorbent in the transparent synthetic resin in (b-1) is 0.5% by weight or more, no significant effect is observed in the weather resistance of the laminate of the present invention.

本発明の積層体における透明樹脂基材(b−1)と熱硬化型ポリオルガノシロキサン組成物を硬化させてなる硬化皮膜層(b−3)の中間に位置するアクリル樹脂層(b−2)を形成するアクリル樹脂について具体的に述べる。該アクリル樹脂はメチルメタクリレートとメチルアクリレート又はエチルアクリレートとの共重合体であり、共重合組成及び分子量は共押出条件、製造されたフィルム、シート、ボードなどの外観により適宜選択すればよいが、共重合組成比としてはメチルメタクリレート80〜99%、メチル又はエチルアクリレート1〜20%が、分子量は5〜30万程度が適当であるが、これらだけに限定されるものではない。アクリル樹脂の荷重撓み温度は90℃以上がよく、好ましくは95℃以上、さらに好ましくは100℃以上が良い。
該アクリル樹脂層(b−2)を形成するアクリル樹脂の製法は、一般的に乳化重合法、懸濁重合法、連続重合法とに大別されるが、本発明に使用されるアクリル樹脂は連続重合法により製造されたアクリル樹脂が好適に使用される。さらに、連続重合法には連続塊状重合法と連続溶液重合法に分けることが出来るが、発明においてはどちらの製法で得られたアクリル樹脂も用いることができるが、具体的な製造例として特開平7−133303号公報記載の方法で製造されたものがある。
Acrylic resin layer (b-2) located in the middle of the transparent resin substrate (b-1) and the cured film layer (b-3) obtained by curing the thermosetting polyorganosiloxane composition in the laminate of the present invention. The acrylic resin that forms the film will be specifically described. The acrylic resin is a copolymer of methyl methacrylate and methyl acrylate or ethyl acrylate, and the copolymer composition and molecular weight may be appropriately selected depending on the co-extrusion conditions and the appearance of the produced film, sheet, board, etc. As the polymerization composition ratio, methyl methacrylate 80 to 99%, methyl or ethyl acrylate 1 to 20% is appropriate, and the molecular weight is about 5 to 300,000, but is not limited thereto. The load deflection temperature of the acrylic resin is preferably 90 ° C. or higher, preferably 95 ° C. or higher, more preferably 100 ° C. or higher.
The method of producing the acrylic resin for forming the acrylic resin layer (b-2) is generally roughly divided into an emulsion polymerization method, a suspension polymerization method, and a continuous polymerization method. The acrylic resin used in the present invention is An acrylic resin produced by a continuous polymerization method is preferably used. Further, the continuous polymerization method can be divided into a continuous bulk polymerization method and a continuous solution polymerization method. In the invention, an acrylic resin obtained by either method can be used. Some are manufactured by the method described in JP-A-7-133303.

アクリル樹脂層(b−2)を形成するアクリル樹脂中の紫外線吸収剤含有量は、使用する紫外線吸収剤の紫外線吸収能及びアクリル樹脂層の厚みにもよるが、アクリル樹脂に対して好ましくは0.01〜5重量%である。含有量が0.01重量%未満の場合は、耐紫外線性が不十分であり、また5重量%を超えると耐紫外線透明合成樹脂層に紫外線吸収剤特有の着色が起こりやすく、更にシート成形時に紫外線吸収剤の揮散による冷却用ロールの汚れや作業環境の汚れが発生し、シート外観を損ないやすい。アクリル樹脂層(b−2)を形成するアクリル樹脂中の紫外線吸収剤含有量は、アクリル樹脂に対して、より好ましくは0.02〜3.5重量%であり、特に好ましくは0.03〜3.2重量%である。   The content of the ultraviolet absorbent in the acrylic resin forming the acrylic resin layer (b-2) is preferably 0 with respect to the acrylic resin, although it depends on the ultraviolet absorbing ability of the ultraviolet absorbent used and the thickness of the acrylic resin layer. 0.01 to 5% by weight. When the content is less than 0.01% by weight, the UV resistance is insufficient, and when it exceeds 5% by weight, the UV-resistant transparent synthetic resin layer is likely to be colored peculiar to the UV absorber, and further during sheet molding. The cooling roll and the working environment are contaminated by the volatilization of the UV absorber, and the sheet appearance tends to be damaged. The ultraviolet absorber content in the acrylic resin forming the acrylic resin layer (b-2) is more preferably 0.02 to 3.5% by weight, and particularly preferably 0.03 to 3.5% by weight with respect to the acrylic resin. 3.2% by weight.

アクリル樹脂に含有される紫外線吸収剤としては、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、ベンゾエート系化合物、サリシレート系化合物、トリアリールトリアジン系化合物等の有機系紫外線吸収剤などが挙げられ、好ましくはトリアリールトリアジン系化合物及びベンゾトリアゾール系化合物が挙げられる。トリアリールトリアジン系化合物は、280〜300nm付近の紫外線吸収性が高く且つ揮散性が少なく、合成樹脂製積層体における耐紫外線性を著しく向上させる。トリアリールトリアジン系化合物としては、下記化学式で示される化合物が好ましい。   Examples of the ultraviolet absorber contained in the acrylic resin include organic ultraviolet absorbers such as benzotriazole compounds, benzophenone compounds, benzoate compounds, salicylate compounds, triaryltriazine compounds, and preferably triaryls. A triazine type compound and a benzotriazole type compound are mentioned. The triaryltriazine-based compound has a high ultraviolet absorptivity around 280 to 300 nm and a low volatility, and remarkably improves the ultraviolet resistance in the synthetic resin laminate. As the triaryltriazine-based compound, a compound represented by the following chemical formula is preferable.

(化1)

Figure 2005219299
(Chemical formula 1)
Figure 2005219299

式中、Rは水素原子、炭素数1〜18のアルキル基、ハロゲン原子、炭素数1〜15のアルコキシ基で置換された炭素数2〜6のアルキル基、又はベンジル基であり、R〜Rは、それぞれ、水素原子又はメチル基である。 In the formula, R 1 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a halogen atom, an alkyl group having 2 to 6 carbon atoms substituted with an alkoxy group having 1 to 15 carbon atoms, or a benzyl group, and R 2 to R 5 are each a hydrogen atom or a methyl group.

アクリル樹脂層(b−2)を形成するアクリル樹脂は、透明性を損なわない範囲で、酸化チタン、酸化亜鉛、酸化セリウム等無機系紫外線遮蔽剤を含有してもよく、また、他の光安定剤、酸化防止剤、熱安定剤、帯電防止剤、熱線反射剤、熱線吸収剤、難燃剤、滑剤、顔料、フィラー等を含んでいてもよい。   The acrylic resin that forms the acrylic resin layer (b-2) may contain an inorganic ultraviolet shielding agent such as titanium oxide, zinc oxide, cerium oxide or the like as long as the transparency is not impaired. An agent, an antioxidant, a heat stabilizer, an antistatic agent, a heat ray reflective agent, a heat ray absorbent, a flame retardant, a lubricant, a pigment, a filler, and the like may be included.

アクリル樹脂層(b−2)を形成するアクリル樹脂のヘイズも上記射出成形により形成される透明合成樹脂層(A)の透明合成樹脂および透明樹脂基材(b−1)を形成する透明合成樹脂のヘイズと同一又は近似していることが成形品の透明性を確保する観点から必要である。したがって、アクリル樹脂層(b−2)を形成するアクリル樹脂のヘイズは、厚さ1mmの成形品による測定で好ましくは10%以下である。ヘイズが10%以上であると積層体の透明性が不十分となりやすい。アクリル樹脂層(b−2)を形成するアクリル樹脂のヘイズは、厚さ1mmの成形品による測定で、より好ましくは8%以下であり、最も好ましくは5%以下である。   The transparent synthetic resin forming the transparent synthetic resin and the transparent resin base material (b-1) of the transparent synthetic resin layer (A) formed by the above injection molding is also used as the haze of the acrylic resin forming the acrylic resin layer (b-2). It is necessary from the viewpoint of ensuring the transparency of the molded product to be the same as or similar to the haze of the molded product. Therefore, the haze of the acrylic resin forming the acrylic resin layer (b-2) is preferably 10% or less as measured by a molded product having a thickness of 1 mm. When the haze is 10% or more, the transparency of the laminate tends to be insufficient. The haze of the acrylic resin forming the acrylic resin layer (b-2) is more preferably 8% or less, and most preferably 5% or less, as measured by a molded product having a thickness of 1 mm.

アクリル樹脂層(b−2)の厚みは、必要とする耐紫外線性を有する厚みであればよく、好ましくは1〜200μmである。1μm未満であると紫外線吸収効果が不十分であり、200μmを越えても耐紫外線性に顕著な向上が見られず、衝撃強度を著しく低下させることがある。アクリル樹脂層(b−2)の厚みは、より好ましくは3〜150μmであり、最も好ましくは5〜100μmである。   The thickness of the acrylic resin layer (b-2) may be a thickness having required ultraviolet resistance, and is preferably 1 to 200 μm. If it is less than 1 μm, the ultraviolet absorption effect is insufficient, and if it exceeds 200 μm, the ultraviolet resistance is not significantly improved, and the impact strength may be significantly reduced. The thickness of the acrylic resin layer (b-2) is more preferably 3 to 150 μm, and most preferably 5 to 100 μm.

透明樹脂基材(b−1)の厚みとアクリル樹脂層(b−2)の厚みの合計は、好ましくは0.2〜3mmであり、より好ましくは0.3〜2.5mmである。
透明樹脂基材(b−1)の厚みとアクリル樹脂層(b−2)の厚みの合計が小さすぎても大きすぎてもシート、フィルムとしての取り扱いが難しく、成形等の際の作業性に劣る。透明樹脂基材(b−1)の厚みは、アクリル樹脂層(b−2)の厚みに比べ厚くすることが好ましく、透明樹脂基材(b−1)の厚みを厚くすることで、紫外線吸収性に優れた耐紫外線性アクリル樹脂層(b−2)の厚みを比較的小さくできる。
The total thickness of the transparent resin substrate (b-1) and the acrylic resin layer (b-2) is preferably 0.2 to 3 mm, more preferably 0.3 to 2.5 mm.
If the total thickness of the transparent resin base material (b-1) and the acrylic resin layer (b-2) is too small or too large, it is difficult to handle as a sheet or film, and workability during molding and the like is improved. Inferior. The thickness of the transparent resin substrate (b-1) is preferably larger than the thickness of the acrylic resin layer (b-2), and the transparent resin substrate (b-1) is thickened to absorb ultraviolet rays. The thickness of the UV-resistant acrylic resin layer (b-2) having excellent properties can be made relatively small.

アクリル樹脂層(b−2)の厚みと透明樹脂基材(b−1)の厚みとの比は、好ましくは1/250〜1/2である。厚み比が1/250未満であると耐紫外線性アクリル樹脂層(b−2)の耐紫外線の効果が不十分になりやすく、1/2を越えると耐紫外線の効果が過剰になりコスト的に不利となる上、着色により透明性が阻害されやすい。耐紫外線性アクリル樹脂層(b−2)の厚みと透明樹脂基材(b−1)の厚みとの比は、より好ましくは1/200〜1/3であり、最も好ましくは1/150〜1/4である。   The ratio between the thickness of the acrylic resin layer (b-2) and the thickness of the transparent resin substrate (b-1) is preferably 1/250 to 1/2. If the thickness ratio is less than 1/250, the UV resistance effect of the UV resistant acrylic resin layer (b-2) tends to be insufficient, and if it exceeds 1/2, the UV resistance effect becomes excessive and costly. In addition to being disadvantageous, transparency tends to be hindered by coloring. The ratio of the thickness of the ultraviolet resistant acrylic resin layer (b-2) to the thickness of the transparent resin substrate (b-1) is more preferably 1/200 to 1/3, most preferably 1/150 to 1/4.

アクリル樹脂層(b−2)の厚みと透明樹脂基材(b−1)の厚みの合計は、好ましくは、積層体の厚みの3/100〜50/100である。耐紫外線性アクリル樹脂層(b−2)の厚みと透明樹脂基材(b−1)の厚みの合計が、積層体の厚みの3/100より小さいと積層体の耐紫外線性が不十分になりやすく、50/100を超えると射出成形により形成された透明合成樹脂層(A)の厚みが十分でなく射出成形し難いことがある。耐紫外線性アクリル樹脂層(b−2)の厚みと透明樹脂基材(b−1)の厚みの合計は、より好ましくは、積層体の厚みの5/100〜40/100である。   The total of the thickness of the acrylic resin layer (b-2) and the thickness of the transparent resin substrate (b-1) is preferably 3/100 to 50/100 of the thickness of the laminate. If the total thickness of the UV-resistant acrylic resin layer (b-2) and the transparent resin substrate (b-1) is less than 3/100 of the thickness of the laminate, the UV resistance of the laminate is insufficient. If it exceeds 50/100, the thickness of the transparent synthetic resin layer (A) formed by injection molding may be insufficient and injection molding may be difficult. The total of the thickness of the ultraviolet resistant acrylic resin layer (b-2) and the thickness of the transparent resin substrate (b-1) is more preferably 5/100 to 40/100 of the thickness of the laminate.

本発明の積層体を構成する硬化皮膜層(b−3)は、1〜2量体成分は実質的に存在せず、3量体成分が0.01〜3%、4量体成分が1〜15%、5量体成分が1〜13%、6量体以上が69〜97%であって、数平均重合度が8〜100である熱硬化型ポリオルガノシロキサン組成物をアクリル樹脂層(b−2)に塗布して、硬化させてなるものである。   In the cured film layer (b-3) constituting the laminate of the present invention, the 1-dimer component is substantially absent, the trimer component is 0.01-3%, and the tetramer component is 1 A thermosetting polyorganosiloxane composition having a number average polymerization degree of 8 to 100 and an acrylic resin layer (1 to 15%, a pentamer component of 1 to 13%, a hexamer or more of 69 to 97%, and a number average polymerization degree of 8 to 100). It is applied to b-2) and cured.

本発明で使用される熱硬化型のポリオルガノシロキサンは、一般式R1nSi(OR)4−nで表される通常のオルガノシランを加水分解、縮合して得られる加水分解物及び/又は部分縮合物である。特に好ましいオルガノシランは、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシランである。これらのオルガノシランは、単独、もしくは2種以上を併用して使用することができる。これらオルガノシラン類は所定量の水を用いて加水分解・縮合され、オリゴマー化され、単量体はほぼ消費されており、反応系内には存在しない。その後、1〜2量体成分は実質的に存在せず、3量体成分が0.01〜3%、4量体成分が1〜15%、5量体成分が1〜13%、6量体以上が69〜97%であって、数平均重合度が8〜100であるポリオルガノシロキサン組成物となるようにさらに反応を進める。反応温度は、通常25℃〜70℃、好ましくは30℃〜60℃、さらに好ましくは30〜50℃で、徐々に後段の反応を進める。しかし、25℃未満では所望のオリゴマー組成にするのに長時間を要するため、好ましくない。70℃を越えると架橋反応が起こることがあるので、好ましくない。 The thermosetting polyorganosiloxane used in the present invention is a hydrolyzate obtained by hydrolyzing and condensing a normal organosilane represented by the general formula R 1n Si (OR 2 ) 4-n and / or It is a partial condensate. Particularly preferred organosilanes are tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, and dimethyldiethoxysilane. These organosilanes can be used alone or in combination of two or more. These organosilanes are hydrolyzed / condensed using a predetermined amount of water to be oligomerized, and the monomers are almost consumed and do not exist in the reaction system. Thereafter, the dimer component is substantially absent, the trimer component is 0.01 to 3%, the tetramer component is 1 to 15%, the pentamer component is 1 to 13%, and 6 amount. The reaction is further advanced so as to obtain a polyorganosiloxane composition having a body content of 69 to 97% and a number average degree of polymerization of 8 to 100. The reaction temperature is usually 25 ° C. to 70 ° C., preferably 30 ° C. to 60 ° C., more preferably 30 to 50 ° C., and the subsequent reaction is gradually advanced. However, if it is less than 25 ° C., it takes a long time to obtain a desired oligomer composition, which is not preferable. If it exceeds 70 ° C., a crosslinking reaction may occur, which is not preferable.

本発明で使用する熱硬化型ポリオルガノシロキサン組成物を得るためのオルガノシランの加水分解は、通常公知の方法により行うことができ、酸性の加水分解性触媒を含有した水の存在下で行うことが好ましい。上記加水分解性触媒は、pH2〜5の酸性を示す公知の触媒の中から選択使用できる。
また、pHを調節するための緩衝剤となる酸・塩基性化合物の組み合わせ(酢酸と酢酸ナトリウム、リン酸水素二ナトリウムとクエン酸等)、分散溶媒、あるいは優れた皮膜性能を賦与するために有機樹脂、顔料、染料、レベリング剤、紫外線吸収剤、保存安定剤などを適宜添加して使用することができる。
Hydrolysis of the organosilane for obtaining the thermosetting polyorganosiloxane composition used in the present invention can be carried out by a generally known method, and is carried out in the presence of water containing an acidic hydrolyzable catalyst. Is preferred. The hydrolyzable catalyst can be selected from known catalysts exhibiting acidity of pH 2-5.
In addition, a combination of acid and basic compounds (acetic acid and sodium acetate, disodium hydrogen phosphate and citric acid, etc.) that serve as a buffer for adjusting the pH, organic solvents to impart excellent film performance. Resins, pigments, dyes, leveling agents, ultraviolet absorbers, storage stabilizers and the like can be appropriately added and used.

ここで得られたポリオルガノシロキサン組成物の保存温度は、通常25℃以下、好ましくは15℃以下、さらに好ましくは5℃以下である。25℃を越えると、保存期間が長い場合、加水分解・縮合反応が徐々に進行するので好ましくない。
本発明で熱硬化型ポリオルガノシロキサン組成物用いて硬化皮膜を形成させる際、硬化皮膜の硬度や耐擦傷性の向上、または高屈折率化などの光学的機能性を賦与させるために、公知の硬化触媒や金属酸化物及びその他の添加剤を適宜加えても良い。
The storage temperature of the polyorganosiloxane composition obtained here is usually 25 ° C. or lower, preferably 15 ° C. or lower, more preferably 5 ° C. or lower. If the temperature exceeds 25 ° C., the hydrolysis / condensation reaction proceeds gradually if the storage period is long.
When forming a cured film using the thermosetting polyorganosiloxane composition in the present invention, in order to impart optical functionality such as improved hardness and scratch resistance of the cured film, or higher refractive index, A curing catalyst, metal oxide, and other additives may be added as appropriate.

硬化触媒としては、公知の塩基性化合物、金属化合物、酸性化合物などが挙げられる。硬化触媒の添加量は、熱硬化型ポリオルガノシロキサン組成物100重量部に対して0.01〜10重量部であることが好ましい。
金属酸化物としては、シリカ、アルミナ、酸化チタン、酸化セシウム、酸化錫、酸化ジルコニウム、酸化アンチモン、酸化鉄などが挙げられる。特に耐擦傷性を目的としたハードコート剤とする場合には、コロイダルシリカ(シリカゾル)が好適である。ハードコート剤として使用する場合の金属酸化物の添加量は、熱硬化型ポリオルガノシロキサン100重量部に対し、5〜500重量部、特に10〜200重量部であることが好ましい。これらの金属酸化物の存在下に縮合反応を行っても良く、また縮合反応後に加えても良い。
Examples of the curing catalyst include known basic compounds, metal compounds, and acidic compounds. The addition amount of the curing catalyst is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the thermosetting polyorganosiloxane composition.
Examples of the metal oxide include silica, alumina, titanium oxide, cesium oxide, tin oxide, zirconium oxide, antimony oxide, and iron oxide. In particular, colloidal silica (silica sol) is suitable for a hard coating agent for the purpose of scratch resistance. When used as a hard coating agent, the amount of metal oxide added is preferably 5 to 500 parts by weight, more preferably 10 to 200 parts by weight, per 100 parts by weight of thermosetting polyorganosiloxane. The condensation reaction may be performed in the presence of these metal oxides, or may be added after the condensation reaction.

熱硬化型ポリオルガノシロキサン組成物の塗装方法はその目的に応じて、刷毛、ロール、ディッピング、流し塗り、スプレー、ロールコーター、フローコーター、遠心コーター、超音波コーター、スクリーンプロセス、電着塗装、蒸着塗装などがある。   Depending on the purpose, the thermosetting polyorganosiloxane composition can be applied by brush, roll, dipping, flow coating, spray, roll coater, flow coater, centrifugal coater, ultrasonic coater, screen process, electrodeposition coating, vapor deposition. There are paintings.

本発明の積層体における硬化皮膜層の厚さは、好ましくは1〜15μmである。硬化皮膜層の厚さが1μm未満であると表面硬化膜の効果が不十分になりやすく、15μmを超えても表面硬化膜の効果は更には向上し難く、コスト的に不利である。硬化皮膜層の厚さは、より好ましくは2〜12μmである。   The thickness of the cured film layer in the laminate of the present invention is preferably 1 to 15 μm. If the thickness of the cured film layer is less than 1 μm, the effect of the surface cured film tends to be insufficient, and if it exceeds 15 μm, the effect of the surface cured film is hardly further improved, which is disadvantageous in terms of cost. The thickness of the cured film layer is more preferably 2 to 12 μm.

本発明の積層体を構成する樹脂積層板(B)の構成は、透明樹脂基材(b−1)の片面に紫外線吸収剤を含有するアクリル樹脂層(b−2)を設けた積層基板の該アクリル樹脂被覆層に、熱硬化型ポリオルガノシロキサン組成物を塗布して、硬化させてなる硬化皮膜層(b−3)からなる。   The structure of the resin laminated board (B) which comprises the laminated body of this invention is the laminated board which provided the acrylic resin layer (b-2) containing a ultraviolet absorber in the single side | surface of a transparent resin base material (b-1). The acrylic resin coating layer comprises a cured coating layer (b-3) obtained by applying a thermosetting polyorganosiloxane composition and curing it.

本発明の積層体を構成する樹脂積層板(B)における硬化皮膜層(b−3)が設けられた面に対し反対の面、すなわち透明樹脂基材(b−1)面に、印刷部を設けることができる。印刷部としては、文字、マーク、色彩、模様等が挙げられる。文字、マーク、色彩、模様などの美装処理面を形成する方法としては、従来から知られている方法を用いることができ、具体的には、シルクスクリーン印刷法、ホットスタンプ法などが挙げられる。本発明の積層体を構成する樹脂積層板(B)における硬化皮膜層(b−3)が設けられた面に対し反対の面である透明樹脂基材(b−1)には、さらに、所望に応じて熱線反射性能、熱線吸収性能、導電性能などの少なくとも一つ以上の機能性膜を印刷することもできる。   The printed part is formed on the surface opposite to the surface provided with the cured film layer (b-3) in the resin laminate (B) constituting the laminate of the present invention, that is, on the surface of the transparent resin substrate (b-1). Can be provided. Examples of the printing unit include characters, marks, colors, patterns, and the like. Conventionally known methods can be used as a method for forming a beautifying surface such as characters, marks, colors, and patterns, and specific examples include silk screen printing and hot stamping. . The transparent resin base material (b-1) which is the surface opposite to the surface provided with the cured coating layer (b-3) in the resin laminate (B) constituting the laminate of the present invention is further desired. Accordingly, at least one functional film such as heat ray reflection performance, heat ray absorption performance, and conductive performance can be printed.

本発明の合成樹脂製積層体は、射出成形により形成された透明合成樹脂層(A)の一方の面と、透明樹脂基材(b−1)の片面に紫外線吸収剤を含有するアクリル樹脂層(b−2)を設けた積層基板の該アクリル樹脂被覆層に、熱硬化型ポリオルガノシロキサン組成物を塗布して、硬化させてなる硬化皮膜層(b−3)が形成された樹脂積層板(B)の透明樹脂基材(b−1)面とを接合させてなる合成樹脂製積層体、および射出成形により形成された透明合成樹脂層(A)の両面に、透明樹脂基材(b−1)の片面に紫外線吸収剤を含有するアクリル樹脂層(b−2)を設けた積層基板の該アクリル樹脂被覆層に、熱硬化型ポリオルガノシロキサン組成物を塗布して、硬化させてなる硬化皮膜層(b−3)が形成された樹脂積層板(B)の透明樹脂基材(b−1)面とを接合させてなる合成樹脂製積層体が挙げられる。   The synthetic resin laminate of the present invention is an acrylic resin layer containing an ultraviolet absorber on one side of the transparent synthetic resin layer (A) formed by injection molding and one side of the transparent resin substrate (b-1). A resin laminate having a cured coating layer (b-3) formed by applying a thermosetting polyorganosiloxane composition to the acrylic resin coating layer of the laminate substrate provided with (b-2) and curing the composition. A transparent resin substrate (b) is formed on both surfaces of a synthetic resin laminate formed by bonding the transparent resin substrate (b-1) surface of (B) and the transparent synthetic resin layer (A) formed by injection molding. The thermosetting polyorganosiloxane composition is applied and cured on the acrylic resin coating layer of the laminated substrate provided with the acrylic resin layer (b-2) containing an ultraviolet absorber on one side of 1) Of the resin laminate (B) on which the cured film layer (b-3) is formed Akira resin substrate (b-1) composed by bonding a surface of synthetic resin laminate and the like.

本発明の合成樹脂製積層体の製造方法は、次の通りである。すなわち、樹脂積層板(B)に設けられた硬化皮膜層(b−3)が金型内表面の片面又は両面に接するように樹脂積層板(B)を配置し、次いで該金型内へ射出成形により形成される透明合成樹脂層(A)を構成する透明合成樹脂を射出注入し、樹脂積層板(B)における透明樹脂基材(b−1)面と射出成形により形成される透明合成樹脂層(A)とを接合させて積層一体化することにより、片面又は両面に樹脂積層板(B)の硬化皮膜層(b−3)が配置された合成樹脂製積層体を製造することができる。   The manufacturing method of the synthetic resin laminate of the present invention is as follows. That is, the resin laminate (B) is arranged so that the cured coating layer (b-3) provided on the resin laminate (B) is in contact with one or both surfaces of the inner surface of the mold, and then injected into the mold. A transparent synthetic resin layer (A) formed by molding is injected and injected, and the transparent synthetic resin (B-1) surface of the resin laminate (B) and the transparent synthetic resin formed by injection molding By laminating and integrating the layer (A), a synthetic resin laminate in which the cured film layer (b-3) of the resin laminate (B) is disposed on one side or both sides can be produced. .

本発明の合成樹脂製積層体を、自動車用窓ガラスとして用いる場合、車外側は車内側よりも耐候性、耐擦傷性、耐摩耗性等の性能が厳しいために、車外側に相当する面には樹脂積層板(B)の硬化皮膜層(b−3)を配置させ、車内側に相当する面には樹脂積層板(B)または樹脂積層板(B)にアクリル系等別種の塗料で硬化させた皮膜層を配置させることもできる。   When the laminated body made of the synthetic resin of the present invention is used as a window glass for automobiles, the outside of the vehicle has severer performances such as weather resistance, scratch resistance, and abrasion resistance than the inside of the vehicle, so that the surface corresponding to the outside of the vehicle is used. Arranges the cured film layer (b-3) of the resin laminate (B) and cures the resin laminate (B) or the resin laminate (B) with an acrylic or other type of paint on the surface corresponding to the vehicle interior. It is also possible to dispose the coated film layer.

また、製品形状として2次曲面或いは3次曲面の絞り比が高い合成樹脂製積層体を得るには、予め樹脂積層板(B)を金型キャビティの形状に賦形後、金型内に配置することが好ましい。樹脂積層板(B)と射出成形により形成された透明合成樹脂層(A)を積層一体成形する場合、製品の曲率(H/D)が0.1を超えると、樹脂積層板(B)上を流れる樹脂で製品形状に賦形される樹脂積層板(B)の端部に樹脂で絞りきれないために皺が発生する問題がある。この様な場合、予め樹脂積層板(B)を真空成形、圧空成形、プレス成形、ストレート成形、ドレープ成形、プラグアシスト成形等により予備成形を行うことが好ましく、真空成形等により形状を付与することにより賦形性に優れる合成樹脂製積層体が得られる。   In addition, in order to obtain a synthetic resin laminate with a high degree of drawing of the quadratic curved surface or the cubic curved surface as the product shape, the resin laminated plate (B) is pre-shaped into the shape of the mold cavity and then placed in the mold. It is preferable to do. When the resin laminate (B) and the transparent synthetic resin layer (A) formed by injection molding are laminated and integrally molded, if the product curvature (H / D) exceeds 0.1, the resin laminate (B) There is a problem that wrinkles occur because the resin laminate (B) that is shaped into the product shape by the resin flowing through the resin cannot be fully squeezed with the resin. In such a case, it is preferable to preform the resin laminate (B) in advance by vacuum forming, pressure forming, press forming, straight forming, drape forming, plug assist forming, etc., and giving the shape by vacuum forming or the like. As a result, a synthetic resin laminate having excellent formability can be obtained.

透明樹脂基材(b−1)の片面に紫外線吸収剤を含有するアクリル樹脂層(b−2)を設けた積層基板を製造する方法については、特に制限はなく、例えば、透明樹脂基材(b−1)及び紫外線吸収剤を含有するアクリル樹脂層(b−2)の原料樹脂を同時に溶融押出して成形する共押出法や、透明樹脂基材(b−1)の透明樹脂をシート状に押出成形する際に同時に紫外線吸収剤を含有するアクリル樹脂層を溶融押出してラミネートする方法、予めフィルム状に成形されたアクリル樹脂層(b−2)を透明樹脂基材(b−1)の押出成形時に連続的に熱ラミネートする方法、シート状或いはフィルム状に成形された透明樹脂基材(b−1)及びアクリル樹脂層(b−2)をプレス機にて熱圧着する方法等が用いられるが、安価に大量に生産する場合は共押出法が好適である。   There is no restriction | limiting in particular about the method of manufacturing the laminated substrate which provided the acrylic resin layer (b-2) containing a ultraviolet absorber on the single side | surface of a transparent resin base material (b-1), For example, a transparent resin base material ( b-1) and a co-extrusion method in which the raw material resin of the acrylic resin layer (b-2) containing the ultraviolet absorber is melt-extruded at the same time, and the transparent resin of the transparent resin substrate (b-1) is formed into a sheet A method in which an acrylic resin layer containing an ultraviolet absorber is melt extruded and laminated at the same time as extrusion molding, and an acrylic resin layer (b-2) previously formed into a film is extruded into a transparent resin substrate (b-1). A method of continuously laminating at the time of molding, a method of thermocompression bonding the transparent resin base material (b-1) and the acrylic resin layer (b-2) formed into a sheet shape or a film shape with a press machine, etc. are used. But cheap and mass production If that coextrusion method is preferred.

共押出法に用いられる押出装置としては、透明樹脂基材(b−1)を構成する熱可塑性樹脂を押し出すメイン押出機と、被覆層となるアクリル樹脂層(b−2)を構成するアクリル樹脂を押出す1又は2以上のサブ押出機により構成され、通常サブ押出機はメイン押出機より小型のものが採用される。メイン押出機の温度条件は、通常230℃〜290℃、好ましくは240℃〜280℃であり、サブ押出機の温度条件は、通常220℃〜270℃、好ましくは230℃〜260℃である。2種以上の溶融樹脂を被覆する方法としては、フィードブロック方式、マルチマニホールド方式等の公知の方法を用いることが出来る。この場合、フィードブロックで積層された溶融樹脂はTダイなどのシート成形ダイに導かれ、シート状に成形された後、表面を鏡面処理された成形ロール(ポリッシングロール)に流入して、バンクを形成する。このシート状成形物は、成形ロール通過中に鏡面仕上げと冷却が行われ、積層板が形成される。マルチマニホールドダイの場合は、該ダイ内で積層された溶融樹脂は同様にダイ内部でシート状に成形された後、成形ロールにて鏡面仕上げ及び冷却が行われ、積層板が形成される。ダイの温度としては、通常220℃〜280℃、好ましくは230℃〜270℃であり、成形ロール温度としては、通常100〜190℃、好ましくは110〜180℃である。ロールは縦型ロールまたは、横型ロールを適宜使用できる。   As an extrusion apparatus used in the coextrusion method, a main extruder for extruding a thermoplastic resin constituting the transparent resin base material (b-1) and an acrylic resin constituting an acrylic resin layer (b-2) serving as a coating layer The sub-extruder is usually smaller than the main extruder. The temperature condition of the main extruder is usually 230 ° C to 290 ° C, preferably 240 ° C to 280 ° C, and the temperature condition of the sub-extruder is usually 220 ° C to 270 ° C, preferably 230 ° C to 260 ° C. As a method for coating two or more kinds of molten resins, a known method such as a feed block method or a multi-manifold method can be used. In this case, the molten resin laminated in the feed block is guided to a sheet forming die such as a T die, and after being formed into a sheet shape, the molten resin flows into a forming roll (polishing roll) whose surface is mirror-finished. Form. This sheet-like molded product is mirror-finished and cooled while passing through the molding roll, thereby forming a laminate. In the case of a multi-manifold die, the molten resin laminated in the die is similarly formed into a sheet inside the die, and then mirror finished and cooled by a forming roll to form a laminated plate. The temperature of the die is usually 220 ° C. to 280 ° C., preferably 230 ° C. to 270 ° C., and the molding roll temperature is usually 100 to 190 ° C., preferably 110 to 180 ° C. As the roll, a vertical roll or a horizontal roll can be used as appropriate.

本発明の合成樹脂製積層体は多くの特徴を有するが、その中に於ける大きな特徴の一つは、各層を形成する材料間の線膨張係数の差を一定値以下に限定することにより、厳しい条件下で使用しても層間剥離がなく、密着性に優れているということである。すなわち、射出成形により形成された透明合成樹脂層(A)と透明樹脂基材(b−1)、透明樹脂基材(b−1)とアクリル樹脂層(b−2)、アクリル樹脂層(b−2)とポリオルガノシロキサン組成物からなる硬化皮膜層(b−3)の線膨張係数の差が、それぞれ10×10−5/℃以下であり、好ましくは8×10−5/℃以下であり、更に好ましくは7×10−5/℃以下である。射出成形により形成された透明合成樹脂層(A)と透明樹脂基材(b−1)、透明樹脂基材(b−1)とアクリル樹脂層(b−2)、及びアクリル樹脂層(b−2)とポリオルガノシロキサン組成物からなる硬化皮膜層(b−3)間における線膨張係数の差は出来るだけ小さい方が良く、10×10−5/℃より大きいと、所望の耐候性を有する合成樹脂製積層体を製造することが困難になる虞がある。 The synthetic resin laminate of the present invention has many features, but one of the major features is that by limiting the difference in linear expansion coefficient between the materials forming each layer to a certain value or less, Even when used under severe conditions, there is no delamination and excellent adhesion. That is, the transparent synthetic resin layer (A) and the transparent resin base material (b-1) formed by injection molding, the transparent resin base material (b-1), the acrylic resin layer (b-2), and the acrylic resin layer (b -2) and the difference between the linear expansion coefficients of the cured film layer (b-3) comprising the polyorganosiloxane composition are 10 × 10 −5 / ° C. or less, preferably 8 × 10 −5 / ° C. or less, respectively. Yes, and more preferably 7 × 10 −5 / ° C. or less. Transparent synthetic resin layer (A) and transparent resin substrate (b-1), transparent resin substrate (b-1), acrylic resin layer (b-2), and acrylic resin layer (b-) formed by injection molding The difference in coefficient of linear expansion between 2) and the cured film layer (b-3) comprising the polyorganosiloxane composition should be as small as possible, and if it exceeds 10 × 10 −5 / ° C., the desired weather resistance is obtained. It may be difficult to manufacture a synthetic resin laminate.

以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。尚、評価用サンプルには、得られた合成樹脂製積層体を適当な大きさに切断したものを用いた。
実施例、比較例等における評価方法は次のとおりである。
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded. In addition, what obtained by cut | disconnecting the obtained synthetic resin laminated body to a suitable magnitude | size was used for the sample for evaluation.
Evaluation methods in Examples and Comparative Examples are as follows.

(1)線膨張係数
塗料3gをアルミカップに秤取り、約45℃のホットプレート上で2時間放置、揮発成分を除去した。次いで、125℃の乾燥機内で2時間硬化させ、これを線膨張係数測定試料とした。また、ポリカーボネートはシートを、ポリメチルメタクリレートはペレットをそのまま線膨張係数測定試料とした。
測定器:TMA100(セイコー電子工業(株))
温度条件:30〜190℃、10℃/分で昇温
荷重:−1g
雰囲気:N、300ml/分
測定:2回目以降の昇温時でのデータを採用(1回目は熱履歴消去のため)。
5回繰り返し測定し、60〜90℃の温度範囲の値を平均した。
(1) Linear expansion coefficient 3 g of the paint was weighed in an aluminum cup and allowed to stand on a hot plate at about 45 ° C. for 2 hours to remove volatile components. Subsequently, it was cured in a dryer at 125 ° C. for 2 hours, and this was used as a sample for measuring the linear expansion coefficient. The polycarbonate was used as a sheet, and the polymethyl methacrylate was used as a sample for measuring the linear expansion coefficient.
Measuring instrument: TMA100 (Seiko Electronics Co., Ltd.)
Temperature conditions: 30-190 ° C., 10 ° C./min, temperature rising load: −1 g
Atmosphere: N 2 , 300 ml / min Measurement: Data at the second and subsequent temperature increases are adopted (the first time is for erasing the heat history).
The measurement was repeated 5 times, and the values in the temperature range of 60 to 90 ° C were averaged.

(2)GPC
ポリオルガノシロキサン組成物溶液5gを氷浴中、10mmHg以下の減圧下で揮発成分(主に水、及び有機溶剤;アルコール類、アセチルアセトンなど)を除去する。次いでTHFに溶解して濃度0.1%溶液にメスアップし、0.1μのメンブランフィルターを通した後、GPC分析した。
測定機器:Shodex システム21(昭和電工)
カラム(低分子量用):KF-803L×1本+KF-802.5×1本+KF-801×2本
分子量測定範囲=200〜70,000
試料濃度:0.1%THF
溶離液:THF
オーブン温度:40℃
検量線標準物質:ポリスチレン
(2) GPC
Volatile components (mainly water and organic solvents; alcohols, acetylacetone, etc.) are removed under reduced pressure of 10 mmHg or less in 5 g of polyorganosiloxane composition solution. Next, the sample was dissolved in THF to make a 0.1% concentration solution, passed through a 0.1 μ membrane filter, and then subjected to GPC analysis.
Measuring equipment: Shodex system 21 (Showa Denko)
Column (for low molecular weight): KF-803L x 1 + KF-802.5 x 1 + KF-801 x 2 Molecular weight measurement range = 200 to 70,000
Sample concentration: 0.1% THF
Eluent: THF
Oven temperature: 40 ° C
Calibration curve reference material: polystyrene

(3)耐候性
岩崎電気(株)製スーパーUVテスターを使用し、光照射5時間(紫外線強度50mW/cm、ブラックパネル温度63℃、湿度50%)、結露1時間(温度30℃以上、湿度100%)のサイクルで試験を行い、さらに光照射時に10分毎に10秒間シャワーを行った。600時間処理後におけるクラック、自然剥離等の硬化皮膜外観並びに黄変度の変化(△YI)を調べた。尚、試験は、サンプルの硬化皮膜層(b−3)が照射面側になるように設置した。
(3) Weather resistance Using a super UV tester manufactured by Iwasaki Electric Co., Ltd., light irradiation for 5 hours (ultraviolet light intensity 50 mW / cm 2 , black panel temperature 63 ° C., humidity 50%), dew condensation 1 hour (temperature 30 ° C. or higher, The test was performed with a cycle of 100% humidity, and a shower was performed every 10 minutes during light irradiation for 10 seconds. The appearance of the cured film such as cracks and natural peeling after 600 hours of treatment and the change in yellowing degree (ΔYI) were examined. In addition, the test was installed so that the cured film layer (b-3) of a sample might become an irradiation surface side.

(4)テーバー摩耗性
ASTM−D1044に準拠し、テーバー摩耗試験機にて摩耗輪CS−10Fを装着し、荷重500g下で500回転後のヘイズを測定し、試験前のヘイズを差引いた値を示した。
(4) Taber wear resistance In accordance with ASTM-D1044, wear wheel CS-10F is mounted with a Taber wear tester, the haze after 500 rotations is measured under a load of 500 g, and the value obtained by subtracting the haze before the test is obtained. Indicated.

(5)密着性
JIS K5400に準拠し、サンプルを剃刀の刃で2mm間隔に6本ずつ切れ目を入れて25個の碁盤目を作り、市販のセロテープ(登録商標)をよく密着させた後、90度手前方向に急激に剥がしたとき、塗膜が剥離せずに残存した升目数をX/25で表示した。
(5) Adhesiveness In accordance with JIS K5400, the sample was cut into 6 grids at intervals of 2 mm with a razor blade to make 25 grids, and a commercially available cello tape (registered trademark) was adhered closely, then 90 When the film was peeled off rapidly in the forward direction, the number of cells remaining without peeling off the coating film was indicated by X / 25.

(6)透明性/ヘイズ
日本電色工業(株)製ヘイズメーターにてヘイズ(%)を測定した。
(6) Transparency / Haze Haze (%) was measured with a haze meter manufactured by Nippon Denshoku Industries Co., Ltd.

(7)色調/黄変度
日本電色工業(株)製ヘイズメーターにて黄変度(YI)を測定した。
(7) Color tone / yellowing degree Yellowing degree (YI) was measured with a haze meter manufactured by Nippon Denshoku Industries Co., Ltd.

(8)耐煮沸性
評価サンプルを100℃の沸騰水中に2時間浸漬した後の外観変化、硬化皮膜層の密着性を評価した。
(8) Boiling resistance The appearance change after immersion of the evaluation sample in boiling water at 100 ° C. for 2 hours and the adhesion of the cured film layer were evaluated.

(9)耐熱性
評価サンプルを100℃の熱風循環乾燥機中に100時間放置下の外観変化、硬化皮膜層の密着性を評価した。
(9) Heat resistance The evaluation sample was evaluated for the appearance change and the adhesion of the cured film layer after being left in a 100 ° C hot air circulating dryer for 100 hours.

(10)落錘衝撃強度
試験は、筒の中にある重量5kgの錘を所定の高さまでワイヤで持ち上げた後、固定してある150mm×150mm(厚み3mm)のサンプル上に落下させ、破壊するまでの高さを評価した。尚、錘は、評価サンプルの硬化皮膜層(b−3)側に落下させた。
(10) Drop weight impact strength In the test, a weight of 5 kg in a cylinder is lifted to a predetermined height with a wire, and then dropped onto a fixed 150 mm × 150 mm (thickness 3 mm) sample to be destroyed. The height was evaluated. The weight was dropped to the cured film layer (b-3) side of the evaluation sample.

合成例1/ポリオルガノシロキサンの合成
攪拌機、還流冷却器を備えた反応器にメチルトリメトキシシラン272重量部、メタノール160重量部を加え、窒素雰囲気下で氷冷して10℃以下とした。次に、0.1%の酢酸溶液400重量部を40分かけて滴下し、アルコキシシランの加水分解をおこなった。滴下終了後に、氷冷下で1時間反応継続してから室温で3時間撹拌し、加水分解を完結させた。
得られたシラノール溶液に、メタノールシリカゾル(粒径15μm、シリカ固形分30%)200重量部及びイソプロパノール600重量部を加え、20〜50mmHgの減圧下で、内温を35℃以下の条件でストリッピングし、メタノール及び残存する水を除去した。最終的に得られたポリオルガノシロキサン溶液(非揮発性物質(以下、NVMと記す)20%)は650重量部であった。さらに、この反応溶液を暗所40℃、7時間縮合反応を徐々に進行させた。このポリオルガノシロキサン溶液(H1)のGPC分析を行った結果、1〜2量体は存在せず、3量体が0.01%、4量体が9.9%、5量体が11.4%、6量体以上が78.7%であった。そして数平均重合度は10.8であった。このオリゴマー化反応の間、各分子は直鎖状に連結したものと考えている。そして、この溶液を125℃、2時間硬化させた硬化物の60〜90℃での線膨張係数は10.0×10−5/℃であった。
Synthesis Example 1 Synthesis of Polyorganosiloxane To a reactor equipped with a stirrer and a reflux condenser, 272 parts by weight of methyltrimethoxysilane and 160 parts by weight of methanol were added, and ice-cooled to 10 ° C. or less in a nitrogen atmosphere. Next, 400 parts by weight of a 0.1% acetic acid solution was dropped over 40 minutes to hydrolyze the alkoxysilane. After completion of the dropwise addition, the reaction was continued for 1 hour under ice cooling and then stirred at room temperature for 3 hours to complete the hydrolysis.
200 parts by weight of methanol silica sol (particle size 15 μm, silica solid content 30%) and 600 parts by weight of isopropanol were added to the resulting silanol solution, and stripping was performed under a reduced pressure of 20 to 50 mmHg and an internal temperature of 35 ° C. or less. And methanol and residual water were removed. The finally obtained polyorganosiloxane solution (non-volatile substance (hereinafter referred to as NVM) 20%) was 650 parts by weight. Furthermore, this reaction solution was allowed to proceed gradually in the dark at 40 ° C. for 7 hours. As a result of GPC analysis of this polyorganosiloxane solution (H1), no 1-dimer was present, the trimer was 0.01%, the tetramer was 9.9%, and the pentamer was 11. 4%, hexamer or higher was 78.7%. The number average degree of polymerization was 10.8. During this oligomerization reaction, each molecule is considered to be linearly linked. And the linear expansion coefficient in 60-90 degreeC of the hardened | cured material which hardened this solution for 2 hours at 125 degreeC was 10.0 * 10 < -5 > / degreeC .

合成例2/ポリオルガノシロキサンの合成
合成例1で得られたシラノール溶液に、メタノールシリカゾル(粒径15μm、シリカ固形分30%)200重量部及びイソプロパノール600重量部を加え、20〜50mmHgの減圧下で、内温を35℃以下の条件でストリッピングし、メタノール及び残存する水を除去した。最終的に得られたポリオルガノシロキサン溶液(NVM20%)は650重量部であった。このポリオルガノシロキサン溶液(H1)のGPC分析を行った結果、1〜2量体が4.4%、3量体が7.2%、4量体が19.7%、5量体が32.4%、6量体以上が36.3%であった。そして数平均重合度は5.3であった。このオリゴマー化反応の間、各分子は直鎖状に連結したものと考えている。そして、この溶液を125℃、2時間硬化させた硬化物の60〜90℃での線膨張係数は10.5×10−5/℃であった。
Synthesis Example 2 / Synthesis of Polyorganosiloxane To the silanol solution obtained in Synthesis Example 1, 200 parts by weight of methanol silica sol (particle size 15 μm, silica solid content 30%) and 600 parts by weight of isopropanol were added, and the pressure was reduced to 20 to 50 mmHg. Then, the internal temperature was stripped under a condition of 35 ° C. or less to remove methanol and remaining water. The final polyorganosiloxane solution (NVM 20%) was 650 parts by weight. As a result of GPC analysis of this polyorganosiloxane solution (H1), the dimer was 4.4%, the trimer was 7.2%, the tetramer was 19.7%, and the pentamer was 32. 4%, hexamer or higher was 36.3%. And the number average degree of polymerization was 5.3. During this oligomerization reaction, each molecule is considered to be linearly linked. And the linear expansion coefficient in 60-90 degreeC of the hardened | cured material which hardened this solution for 2 hours at 125 degreeC was 10.5 * 10 < -5 > / degreeC .

合成例3/アクリル系プライマーの合成
攪拌機、還流冷却器、窒素ガス導入管、及び滴下ロートを備えた反応器にジアセトンアルコール100重量部を加え、撹拌しながら反応器内を窒素ガスにて十分置換し、80〜90℃に加熱した。他方、トリメトキシプロピルメタクリレート20重量部、メチルメタクリレート60重量部、メチルアクリレート5重量部、酢酸ビニル5重量部、グリシジルメタクリレート10重量部、エチレングリコールジメタクリレート0.2重量部と開始剤としてアゾビスイソブチロニトリル(AIBN)3重量部を滴下ロートに加え、1時間を要して反応器内に徐々に加え、この間、撹拌と窒素ガスの導入は継続した。その後、90℃で3時間反応継続し、終了とした。そして、分子量(Mw)15万のポリメチルメタクリレート20重量部と溶剤としてのメチルイソブチルケトン150重量部、酢酸セロソルブ150重量部、プロピレングリコールモノメチルエーテル110重量部、イソプロパノール110重量部、ジアセトンアルコール50重量部を加え、NVM15%とした。この反応溶液に紫外線吸収剤として2,2’−ジヒドロキシベンゾフェノンをNVMに対して2%を加え、プライマー塗料組成物(P1)を得た。そして、この溶液を125℃、2時間硬化させた硬化物の60〜90℃での線膨張係数は24.0×10−5/℃であった。
Synthesis Example 3 / Synthesis of acrylic primer 100 parts by weight of diacetone alcohol was added to a reactor equipped with a stirrer, a reflux condenser, a nitrogen gas introduction tube, and a dropping funnel, and the reactor was sufficiently filled with nitrogen gas Replace and heat to 80-90 ° C. On the other hand, 20 parts by weight of trimethoxypropyl methacrylate, 60 parts by weight of methyl methacrylate, 5 parts by weight of methyl acrylate, 5 parts by weight of vinyl acetate, 10 parts by weight of glycidyl methacrylate, 0.2 part by weight of ethylene glycol dimethacrylate and azobisiso as an initiator 3 parts by weight of butyronitrile (AIBN) was added to the dropping funnel, and gradually added to the reactor over 1 hour. During this period, stirring and introduction of nitrogen gas were continued. Thereafter, the reaction was continued at 90 ° C. for 3 hours, and the reaction was terminated. Then, 20 parts by weight of polymethyl methacrylate having a molecular weight (Mw) of 150,000, 150 parts by weight of methyl isobutyl ketone as a solvent, 150 parts by weight of cellosolve acetate, 110 parts by weight of propylene glycol monomethyl ether, 110 parts by weight of isopropanol, 50 parts by weight of diacetone alcohol NVM was made 15%. To this reaction solution, 2% of 2,2′-dihydroxybenzophenone as an ultraviolet absorber with respect to NVM was added to obtain a primer coating composition (P1). And the linear expansion coefficient in 60-90 degreeC of the hardened | cured material which hardened this solution for 2 hours at 125 degreeC was 24.0 * 10 < -5 > / degreeC.

アクリル樹脂の製造例(特開平7-133303号公報記載の方法)
メチルメタクリレート88重量部、メチルアクリレート4重量部、メタノール8重量部、ジ−t−ブチルパーオキサイド0.032重量部(2×10−3モル/1)及びn−ドデシルメルカプタン0.21重量部(10×10−3モル/1)を混合後、窒素吹き込みによって溶存酸素を除去し原料液を調整した。熱媒を循環するジャケットとヘリカルリボン撹拌翼を備えた内容積6Lの重合槽に、予めこの原料液5kgを添加して密閉し、十分撹拌して均一混合状態を保ちながら、150℃に昇温して単量体転化率75%及び重合体濃度69%に到達するまで重合させた後、この原料液を1kg/hの割合で重合槽に連続的に供給した。
Example of production of acrylic resin (method described in JP-A-7-133303)
88 parts by weight of methyl methacrylate, 4 parts by weight of methyl acrylate, 8 parts by weight of methanol, 0.032 parts by weight of di-t-butyl peroxide (2 × 10 −3 mol / 1) and 0.21 parts by weight of n-dodecyl mercaptan ( After mixing 10 × 10 −3 mol / 1), dissolved oxygen was removed by blowing nitrogen to prepare a raw material solution. 5 kg of the raw material liquid is added in advance to a 6 L internal polymerization tank equipped with a jacket that circulates the heat medium and a helical ribbon stirring blade, and the temperature is raised to 150 ° C. while sufficiently stirring and maintaining a uniform mixed state. Then, after polymerization was performed until the monomer conversion reached 75% and the polymer concentration reached 69%, this raw material liquid was continuously supplied to the polymerization tank at a rate of 1 kg / h.

重合温度を150℃及び平均滞留時間を約5時間に維持したところ、重合液の粘度は45Pa・秒、単量体転化率は75%及び重合体濃度は69%で安定に保たれた。この重合液を1kg/hの流量で抜き出し、250℃まで加熱後、減圧下にある脱揮タンク内にフラッシュした。脱揮された重合体は脱揮タンク底部より溶融状態で抜き出し、ダイスによりストランド状に取り出され、水冷後ペレタイザーにてペレット化した。得られたペレットは残存揮発成分としてメチルメタクリレート0.27%、メチルアクリレート0.01%で、重合開始剤及び連鎖移動剤のn−ドデシルメルカプタンはGC分析では検出されなかった。得られたペレットの外観は無色透明で良好であった。GPC測定により重量平均分子量(Mw)10.3万で、荷重撓み温度は105℃、1mm厚成形品のヘイズは0.2%であった。60〜90℃での線膨張係数は8.0×10−5/℃であった。 When the polymerization temperature was maintained at 150 ° C. and the average residence time was maintained at about 5 hours, the viscosity of the polymerization solution was maintained at 45 Pa · sec, the monomer conversion was 75%, and the polymer concentration was 69%. This polymerization liquid was extracted at a flow rate of 1 kg / h, heated to 250 ° C., and flushed into a devolatilization tank under reduced pressure. The devolatilized polymer was extracted from the bottom of the devolatilization tank in a molten state, taken out into a strand by a die, pelletized by a pelletizer after water cooling. The obtained pellets were 0.27% methyl methacrylate and 0.01% methyl acrylate as residual volatile components, and n-dodecyl mercaptan as a polymerization initiator and a chain transfer agent was not detected by GC analysis. The appearance of the obtained pellets was clear and transparent. The weight average molecular weight (Mw) was 103,000 as measured by GPC, the load deflection temperature was 105 ° C., and the haze of the 1 mm thick molded product was 0.2%. The linear expansion coefficient at 60 to 90 ° C. was 8.0 × 10 −5 / ° C.

本発明に係るポリカーボネート、ポリメチルメタクリレートペレット3種類、合成例1及び2のポリオルガノシロキサン、及び合成例3のメタクリル系プライマーの線膨張係数測定を行い、結果を表1にまとめた。表1よりメタクリル系プライマー以外の樹脂間の線膨張係数は、2.5×10−5/℃以下であることがわかる。 The linear expansion coefficients of the polycarbonate according to the present invention, three types of polymethylmethacrylate pellets, the polyorganosiloxanes of Synthesis Examples 1 and 2 and the methacrylic primer of Synthesis Example 3 were measured, and the results are summarized in Table 1. From Table 1, it can be seen that the linear expansion coefficient between the resins other than the methacrylic primer is 2.5 × 10 −5 / ° C. or less.

(表1)

Figure 2005219299
(Table 1)
Figure 2005219299

共押出板の製造例1
基板層にポリカーボネート(NF2000U、三菱瓦斯化学社製で、1mm厚成形品のヘイズは0.3)を用い、ポリカーボネートの押出機として、バレル径65mm、スクリューL/D=35、シリンダー温度270℃とした。また被覆層を形成するアクリル樹脂の押出機は、バレル径32mm、スクリューのL/D32、シリンダー温度250℃に設定した。2種類の樹脂を同時に溶融押出し、積層する際にはフィードブロック(幅500mm)を使用し、ポリカーボネートの片面にアクリル樹脂を積層した。ダイヘッド内温度は260℃とし、ダイ内で積層一体化された樹脂は、鏡面仕上げされた3本のポリッシングロールに導かれ、1番ロール温度110℃、2番ロール温度180℃、3番ロール温度180℃に設定した。
Coextrusion plate production example 1
Polycarbonate (NF2000U, manufactured by Mitsubishi Gas Chemical Co., Ltd., 1 mm thick molded product has a haze of 0.3) is used as a substrate layer, and a polycarbonate extruder has a barrel diameter of 65 mm, a screw L / D = 35, and a cylinder temperature of 270 ° C. did. Moreover, the extruder of the acrylic resin which forms a coating layer was set to barrel diameter 32mm, screw L / D32, and cylinder temperature 250 ° C. Two types of resins were melt-extruded at the same time, and when they were laminated, a feed block (width 500 mm) was used, and an acrylic resin was laminated on one side of the polycarbonate. The temperature inside the die head is 260 ° C., and the resin laminated and integrated in the die is guided to three mirror-finished polishing rolls, the first roll temperature 110 ° C., the second roll temperature 180 ° C., and the third roll temperature. Set to 180 ° C.

最初に流入するロール間隔にて、バンクを形成した後、2番、3番ロールを通過させた。引取速度は1.2m/分、引き取り用ピンチロール速度1.6m/分とした。得られたシート厚さ0.9mm、アクリル樹脂層は20μmで、外観の優れたものであった。
ここで使用したアクリル樹脂は上記製造例による連続重合法で製造された三菱瓦斯化学社製MGC−10に紫外線吸収剤としてチヌビン1577(チバ・スペシャリティー・ケミカルズ社製)2%と、酸化防止剤としてスミライザーBHT(住友化学社製)0.1%、及びアデカスターブPEP−36(旭電化工業社製)0.05%を添加した樹脂(1mm厚成形品のヘイズは0.2%)を用いた。
After forming the bank at the first roll interval, the second and third rolls were passed. The take-up speed was 1.2 m / min, and the take-up pinch roll speed was 1.6 m / min. The obtained sheet thickness was 0.9 mm, the acrylic resin layer was 20 μm, and the appearance was excellent.
The acrylic resin used here is MGC-10 manufactured by Mitsubishi Gas Chemical Co., Ltd. manufactured by the continuous polymerization method according to the above production example, 2% Tinuvin 1577 (manufactured by Ciba Specialty Chemicals) as an ultraviolet absorber, and an antioxidant. As a resin, 0.1% of Sumilizer BHT (manufactured by Sumitomo Chemical Co., Ltd.) and 0.05% of Adeka Starve PEP-36 (manufactured by Asahi Denka Kogyo Co., Ltd.) were used (the haze of 1 mm thick molded product was 0.2%) .

共押出板の製造例2
共押出板の製造例1と同様の装置、製造条件にてシートを成形した。ここで使用したアクリル樹脂(1mm厚成形品のヘイズは0.2%)は連続溶液(トルエン)重合法で製造されたアトフィナ製アトグラスV020を用いた。製造されたシートはブツ、スジ、気泡などがなく、外観の優れたものであった。
Coextrusion plate production example 2
A sheet was molded using the same apparatus and production conditions as in Production Example 1 of the coextruded plate. Atfina Atglass V020 manufactured by a continuous solution (toluene) polymerization method was used as the acrylic resin used here (having a haze of 1 mm thick molded product is 0.2%). The manufactured sheet was free from irregularities, streaks, bubbles and the like and had an excellent appearance.

共押出板の製造例3
共押出板の製造として、アクリル樹脂を連続重合品(アトグラスV020)から懸濁重合品(パラペットHR−L、クラレ社製、1mm厚成形品のヘイズは0.2%)に変えた以外は、製造例2と同様に実施した。製造されたシートはブツ、スジ、気泡などが目立ち、外観の優れたものではなかった。
また、これらを改善するために、ダイヘッド温度を250℃に低下させたが、得られたシートの外観は多少良くなる傾向を示したものの、十分に満足できる外観ではなかった。
Coextrusion plate production example 3
Except for changing the acrylic resin from a continuous polymer (Atglass V020) to a suspension polymer (Parapet HR-L, manufactured by Kuraray Co., Ltd., haze of 1 mm thick molded product is 0.2%) The same operation as in Production Example 2 was performed. The manufactured sheet was not excellent in appearance because of noticeable spots, streaks, bubbles and the like.
Further, in order to improve these, the die head temperature was lowered to 250 ° C., but although the appearance of the obtained sheet tended to improve somewhat, it was not a sufficiently satisfactory appearance.

実施例1
共押出板の製造例1で製造した500mm×1000mmのポリカーボネート/アクリル樹脂シート(0.9mm厚、アクリル樹脂層20μm)に合成例1で調整したポリオルガノシロキサン溶液(NVM20%)を塗布し、室温で20分間自然乾燥させた後、130℃、1時間硬化させて樹脂積層板(B)を得た。次いでこの樹脂積層板の(b−1)表面にスクリーン印刷を施した後、サンルーフモデル金型の形状(600mm×400mm)に切断し、該積層板のポリオルガノシロキサン硬化皮膜がサンルーフモデル金型(厚み5mm)内表面の片面に接するように配置し、次いで該金型内へ射出成形用透明合成樹脂を射出注入し、合成樹脂製積層体を得た。得られた合成樹脂製積層体の評価結果を表2に示す。
Example 1
The polyorganosiloxane solution (NVM 20%) prepared in Synthesis Example 1 was applied to the polycarbonate / acrylic resin sheet (0.9 mm thickness, acrylic resin layer 20 μm) of 500 mm × 1000 mm produced in Production Example 1 of the coextruded plate, and room temperature was applied. And then dried at 130 ° C. for 1 hour to obtain a resin laminate (B). Next, after screen printing was performed on the surface (b-1) of this resin laminate, it was cut into the shape of a sunroof model mold (600 mm × 400 mm), and the cured polyorganosiloxane film of the laminate was a sunroof model mold ( (Thickness 5 mm) was placed so as to be in contact with one surface of the inner surface, and then a transparent synthetic resin for injection molding was injected and injected into the mold to obtain a synthetic resin laminate. Table 2 shows the evaluation results of the obtained synthetic resin laminate.

実施例2
共押出板の製造例1で製造したポリカーボネート/アクリル樹脂シート(0.9mm厚、アクリル樹脂層30μm)を用いた以外は、実施例1と同一方法で合成樹脂製積層体を得た。得られた合成樹脂製積層体の評価結果を表2に示す。
Example 2
A synthetic resin laminate was obtained in the same manner as in Example 1, except that the polycarbonate / acrylic resin sheet (0.9 mm thickness, acrylic resin layer 30 μm) produced in Production Example 1 of the coextruded plate was used. Table 2 shows the evaluation results of the obtained synthetic resin laminate.

実施例3
実施例1と同様の樹脂積層板(B)を、サンルーフ形状に2枚切断し、1枚のシートを硬化皮膜層(b−3)が金型内表面の片面に接するように配置し、もう1枚の積層樹脂板(B)の硬化皮膜層(b−3)がもう一方の片面に接するように配置し、次いで該金型内へ射出成形用透明合成樹脂を射出注入し、合成樹脂製積層体を得た。得られた合成樹脂製積層体の評価結果を表2に示す。
Example 3
The same resin laminate (B) as in Example 1 was cut into two sunroofs, and one sheet was placed so that the cured coating layer (b-3) was in contact with one side of the inner surface of the mold. A laminated resin plate (B) is placed so that the cured film layer (b-3) is in contact with the other surface, and then a transparent synthetic resin for injection molding is injected and injected into the mold. A laminate was obtained. Table 2 shows the evaluation results of the obtained synthetic resin laminate.

実施例4
共押出板の製造例2で製造したポリカーボネート/アクリル樹脂シート(0.9mm厚、アクリル樹脂層20μm)を用いて、実施例1と同一方法で合成樹脂製積層体を得た。得られた合成樹脂製積層体の評価結果を表2に示す。
Example 4
A synthetic resin laminate was obtained in the same manner as in Example 1 using the polycarbonate / acrylic resin sheet (thickness 0.9 mm, acrylic resin layer 20 μm) produced in Production Example 2 of the coextruded plate. Table 2 shows the evaluation results of the obtained synthetic resin laminate.

実施例5
共押出板の製造例2で製造したポリカーボネート/アクリル樹脂シート(0.9mm厚、アクリル樹脂層40μm)を用いて、硬化皮膜層(b−3)の膜厚が7μm以外は、実施例1と同一方法で合成樹脂製積層体を得た。得られた合成樹脂積層体の評価結果を表2に示す。
Example 5
Using the polycarbonate / acrylic resin sheet (0.9 mm thickness, acrylic resin layer 40 μm) produced in Production Example 2 of the coextrusion plate, except for the film thickness of the cured film layer (b-3) being 7 μm, Example 1 and A synthetic resin laminate was obtained by the same method. Table 2 shows the evaluation results of the obtained synthetic resin laminate.

比較例1
共押出板の製造例1で製造したポリカーボネート/アクリル樹脂シート(0.9mm厚、アクリル樹脂層20μm)に合成例2で調整したポリオルガノシロキサン(NVM20%)を塗布し、室温で20分間自然乾燥させた後、130℃、1時間硬化させて樹脂積層板(B)を得た以外は、実施例1と同一方法で合成樹脂製積層体を得た。得られた合成樹脂製積層体の評価結果を表3に示す。
Comparative Example 1
The polyorganosiloxane (NVM 20%) prepared in Synthesis Example 2 was applied to the polycarbonate / acrylic resin sheet (0.9 mm thick, acrylic resin layer 20 μm) produced in Production Example 1 of the coextruded plate, and then naturally dried at room temperature for 20 minutes. Then, a synthetic resin laminate was obtained in the same manner as in Example 1 except that the resin laminate (B) was obtained by curing at 130 ° C. for 1 hour. Table 3 shows the evaluation results of the obtained synthetic resin laminate.

比較例2
共押出板の製造例1で製造したポリカーボネート/アクリル樹脂シート(0.9mm厚、アクリル樹脂層300μm)を用いた以外は、実施例1と同一方法で合成樹脂製積層体を得た。得られた合成樹脂製積層体の評価結果を表3に示す。
Comparative Example 2
A synthetic resin laminate was obtained in the same manner as in Example 1 except that the polycarbonate / acrylic resin sheet (0.9 mm thickness, acrylic resin layer 300 μm) produced in Production Example 1 of the coextruded plate was used. Table 3 shows the evaluation results of the obtained synthetic resin laminate.

比較例3
共押出板の製造例1で製造したポリカーボネート/アクリル樹脂シート(0.9mm厚、アクリル樹脂層7μm)に、合成例3で調整したアクリル系プライマーを塗布し、室温で20分間乾燥させた後、125℃で1時間硬化乾燥させた。その後、合成例1で得たポリオルガノシロキサン溶液(NVM20%)を塗布し、室温で20分間自然乾燥させた後、130℃、1時間硬化させて樹脂積層板(B)を得た以外は、実施例1と同一方法で合成樹脂製積層体を得た。得られた合成樹脂製積層体の評価結果を表3に示す。
Comparative Example 3
After the acrylic primer prepared in Synthesis Example 3 was applied to the polycarbonate / acrylic resin sheet (0.9 mm thickness, acrylic resin layer 7 μm) produced in Production Example 1 of the coextruded plate, and dried at room temperature for 20 minutes, It was cured and dried at 125 ° C. for 1 hour. Thereafter, the polyorganosiloxane solution (NVM 20%) obtained in Synthesis Example 1 was applied, naturally dried at room temperature for 20 minutes, and then cured at 130 ° C. for 1 hour to obtain a resin laminate (B). A synthetic resin laminate was obtained in the same manner as in Example 1. Table 3 shows the evaluation results of the obtained synthetic resin laminate.

(表2)

Figure 2005219299
(Table 2)
Figure 2005219299

(表3)

Figure 2005219299
(Table 3)
Figure 2005219299

透明合成樹脂層(A)の両面に樹脂積層板(B)を射出成形によって積層一体化した自動車用サンルーフの成形品の平面図を示す。The top view of the molded product of the sunroof for motor vehicles which laminated | stacked and integrated the resin laminated board (B) on both surfaces of the transparent synthetic resin layer (A) by injection molding is shown. 図1のA−A断面説明図を示す。The AA cross-section explanatory drawing of FIG. 1 is shown.

符号の説明Explanation of symbols

1 硬化皮膜層
2 アクリル樹脂層
3 透明樹脂基材
4 印刷部
5 透明合成樹脂層
DESCRIPTION OF SYMBOLS 1 Hardened film layer 2 Acrylic resin layer 3 Transparent resin base material 4 Printing part 5 Transparent synthetic resin layer

Claims (18)

射出成形により形成される透明合成樹脂層(A)の少なくとも一方の面と、透明樹脂基材(b−1)の片面に紫外線吸収剤を含有するアクリル樹脂層(b−2)を設けた積層基板の該アクリル樹脂被覆層に、1〜2量体成分は実質的に存在せず、3量体成分が0.01〜3%、4量体成分が1〜15%、5量体成分が1〜13%、6量体以上が69〜97%であって、数平均重合度が8〜100である熱硬化型ポリオルガノシロキサン組成物を塗布して、硬化させてなる硬化皮膜層(b−3)を有する樹脂積層板(B)の透明樹脂基材(b−1)面とを接合させてなることを特徴とする合成樹脂製積層体。   Lamination provided with an acrylic resin layer (b-2) containing an ultraviolet absorber on at least one surface of the transparent synthetic resin layer (A) formed by injection molding and one surface of the transparent resin substrate (b-1) In the acrylic resin coating layer of the substrate, the 1-2 dimer component is substantially absent, the trimer component is 0.01-3%, the tetramer component is 1-15%, and the pentamer component is A cured film layer (b) formed by applying and curing a thermosetting polyorganosiloxane composition having 1 to 13%, hexamer or more of 69 to 97% and a number average degree of polymerization of 8 to 100 3) A synthetic resin laminate comprising a resin laminate (B) having a transparent resin base material (b-1) surface joined thereto. 紫外線吸収剤を含有するアクリル樹脂層(b−2)を形成するアクリル樹脂が連続重合法で製造されたものであり、かつメタクリル酸メチルを主成分とするアクリル樹脂からなることを特徴とする請求項1に記載の合成樹脂製積層体。   The acrylic resin for forming the acrylic resin layer (b-2) containing an ultraviolet absorber is produced by a continuous polymerization method and is composed of an acrylic resin mainly composed of methyl methacrylate. Item 8. A synthetic resin laminate according to Item 1. 紫外線吸収剤を含有するアクリル樹脂層(b−2)の紫外線吸収剤量が0.01〜5重量%であることを特徴とする請求項1又は2に記載の合成樹脂製積層体。   The synthetic resin laminate according to claim 1 or 2, wherein the amount of the ultraviolet absorbent in the acrylic resin layer (b-2) containing the ultraviolet absorbent is 0.01 to 5% by weight. 透明樹脂基材(b−1)と紫外線吸収剤を含有するアクリル樹脂層(b−2)が共押出法により同時に成形され、該透明樹脂基材(b−1)の厚さが0.2〜3mmで、該アクリル樹脂層(b−2)の厚さが1〜200μmであることを特徴とする請求項1〜3のいずれかに記載の合成樹脂製積層体。   A transparent resin substrate (b-1) and an acrylic resin layer (b-2) containing an ultraviolet absorber are simultaneously molded by a coextrusion method, and the thickness of the transparent resin substrate (b-1) is 0.2. The synthetic resin laminate according to claim 1, wherein the acrylic resin layer (b-2) has a thickness of 1 to 200 μm. 前記ポリオルガノシロキサン組成物にコロイダルシリカを含有させることを特徴とする請求項1〜4いずれかに記載の合成樹脂製積層体。   The synthetic resin laminate according to any one of claims 1 to 4, wherein the polyorganosiloxane composition contains colloidal silica. 射出成形により形成される透明合成樹脂層(A)と透明樹脂基材(b−1)、透明樹脂基材(b−1)とアクリル樹脂層(b−2)、アクリル樹脂層(b−2)と熱硬化型ポリオルガノシロキサン組成物を硬化させた硬化皮膜層(b−3)との線膨張係数の差がそれぞれ10×10−5/℃以下であることを特徴とする請求項1〜5いずれかに記載の合成樹脂製積層体。 Transparent synthetic resin layer (A) and transparent resin substrate (b-1), transparent resin substrate (b-1), acrylic resin layer (b-2), acrylic resin layer (b-2) formed by injection molding ) And a cured coating layer (b-3) obtained by curing the thermosetting polyorganosiloxane composition, each having a difference in linear expansion coefficient of 10 × 10 −5 / ° C. or less. 5. A synthetic resin laminate according to any one of 5 above. 透明合成樹脂層(A)、透明樹脂基材(b−1)及びアクリル樹脂層(b−2)のヘイズが、厚さ1mmの成形品による測定で、10%以下であることを特徴とする請求項1〜6のいずれかに記載の合成樹脂製積層体。   The haze of the transparent synthetic resin layer (A), the transparent resin substrate (b-1) and the acrylic resin layer (b-2) is 10% or less as measured by a molded product having a thickness of 1 mm. The synthetic resin laminate according to any one of claims 1 to 6. 透明合成樹脂層(A)及び透明樹脂基材(b−1)がポリカーボネート樹脂であることを特徴とする請求項1〜7のいずれかに記載の合成樹脂製積層体。   8. The synthetic resin laminate according to claim 1, wherein the transparent synthetic resin layer (A) and the transparent resin substrate (b-1) are polycarbonate resins. 射出成形により形成される透明合成樹脂層(A)の厚みが0.8〜30mmであることを特徴とする請求項1〜8のいずれかに記載の合成樹脂製積層体。   The synthetic resin laminate according to any one of claims 1 to 8, wherein the transparent synthetic resin layer (A) formed by injection molding has a thickness of 0.8 to 30 mm. 透明樹脂基材(b−1)の透明樹脂における紫外線吸収剤の含有量が、0.5重量%未満であることを特徴とする請求項1〜9のいずれかに記載の合成樹脂製積層体。   The synthetic resin laminate according to any one of claims 1 to 9, wherein the content of the ultraviolet absorber in the transparent resin of the transparent resin substrate (b-1) is less than 0.5 wt%. . 熱硬化型ポリオルガノシロキサン組成物を塗布して、硬化させてなる硬化皮膜層(b−3)の厚みが1〜15μmであることを特徴とする請求項1〜10のいずれかに記載の合成樹脂製積層体。   The composition according to any one of claims 1 to 10, wherein the thickness of the cured film layer (b-3) obtained by applying and curing the thermosetting polyorganosiloxane composition is 1 to 15 µm. Resin laminate. 樹脂積層板(B)における硬化皮膜層(b−3)を有する面に対し反対の面である透明樹脂基材(b−1)に、印刷部を有することを特徴とする請求項1〜11のいずれかに記載の合成樹脂製積層体。   It has a printing part in the transparent resin base material (b-1) which is a surface opposite to the surface which has a hardened film layer (b-3) in a resin laminated board (B). The synthetic resin laminate according to any one of the above. 射出成形により形成された透明合成樹脂層(A)の両面に、硬化皮膜層(b−3)が最外層となるよに樹脂積層板(B)を接合させることを特徴とする請求項1〜12のいずれかに記載の合成樹脂製積層体。   The resin laminate (B) is bonded to both surfaces of the transparent synthetic resin layer (A) formed by injection molding so that the cured film layer (b-3) is the outermost layer. The synthetic resin laminate according to any one of 12 above. 樹脂積層板(B)における硬化皮膜層(b−3)が金型内表面の少なくとも一方の面に接するように樹脂積層板(B)を配置し、次いで該金型内へ射出成形により形成される透明合成樹脂層(A)を構成する透明合成樹脂を射出注入し、樹脂積層板(B)における透明樹脂基材(b−1)面と射出成形により形成される透明合成樹脂層(A)とを接合させて積層一体化することを特徴とする合成樹脂製積層体の製造方法。   The resin laminate (B) is disposed so that the cured coating layer (b-3) of the resin laminate (B) is in contact with at least one surface of the inner surface of the mold, and then formed by injection molding into the mold. The transparent synthetic resin layer (A) formed by injection injection of the transparent synthetic resin constituting the transparent synthetic resin layer (A) and injection molding of the transparent resin substrate (B-1) surface in the resin laminate (B) A method for producing a laminate made of a synthetic resin, characterized in that the two are joined together. 樹脂積層板(B)を予め金型キャビティの形状に賦形後、金型内に配置することを特徴とする請求項14に記載の合成樹脂製積層体の製造方法。   The method for producing a synthetic resin laminate according to claim 14, wherein the resin laminate (B) is preliminarily shaped into a mold cavity and then placed in the mold. アクリル樹脂層(b−2)の厚みが10〜100μmであることを特徴とする請求項14または15のいずれかに記載の合成樹脂製積層体の製造方法。   The method for producing a synthetic resin laminate according to claim 14, wherein the acrylic resin layer (b-2) has a thickness of 10 to 100 μm. 紫外線吸収剤を含有するアクリル樹脂層(b−2)における紫外線吸収剤の含有量が0.03〜4.0重量%であることを特徴とする請求項14〜16のいずれかに記載の合成樹脂製積層体の製造方法。   The composition according to any one of claims 14 to 16, wherein the content of the ultraviolet absorber in the acrylic resin layer (b-2) containing the ultraviolet absorber is 0.03 to 4.0 wt%. A method for producing a resin laminate. 透明合成樹脂層(A)と樹脂積層板(B)で構成される積層体が車輌用窓ガラス、ルーフ窓ガラスである請求項1〜13のいずれかに記載の合成樹脂積層体。
The synthetic resin laminate according to any one of claims 1 to 13, wherein the laminate comprising the transparent synthetic resin layer (A) and the resin laminate (B) is a vehicle window glass and a roof window glass.
JP2004028297A 2004-02-04 2004-02-04 Laminate made of synthetic resin and its manufacturing method Pending JP2005219299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004028297A JP2005219299A (en) 2004-02-04 2004-02-04 Laminate made of synthetic resin and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004028297A JP2005219299A (en) 2004-02-04 2004-02-04 Laminate made of synthetic resin and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005219299A true JP2005219299A (en) 2005-08-18

Family

ID=34995328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028297A Pending JP2005219299A (en) 2004-02-04 2004-02-04 Laminate made of synthetic resin and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005219299A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037363A1 (en) * 2005-09-30 2007-04-05 Dai Nippon Printing Co., Ltd. Decorative sheet, process for producing the same, and injection-molded article with decorative sheet
JP2007118597A (en) * 2005-09-30 2007-05-17 Dainippon Printing Co Ltd Decorative sheet, its manufacturing method, and injection-molded article with decorative sheet
JP2012206718A (en) * 2006-06-09 2012-10-25 Exatec Llc Glazing system having solar reflecting properties and method for manufacturing glazing system
JP2013212611A (en) * 2012-03-30 2013-10-17 Dainippon Printing Co Ltd Film for laminating organic glass
JPWO2015060283A1 (en) * 2013-10-25 2017-03-09 旭硝子株式会社 Method for producing resin substrate with hard coat film and resin substrate with hard coat film
CN108790206A (en) * 2018-06-25 2018-11-13 吉林省瑞中科技有限公司 Novel energy saving more color atmosphere lamps
JP2019194021A (en) * 2014-12-18 2019-11-07 サン−ゴバン グラス フランスSaint−Gobain Glass France Method for producing a plastic vehicle part

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037363A1 (en) * 2005-09-30 2007-04-05 Dai Nippon Printing Co., Ltd. Decorative sheet, process for producing the same, and injection-molded article with decorative sheet
JP2007118597A (en) * 2005-09-30 2007-05-17 Dainippon Printing Co Ltd Decorative sheet, its manufacturing method, and injection-molded article with decorative sheet
KR101298795B1 (en) * 2005-09-30 2013-08-22 다이니폰 인사츠 가부시키가이샤 Decorative sheet, process for producing the same, and injection-molded article with decorative sheet
US9162429B2 (en) 2005-09-30 2015-10-20 Dai Nippon Printing Co., Ltd. Decorative sheet, process for producing the same, and injection-molded article with decorative sheet
JP2012206718A (en) * 2006-06-09 2012-10-25 Exatec Llc Glazing system having solar reflecting properties and method for manufacturing glazing system
JP2012224087A (en) * 2006-06-09 2012-11-15 Exatec Llc Polycarbonate glazing system having solar reflecting property
JP2013212611A (en) * 2012-03-30 2013-10-17 Dainippon Printing Co Ltd Film for laminating organic glass
JPWO2015060283A1 (en) * 2013-10-25 2017-03-09 旭硝子株式会社 Method for producing resin substrate with hard coat film and resin substrate with hard coat film
JP2019194021A (en) * 2014-12-18 2019-11-07 サン−ゴバン グラス フランスSaint−Gobain Glass France Method for producing a plastic vehicle part
JP7097857B2 (en) 2014-12-18 2022-07-08 サン-ゴバン グラス フランス How to make plastic vehicle attachments
CN108790206A (en) * 2018-06-25 2018-11-13 吉林省瑞中科技有限公司 Novel energy saving more color atmosphere lamps

Similar Documents

Publication Publication Date Title
JP4430313B2 (en) Transparent resin laminate and molded product using the same
JP5230313B2 (en) Laminated plate and front plate for display device
TWI448502B (en) An acrylate resin composition and a molded article using the same
CN110121418B (en) Transparent resin substrate
KR100571101B1 (en) Plastic panes, in particular automotive plastic panes and methods of manufacturing the same
JP6421760B2 (en) Method for producing resin substrate with hard coat film and resin substrate with hard coat film
KR20120037471A (en) Anti-soiling composition, anti-soiling film, anti-soiling laminated film, transfer film, and resin laminate, and method for manufacturing resin laminate
KR101028463B1 (en) Photo curing organics-inorganics hybrid hard coating composition
JP2003201409A (en) Resin composition and thermoplastic resin laminate using the same and method for producing the same
JP6369187B2 (en) Anti-fingerprint anti-reflection film for insert molding and resin molded product using the same
EP1134241B1 (en) Acrylic resin composition, painted-film molded resin plate using the same, and coating member for solar cell panel
JP2005219299A (en) Laminate made of synthetic resin and its manufacturing method
WO2014061402A1 (en) Photocurable resin composition, multilayer sheet, molded multilayer article, and method for producing molded multilayer article
JP2005219298A (en) Laminate made of synthetic resin and its manufacturing method
JP2006035519A (en) Polycarbonate resin laminate and its manufacturing method
JP5488064B2 (en) Method for producing laminated molded body and cured film transfer film
JP2015038173A (en) Photocurable resin composition, laminate sheet, laminate molded article, and method for manufacturing laminate molded article
JP2006035518A (en) Polycarbonate resin laminate and its manufacturing method
JP2014015537A (en) Photocurable resin composition, photocurable sheet, laminate molding, and method for producing laminate molding
JP2003011293A (en) Plastic resin laminated plate
JP2006035592A (en) Laminate made of synthetic resin and its manufacturing method
JP2007283539A (en) Manufacturing method of multilayered resin molding
WO2021070632A1 (en) Curved member production method and hard-coated polycarbonate resin layered body for heat bending
WO2018159684A1 (en) Three-dimensional molding transfer film and method for manufacturing same, and method for manufacturing resin molded article
JP2001315271A (en) Laminate made of synthetic resin and manufacturing method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100120