JP2005217377A - Element with giant magnetic reluctance effect - Google Patents

Element with giant magnetic reluctance effect Download PDF

Info

Publication number
JP2005217377A
JP2005217377A JP2004025925A JP2004025925A JP2005217377A JP 2005217377 A JP2005217377 A JP 2005217377A JP 2004025925 A JP2004025925 A JP 2004025925A JP 2004025925 A JP2004025925 A JP 2004025925A JP 2005217377 A JP2005217377 A JP 2005217377A
Authority
JP
Japan
Prior art keywords
layer
magnetization
elements
oxide
paramagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004025925A
Other languages
Japanese (ja)
Other versions
JP4271050B2 (en
Inventor
Koichi Kubo
光一 久保
Hitoshi Iwasaki
仁志 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004025925A priority Critical patent/JP4271050B2/en
Publication of JP2005217377A publication Critical patent/JP2005217377A/en
Application granted granted Critical
Publication of JP4271050B2 publication Critical patent/JP4271050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an element with a giant magnetic reluctance effect which an S/N ratio and durability are improved in a large ratio of MR(magnetic reluctance) change. <P>SOLUTION: The element of the giant magnetic reluctance effect is equipped with a paramagnetic conduction layer 56 which is laminated between a magnetization fixed layer 52 and a magnetization free layer 60 and has an oxide layer expressed by a formula M<SB>x-y</SB>A<SB>y</SB>DO<SB>3-z</SB>. Where, M is an element selected among group I elements in an element periodic table and thallium, A is an element selected among group II elements, and D is an element selected among group VA elements and group VIA elements, and x, y, and z meet 0.1≤x≤1.4, 0≤y≤0.5x, and 0≤z≤0.7, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、磁気抵抗効果膜の膜面に対して垂直方向にセンス電流を流す構造の巨大磁気抵抗効果素子に関する。   The present invention relates to a giant magnetoresistive element having a structure in which a sense current flows in a direction perpendicular to the film surface of a magnetoresistive film.

近年、ハードディスク(HDD)等の磁気記録再生装置においては高密度化が急速に進展している。磁気記録再生装置の記録密度が高くなるにつれて記録媒体上の記録ビットサイズが小さくなり、信号磁界が小さくなってきている。従来の磁気ヘッドにおいては、記録媒体からの信号磁界を電磁誘導効果により検出しているが、もはや十分な検出感度を確保できなくなっている。   In recent years, the density of magnetic recording / reproducing apparatuses such as hard disks (HDD) has been rapidly increased. As the recording density of the magnetic recording / reproducing apparatus increases, the recording bit size on the recording medium decreases and the signal magnetic field decreases. In the conventional magnetic head, the signal magnetic field from the recording medium is detected by the electromagnetic induction effect, but sufficient detection sensitivity can no longer be ensured.

これに対して現在、巨大な磁気抵抗効果を発生するスピンバルブ型の巨大磁気抵抗効果素子(以下、GMR素子と称す)を用いた磁気ヘッドが主流をなしている。GMR素子の磁気抵抗効果層は、磁化固着層/中間層/磁化自由層という積層構造を有し、非常に大きな磁気抵抗効果を発揮する。磁化固着層及び磁化自由層にはコバルト(Co)やコバルト鉄(CoFe)等の磁性金属が用いられ、中間層には銅(Cu)等の常磁性金属が用いられる。磁化固着層の磁化方向は固定されているが、磁化自由層の磁化方向は外部磁界信号により変化する。中間層を流れる伝導電子のスピンには、例えばアップ及びダウンの2つの方向がある。例えば、磁化固着層及び磁化自由層の磁化方向が平行であれば、磁化方向に平行なスピンの伝導電子は、中間層と磁化固着層及び磁化自由層との界面で散乱されにくい。一方、磁化自由層の磁化方向が磁化固着層と反平行の場合は、両方向のスピンの伝導電子が共に界面で散乱されやすくなる。したがって、磁気抵抗効果層は、磁化固着層及び磁化自由層の磁化方向が平行のときと比べ、反平行のとき電気抵抗率が大きく増加するため、磁気抵抗(MR)変化率が向上する。   On the other hand, at present, a magnetic head using a spin valve type giant magnetoresistive element (hereinafter referred to as a GMR element) that generates a giant magnetoresistive effect is mainly used. The magnetoresistive layer of the GMR element has a laminated structure of a fixed magnetization layer / intermediate layer / magnetization free layer, and exhibits a very large magnetoresistance effect. A magnetic metal such as cobalt (Co) or cobalt iron (CoFe) is used for the magnetization fixed layer and the magnetization free layer, and a paramagnetic metal such as copper (Cu) is used for the intermediate layer. Although the magnetization direction of the magnetization fixed layer is fixed, the magnetization direction of the magnetization free layer is changed by an external magnetic field signal. The spin of conduction electrons flowing through the intermediate layer has two directions, for example, up and down. For example, if the magnetization directions of the magnetization fixed layer and the magnetization free layer are parallel, the conduction electrons of the spin parallel to the magnetization direction are unlikely to be scattered at the interface between the intermediate layer, the magnetization fixed layer, and the magnetization free layer. On the other hand, when the magnetization direction of the magnetization free layer is antiparallel to the magnetization pinned layer, the spin conduction electrons in both directions are likely to be scattered at the interface. Therefore, in the magnetoresistive effect layer, the electrical resistivity greatly increases when the magnetization directions of the magnetization fixed layer and the magnetization free layer are antiparallel, so that the magnetoresistance (MR) change rate is improved.

磁気抵抗効果層としては、一対の電極によって磁気抵抗効果層の面内方向にセンス電流を通電する、いわゆる面内通電(CIP)型の構成が一般的である。CIP型の磁気ヘッドにおいては、強磁性体からなる一対の磁気シールドの間に絶縁体からなる磁気ギャップを介して磁気抵抗効果層が設けられたシールド型の構成が採用されている。   As the magnetoresistive effect layer, a so-called in-plane energization (CIP) type configuration in which a sense current is passed in the in-plane direction of the magnetoresistive effect layer by a pair of electrodes is generally used. The CIP type magnetic head employs a shield type configuration in which a magnetoresistive layer is provided between a pair of magnetic shields made of a ferromagnetic material via a magnetic gap made of an insulator.

面内磁気記録方式の磁気記憶システムにおいては、熱擾乱のために記録密度が限界に近づいている。そこで、熱擾乱に強い垂直磁気記録方式のシステムが有望視され、様々な垂直記録媒体とシールド型のCIP型磁気ヘッドとを組み合わせたシステムが提案されている。しかし、CIP型磁気ヘッドでは、記憶密度の増大により素子サイズが減少し再生出力が低下するため、記録密度は100Gbpsi程度で理論的限界に達する。   In the magnetic storage system of the in-plane magnetic recording system, the recording density is approaching the limit due to thermal disturbance. Therefore, a perpendicular magnetic recording system that is resistant to thermal disturbance is considered promising, and a system in which various perpendicular recording media and shielded CIP magnetic heads are combined has been proposed. However, in the CIP type magnetic head, since the element size decreases and the reproduction output decreases due to the increase in the storage density, the recording density reaches the theoretical limit at about 100 Gbpsi.

これに対して最近、一対の電極から磁気抵抗効果層面に対して垂直方向にセンス電流を通電する、いわゆる垂直通電(CPP)型磁気ヘッドが提案されている。CPP型磁気ヘッドでは微細化が可能であり、更に高い記録密度まで到達が可能である。そのため、現在CPP型磁気ヘッドの実用化に向けた開発が進められている。   Recently, a so-called vertical energization (CPP) type magnetic head in which a sense current is energized in a direction perpendicular to the magnetoresistive layer surface from a pair of electrodes has been proposed. The CPP type magnetic head can be miniaturized and can reach a higher recording density. Therefore, development for practical application of the CPP type magnetic head is currently in progress.

また、磁気抵抗効果層の中間層の一部に絶縁層を用いたトンネル磁気抵抗効果(TMR)素子を用いたCPP型磁気ヘッドが開発されている。TMR素子では、電気抵抗率が大きくMR変化率もCIP型のGMR素子に比べて大きくできる。更に、中間層の一部に小さなメタルホールを有する絶縁層を埋め込んだナノオキサイドレイヤー(NOL)を用いることにより、電流パスを狭窄化する電流狭窄(CCP)型のGMR素子が試みられている(例えば、特許文献1参照)。CCP型GMR素子は、TMR素子と同様に、電気抵抗率の増大化に有効である。また、センス電流が中間層と強磁性体層との界面に集中して通過するため、界面散乱効果が強調されMR変化率も相当なレベルに達している。現在、CCP型GMR素子は性能的には最も実用化に近いところにある。
特開平6−21529号公報(第4−5頁、第1図)
In addition, a CPP type magnetic head using a tunnel magnetoresistive effect (TMR) element using an insulating layer as a part of an intermediate layer of the magnetoresistive effect layer has been developed. The TMR element has a large electric resistivity and a large MR change rate compared to the CIP type GMR element. Furthermore, a current confinement (CCP) type GMR element that narrows a current path by using a nano oxide layer (NOL) in which an insulating layer having a small metal hole is embedded in a part of an intermediate layer has been attempted ( For example, see Patent Document 1). The CCP-type GMR element is effective for increasing the electrical resistivity, like the TMR element. In addition, since the sense current concentrates and passes through the interface between the intermediate layer and the ferromagnetic layer, the interface scattering effect is emphasized and the MR change rate reaches a considerable level. At present, the CCP type GMR element is most practical in terms of performance.
Japanese Patent Laid-Open No. 6-21529 (page 4-5, FIG. 1)

しかしながら、CPP型磁気ヘッドのGMR素子の磁気抵抗効果層は、極薄の金属積層膜を中間層として用いているため、電気抵抗率の値は著しく小さく十分な利得を得ることが難しい。磁気抵抗効果層の電気抵抗率の値を大きくしMR変化率を大きくするために、GMR素子を多重に積層しているものがある。しかし、GMR素子を多重化すれば記録密度は低下することとなり本質的解決とはならない。また、TMR素子では、中間層に絶縁層を用いているため、電気抵抗率が大きく十分なMR変化率を実現できるが、ノイズが著しく高く十分な信号対雑音(S/N)比が得られない。さらに、CCP型GMR素子では、狭窄化された電流パスで発生するジュール熱のため耐電性等の耐久性に劣るという欠点がある。   However, since the magnetoresistive layer of the GMR element of the CPP type magnetic head uses an extremely thin metal laminated film as an intermediate layer, the value of electric resistivity is extremely small and it is difficult to obtain a sufficient gain. In order to increase the value of electrical resistivity of the magnetoresistive effect layer and increase the MR change rate, there are some in which GMR elements are stacked in multiple layers. However, if GMR elements are multiplexed, the recording density is lowered, which is not an essential solution. In addition, since the TMR element uses an insulating layer as an intermediate layer, the electrical resistivity is large and a sufficient MR ratio can be realized, but the noise is extremely high and a sufficient signal-to-noise (S / N) ratio can be obtained. Absent. Furthermore, the CCP-type GMR element has a drawback that it is inferior in durability such as electric resistance due to Joule heat generated in a narrowed current path.

本発明の目的は、このような課題を解決し、大きなMR変化率で、良好なS/N比を実現でき、耐久性を向上させる磁気抵抗効果層を有するGMR素子を提供することにある。   An object of the present invention is to solve such problems and provide a GMR element having a magnetoresistive effect layer that can realize a good S / N ratio with a large MR change rate and improve durability.

上記課題を解決するため、本発明の態様は、磁化固着層及び磁化自由層の間に積層され、Mx-yyDO3-z(ここで、Mは元素周期表のI族元素及びタリウムのうちから選ばれた元素、AはII族元素の内から選ばれた元素、DはVA族元素及びVIA族元素のうちから選ばれた元素であり、x、y及びzはそれぞれ、0.1≦x≦1.4、0≦y≦0.5・x、及び0≦z≦0.7を満たす。)で表わされる酸化層を有する常磁性伝導層を備える巨大磁気抵抗効果素子であることを要旨とする。 In order to solve the above problem, an aspect of the present invention is laminated between a magnetization pinned layer and a magnetization free layer, and M xy A y DO 3-z (where M is a group I element of the periodic table of elements and thallium). An element selected from among them, A is an element selected from Group II elements, D is an element selected from Group VA elements and Group VIA elements, and x, y, and z are each 0.1% ≦ x ≦ 1.4, 0 ≦ y ≦ 0.5 · x, and 0 ≦ z ≦ 0.7.) A giant magnetoresistive element having a paramagnetic conductive layer having an oxide layer represented by: Is the gist.

本発明によれば、大きなMR変化率で、良好なS/N比を実現でき、耐久性を向上させる磁気抵抗効果層を有するGMR素子を提供することが可能となる。   According to the present invention, it is possible to provide a GMR element having a magnetoresistive effect layer that can realize a good S / N ratio with a large MR change rate and improve durability.

以下図面を参照して、本発明の形態について説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号が付してある。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

本発明の実施の形態に係るGMR素子は、図1に示すように、下部電極層74と、下部電極層74上に設けられた反強磁性層76と、反強磁性層76上に設けられた磁気抵抗効果層50と、磁気抵抗効果層50上に設けられた上部電極層80を備える。磁気抵抗効果層50及び反強磁性層76は、上部電極層80から下部電極層74に向かって台形状に傾斜した側面を有する。磁気抵抗効果層50及び反強磁性層76の側面から下部電極層74の表面に沿って、絶縁層62が設けられている。台形状の磁気抵抗効果層50及び反強磁性層76の外側の領域には、上部電極層80及び下部電極層74の間に絶縁層62を介して硬磁性層64が設けられている。磁気抵抗効果層50は、反強磁性層76上に順次積層された磁化固着層52、中間層51、及び磁化自由層60を有する。中間層51は、磁化固着層52上に順次積層された磁気結合遮断層54、常磁性伝導層56、及び界面調整層58を有する。   As shown in FIG. 1, the GMR element according to the embodiment of the present invention is provided on a lower electrode layer 74, an antiferromagnetic layer 76 provided on the lower electrode layer 74, and an antiferromagnetic layer 76. The magnetoresistive effect layer 50 and the upper electrode layer 80 provided on the magnetoresistive effect layer 50 are provided. The magnetoresistive effect layer 50 and the antiferromagnetic layer 76 have side surfaces inclined in a trapezoidal shape from the upper electrode layer 80 toward the lower electrode layer 74. An insulating layer 62 is provided from the side surfaces of the magnetoresistive effect layer 50 and the antiferromagnetic layer 76 along the surface of the lower electrode layer 74. In a region outside the trapezoidal magnetoresistive effect layer 50 and the antiferromagnetic layer 76, a hard magnetic layer 64 is provided via an insulating layer 62 between the upper electrode layer 80 and the lower electrode layer 74. The magnetoresistive effect layer 50 includes a fixed magnetization layer 52, an intermediate layer 51, and a free magnetization layer 60 that are sequentially stacked on the antiferromagnetic layer 76. The intermediate layer 51 includes a magnetic coupling blocking layer 54, a paramagnetic conductive layer 56, and an interface adjustment layer 58 that are sequentially stacked on the magnetization pinned layer 52.

下部電極層74と上部電極層80は、磁化固着層53と磁化自由層60にそれぞれ電気的に接続し、磁気抵抗効果層50に対してその膜面に垂直な方向に電流を流すように形成されている。   The lower electrode layer 74 and the upper electrode layer 80 are formed so as to be electrically connected to the magnetization fixed layer 53 and the magnetization free layer 60, respectively, and to pass a current in a direction perpendicular to the film surface with respect to the magnetoresistive effect layer 50. Has been.

反強磁性層76は、例えば、マンガン白金(MnPt)等の反強磁性体である。磁化固着層52及び磁化自由層60は、CoFe等の磁性体である。中間層51の磁気結合遮断層54及び界面調整層58は、Cu等の常磁性体であり、常磁性伝導層56は、ルビジウムモリブデン酸化物(Rb0.3MoO3)等の一次元電気伝導体の性質を有する複合酸化物の酸化層である。また、絶縁層62は、アルミナ(Al23)等の絶縁体であり、硬磁性層64は、コバルト白金(CoPt)等の強磁性体である。 The antiferromagnetic layer 76 is an antiferromagnetic material such as manganese platinum (MnPt). The magnetization pinned layer 52 and the magnetization free layer 60 are magnetic materials such as CoFe. The magnetic coupling blocking layer 54 and the interface adjustment layer 58 of the intermediate layer 51 are paramagnetic substances such as Cu, and the paramagnetic conductive layer 56 is a one-dimensional electric conductor such as rubidium molybdenum oxide (Rb 0.3 MoO 3 ). This is an oxide layer of a composite oxide having properties. The insulating layer 62 is an insulator such as alumina (Al 2 O 3 ), and the hard magnetic layer 64 is a ferromagnetic material such as cobalt platinum (CoPt).

磁化固着層52は反強磁性層76と交換結合することにより、磁化が所定の方向に固定されている。磁気結合遮断層54を含む中間層51は、磁化固着層52と磁化自由層60との磁気的な結合を遮断するスペーサ層としての役割を有する。磁化自由層60は、外部磁場の影響を受けて磁化方向の変更が可能となる程度に、硬磁性層64により磁化方向を弱く固定されている。例えば、外部磁界信号に反応して、磁化固着層52の磁化方向に直交する方向で磁化自由層60の磁化方向が180度切り替えられるように制御される。   The magnetization pinned layer 52 is exchange-coupled with the antiferromagnetic layer 76 so that the magnetization is fixed in a predetermined direction. The intermediate layer 51 including the magnetic coupling blocking layer 54 functions as a spacer layer that blocks the magnetic coupling between the magnetization fixed layer 52 and the magnetization free layer 60. The magnetization free layer 60 is fixed to the magnetization direction weakly by the hard magnetic layer 64 to such an extent that the magnetization direction can be changed under the influence of an external magnetic field. For example, in response to an external magnetic field signal, the magnetization direction of the magnetization free layer 60 is controlled to be switched 180 degrees in a direction orthogonal to the magnetization direction of the magnetization pinned layer 52.

常磁性伝導層56は、例えば図2(a)に示すように、第1の原子M、第2の原子D、及び酸素(O)原子から構成される複合酸化物である。第1の原子Mは、紙面の上下方向の結晶軸に沿って一次元的に連なる鎖を構成する。1個の第2の原子D及び6個のO原子の8面体DO6は複数個結合して、第1の原子Mの鎖に対して平行な鎖を構成する。また、第1の原子Mの鎖及び8面体DO6の鎖は、交互に配列されている。図2(b)に示すように、第2の原子Dは8面体の中心に配置され、Oは8面体の各頂点に配置されている。複合酸化物の結晶構造は、単斜晶系であり、鎖の配列方向の結晶軸はb軸である。例えば、図2(a)に示した複合酸化物は、M0.3DO3と表わせる。第1及び第2の原子M、Dはそれぞれ1価及び3価の陽イオンであり、Oは2価の陰イオンである。例えば、常磁性伝導層56がRb0.3MoO3複合酸化物であれば、第1の原子MはRbで、第2の原子DはMoである。Rb0.3MoO3複合酸化物では、Moは、酸素6配位である。 For example, as shown in FIG. 2A, the paramagnetic conductive layer 56 is a complex oxide composed of a first atom M, a second atom D, and an oxygen (O) atom. The first atoms M form a chain that is one-dimensionally connected along the crystal axis in the vertical direction of the drawing. A plurality of octahedral DO 6 of one second atom D and six O atoms are combined to form a chain parallel to the chain of the first atom M. Further, the first atom M chain and the octahedral DO 6 chain are alternately arranged. As shown in FIG. 2B, the second atom D is arranged at the center of the octahedron, and O is arranged at each vertex of the octahedron. The crystal structure of the complex oxide is a monoclinic system, and the crystal axis in the chain arrangement direction is the b axis. For example, the composite oxide shown in FIG. 2A can be expressed as M 0.3 DO 3 . The first and second atoms M and D are monovalent and trivalent cations, respectively, and O is a divalent anion. For example, if the paramagnetic conductive layer 56 is an Rb 0.3 MoO 3 composite oxide, the first atom M is Rb and the second atom D is Mo. In the Rb 0.3 MoO 3 composite oxide, Mo is oxygen six-coordinated.

本発明の実施の形態に係るGMR素子はCPP型であり、上部電極層80及び下部電極層74の間で、図1に示した磁気抵抗効果層50の各層の積層方向にセンス電流が通電される。磁気抵抗効果層50の常磁性伝導層56に用いる複合酸化物結晶内の電導パスは、図2に示すb軸に沿って配列した第1の原子Mの鎖にある。このため、複合酸化物結晶の酸化層は一次元電気伝導体の性質を示す。また、酸化層は、b軸が磁気結合遮断層54及び界面調整層58の対向する面に垂直になるように形成される。   The GMR element according to the embodiment of the present invention is a CPP type, and a sense current is passed between the upper electrode layer 80 and the lower electrode layer 74 in the stacking direction of each layer of the magnetoresistive effect layer 50 shown in FIG. The The conductive path in the complex oxide crystal used for the paramagnetic conductive layer 56 of the magnetoresistive effect layer 50 is in a chain of first atoms M arranged along the b-axis shown in FIG. For this reason, the oxide layer of the complex oxide crystal exhibits the properties of a one-dimensional electrical conductor. The oxide layer is formed so that the b-axis is perpendicular to the opposing surfaces of the magnetic coupling blocking layer 54 and the interface adjustment layer 58.

本発明の実施の形態では、図2(a)及び図2(b)に示した第1及び第2の原子M、Dの元素としてRb及びMoを用いている。しかし、第1及び第2の原子M、Dは、上記の元素に限定されない。例えば、第1の原子MとしてRb以外に、ナトリウム(Na)、カリウム(K)、Cu、銀(Ag)等のI族元素、及びタリウム(Tl)等の金属元素のいずれかを用いてもよい。第2の原子DとしてMo以外に、バナジウム(V)、ニオブ(Nb)等のVA族元素、及びタングステン(W)等のVIA族元素の金属元素のいずれかを用いてもよい。また、第1の原子MであるI族元素及びTl等の金属元素もいずれかに、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)等のII族元素からなる金属元素の少なくとも一つを0.5モル比以下で添加してもよい。また、Oだけでなく、Oに、硫黄(S)、セレン(Se)、テルル(Te)等のVIB族元素、及びフッ素(F)、塩素(Cl)、臭素(Br)等のVIIB族元素のうち少なくとも一つを添加してもよい。なお、第1の原子M及びOのモル数は、第2の原子Dが1モルであるのに対し、それぞれ0.1から1.4、及び2.3から3の範囲であればよい。   In the embodiment of the present invention, Rb and Mo are used as the elements of the first and second atoms M and D shown in FIGS. 2 (a) and 2 (b). However, the first and second atoms M and D are not limited to the above elements. For example, as the first atom M, in addition to Rb, any of group I elements such as sodium (Na), potassium (K), Cu, silver (Ag), and metal elements such as thallium (Tl) may be used. Good. As the second atom D, in addition to Mo, any one of VA group elements such as vanadium (V) and niobium (Nb) and metal elements of VIA group elements such as tungsten (W) may be used. In addition, the group I element which is the first atom M and the metal element such as Tl are any of metals including group II elements such as magnesium (Mg), calcium (Ca), strontium (Sr) and barium (Ba). At least one of the elements may be added in a molar ratio of 0.5 or less. In addition to O, O includes VIB group elements such as sulfur (S), selenium (Se), tellurium (Te), and VIIB group elements such as fluorine (F), chlorine (Cl), and bromine (Br). At least one of them may be added. The number of moles of the first atoms M and O may be in the range of 0.1 to 1.4 and 2.3 to 3, respectively, while the second atom D is 1 mole.

例えば、第1の原子Mに添加するII族元素を“A”とすると、常磁性伝導層56に用いる複合酸化物は、Mx-yyDO3-zと表わされる。ここで、x、y及びzはそれぞれ、0.1≦x≦1.4、0≦y≦0.5・x、及び0≦z≦0.7を満たす。 For example, when the group II element added to the first atom M is “A”, the composite oxide used for the paramagnetic conductive layer 56 is expressed as M xy A y DO 3 -z. Here, x, y, and z satisfy 0.1 ≦ x ≦ 1.4, 0 ≦ y ≦ 0.5 · x, and 0 ≦ z ≦ 0.7, respectively.

従来のTMR素子の場合には、センス電流は中間層に用いられるAl23等の絶縁層をトンネリングにより通過する。これに対して、本発明の実施の形態に係るGMR素子では、図1に示した常磁性伝導層56の複合酸化物は一次元電気伝導体であり、Al23に比べて著しく電気伝導度が大きい。しかし、複合酸化物は、単体の金属に比べれば2〜3桁程度抵抗が大きく半導体的な特性を有する。また、複合酸化物のフェルミレベルは、Cuの仕事関数に比べ、室温の熱エネルギの2〜3倍程度かそれ以下だけ低くなっている。このように、複合酸化物である常磁性伝導層56のフェルミレベルが、Cuの磁気結合遮断層54及び界面調整層58より若干低いため、常磁性伝導層56と、磁気結合遮断層54及び界面調整層58との接合には、電位障壁が形成されず、オーミック特性を示す。また、複合酸化物は一次元電気伝導体であるため、フェルミ面での電子の状態密度が大きく、同時にバンド幅が小さい。このため、電子の同一スピン間の遷移確率と異種スピン間の遷移確率との比が増大する。その結果、本発明の実施の形態に係るGMR素子のMR変化率が増大する。 In the case of a conventional TMR element, the sense current passes through an insulating layer such as Al 2 O 3 used for the intermediate layer by tunneling. On the other hand, in the GMR element according to the embodiment of the present invention, the composite oxide of the paramagnetic conductive layer 56 shown in FIG. 1 is a one-dimensional electric conductor, which is significantly more conductive than Al 2 O 3. The degree is great. However, the composite oxide has a large semiconductor resistance and a resistance of about 2 to 3 digits compared to a single metal. Further, the Fermi level of the composite oxide is lower by about 2 to 3 times the thermal energy at room temperature or lower than the work function of Cu. Thus, since the Fermi level of the paramagnetic conductive layer 56 which is a composite oxide is slightly lower than that of the Cu magnetic coupling blocking layer 54 and the interface adjustment layer 58, the paramagnetic conductive layer 56, the magnetic coupling blocking layer 54 and the interface are separated. The potential barrier is not formed at the junction with the adjustment layer 58 and exhibits ohmic characteristics. In addition, since the composite oxide is a one-dimensional electrical conductor, the density of states of electrons on the Fermi surface is large and the bandwidth is small at the same time. For this reason, the ratio of the transition probability between the same spins of electrons and the transition probability between different spins increases. As a result, the MR change rate of the GMR element according to the embodiment of the present invention increases.

上記のように、本発明の実施の形態に係る常磁性伝導層56に用いる酸化層は一次元電気伝導体で半導体的な特性を有する。したがって、常磁性伝導層56を有する中間層51の電気抵抗率は、従来のGMR素子の中間層に用いられるCuに比べて、大きくすることができる。また、常磁性伝導層56と、磁気結合遮断層54及び界面調整層58との接合には電位障壁が無いため、接触抵抗は無視でき、中間層51の電気抵抗値は常磁性伝導層56に用いる酸化層の電気抵抗率により求められる。   As described above, the oxide layer used for the paramagnetic conductive layer 56 according to the embodiment of the present invention is a one-dimensional electrical conductor and has semiconductor characteristics. Therefore, the electrical resistivity of the intermediate layer 51 having the paramagnetic conductive layer 56 can be made larger than that of Cu used for the intermediate layer of the conventional GMR element. Further, since there is no potential barrier at the junction of the paramagnetic conductive layer 56, the magnetic coupling blocking layer 54, and the interface adjustment layer 58, the contact resistance is negligible, and the electric resistance value of the intermediate layer 51 is equal to the paramagnetic conductive layer 56. It is calculated | required by the electrical resistivity of the oxide layer to be used.

また、Al23等の絶縁層を用いる従来のTMR素子に比べると、常磁性伝導層56に複合酸化物を用いた中間層51の電気抵抗率は適度な大きさを有し、中間層51で発生する雑音を抑制することが可能となる。また、本発明の実施の形態では、センス電流は、図1に示した磁気抵抗効果層50に垂直な方向に、狭窄化されることなく中間層51を通過するため、ジュール熱による耐電性等の耐久性の劣化が抑制される。 In addition, compared with a conventional TMR element using an insulating layer such as Al 2 O 3, the electrical resistivity of the intermediate layer 51 using a composite oxide for the paramagnetic conductive layer 56 has a moderate magnitude, and the intermediate layer It is possible to suppress the noise generated at 51. In the embodiment of the present invention, the sense current passes through the intermediate layer 51 without being narrowed in the direction perpendicular to the magnetoresistive effect layer 50 shown in FIG. Deterioration of durability is suppressed.

従来のCIP型のGMR素子では、中間層にCuを用いて、大きなMR変化率を得ている。中間層のCuと、中間層を挟む磁化固着層及び磁化自由層に用いられているCoあるいはCoFeの仕事関数はいずれも約4.5eVである。例えば、中間層にチタン(Ti)等のように仕事関数が約4eVと大きく異なる金属を用いると、MR変化率は小さいことがわかっている。即ち、大きなMR変化率を得るには、中間層、磁化固着層及び磁化自由層のそれぞれのフェルミレベルはほぼ同じレベルとすることが必要である。本発明の実施の形態に係る中間層51の常磁性伝導層56では、複合酸化物のフェルミレベルはCuのフェルミレベルにかなり近く、且つ、電子の状態密度が高いため、十分に大きなMR変化率を実現することが可能となる。   In the conventional CIP type GMR element, a large MR ratio is obtained by using Cu for the intermediate layer. The work function of Cu of the intermediate layer and Co or CoFe used for the magnetization fixed layer and the magnetization free layer sandwiching the intermediate layer is about 4.5 eV. For example, it has been found that the MR change rate is small when a metal having a work function significantly different from about 4 eV, such as titanium (Ti), is used for the intermediate layer. That is, in order to obtain a large MR change rate, it is necessary that the Fermi levels of the intermediate layer, the magnetization fixed layer, and the magnetization free layer are substantially the same level. In the paramagnetic conductive layer 56 of the intermediate layer 51 according to the embodiment of the present invention, the Fermi level of the composite oxide is quite close to the Fermi level of Cu and the electron density of states is high, so that the MR change rate is sufficiently large. Can be realized.

次に、本発明の実施の形態に係るGMR素子の製造方法を、図3〜図7に示す工程断面図を用いて説明する。ここでは、常磁性伝導層56にRb0.3MoO3複合酸化物を用いた場合について説明する。 Next, a method for manufacturing the GMR element according to the embodiment of the present invention will be described with reference to process cross-sectional views shown in FIGS. Here, a case where an Rb 0.3 MoO 3 composite oxide is used for the paramagnetic conductive layer 56 will be described.

(イ)まず、図3に示すように、シリコン(Si)等の基板70の表面に、スパッタ法や真空蒸着法等を用いて、タンタル(Ta)等の緩衝層72、Cu等の下部電極層74、MnPt等の反強磁性層76、CoFe等の磁化固着層52、及びCu等の磁気結合遮断層54を順次積層する。各層の厚さはそれぞれ、例えば、緩衝層72が約5nm、下部電極層74が約200nm、反強磁性層76が約10nm、磁化固着層52が約3nm、及び磁気結合遮断層54が約0.2nmである。ここで、基板70の表面に成膜される緩衝層72は、多結晶となる。その結果、下部電極層74から磁気結合遮断層54に至る各層は、緩衝層72の多結晶にエピタキシャル成長した多結晶として成膜される。   (A) First, as shown in FIG. 3, a buffer layer 72 such as tantalum (Ta) is formed on the surface of a substrate 70 such as silicon (Si) using a sputtering method, a vacuum deposition method, or the like, and a lower electrode such as Cu. A layer 74, an antiferromagnetic layer 76 such as MnPt, a magnetization pinned layer 52 such as CoFe, and a magnetic coupling blocking layer 54 such as Cu are sequentially stacked. The thickness of each layer is, for example, about 5 nm for the buffer layer 72, about 200 nm for the lower electrode layer 74, about 10 nm for the antiferromagnetic layer 76, about 3 nm for the magnetization pinned layer 52, and about 0 for the magnetic coupling blocking layer 54. .2 nm. Here, the buffer layer 72 formed on the surface of the substrate 70 is polycrystalline. As a result, each layer from the lower electrode layer 74 to the magnetic coupling blocking layer 54 is formed as a polycrystal epitaxially grown on the polycrystal of the buffer layer 72.

(ロ)次に、磁気結合遮断層54の表面に常磁性伝導層56の成膜を行う。まず、例えば、基板70をフッ化アルゴン(ArF)あるいはフッ素(F2)ガスエキシマレーザを用いたレーザスパッタ装置の成膜チャンバに装着し、到達真空度10-5Pa以下となるまで排気する。モル比がRb:Mo:O=0.3:1:3の組成の混合ターゲットを用いて、Rb0.3MoO3膜を磁気結合遮断層54の表面に堆積する。レーザスパッタの成膜速度は、例えば0.02〜0.1nm/秒で行う。その後、成膜されたRb0.3MoO3膜は、必要に応じてイオンビーム照射により結晶化処理が実施される。イオンビーム照射条件は、成膜されたRb0.3MoO3膜のエッチングが顕著に生じない範囲で適宜選択される。例えば、アルゴン(Ar)イオンビームを用いる場合、加速電圧を約50V、投入電力を約50W程度として照射すればよい。イオンビームのイオン種としてはAr以外に、例えばキセノン(Xe)、クリプトン(Kr)等の希ガス元素を用いることができる。このような成膜プロセスにより、図4に示すように、厚さが約0.8nmのRb0.3MoO3複合酸化物の常磁性伝導層56が、磁気結合遮断層54上に形成される。 (B) Next, a paramagnetic conductive layer 56 is formed on the surface of the magnetic coupling blocking layer 54. First, for example, the substrate 70 is mounted in a film forming chamber of a laser sputtering apparatus using an argon fluoride (ArF) or fluorine (F 2 ) gas excimer laser, and evacuated until the ultimate vacuum is 10 −5 Pa or less. An Rb 0.3 MoO 3 film is deposited on the surface of the magnetic coupling interruption layer 54 using a mixed target having a composition with a molar ratio of Rb: Mo: O = 0.3: 1: 3. The film formation rate of laser sputtering is, for example, 0.02 to 0.1 nm / second. Thereafter, the formed Rb 0.3 MoO 3 film is subjected to crystallization treatment by ion beam irradiation as necessary. The ion beam irradiation conditions are appropriately selected as long as the formed Rb 0.3 MoO 3 film is not significantly etched. For example, when an argon (Ar) ion beam is used, irradiation may be performed with an acceleration voltage of about 50 V and an input power of about 50 W. As ion species of the ion beam, a rare gas element such as xenon (Xe) or krypton (Kr) can be used in addition to Ar. By such a film forming process, a paramagnetic conductive layer 56 of Rb 0.3 MoO 3 composite oxide having a thickness of about 0.8 nm is formed on the magnetic coupling blocking layer 54 as shown in FIG.

(ハ)次に、図5に示すように、常磁性伝導層56の表面上に、スパッタ法や真空蒸着法等を用いて、Cu等の界面調整層58、及びCoFe等の磁化自由層60を順次積層する。各層の厚さはそれぞれ、例えば、界面調整層58が約0.2nm、及びCoFe等の磁化自由層60が約3nmである。磁化固着層52の磁気モーメントを揃えるため、約5kOe(キロエルステッド)の磁界を磁化方向に印加した状態で、約270℃で約10時間の熱処理が行われる。ここで、常磁性伝導層56と、常磁性伝導層56を挟む磁気結合遮断層54及び界面調整層58とにより中間層51が形成される。また、中間層51と、中間層51を挟む磁化固着層52及び磁化自由層60とにより磁気抵抗効果層50が形成される。なお、磁化自由層60の表面にTa等の保護層を設けてもよい。   (C) Next, as shown in FIG. 5, on the surface of the paramagnetic conductive layer 56, an interface adjustment layer 58 such as Cu and a magnetization free layer 60 such as CoFe are formed by using a sputtering method, a vacuum deposition method, or the like. Are sequentially stacked. The thickness of each layer is, for example, about 0.2 nm for the interface adjustment layer 58 and about 3 nm for the magnetization free layer 60 such as CoFe. In order to make the magnetic moment of the magnetization fixed layer 52 uniform, a heat treatment is performed at about 270 ° C. for about 10 hours in a state where a magnetic field of about 5 kOe (kiloelsted) is applied in the magnetization direction. Here, the intermediate layer 51 is formed by the paramagnetic conductive layer 56, the magnetic coupling blocking layer 54 and the interface adjustment layer 58 sandwiching the paramagnetic conductive layer 56. In addition, the magnetoresistive effect layer 50 is formed by the intermediate layer 51, the magnetization fixed layer 52 and the magnetization free layer 60 sandwiching the intermediate layer 51. A protective layer such as Ta may be provided on the surface of the magnetization free layer 60.

(ニ)次に、フォトエッチング技術等により、レジストマスクを用いて磁気抵抗効果層50及び反強磁性層76の一部を選択的に除去して台形状に残す。磁気抵抗効果層50の最表面の磁化自由層60は、例えば直径が1μm以下、例えば70nmの略円形状に形成される。引き続き、例えばリフトオフ技術を用いて、図6に示すように、スパッタ法によりAl23等の絶縁層62、及びCoPt等の硬磁性層64を、台形状の磁気抵抗効果層50及び反強磁性層76の側面、並びに反強磁性層76の表面に選択的に成膜する。なお、絶縁層62は硬磁性層64及び下部電極層74間のトンネル注入が生じないように10nm以上の厚さにしている。 (D) Next, a part of the magnetoresistive effect layer 50 and the antiferromagnetic layer 76 is selectively removed using a resist mask by a photoetching technique or the like to leave a trapezoidal shape. The magnetization free layer 60 on the outermost surface of the magnetoresistive effect layer 50 is formed in a substantially circular shape having a diameter of 1 μm or less, for example, 70 nm, for example. Subsequently, for example, using a lift-off technique, as shown in FIG. 6, the insulating layer 62 such as Al 2 O 3 and the hard magnetic layer 64 such as CoPt, the trapezoidal magnetoresistive effect layer 50 and the anti-strong layer are formed by sputtering. A film is selectively formed on the side surface of the magnetic layer 76 and on the surface of the antiferromagnetic layer 76. The insulating layer 62 has a thickness of 10 nm or more so that tunnel injection between the hard magnetic layer 64 and the lower electrode layer 74 does not occur.

(ホ)その後、図7に示すように、スパッタ法や真空蒸着法等を用いて、Cu等の上部電極層80が露出した磁化自由層60、絶縁層62、及び硬磁性層64の表面に成膜される。このようにして、本発明の実施の形態に係るGMR素子が完成する。   (E) Thereafter, as shown in FIG. 7, the surface of the magnetization free layer 60, the insulating layer 62, and the hard magnetic layer 64 where the upper electrode layer 80 such as Cu is exposed is formed by using a sputtering method, a vacuum deposition method, or the like. A film is formed. In this manner, the GMR element according to the embodiment of the present invention is completed.

ここで、GMR素子の各層の膜厚は、蛍光X線分析を用いて、各元素のシグナル強度により確認できる。また、常磁性伝導層56のRb0.3MoO3複合酸化物の配向方向は、X線回折(XRD)測定その他により確認できる。例えば、複合酸化物のb軸が積層面に対して垂直方向となる“010”配向であれば、表面に平行な方向からX線を入射させてXRD測定を行うと、回折角2θが9°〜11°、13°〜15°、及び17°〜19°の3箇所に回折強度ピークが観測される。図4に示した常磁性伝導層56の表面に平行な方向からX線を入射させてXRD測定を行った結果、図8に示すように、回折角2θが9.9°、14.6°、及び18.4°にそれぞれ回折強度ピークP1、P2、及びP3が測定されている。したがって、常磁性伝導層56のRb0.3MoO3複合酸化物のb軸が積層面に対して垂直方向に配向していることが確認できる。 Here, the film thickness of each layer of the GMR element can be confirmed by the signal intensity of each element using fluorescent X-ray analysis. The orientation direction of the Rb 0.3 MoO 3 composite oxide of the paramagnetic conductive layer 56 can be confirmed by X-ray diffraction (XRD) measurement or the like. For example, if the b-axis of the composite oxide is in the “010” orientation in which the b-axis is perpendicular to the stacking surface, XRD is incident from a direction parallel to the surface and XRD measurement is performed to obtain a diffraction angle 2θ of 9 °. Diffraction intensity peaks are observed at three locations of ˜11 °, 13 ° to 15 °, and 17 ° to 19 °. As a result of XRD measurement by making X-rays incident from the direction parallel to the surface of the paramagnetic conductive layer 56 shown in FIG. 4, the diffraction angle 2θ is 9.9 °, 14.6 ° as shown in FIG. , And 18.4 °, diffraction intensity peaks P1, P2, and P3 are measured, respectively. Therefore, it can be confirmed that the b-axis of the Rb 0.3 MoO 3 composite oxide of the paramagnetic conductive layer 56 is oriented in a direction perpendicular to the laminated surface.

また、常磁性伝導層56の酸化の度合いは、図4に示した常磁性伝導層56のCuAlO2複合酸化物の表面に保護膜としてルテニウム(Ru)金属を約2nm積層した試料を作製してX線光電子分光分析(XPS)及びオージェ電子分光分析(AES)により確認できる。分析によれば、Moはほぼ全て6価のイオンMo6+であり、僅かに5価のイオンMo5+が存在している。また、Rbは全て1価のイオンRb+状態であり、磁化固着層52のCo及びFeは全て金属(0価)のみである。 The degree of oxidation of the paramagnetic conductive layer 56 was determined by preparing a sample in which about 2 nm of ruthenium (Ru) metal was laminated as a protective film on the surface of the CuAlO 2 composite oxide of the paramagnetic conductive layer 56 shown in FIG. This can be confirmed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). According to the analysis, Mo is almost all hexavalent ions Mo 6+ , and only pentavalent ions Mo 5+ are present. Further, Rb is all in the monovalent ion Rb + state, and Co and Fe in the magnetization pinned layer 52 are all only metals (zero valence).

作製したGMR素子については、MR変化率、シート抵抗RA及びS/N比を測定する。また、GMR素子に流すセンス電流を徐々に増大させてGMR素子に印加される電圧とGMR素子の抵抗値の関係を検査する試験を実施すれば、急激に抵抗値が減少し始める電圧、いわゆるブレークダウン電圧が測定できる。   About the produced GMR element, MR change rate, sheet resistance RA, and S / N ratio are measured. In addition, if a test for inspecting the relationship between the voltage applied to the GMR element and the resistance value of the GMR element by gradually increasing the sense current flowing through the GMR element, a voltage at which the resistance value starts to decrease suddenly, a so-called break The down voltage can be measured.

例えば、図1に示した常磁性伝導層56としてRb0.3MoO3複合酸化物を用いたGMR素子の規格化抵抗値の温度特性は、図9に示すように、室温(300K)以下の低温領域でほぼ温度によらず一定となる。ここで、規格化抵抗値は、各温度でのGMR素子の抵抗値を室温の抵抗値で割り算したものである。図9には、比較例として、常磁性伝導層56に代えてCuを用いた従来のCPP型のGMR素子、及びAl23を用いたTMR素子の規格化抵抗値の温度特性を併せて示してある。一般に、TMR素子の電気抵抗率は温度を下げると増大し、従来のGMR素子の電気抵抗率は、逆に減少するという特徴がある。このように、従来のGMR素子やTMR素子と比較して、常磁性伝導層56としてRb0.3MoO3複合酸化物を用いたGMR素子の電気抵抗率は安定した温度特性となっている。 For example, the temperature characteristic of the normalized resistance value of the GMR element using the Rb 0.3 MoO 3 composite oxide as the paramagnetic conductive layer 56 shown in FIG. 1 is a low temperature region below room temperature (300 K) as shown in FIG. It becomes almost constant regardless of temperature. Here, the normalized resistance value is obtained by dividing the resistance value of the GMR element at each temperature by the resistance value at room temperature. FIG. 9 also shows temperature characteristics of normalized resistance values of a conventional CPP type GMR element using Cu instead of the paramagnetic conductive layer 56 and a TMR element using Al 2 O 3 as a comparative example. It is shown. In general, the electrical resistivity of the TMR element increases when the temperature is lowered, and the electrical resistivity of the conventional GMR element is conversely reduced. Thus, as compared with conventional GMR elements and TMR elements, the electrical resistivity of the GMR element using the Rb 0.3 MoO 3 composite oxide as the paramagnetic conductive layer 56 has stable temperature characteristics.

また、図10の表には、本発明の実施の形態に係る試料番号1〜16、及び比較例に係る試料番号17〜22のGMR素子及びTMR素子のMR変化率、シート抵抗RA、ブレークダウン電圧、及びS/N比等の素子特性が示されている。常磁性伝導層56としてRb0.3MoO3複合酸化物を用いたGMR素子(試料番号1)のMR変化率及びシート抵抗RAはそれぞれ、17.5%及び540Ωμm2と大きく、実用的に十分な特性となっている。また、ブレークダウン電圧も、720mVと高い。中間層としてCuのみ用いる比較例(試料番号17)では、MR変化率及びシート抵抗RAがそれぞれ、0.2%及び60Ωμm2と低すぎ、また、ブレークダウン電圧も110mVと劣っている。S/N比は、試料番号1及び試料番号17ともに良好である。一方、比較例としてAl23層を用いたTMR素子(試料番号18)では、MR変化率及びブレークダウン電圧がそれぞれ、32%及び920mVと優れた特性を示しているが、シート抵抗RAが27000Ωμm2と異常に高く、S/N比が悪く実用には適さない。 Further, the table of FIG. 10 shows MR change rates, sheet resistance RA, breakdown of sample numbers 1 to 16 according to the embodiment of the present invention and GMR elements and TMR elements of sample numbers 17 to 22 according to the comparative example. The device characteristics such as voltage and S / N ratio are shown. MR change rate and sheet resistance RA of the GMR element (sample No. 1) using Rb 0.3 MoO 3 composite oxide as the paramagnetic conductive layer 56 are as large as 17.5% and 540 Ωμm 2 , respectively, and have practically sufficient characteristics. It has become. Also, the breakdown voltage is as high as 720 mV. In the comparative example (sample number 17) using only Cu as the intermediate layer, the MR change rate and the sheet resistance RA are respectively too low, 0.2% and 60 Ωμm 2, and the breakdown voltage is also inferior, 110 mV. The S / N ratio is good for both Sample No. 1 and Sample No. 17. On the other hand, in the TMR element (sample number 18) using the Al 2 O 3 layer as a comparative example, the MR ratio and the breakdown voltage show excellent characteristics of 32% and 920 mV, respectively, but the sheet resistance RA is It is abnormally high at 27000 Ωμm 2, and the S / N ratio is poor and is not suitable for practical use.

図10には、常磁性伝導層56の複合酸化物に、試料番号2としてカリウムモリブデン酸化物(K0.3MoO3)、試料番号3としてタリウムモリブデン酸化物(Tl0.3MoO3)、試料番号4としてナトリウムバナジウム酸化物(Na0.625)、試料番号5として銅バナジウム酸化物(Cu0.925)、試料番号6として銅バナジウム酸化物(Cu2.2411)、試料番号7としてルビジウムバリウムモリブデン酸化物(Rb0.2Ba0.1MoO3)、試料番号8としてカリウムバリウムモリブデン酸化物(K0.2Ba0.1MoO3)、試料番号9としてタリウムバリウムモリブデン酸化物(Tl0.2Ba0.1MoO3)、試料番号10としてナトリウムストロンチウムバナジウム酸化物(Na0.4Sr0.225)、試料番号11として銅マグネシウムバナジウム酸化物(Cu0.8Mg0.125)、試料番号12として銅カルシウムバナジウム酸化物(Cu2.0Ca0.1411)、試料番号13としてナトリウムニオブ酸化物(Na0.6Nb25)、試料番号14として銅ニオブ酸化物(Cu0.9Nb25)、試料番号15としてナトリウムタングステン酸化物(Na0.6WO3)、試料番号16として銅タングステン酸化物(Cu0.9WO3)を用いたGMR素子の試料番号2〜16の素子特性が示されている。また、図10には常磁性伝導層56に代えて、試料番号19に、絶縁層としてマグネシウム酸化物(MgO)を用いたTMR素子、試料番号20〜22に、半導体である酸化錫(SnO2)、ランタンニッケル酸化物(LaNiO3)、及び酸化第一銅(CuO)を用いたGMR素子の素子特性も比較例として併せて示されている。 FIG. 10 shows the composite oxide of the paramagnetic conductive layer 56 with potassium molybdenum oxide (K 0.3 MoO 3 ) as sample number 2, thallium molybdenum oxide (Tl 0.3 MoO 3 ) as sample number 3 , and sample number 4. Sodium vanadium oxide (Na 0.6 V 2 O 5 ), copper vanadium oxide (Cu 0.9 V 2 O 5 ) as sample number 5 , copper vanadium oxide (Cu 2.2 V 4 O 11 ) as sample number 6, sample number 7 As rubidium barium molybdenum oxide (Rb 0.2 Ba 0.1 MoO 3 ), sample number 8 as potassium barium molybdenum oxide (K 0.2 Ba 0.1 MoO 3 ), sample number 9 as thallium barium molybdenum oxide (Tl 0.2 Ba 0.1 MoO 3 ) , sodium strontium vanadium oxide as a sample No. 10 (Na 0.4 Sr 0.2 V 2 O 5), sample No. 1 As copper magnesium vanadium oxide (Cu 0.8 Mg 0.1 V 2 O 5), copper calcium vanadium oxide as a sample No. 12 (Cu 2.0 Ca 0.1 V 4 O 11), sodium niobium oxide as a sample No. 13 (Na 0.6 Nb 2 O 5 ), copper niobium oxide (Cu 0.9 Nb 2 O 5 ) as sample number 14, sodium tungsten oxide (Na 0.6 WO 3 ) as sample number 15, and copper tungsten oxide (Cu 0.9 WO 3 ) as sample number 16 Element characteristics of GMR elements using sample numbers 2 to 16 are shown. In FIG. 10, instead of the paramagnetic conductive layer 56, a sample number 19 is a TMR element using magnesium oxide (MgO) as an insulating layer, and sample numbers 20 to 22 are tin oxide (SnO 2 ) as a semiconductor. ), Element characteristics of a GMR element using lanthanum nickel oxide (LaNiO 3 ) and cuprous oxide (CuO) are also shown as comparative examples.

図10の表から明らかなように、本発明の実施の形態に係る複合酸化物をGMR素子の中間層51の常磁性伝導層56として用いる試料番号2〜16は、いずれもMR変化率が16.4〜19.5%、シート抵抗RAが670〜970Ωμm2と試料番号1と同様に大きな値を有している。また、ブレークダウン電圧も740〜940mVと十分高いことがわかる。これに対し、常磁性伝導層56に代えてMgOを用いた試料番号19のTMR素子では、MR変化率及びブレークダウン電圧はともに27%及び1080mVと十分大きいが、S/N比が悪く実用的に問題である。また、常磁性伝導層56に代えてSnO2、LaNiO3及びCuOを用いた試料番号20〜22は、S/N比がよくブレークダウン電圧も450〜740mVと十分大きい。しかし、SnO2、LaNiO3及びCuOの半導体材料のフェルミレベルが磁化固着層あるいは磁化自由層のフェルミレベルと大きく異なっているため、MR変化率が0.4%以下と著しく小さい。試料番号1〜16は、試料番号17〜22に比べ素子特性が総合的に勝っていることがわかる。このように、本発明の実施の形態に係るGMR素子よれば、大きなMR変化率で、良好なS/N比を実現でき、耐久性を向上させることが可能となる。 As is apparent from the table of FIG. 10, all of the sample numbers 2 to 16 using the composite oxide according to the embodiment of the present invention as the paramagnetic conductive layer 56 of the intermediate layer 51 of the GMR element have an MR change rate of 16. .4~19.5%, sheet resistance RA has a large value in the same manner as 670~970Omegamyuemu 2 and sample No. 1. It can also be seen that the breakdown voltage is sufficiently high at 740 to 940 mV. On the other hand, in the TMR element of Sample No. 19 using MgO instead of the paramagnetic conductive layer 56, both MR change rate and breakdown voltage are sufficiently large as 27% and 1080 mV, but the S / N ratio is poor and practical. It is a problem. Sample numbers 20 to 22 using SnO 2 , LaNiO 3 and CuO instead of the paramagnetic conductive layer 56 have a good S / N ratio and a sufficiently high breakdown voltage of 450 to 740 mV. However, since the Fermi level of the semiconductor material of SnO 2 , LaNiO 3 and CuO is greatly different from the Fermi level of the magnetization fixed layer or the magnetization free layer, the MR ratio is remarkably small at 0.4% or less. It can be seen that Sample Nos. 1 to 16 are generally superior in device characteristics as compared to Sample Nos. 17 to 22. As described above, according to the GMR element according to the embodiment of the present invention, it is possible to realize a good S / N ratio with a large MR change rate and to improve durability.

(その他の実施の形態)
上記のように、本発明の実施の形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者にはさまざまな代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
Although the embodiments of the present invention have been described as described above, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

本発明の実施の形態では、常磁性伝導層56として単斜晶系の構造の複合酸化物を用いているが、複合酸化物の構造は限定されない。他の結晶構造であっても、電気伝導度に一次元性を有し、磁化固着層52及び磁化自由層60のそれぞれのフェルミレベルとほぼ同じフェルミレベルを有する複合酸化物であれば、常磁性伝導層56に用いることが可能であることは勿論である。   In the embodiment of the present invention, a complex oxide having a monoclinic structure is used as the paramagnetic conductive layer 56, but the structure of the complex oxide is not limited. Even if it is another crystal structure, it is a paramagnetic material as long as it is a complex oxide having one-dimensional electrical conductivity and having approximately the same Fermi level as that of each of the magnetization pinned layer 52 and the magnetization free layer 60. Needless to say, the conductive layer 56 can be used.

また、本発明の実施の形態においては、基板70として、Si半導体基板を用いて説明している。しかし、基板70は、Si半導体基板に限定されず、例えば、アルミナチタンカーバイド(Al23−TiC)等のセラミック基板を用いてもよいことは勿論である。 In the embodiment of the present invention, a Si semiconductor substrate is used as the substrate 70. However, the substrate 70 is not limited to the Si semiconductor substrate, and of course, a ceramic substrate such as alumina titanium carbide (Al 2 O 3 —TiC) may be used.

このように、本発明はここでは記載していないさまざまな実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係わる発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments that are not described herein. Accordingly, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明の実施の形態に係る磁気抵抗効果層の断面概略図である。1 is a schematic cross-sectional view of a magnetoresistive effect layer according to an embodiment of the present invention. 本発明の実施の形態に係る常磁性伝導層に用いる複合酸化物の説明に用いる図である。It is a figure used for description of the complex oxide used for the paramagnetic conductive layer which concerns on embodiment of this invention. 本発明の実施の形態に係る巨大磁気抵抗効果素子の一例を示す断面工程図(その1)である。It is sectional process drawing (the 1) which shows an example of the giant magnetoresistive effect element which concerns on embodiment of this invention. 本発明の実施の形態に係る巨大磁気抵抗効果素子の一例を示す断面工程図(その2)である。It is sectional process drawing (the 2) which shows an example of the giant magnetoresistive effect element which concerns on embodiment of this invention. 本発明の実施の形態に係る巨大磁気抵抗効果素子の一例を示す断面工程図(その3)である。It is sectional process drawing (the 3) which shows an example of the giant magnetoresistive effect element which concerns on embodiment of this invention. 本発明の実施の形態に係る巨大磁気抵抗効果素子の一例を示す断面工程図(その4)である。It is sectional process drawing (the 4) which shows an example of the giant magnetoresistive effect element which concerns on embodiment of this invention. 本発明の実施の形態に係る巨大磁気抵抗効果素子の一例を示す断面工程図(その5)である。It is sectional process drawing (the 5) which shows an example of the giant magnetoresistive effect element which concerns on embodiment of this invention. 本発明の実施の形態に係る巨大磁気抵抗効果素子の抵抗の温度特性の一例を示す図である。It is a figure which shows an example of the temperature characteristic of resistance of the giant magnetoresistive effect element which concerns on embodiment of this invention. 本発明の実施の形態に係る常磁性伝導層のX線回折測定結果の一例を示す図である。It is a figure which shows an example of the X-ray-diffraction measurement result of the paramagnetic conductive layer which concerns on embodiment of this invention. 本発明の実施の形態に係る巨大磁気抵抗効果素子の素子特性を示す表である。It is a table | surface which shows the element characteristic of the giant magnetoresistive effect element based on embodiment of this invention.

符号の説明Explanation of symbols

50 磁気抵抗効果層
51 中間層
52 磁化固着層
54 磁気結合遮断層
56 常磁性伝導層
58 界面調整層
60 磁化自由層
62 絶縁層
64 硬磁性層
70 基板
72 緩衝層
74 下部電極層
76 反強磁性層
80 上部電極層
DESCRIPTION OF SYMBOLS 50 Magnetoresistance effect layer 51 Intermediate | middle layer 52 Magnetization pinned layer 54 Magnetic coupling interruption | blocking layer 56 Paramagnetic conduction layer 58 Interface adjustment layer 60 Magnetization free layer 62 Insulating layer 64 Hard magnetic layer 70 Substrate 72 Buffer layer 74 Lower electrode layer 76 Antiferromagnetic Layer 80 Upper electrode layer

Claims (3)

磁化固着層及び磁化自由層の間に積層され、Mx-yyDO3-z(ここで、Mは元素周期表のI族元素及びタリウムのうちから選ばれた元素、AはII族元素の内から選ばれた元素、DはVA族元素及びVIA族元素のうちから選ばれた元素であり、x、y及びzはそれぞれ、0.1≦x≦1.4、0≦y≦0.5・x、及び0≦z≦0.7を満たす。)で表わされる酸化層を有する常磁性伝導層を備えることを特徴とする巨大磁気抵抗効果素子。 M xy A y DO 3-z (where M is an element selected from group I elements and thallium of the periodic table, and A is a group II element) Element selected from the above, D is an element selected from Group VA elements and Group VIA elements, and x, y, and z are 0.1 ≦ x ≦ 1.4, 0 ≦ y ≦ 0, respectively. 5. A giant magnetoresistive element comprising a paramagnetic conductive layer having an oxide layer represented by 5 · x and 0 ≦ z ≦ 0.7. 前記酸化層が、単斜晶系の結晶構造を含み、一結晶軸方向が前記磁化固着層、前記常磁性伝導層、前記磁化自由層の積層方向にあることを特徴とする請求項1に記載の巨大磁気抵抗効果素子。   2. The oxide layer according to claim 1, wherein the oxide layer includes a monoclinic crystal structure, and one crystal axis direction is in a stacking direction of the magnetization pinned layer, the paramagnetic conductive layer, and the magnetization free layer. Giant magnetoresistive element. 前記酸化層のMx-yyが、前記一結晶軸方向に一次元鎖状に連なっていることを特徴とする請求項2に記載の巨大磁気抵抗効果素子。
3. The giant magnetoresistive element according to claim 2, wherein M xy A y of the oxide layer is continuous in a one-dimensional chain shape in the one crystal axis direction.
JP2004025925A 2004-02-02 2004-02-02 Giant magnetoresistive element Expired - Fee Related JP4271050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004025925A JP4271050B2 (en) 2004-02-02 2004-02-02 Giant magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004025925A JP4271050B2 (en) 2004-02-02 2004-02-02 Giant magnetoresistive element

Publications (2)

Publication Number Publication Date
JP2005217377A true JP2005217377A (en) 2005-08-11
JP4271050B2 JP4271050B2 (en) 2009-06-03

Family

ID=34908155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004025925A Expired - Fee Related JP4271050B2 (en) 2004-02-02 2004-02-02 Giant magnetoresistive element

Country Status (1)

Country Link
JP (1) JP4271050B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010333A (en) * 2007-06-26 2009-01-15 Tdk Corp Magneto-resistive effect element of cpp structure, and magnetic disk system
WO2023163057A1 (en) * 2022-02-25 2023-08-31 日本化学工業株式会社 Negative thermal expansion material and composite material
JP7408721B2 (en) 2022-02-25 2024-01-05 日本化学工業株式会社 Negative thermal expansion materials and composite materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010333A (en) * 2007-06-26 2009-01-15 Tdk Corp Magneto-resistive effect element of cpp structure, and magnetic disk system
JP4670890B2 (en) * 2007-06-26 2011-04-13 Tdk株式会社 CPP structure magnetoresistive effect element and magnetic disk drive
WO2023163057A1 (en) * 2022-02-25 2023-08-31 日本化学工業株式会社 Negative thermal expansion material and composite material
JP7408721B2 (en) 2022-02-25 2024-01-05 日本化学工業株式会社 Negative thermal expansion materials and composite materials

Also Published As

Publication number Publication date
JP4271050B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP6777093B2 (en) Spin current magnetization reversal element, magnetoresistive element, and magnetic memory
JP4435521B2 (en) Method for manufacturing magnetoresistive element
US7515387B2 (en) Magnetoresistive effect element, and magnetic head and magnetic reproducing apparatus including the same
JP4575396B2 (en) Magnetic head and magnetic recording / reproducing apparatus
US7522390B2 (en) Magnetoresistive effect element, and magnetic head and magnetic reproducing apparatus including the same
JP2008004944A (en) Ferromagnetic structure, spin valve structure and its manufacturing method, and magnetoresistive effect element and its manufacturing method
JP6690838B2 (en) Ferromagnetic tunnel junction, magnetoresistive effect element and spintronics device using the same, and method for manufacturing ferromagnetic tunnel junction
JP2006261306A (en) Magneto-resistive element, magnetic reproducing head, and magnetic information reproducer
US20090015969A1 (en) Magnetic thin film, magnetoresistance effect device and magnetic device using the same
JP2008103662A (en) Tunnel type magnetic detection element, and its manufacturing method
JP6857421B2 (en) Ferromagnetic tunnel junction, spintronics device using it, and method for manufacturing ferromagnetic tunnel junction
CN111276600A (en) Magnetoresistive effect element
US6657829B2 (en) Tunneling magnetoresistive device
JP5576643B2 (en) Tunnel junction type magnetoresistive effect element, tunnel junction type magnetoresistive effect head, magnetic recording / reproducing apparatus, and manufacturing method thereof
JP3587792B2 (en) Magnetic sensing element and method of manufacturing the same
JP4271050B2 (en) Giant magnetoresistive element
JP2006049426A (en) Magnetoresistive device, its manufacturing method, magnetic head using the same, and magnetic reproducing device
JP2004221526A (en) Thin magnetic film and magnetoresistive effect element using the same, and magnetic device
JP2008034784A (en) Tunnel-type magnetic detection element and method of manufacturing the same
JP2006186345A (en) Film and method for producing nano-particles for magnetoresistive device
JP4146325B2 (en) Giant magnetoresistive element
WO2019193871A1 (en) Current-perpendicular-to-plane giant magnetoresistive element, precursor thereof, and manufacturing method thereof
JP2009158752A (en) Method for manufacturing tunnel magnetoresistance effect film
JP4314167B2 (en) Magnetoresistive element, magnetic head and magnetic reproducing apparatus using the same
JPH09148651A (en) Magnetoresistive effect element and magnetic conversion element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees