JP2005217172A - Electromagnetic solenoid device - Google Patents

Electromagnetic solenoid device Download PDF

Info

Publication number
JP2005217172A
JP2005217172A JP2004021818A JP2004021818A JP2005217172A JP 2005217172 A JP2005217172 A JP 2005217172A JP 2004021818 A JP2004021818 A JP 2004021818A JP 2004021818 A JP2004021818 A JP 2004021818A JP 2005217172 A JP2005217172 A JP 2005217172A
Authority
JP
Japan
Prior art keywords
output shaft
magnetic
electromagnetic coil
magnetic flux
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004021818A
Other languages
Japanese (ja)
Inventor
Takeshi Tanaka
猛 田中
Susumu Hashimoto
進 橋本
Kazuhiro Fujita
和弘 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2004021818A priority Critical patent/JP2005217172A/en
Publication of JP2005217172A publication Critical patent/JP2005217172A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic solenoid device in which power consumed at the time of the operation of the electromagnetic solenoid device is reduced. <P>SOLUTION: When an exciting current is supplied to an electromagnetic coil 3, magnetic fluxes turning a magnetic circuit B are generated by the electromagnetic coil 3. At the time, to the electromagnetic coil 3, the exciting current controlled so as to generate a large amount of the magnetic fluxes more than the number of the magnetic fluxes of a permanent magnet 4, which are the magnetic fluxes in the opposite direction of the magnetic fluxes of the permanent magnet 4 passing through an iron core 2c in the iron core 2c is supplied. Thus, the magnetic fluxes of the permanent magnet 4 turning the magnetic circuit passing through the iron core 2c are pushed back by the magnetic fluxes of the electromagnetic coil 3 turning the magnetic circuit B and round the magnetic circuit C. As a result, since the composite magnetic fluxes of the magnetic fluxes of the electromagnetic coil 3 and the magnetic fluxes of the permanent magnet 4 pass through a suction 2e from an output shaft 5 and magnetic attraction force larger than the elastic force of a coil spring 6 is generated by the composite magnetic fluxes, the output shaft 5 is moved to the side of the suction 2e against the elastic force of the coil spring 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は電磁ソレノイド装置に関するものである。   The present invention relates to an electromagnetic solenoid device.

従来、電磁力によって作動する電磁ソレノイド装置には、特許文献1にて開示されているものがある。特許文献1にて開示されている電磁ソレノイド装置は、ケーシングと、電磁コイルと、継鉄と、固定鉄心と、軸を備えた可動子と、スプリングと、前記軸を支持する2つの軸受とを備えている。ケーシングは磁性金属材料により円筒状に形成されており、上端及び下端の開口部には該開口部から径方向内側に延設される円環部が備えられている。電磁コイルは円筒状に形成され、前記ケーシングの内部に収容されている。さらに、電磁コイルには、上側から円筒状のヨークが、下側から円筒状の固定鉄心がそれぞれ挿入されている。ヨーク及び固定鉄心にはそれぞれ鍔部が備えられており、電磁コイルの両端を覆っている。各鍔部はその径方向外側が前記ケーシングに当接している。ヨークの内部には可動子が上下動可能に収容されている。この可動子は固定鉄心に遊挿されたスプリングによって上方へ付勢されて、該可動子と前記固定鉄心との間に所定の間隔が設けられている。ヨークの上部及び固定鉄心の下部には軸受が備えられており、可動子に備えられた軸を上下動可能に支持している。   Conventionally, there is an electromagnetic solenoid device that is operated by electromagnetic force as disclosed in Patent Document 1. The electromagnetic solenoid device disclosed in Patent Document 1 includes a casing, an electromagnetic coil, a yoke, a fixed iron core, a mover provided with a shaft, a spring, and two bearings that support the shaft. I have. The casing is formed in a cylindrical shape from a magnetic metal material, and an opening at the upper end and the lower end is provided with an annular portion extending radially inward from the opening. The electromagnetic coil is formed in a cylindrical shape and is accommodated in the casing. Further, a cylindrical yoke is inserted into the electromagnetic coil from the upper side, and a cylindrical fixed iron core is inserted from the lower side. Each of the yoke and the fixed iron core is provided with a flange, and covers both ends of the electromagnetic coil. Each flange portion is in contact with the casing on the outer side in the radial direction. A mover is accommodated in the yoke so as to be movable up and down. The mover is urged upward by a spring loosely inserted into the fixed iron core, and a predetermined interval is provided between the mover and the fixed iron core. Bearings are provided at the upper part of the yoke and the lower part of the fixed iron core, and support the shaft provided in the mover so as to be movable up and down.

上記のように構成された電磁ソレノイド装置において、電磁コイルに励磁電流が供給されると、該電磁コイルによって発生される磁束はヨークと、可動子と、固定鉄心と、ケーシングとによって形成される磁気回路を回るため、可動子に対して固定鉄心側に向かう磁気的引力が働く。軸を備えた可動子はこの磁気的引力によって、スプリングの弾性力に抗して下方、即ち固定鉄心側へ移動する。そして、電磁コイルへの励磁電流の供給を停止すると、磁束が発生されず磁気的引力が働かないため、可動子はスプリングの弾性力により上方、即ちヨーク側へ移動して原位置に復帰する。
特開平9−42906号公報
In the electromagnetic solenoid device configured as described above, when an excitation current is supplied to the electromagnetic coil, the magnetic flux generated by the electromagnetic coil is a magnetic force formed by the yoke, the mover, the fixed iron core, and the casing. In order to go around the circuit, a magnetic attractive force toward the fixed iron core acts on the mover. The mover provided with the shaft moves downward, that is, toward the fixed iron core against the elastic force of the spring by this magnetic attraction. When the supply of the excitation current to the electromagnetic coil is stopped, no magnetic flux is generated and the magnetic attractive force does not work. Therefore, the mover moves upward, that is, on the yoke side by the elastic force of the spring and returns to the original position.
Japanese Patent Laid-Open No. 9-42906

ここで、特許文献1に開示されている電磁ソレノイド装置において、大きな移動量を得る場合には、多量の磁束が必要とされる。その結果、大きな励磁電流を供給しなければならず、消費電力が大きくなってしまう。また、位置を保持するような用途に使用する場合においては、可動子が原位置から移動した状態を保つために励磁電流を供給し続けなければならないため、この場合も消費電力が大きくなってしまう。よって、上記のように、特許文献1にて開示されている電磁ソレノイド装置では、電磁ソレノイド装置の作動時に消費電力が大きくなってしまうという問題があった。   Here, in the electromagnetic solenoid device disclosed in Patent Document 1, a large amount of magnetic flux is required to obtain a large amount of movement. As a result, a large excitation current must be supplied, resulting in an increase in power consumption. In addition, in the case of using for the purpose of maintaining the position, the excitation current must be continuously supplied in order to keep the movable element moved from the original position, so that the power consumption also increases in this case. . Therefore, as described above, the electromagnetic solenoid device disclosed in Patent Document 1 has a problem that power consumption becomes large when the electromagnetic solenoid device is operated.

本発明は、こうした実情に鑑みてなされたものであって、その目的は、電磁ソレノイド装置の作動時に消費される電力を低減させることができる電磁ソレノイド装置を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide an electromagnetic solenoid device capable of reducing the electric power consumed when the electromagnetic solenoid device is operated.

上記課題を解決するため、請求項1に記載の発明は、磁性体よりなり磁気的引力により移動する出力軸と、前記出力軸を移動可能に保持する保持部、及び前記出力軸と対向し前記磁気的引力により前記出力軸を吸引する吸引部を備えた磁性体よりなるソレノイド本体と、前記ソレノイド本体の一部が貫通されるようにして前記ソレノイド本体に装着され前記ソレノイド本体の内部及び前記出力軸を通過する磁気回路を形成する電磁コイルと、前記出力軸と前記吸引部との間の磁気的引力に対抗する方向に前記出力軸を付勢する弾性部材とを備えた電磁ソレノイド装置において、前記ソレノイド本体の内部を通る磁気回路を形成するように配置された永久磁石を備え、前記電磁コイルへの非通電時において、前記永久磁石の磁気は前記ソレノイド本体内で前記電磁コイルの内部を通過する第1磁気回路を形成し、前記電磁コイルへの通電時において、前記電磁コイルの磁束と前記永久磁石の磁束との合成磁束が前記出力軸を通過する第2磁気回路を形成し、該合成磁束により前記弾性部材の弾性力を超える磁気的引力を発生させ、前記出力軸を前記吸引部側へ移動させるように形成された。   In order to solve the above-mentioned problem, an invention according to claim 1 is directed to an output shaft made of a magnetic material and moved by magnetic attraction, a holding portion that holds the output shaft so as to be movable, and the output shaft. A solenoid body made of a magnetic body having a suction portion that attracts the output shaft by magnetic attraction, and a part of the solenoid body that is inserted through the solenoid body and the inside of the solenoid body and the output An electromagnetic solenoid device comprising: an electromagnetic coil that forms a magnetic circuit that passes through the shaft; and an elastic member that biases the output shaft in a direction that opposes the magnetic attraction between the output shaft and the attracting portion. A permanent magnet disposed so as to form a magnetic circuit passing through the interior of the solenoid body, and the magnetism of the permanent magnet is the solenoid when the electromagnetic coil is de-energized. A first magnetic circuit that passes through the inside of the electromagnetic coil is formed in the main body, and when the electromagnetic coil is energized, a combined magnetic flux of the magnetic flux of the electromagnetic coil and the magnetic flux of the permanent magnet passes through the output shaft. A second magnetic circuit is formed, and a magnetic attractive force exceeding the elastic force of the elastic member is generated by the combined magnetic flux, and the output shaft is moved to the attraction portion side.

請求項2に記載の発明は、請求項1に記載の電磁ソレノイド装置において、前記出力軸は、前記吸引部に当接可能であり、前記電磁コイルへの非通電時において、前記永久磁石の磁束が発生させる磁気的引力により、前記出力軸が前記吸引部に当接した状態を保つように形成された。   According to a second aspect of the present invention, in the electromagnetic solenoid device according to the first aspect, the output shaft can be brought into contact with the suction portion, and the magnetic flux of the permanent magnet can be obtained when the electromagnetic coil is not energized. Is formed so as to keep the output shaft in contact with the attraction portion by the magnetic attractive force generated by the.

請求項3に記載の発明は、請求項1に記載の電磁ソレノイド装置において、前記出力軸は、前記吸引部に当接可能であり、前記ソレノイド本体において、前記第1磁気回路中には間隙が形成され、前記電磁コイルへの非通電時において、前記永久磁石の磁束が発生させる磁気的引力により、前記出力軸が前記吸引部に当接した状態を保つように形成された。   According to a third aspect of the present invention, in the electromagnetic solenoid device according to the first aspect, the output shaft can be brought into contact with the suction portion, and the solenoid body has a gap in the first magnetic circuit. It is formed so as to keep the output shaft in contact with the attracting portion by a magnetic attractive force generated by the magnetic flux of the permanent magnet when the electromagnetic coil is not energized.

請求項4に記載の発明は、請求項3に記載の電磁ソレノイド装置において、前記間隙は前記電磁コイルによって跨がれている。
請求項5に記載の発明は、請求項2乃至請求項4に記載の電磁ソレノイド装置において、前記電磁コイルは、前記永久磁石の前記出力軸を通過する磁気回路と同じ方向の磁気回路を形成する第1電磁コイルと、前記永久磁石の前記出力軸を通過する磁気回路とは異なる方向の磁気回路を形成する第2電磁コイルとから構成され、前記第1電磁コイルへの通電時において、前記第1電磁コイルの磁束と前記永久磁石の磁束との合成磁束磁束が前記出力軸を通過する前記第2磁気回路を形成し、該合成磁束により前記弾性部材の弾性力を超える磁気的引力を発生させ、前記出力軸を前記吸引部側へ移動させ、前記第2電磁コイルへの通電時に前記出力軸が前記吸引部に当接した状態において、前記出力軸を通過する前記永久磁石の磁束と前記第2電磁コイルの磁束との合成磁束による磁気的引力は前記弾性部材の弾性力よりも弱く、前記弾性部材の弾性力により前記出力軸を反吸引部側へ移動させるように形成された。
According to a fourth aspect of the present invention, in the electromagnetic solenoid device according to the third aspect, the gap is straddled by the electromagnetic coil.
According to a fifth aspect of the present invention, in the electromagnetic solenoid device according to the second to fourth aspects, the electromagnetic coil forms a magnetic circuit in the same direction as a magnetic circuit passing through the output shaft of the permanent magnet. A first electromagnetic coil and a second electromagnetic coil that forms a magnetic circuit in a direction different from a magnetic circuit passing through the output shaft of the permanent magnet, and when the first electromagnetic coil is energized, A magnetic flux generated by a magnetic flux of one electromagnetic coil and a magnetic flux of the permanent magnet forms the second magnetic circuit passing through the output shaft, and a magnetic attractive force exceeding the elastic force of the elastic member is generated by the combined magnetic flux. The output shaft is moved to the attraction portion side, and the magnetic flux of the permanent magnet passing through the output shaft and the first magnet in the state where the output shaft is in contact with the attraction portion when the second electromagnetic coil is energized. 2 Magnetic attraction by synthesis flux between the magnetic flux of the magnetic coil is weaker than the elastic force of the elastic member, which is formed to move the output shaft to the opposite suction side by the elastic force of the elastic member.

(作用)
請求項1に記載の発明によれば、電磁コイルの磁束だけでなく、電磁コイルの磁束と永久磁石の磁束との合成磁束が出力軸を通過する第2磁気回路を形成するため、出力軸を吸引部側へ移動させるために電磁コイルが発生させる磁束を低減させることができる。従って、電磁コイルに消費される電力を低減させることができ、その結果、電磁ソレノイド装置の作動時に消費される電力が低減される。
(Function)
According to the first aspect of the present invention, not only the magnetic flux of the electromagnetic coil but also the combined magnetic flux of the magnetic flux of the electromagnetic coil and the magnetic flux of the permanent magnet forms the second magnetic circuit that passes through the output shaft. It is possible to reduce the magnetic flux generated by the electromagnetic coil in order to move it toward the suction part. Therefore, the electric power consumed by the electromagnetic coil can be reduced, and as a result, the electric power consumed when the electromagnetic solenoid device is operated is reduced.

請求項2に記載の発明によれば、電磁コイルへの非通電時において、永久磁石の磁束が発生させる磁気的引力により、非通電時でも出力軸を吸引部側へ移動させた状態を保つことができる。従って、電力を消費することなく出力軸を吸引部側へ移動させた状態を保つことができる。   According to the second aspect of the present invention, when the electromagnetic coil is not energized, the magnetic shaft that generates the magnetic flux of the permanent magnet maintains the state where the output shaft is moved to the attraction portion side even when it is not energized. Can do. Therefore, it is possible to maintain a state where the output shaft is moved to the suction unit side without consuming electric power.

請求項3に記載の発明によれば、第1磁気回路中には間隙が形成されていることから、電磁コイルへの非通電時に出力軸が吸引部に当接した状態において、永久磁石の磁束は、ソレノイド本体において間隙が形成されているために磁気抵抗が大きくなっている第1磁気回路を回らず、全て吸引部と当接している出力軸を通過する。従って、電磁コイルへの非通電時において、ソレノイド本体に間隙が形成されていない電磁ソレノイド装置よりも、より確実に出力軸を吸引部側に移動させた状態を保つことができる。   According to the third aspect of the present invention, since the gap is formed in the first magnetic circuit, the magnetic flux of the permanent magnet can be obtained when the output shaft is in contact with the attracting portion when the electromagnetic coil is not energized. Does not go around the first magnetic circuit where the magnetic resistance is large because a gap is formed in the solenoid body, but all passes through the output shaft in contact with the suction portion. Accordingly, when the electromagnetic coil is not energized, the state where the output shaft is moved to the suction portion side can be maintained more reliably than the electromagnetic solenoid device in which no gap is formed in the solenoid body.

請求項4に記載の発明によれば、間隙は、電磁コイルによって跨がれていることから、一定の間隔を安定して保持される。
請求項5に記載の発明によれば、第1電磁コイルと第2電磁コイルとは互いに異なる方向の磁気回路を形成する。出力軸を吸引部側へ移動させる場合と、出力軸を反吸引部側へ移動させる場合とでは、電磁コイルによって互いに逆方向の磁気回路を形成する必要があるため、電磁コイルを1つしか備えていない電磁ソレノイド装置では励磁電流を制御して逆方向の磁気回路を形成しなければならない。しかし、請求項4に記載の発明では、第1電磁コイルと第2電磁コイルとを備えていることから、第1電磁コイルへ励磁電流を供給するか第2電磁コイルへ励磁電流を供給するかという、励磁電流の供給先の切換のみで互いに異なる方向の磁気回路を形成することができ、出力軸の制御を容易に行うことができる。
According to the invention described in claim 4, since the gap is straddled by the electromagnetic coil, the constant interval is stably maintained.
According to the fifth aspect of the present invention, the first electromagnetic coil and the second electromagnetic coil form magnetic circuits in different directions. In the case where the output shaft is moved to the suction portion side and the case where the output shaft is moved to the opposite suction portion side, it is necessary to form a magnetic circuit in the opposite direction by the electromagnetic coil, so only one electromagnetic coil is provided. If the electromagnetic solenoid device is not, the excitation current must be controlled to form a magnetic circuit in the reverse direction. However, in the invention according to claim 4, since the first electromagnetic coil and the second electromagnetic coil are provided, whether the excitation current is supplied to the first electromagnetic coil or the excitation current is supplied to the second electromagnetic coil. Thus, magnetic circuits in different directions can be formed only by switching the supply destination of the excitation current, and the output shaft can be easily controlled.

本発明によれば、電磁ソレノイド装置の作動時に消費される電力が低減される電磁ソレノイド装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electromagnetic solenoid apparatus with which the electric power consumed at the time of the action | operation of an electromagnetic solenoid apparatus is reduced can be provided.

(第1実施形態)
以下、本発明を具体化した第1実施形態を図1乃至図3に従って説明する。
図1に示すように、電磁ソレノイド装置1は、ソレノイド本体2と、電磁コイル3と、永久磁石4と、出力軸5と、弾性部材としてのコイルばね6とを備えている。
(First embodiment)
A first embodiment embodying the present invention will be described below with reference to FIGS.
As shown in FIG. 1, the electromagnetic solenoid device 1 includes a solenoid body 2, an electromagnetic coil 3, a permanent magnet 4, an output shaft 5, and a coil spring 6 as an elastic member.

ソレノイド本体2は磁性体よりなり、上部部材2aと下部部材2bとを備えている。上部部材2a及び下部部材2bは、平行に延びるように形成され、その端部には、上部部材2a及び下部部材2bと一体に形成された鉄心部2cにて互いに連結されている。また、上部部材2aの他端には、出力軸5を移動可能に保持するための保持部2dが備えられており、下部部材2bの他端には、該下部部材2bと一体に形成され、該下部部材2bから上部部材2a側へ突出して前記保持部2dと対向する吸引部2eが備えられている。   The solenoid body 2 is made of a magnetic material and includes an upper member 2a and a lower member 2b. The upper member 2a and the lower member 2b are formed so as to extend in parallel, and are connected to each other by an iron core portion 2c formed integrally with the upper member 2a and the lower member 2b. Further, the other end of the upper member 2a is provided with a holding portion 2d for holding the output shaft 5 movably, and the other end of the lower member 2b is formed integrally with the lower member 2b. A suction portion 2e that protrudes from the lower member 2b toward the upper member 2a and faces the holding portion 2d is provided.

また、前記上部部材2a及び前記下部部材2bの中間部には、磁石保持部2f,2gが互いの部材に向かってそれぞれ突設され、両磁石保持部2f,2gの先端部間は所定距離の間隙を形成している。磁石保持部2f,2g間の間隙には永久磁石4が配設されている。永久磁石4は、内部磁束の方向(S極からN極への方向)の長さが両磁石保持部2f,2g間の長さと等しく形成されており、両磁極がそれぞれ磁石保持部2f,2gに当接されている。本実施形態では、永久磁石4のN極は上部部材2aの磁石保持部2fに当接し、永久磁石4のS極は下部部材2bの磁石保持部2gに当接している。永久磁石4の磁束は、N極からソレノイド本体2に入り、ソレノイド本体2の内部を通過して永久磁石4のS極に戻る磁気回路を形成する。   In addition, magnet holding portions 2f and 2g are provided projecting toward the respective members at the intermediate portion between the upper member 2a and the lower member 2b, and a predetermined distance is provided between the tip portions of the magnet holding portions 2f and 2g. A gap is formed. A permanent magnet 4 is disposed in the gap between the magnet holding portions 2f and 2g. The permanent magnet 4 is formed such that the length of the internal magnetic flux (direction from the S pole to the N pole) is equal to the length between the two magnet holding portions 2f and 2g, and the two magnetic poles are respectively magnet holding portions 2f and 2g. It is in contact with. In the present embodiment, the N pole of the permanent magnet 4 is in contact with the magnet holding portion 2f of the upper member 2a, and the S pole of the permanent magnet 4 is in contact with the magnet holding portion 2g of the lower member 2b. The magnetic flux of the permanent magnet 4 enters the solenoid body 2 from the N pole, forms a magnetic circuit that passes through the inside of the solenoid body 2 and returns to the S pole of the permanent magnet 4.

前記鉄心部2cの外周には、該鉄心部2cが貫通されるようにして装着される円筒状の電磁コイル3が備えられている。電磁コイル3は、鉄心部2cが貫通される筒部3aと該筒部の両端から外側に向かって延設される鍔部3b,3cとからなるインシュレータ3dと、該インシュレータ3dの筒部3aに巻回される巻線3eとから構成される。この電磁コイル3は、外部の電源から励磁電流が供給されると、供給される励磁電流の方向に応じた方向の磁束を鉄心部2cに発生させ、ソレノイド本体2内及び出力軸5を通過する磁気回路を形成する。   A cylindrical electromagnetic coil 3 is provided on the outer periphery of the iron core portion 2c so that the iron core portion 2c is inserted therethrough. The electromagnetic coil 3 includes an insulator 3d including a cylindrical portion 3a through which the iron core portion 2c passes and flanges 3b and 3c extending outward from both ends of the cylindrical portion, and a cylindrical portion 3a of the insulator 3d. The winding 3e is wound around. When an excitation current is supplied from an external power source, the electromagnetic coil 3 generates a magnetic flux in a direction corresponding to the direction of the supplied excitation current in the iron core portion 2 c and passes through the solenoid body 2 and the output shaft 5. A magnetic circuit is formed.

前記保持部2dには保持孔7が形成され、磁性体よりなる前記出力軸5が移動可能に嵌挿されている。保持孔7の内周面は、非磁性体(真鍮,合成樹脂等)よりなる円筒状の保持部材8によって被われている。出力軸5とソレノイド本体2とは共に磁性体よりなるため、電磁コイル3へ励磁電流が供給されることにより出力軸5及びソレノイド本体2を通過する磁気回路が形成されて磁気的引力が発生されると、保持孔7と出力軸5との摺動面には固着力が発生する。電磁コイル3への励磁電流の供給が停止された後でも、この固着力の一部は残留する。残留した固着力は出力軸5の移動を妨げるため、出力軸5と保持部材8との摺動面である保持孔7の内周面に保持部材8を設けることにより、この固着力の影響を低減させて出力軸5の移動を容易にしている。   A holding hole 7 is formed in the holding portion 2d, and the output shaft 5 made of a magnetic material is movably inserted. The inner peripheral surface of the holding hole 7 is covered with a cylindrical holding member 8 made of a non-magnetic material (brass, synthetic resin, etc.). Since both the output shaft 5 and the solenoid body 2 are made of a magnetic material, an exciting current is supplied to the electromagnetic coil 3 to form a magnetic circuit that passes through the output shaft 5 and the solenoid body 2 to generate a magnetic attractive force. Then, a sticking force is generated on the sliding surface between the holding hole 7 and the output shaft 5. Even after the supply of the excitation current to the electromagnetic coil 3 is stopped, a part of this fixing force remains. Since the remaining sticking force prevents the output shaft 5 from moving, the holding member 8 is provided on the inner peripheral surface of the holding hole 7 which is a sliding surface between the output shaft 5 and the holding member 8, so that the influence of the sticking force is reduced. This reduces the movement of the output shaft 5.

出力軸5の軸方向両端部には、該端部から外側に向かって延設されるフランジ部5a,5bが備えられている。出力軸5の上部側のフランジ部5aと上部部材2aとの間には、弾性部材としての圧縮されたコイルばね6が備えられ、該コイルばね6は出力軸5のフランジ部5aを前記吸引部2eから遠ざかる方向(図において上方)へ付勢している。フランジ部5bは、出力軸5が上方へ移動した際に保持部2dと係合し、それ以上の出力軸5の移動を防止する。これにより、出力軸5は、コイルばね6によって付勢されることにより、吸引部2eと一定の間隔を空けて保持される。尚、コイルばね6の弾性力は、後述する磁気回路Cを回る磁束により発生される磁気的引力よりも小さい。   At both axial ends of the output shaft 5, flange portions 5 a and 5 b are provided extending outward from the end portions. A compressed coil spring 6 as an elastic member is provided between the upper flange portion 5a of the output shaft 5 and the upper member 2a. The coil spring 6 connects the flange portion 5a of the output shaft 5 to the suction portion. It is energizing in the direction away from 2e (upward in the figure). The flange portion 5b engages with the holding portion 2d when the output shaft 5 moves upward, and prevents further movement of the output shaft 5. Thus, the output shaft 5 is held by the coil spring 6 so as to be spaced apart from the suction portion 2e. In addition, the elastic force of the coil spring 6 is smaller than the magnetic attractive force generated by the magnetic flux that goes around the magnetic circuit C described later.

吸引部2eにおいて、前記出力軸5と対向する上端面は、前記保持部材8と同様の非磁性体よりなる当接部材9によって被われている。この当接部材9は、前記保持部材8と同類の働きをするものであり、励磁電流の供給停止後に、出力軸5と吸引部2eとの間に働く固着力により出力軸5が吸引部2eから離れ難くなることを防止して、出力軸5の移動を容易にしている。   In the suction portion 2 e, the upper end surface facing the output shaft 5 is covered with a contact member 9 made of a nonmagnetic material similar to the holding member 8. The abutting member 9 functions in the same manner as the holding member 8, and after the supply of excitation current is stopped, the output shaft 5 is attracted to the suction portion 2e by the fixing force acting between the output shaft 5 and the suction portion 2e. Thus, the output shaft 5 can be easily moved.

次に、上記のように構成された電磁ソレノイド装置1の動作を説明する。
図1に示すように、出力軸5がコイルばね6の弾性力によって反吸引部2e側に保持され、電磁コイル3に励磁電流が供給されていない非通電時において、出力軸5は吸引部2eとの間に一定の間隔を空けて保持されているため、ソレノイド本体2内及び出力軸5のうちでは出力軸5と吸引部2eとの間での磁気抵抗が最も大きい。従って、永久磁石4の磁束は、N極から、磁石保持部2f、上部部材2a、鉄心部2c、下部部材2b、及び磁石保持部2gを通ってS極に至る第1磁気回路としての磁気回路Aを形成する。
Next, the operation of the electromagnetic solenoid device 1 configured as described above will be described.
As shown in FIG. 1, when the output shaft 5 is held on the side opposite to the suction portion 2e by the elastic force of the coil spring 6 and no excitation current is supplied to the electromagnetic coil 3, the output shaft 5 is connected to the suction portion 2e. Between the output body 5 and the output shaft 5, the magnetic resistance between the output shaft 5 and the attracting portion 2 e is the largest. Accordingly, the magnetic circuit of the permanent magnet 4 is a magnetic circuit as a first magnetic circuit that extends from the N pole to the S pole through the magnet holding portion 2f, the upper member 2a, the iron core portion 2c, the lower member 2b, and the magnet holding portion 2g. A is formed.

図2に示すように、電磁コイル3に励磁電流が供給されると、電磁コイル3によって、鉄心部2cに磁束が発生する。この発生する磁束の方向は、永久磁石4の磁束の方向と同様に下部部材2bから上部部材2aに向かう方向である。また、電磁コイル3により発生する磁束数は、永久磁石4のそれよりも多い。そして、電磁コイル3により発生する磁束は、鉄心部2cから、上部部材2a、出力軸5、吸引部2e、下部部材2bを通って再び鉄心部2cに至る第2磁気回路としての磁気回路Bを形成する。従って、磁気回路Aを回っていた永久磁石4の磁束は、磁気回路Bを回る電磁コイル3の磁束によって押し戻されて、N極から、磁石保持部2f、上部部材2a、出力軸5、吸引部2e、磁石保持部2g、及び下部部材2bを通ってS極に至る第2磁気回路としての磁気回路Cを形成する。その結果、電磁コイル3の磁束と永久磁石4の磁束との合成磁束が出力軸5から吸引部2eを通過し、この合成磁束によりコイルばね6の弾性力よりも大きな磁気的引力が発生されるため、コイルばね6の弾性力に抗して出力軸5が吸引部2e側へ移動される。そして、出力軸5は当接部材9を介して吸引部2eに当接する。   As shown in FIG. 2, when an excitation current is supplied to the electromagnetic coil 3, a magnetic flux is generated in the iron core 2 c by the electromagnetic coil 3. The direction of the generated magnetic flux is the direction from the lower member 2b toward the upper member 2a, similarly to the direction of the magnetic flux of the permanent magnet 4. Further, the number of magnetic fluxes generated by the electromagnetic coil 3 is larger than that of the permanent magnet 4. The magnetic flux generated by the electromagnetic coil 3 passes through the magnetic circuit B as the second magnetic circuit from the iron core portion 2c to the iron core portion 2c again through the upper member 2a, the output shaft 5, the suction portion 2e, and the lower member 2b. Form. Accordingly, the magnetic flux of the permanent magnet 4 that has traveled around the magnetic circuit A is pushed back by the magnetic flux of the electromagnetic coil 3 that travels around the magnetic circuit B, and from the N pole, the magnet holding portion 2f, the upper member 2a, the output shaft 5, and the attracting portion. 2e, the magnet holding part 2g, and the magnetic circuit C as a 2nd magnetic circuit which goes to the south pole through the lower member 2b is formed. As a result, a combined magnetic flux of the magnetic coil 3 and the permanent magnet 4 passes from the output shaft 5 through the attracting portion 2e, and a magnetic attractive force larger than the elastic force of the coil spring 6 is generated by the combined magnetic flux. Therefore, the output shaft 5 is moved toward the suction portion 2e against the elastic force of the coil spring 6. The output shaft 5 comes into contact with the suction portion 2e through the contact member 9.

次に、電磁コイル3への励磁電流の供給を停止すると、図3に示すように、電磁コイル3からは磁束が発生されない。出力軸5が当接部材9を介して吸引部2eに当接している状態では、ソレノイド本体2内及び出力軸5において特に磁気抵抗が大きい部分がないため、永久磁石4の磁束の一部は、電磁コイル3への通電時に回っていた磁気回路Cを回り、残りの磁束は通電前に回っていた磁気回路Aを回る。コイルばね6の弾性力は、磁気回路Cを回る永久磁石4の磁束が発生させる磁気的引力よりも小さいため、出力軸5は当接部材9を介して吸引部2eに当接した状態のまま保持される。   Next, when the supply of the excitation current to the electromagnetic coil 3 is stopped, no magnetic flux is generated from the electromagnetic coil 3 as shown in FIG. In the state where the output shaft 5 is in contact with the attracting portion 2e via the contact member 9, there is no portion having a particularly large magnetic resistance in the solenoid body 2 and the output shaft 5, so that part of the magnetic flux of the permanent magnet 4 is The magnetic circuit C that has been turned when the electromagnetic coil 3 is energized goes around the magnetic circuit A, and the remaining magnetic flux goes around the magnetic circuit A that has been turned before the energization. Since the elastic force of the coil spring 6 is smaller than the magnetic attractive force generated by the magnetic flux of the permanent magnet 4 that rotates around the magnetic circuit C, the output shaft 5 remains in contact with the attracting portion 2e via the contact member 9. Retained.

図3に示す電磁コイル3への非通電時に出力軸5が保持部2dに当接した状態から、図1に示す出力軸5が反吸引部2e側で保持される状態に戻すには、電磁コイル3に励磁電流を供給する。この時、電磁コイル3には、出力軸5及び吸引部2eにおいて、磁気回路Cを回る永久磁石4の磁束と逆向きの磁束で、且つ磁気回路Cを回る永久磁石4の磁束と電磁コイル3が発生させる磁束との合成磁束により発生される磁気的引力よりもコイルばね6の弾性力の方が大きくなるような量の磁束を発生させるように制御された励磁電流が供給される。その結果、コイルばね6の弾性力によって出力軸5が反吸引部2e側へ移動される。   To return from the state where the output shaft 5 is in contact with the holding portion 2d when the electromagnetic coil 3 is not energized as shown in FIG. 3 to the state where the output shaft 5 shown in FIG. An exciting current is supplied to the coil 3. At this time, the electromagnetic coil 3 includes a magnetic flux opposite to the magnetic flux of the permanent magnet 4 turning around the magnetic circuit C and the magnetic flux of the permanent magnet 4 turning around the magnetic circuit C in the output shaft 5 and the attracting part 2e. An exciting current is supplied that is controlled so as to generate an amount of magnetic flux such that the elastic force of the coil spring 6 is greater than the magnetic attractive force generated by the combined magnetic flux with the generated magnetic flux. As a result, the output shaft 5 is moved to the anti-suction part 2e side by the elastic force of the coil spring 6.

上記したように、本実施形態によれば、以下の効果を有する。
(1)永久磁石4の磁束が出力軸5を通過する磁気回路Cを形成するため、出力軸5を吸引部2e側へ移動させるために電磁コイル3が発生させる磁束を低減させることができる。従って、電磁コイル3に消費される電力を低減させることができる。その結果、電磁ソレノイド装置1の作動時に消費される電力を低減させることができる。
As described above, the present embodiment has the following effects.
(1) Since the magnetic circuit C in which the magnetic flux of the permanent magnet 4 passes through the output shaft 5 is formed, the magnetic flux generated by the electromagnetic coil 3 to move the output shaft 5 toward the attracting portion 2e can be reduced. Therefore, the power consumed by the electromagnetic coil 3 can be reduced. As a result, the power consumed when the electromagnetic solenoid device 1 operates can be reduced.

(2)電磁コイル3への非通電時に出力軸5が吸引部2eに当接した状態において、コイルばね6の弾性力は、磁気回路Cを回る永久磁石4の磁束により発生される磁気的引力よりも小さいため、非通電時でも出力軸5を吸引部2e側へ移動させた状態を保つことができる。従って、電力を消費することなく出力軸5を吸引部2e側へ移動させた状態を保つことができる。   (2) In a state where the output shaft 5 is in contact with the attracting portion 2e when the electromagnetic coil 3 is not energized, the elastic force of the coil spring 6 is a magnetic attractive force generated by the magnetic flux of the permanent magnet 4 that goes around the magnetic circuit C. Therefore, the state where the output shaft 5 is moved to the suction portion 2e side can be maintained even when no power is supplied. Therefore, the state where the output shaft 5 is moved to the suction part 2e side can be maintained without consuming electric power.

(3)電磁コイル3に通電することにより発生される磁束だけでなく、永久磁石4の磁束を利用して出力軸5に作用する磁気的引力を発生させている。従って、電磁コイル3のみを用いた電磁ソレノイド装置よりも多量の磁束を得やすいため、出力軸5の移動量が大きい場合でも、消費電力の増大を抑えることができる。   (3) Not only the magnetic flux generated by energizing the electromagnetic coil 3 but also the magnetic attractive force acting on the output shaft 5 is generated using the magnetic flux of the permanent magnet 4. Therefore, since it is easier to obtain a larger amount of magnetic flux than an electromagnetic solenoid device using only the electromagnetic coil 3, an increase in power consumption can be suppressed even when the amount of movement of the output shaft 5 is large.

(第2実施形態)
以下、本発明を具体化した第2実施形態を図4乃至図6に従って説明する。尚、上記第1実施形態と同様の構成については同一の符号を付してその説明を省略する。
(Second Embodiment)
A second embodiment embodying the present invention will be described below with reference to FIGS. In addition, about the structure similar to the said 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図4は本実施形態の電磁ソレノイド装置20を示す。電磁ソレノイド装置20はソレノイド本体21を備える。ソレノイド本体21は、上部部材2aと下部部材2bとを備え、上部部材2a及び下部部材2bの端部には、それらと一体に鉄心部22a,22bが形成されている。両鉄心部22a,22bは、互いに他の部材2b,2aに向かって突設されると共にそれらの先端が対向し、両鉄心部22a,22bの先端間に所定間隔の間隙23が形成されている。この間隙23は、出力軸5が反吸引部2e側に保持されている状態の出力軸5と吸引部2eとの間の間隔よりも狭く形成されている。また、間隙23は、出力軸5がコイルばね6の弾性力によって反吸引部2e側に保持され、電磁コイル3に励磁電流が供給されていない非通電時において、永久磁石4の磁束が形成する第1磁気回路としての磁気回路E中に形成されている。更に、間隙23は、電磁コイル3によって跨がれている。   FIG. 4 shows the electromagnetic solenoid device 20 of this embodiment. The electromagnetic solenoid device 20 includes a solenoid body 21. The solenoid body 21 includes an upper member 2a and a lower member 2b, and iron core portions 22a and 22b are integrally formed with the end portions of the upper member 2a and the lower member 2b. Both iron core portions 22a and 22b project from each other toward the other members 2b and 2a, and their tips are opposed to each other, and a gap 23 of a predetermined interval is formed between the tips of both iron core portions 22a and 22b. . The gap 23 is formed to be narrower than the interval between the output shaft 5 and the suction portion 2e in a state where the output shaft 5 is held on the side opposite to the suction portion 2e. Further, the gap 23 is formed by the magnetic flux of the permanent magnet 4 when the output shaft 5 is held on the side opposite to the attraction portion 2e by the elastic force of the coil spring 6 and no excitation current is supplied to the electromagnetic coil 3. It is formed in the magnetic circuit E as the first magnetic circuit. Further, the gap 23 is straddled by the electromagnetic coil 3.

出力軸5を反吸引部2e側へ付勢する弾性部材としてのコイルばね24の弾性力は、後述する第2磁気回路としての磁気回路G(図5参照)を回る永久磁石4の磁束により発生される磁気的引力よりも小さい。   The elastic force of the coil spring 24 as an elastic member that urges the output shaft 5 toward the anti-suction portion 2e is generated by the magnetic flux of the permanent magnet 4 that rotates around a magnetic circuit G (see FIG. 5) as a second magnetic circuit described later. Is smaller than the magnetic attraction.

本実施形態では、上記第1実施形態の電磁ソレノイド装置1において吸引部2eの上端面を被っていた当接部材9は備えられていない。本実施形態において当接部材9を備えることも可能であり、その場合には、当接部材9の出力軸5の軸方向の厚さを前記間隙23よりも薄くする。   In the present embodiment, the contact member 9 that covers the upper end surface of the suction portion 2e in the electromagnetic solenoid device 1 of the first embodiment is not provided. In this embodiment, the contact member 9 may be provided. In this case, the thickness of the contact member 9 in the axial direction of the output shaft 5 is made thinner than the gap 23.

上記のように構成された電磁ソレノイド装置20の動作を説明する。
図4に示すように、出力軸5がコイルばね6の弾性力によって反吸引部2e側に保持され、電磁コイル3に励磁電流が供給されていない非通電時において、ソレノイド本体21内及び出力軸5では、出力軸5及び吸引部2e間の磁気抵抗よりも間隙23での磁気抵抗の方が小さい。従って、永久磁石4の磁束は、N極から、磁石保持部2f、上部部材2a、鉄心部22a,22b、下部部材2b、及び磁石保持部2gを通ってS極に至る磁気回路Eを形成する。
The operation of the electromagnetic solenoid device 20 configured as described above will be described.
As shown in FIG. 4, the output shaft 5 is held on the side opposite to the attraction portion 2e by the elastic force of the coil spring 6, and the solenoid coil 21 and the output shaft are not energized when no excitation current is supplied to the electromagnetic coil 3. 5, the magnetic resistance in the gap 23 is smaller than the magnetic resistance between the output shaft 5 and the attracting part 2e. Accordingly, the magnetic flux of the permanent magnet 4 forms a magnetic circuit E from the N pole to the S pole through the magnet holding portion 2f, the upper member 2a, the iron core portions 22a and 22b, the lower member 2b, and the magnet holding portion 2g. .

図5に示すように、電磁コイル3に励磁電流が供給されると、電磁コイル3によって、鉄心部22a,22bに磁束が発生する。この発生する磁束の方向は、永久磁石4の磁束の方向と同様に下部部材2bから上部部材2aに向かう方向である。また、電磁コイル3により発生する磁束数は、永久磁石4のそれよりも多い。そして、電磁コイル3が発生する磁束は、鉄心部22aから、上部部材2a、出力軸5、吸引部2e、下部部材2bを通って鉄心部22bに至る第2磁気回路としての磁気回路Fを形成する。従って、磁気回路Eを回っていた永久磁石4の磁束は、磁気回路Fを回る電磁コイル3の磁束によって押し戻されて、N極から、磁石保持部2f、上部部材2a、出力軸5、吸引部2e、下部部材2b、磁石保持部2gを通ってS極に至る磁気回路Gを形成する。その結果、電磁コイル3の磁束と永久磁石4の磁束との合成磁束が出力軸5から吸引部2eを通過し、この合成磁束によりコイルばね6の弾性力よりも大きな磁気的引力が発生されるため、コイルばね6の弾性力に抗して出力軸5が吸引部2e側へ移動される。そして、出力軸5は吸引部2eに当接する。   As shown in FIG. 5, when an exciting current is supplied to the electromagnetic coil 3, a magnetic flux is generated in the iron core portions 22 a and 22 b by the electromagnetic coil 3. The direction of the generated magnetic flux is the direction from the lower member 2b toward the upper member 2a, similarly to the direction of the magnetic flux of the permanent magnet 4. Further, the number of magnetic fluxes generated by the electromagnetic coil 3 is larger than that of the permanent magnet 4. The magnetic flux generated by the electromagnetic coil 3 forms a magnetic circuit F as a second magnetic circuit from the iron core portion 22a to the iron core portion 22b through the upper member 2a, the output shaft 5, the suction portion 2e, and the lower member 2b. To do. Accordingly, the magnetic flux of the permanent magnet 4 that has traveled around the magnetic circuit E is pushed back by the magnetic flux of the electromagnetic coil 3 that travels around the magnetic circuit F, and from the N pole, the magnet holding portion 2f, the upper member 2a, the output shaft 5, and the suction portion. 2e, the lower member 2b, the magnet holding part 2g, and the magnetic circuit G which reaches to an S pole is formed. As a result, a combined magnetic flux of the magnetic coil 3 and the permanent magnet 4 passes from the output shaft 5 through the attracting portion 2e, and a magnetic attractive force larger than the elastic force of the coil spring 6 is generated by the combined magnetic flux. Therefore, the output shaft 5 is moved toward the suction portion 2e against the elastic force of the coil spring 6. And the output shaft 5 contacts the suction part 2e.

次に、電磁コイル3への励磁電流の供給を停止すると、電磁コイル3からは磁束が発生されない。出力軸5が吸引部2eに当接している状態においては、ソレノイド本体21内及び出力軸5において間隙23での磁気抵抗が最も大きいため、永久磁石4の磁束は、電磁コイル3への通電時と同じく磁気回路Gを回り続ける。この時、コイルばね24の弾性力は、磁気回路Gを回る永久磁石4の磁束が発生させる磁気的引力よりも小さいため、出力軸5は吸引部2eに当接した状態のまま保持される。   Next, when the supply of the excitation current to the electromagnetic coil 3 is stopped, no magnetic flux is generated from the electromagnetic coil 3. In the state where the output shaft 5 is in contact with the suction portion 2e, the magnetic resistance in the gap 23 in the solenoid body 21 and the output shaft 5 is the largest, so that the magnetic flux of the permanent magnet 4 is applied when the electromagnetic coil 3 is energized. Continue to rotate around the magnetic circuit G. At this time, since the elastic force of the coil spring 24 is smaller than the magnetic attractive force generated by the magnetic flux of the permanent magnet 4 that rotates around the magnetic circuit G, the output shaft 5 is held in contact with the attracting portion 2e.

吸引部2eに当接した状態の出力軸5を、図4に示される反吸引部2e側に保持される状態に戻すには、図6に示すように、電磁コイル3に励磁電流を供給して磁気回路Hを形成する。磁気回路Hは、鉄心部22bから、下部部材2b、吸引部2e、出力軸5、及び上部部材2aを通って鉄心部22aに至る。この時、電磁コイル3には、出力軸5及び吸引部2eにおいて、磁気回路Gを回る永久磁石4の磁束と逆向きの磁束で、且つ永久磁石4の磁束と電磁コイル3が発生させる磁束との合成磁束により発生される磁気的引力よりもコイルばね24の弾性力が大きくなるような量の磁束を発生させるように制御された励磁電流が供給される。その結果、コイルばね6の弾性力によって、出力軸5は、図6に二点鎖線で示された反吸引部2e側へ移動される。   In order to return the output shaft 5 in contact with the suction part 2e to the state held on the side opposite to the suction part 2e shown in FIG. 4, an excitation current is supplied to the electromagnetic coil 3 as shown in FIG. Thus, the magnetic circuit H is formed. The magnetic circuit H extends from the iron core portion 22b to the iron core portion 22a through the lower member 2b, the suction portion 2e, the output shaft 5, and the upper member 2a. At this time, the electromagnetic coil 3 includes a magnetic flux opposite to the magnetic flux of the permanent magnet 4 that rotates around the magnetic circuit G in the output shaft 5 and the attracting portion 2e, and the magnetic flux generated by the electromagnetic coil 3 and the magnetic flux generated by the electromagnetic coil 3. An exciting current controlled to generate an amount of magnetic flux such that the elastic force of the coil spring 24 is larger than the magnetic attractive force generated by the combined magnetic flux is supplied. As a result, the output shaft 5 is moved by the elastic force of the coil spring 6 to the side opposite to the suction portion 2e shown by a two-dot chain line in FIG.

上記したように、本実施形態によれば、上記第1実施形態の(1),(3)の効果に加えて、以下の効果をも有する。
(1)電磁コイル3への非通電時に出力軸5が吸引部2eに当接した状態において、コイルばね24の弾性力は、磁気回路Gを回る永久磁石4の磁束により発生される磁気的引力よりも小さいため、非通電時でも出力軸5を吸引部2e側へ移動させた状態を保つことができる。従って、電力を消費することなく出力軸5を吸引部2e側へ移動させた状態を保つことができる。
As described above, according to the present embodiment, in addition to the effects (1) and (3) of the first embodiment, the following effects are also obtained.
(1) When the output shaft 5 is in contact with the attracting portion 2e when the electromagnetic coil 3 is not energized, the elastic force of the coil spring 24 is a magnetic attractive force generated by the magnetic flux of the permanent magnet 4 that goes around the magnetic circuit G. Therefore, the state where the output shaft 5 is moved to the suction portion 2e side can be maintained even when no power is supplied. Therefore, the state where the output shaft 5 is moved to the suction part 2e side can be maintained without consuming electric power.

(2)磁気回路E中に間隙23が形成されていることから、電磁コイル3への非通電時に出力軸5が吸引部2eに当接した状態において、永久磁石4の磁束は、ソレノイド本体2において間隙23が形成されている磁気回路Eを回らず、全て吸引部2eと当接している出力軸5を通過する磁気回路Gを回る。従って、電磁コイル3への非通電時において、ソレノイド本体2に間隙23が形成されていない上記第1実施形態の電磁ソレノイド装置1よりも、より確実に出力軸5を吸引部2e側に移動させた状態を保つことができる。   (2) Since the gap 23 is formed in the magnetic circuit E, the magnetic flux of the permanent magnet 4 is applied to the solenoid body 2 in a state where the output shaft 5 is in contact with the attracting portion 2e when the electromagnetic coil 3 is not energized. The magnetic circuit E in which the gap 23 is formed is not rotated, and the magnetic circuit G that passes through the output shaft 5 that is in contact with the suction portion 2e is rotated. Therefore, when the electromagnetic coil 3 is not energized, the output shaft 5 is moved to the suction portion 2e side more reliably than the electromagnetic solenoid device 1 of the first embodiment in which the gap 23 is not formed in the solenoid body 2. Can be kept.

(3)巻線3eが巻回されると、インシュレータ3dの筒部3aが巻線3eによって鉄心部22a,22b側へ押さえ込まれるため、鉄心部22a,22bが安定して保持される。その結果、鉄心部22a,22bにより形成され、電磁コイル3によって跨がれている間隙23は、一定の間隔を安定して保たれる。   (3) When the winding 3e is wound, the cylindrical portion 3a of the insulator 3d is pressed toward the core portions 22a and 22b by the winding 3e, so that the core portions 22a and 22b are stably held. As a result, the gap 23 formed by the iron core portions 22a and 22b and straddled by the electromagnetic coil 3 is stably maintained at a constant interval.

(第3実施形態)
以下、本発明を具体化した第3実施形態を図面に従って説明する。尚、上記第1及び第2実施形態と同様の構成については同一の符号を付してその説明を省略する。
(Third embodiment)
Hereinafter, a third embodiment of the present invention will be described with reference to the drawings. In addition, about the structure similar to the said 1st and 2nd embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図7は本実施形態の電磁ソレノイド装置30を示す。鉄心部22a,22bの外周には、該鉄心部22a,22bが貫通されるようにして装着される円筒状の電磁コイル31が備えられている。電磁コイル31は、軸方向に沿って並設される第1電磁コイル32と、第2電磁コイル33とからなる。電磁コイル31はインシュレータ31aを備えている。インシュレータ31aは、鉄心部22a,22bが貫通される筒部31bと、筒部31bの軸方向の中間部において外側に向かって延設される鍔部31cと、筒部31bの両端から外側に向かって延設される鍔部31d,31eとから構成される。そして、鍔部31cと上側の鍔部31dとにより挟まれた筒部31bに第1電磁コイル32が巻装されており、鍔部31cと下側の鍔部31eとにより挟まれた筒部31bに第2電磁コイル33が巻装されている。   FIG. 7 shows the electromagnetic solenoid device 30 of this embodiment. A cylindrical electromagnetic coil 31 is provided on the outer periphery of the iron core portions 22a and 22b so that the iron core portions 22a and 22b are inserted therethrough. The electromagnetic coil 31 includes a first electromagnetic coil 32 and a second electromagnetic coil 33 arranged in parallel along the axial direction. The electromagnetic coil 31 includes an insulator 31a. The insulator 31a includes a cylindrical portion 31b through which the iron core portions 22a and 22b are penetrated, a flange portion 31c extending outward at an intermediate portion in the axial direction of the cylindrical portion 31b, and outward from both ends of the cylindrical portion 31b. It is comprised from the collar parts 31d and 31e extended. And the 1st electromagnetic coil 32 is wound by the cylinder part 31b pinched by the collar part 31c and the upper collar part 31d, and the cylinder part 31b pinched | interposed by the collar part 31c and the lower collar part 31e. A second electromagnetic coil 33 is wound around the coil.

また、第1電磁コイル32と第2電磁コイル33とは巻回された巻線の巻方向が互いに異なっている。そのため、第1電磁コイル32に励磁電流が供給されると、図8に示すように、第1電磁コイル32によって、鉄心部22aから、上部部材2a、出力軸5、吸引部2e、下部部材2bを通って鉄心部22bに至る第2磁気回路としての磁気回路Kを形成する磁束が発生される。そして、第2電磁コイル33に第1電磁コイル32に供給される励磁電流と同様の励磁電流が供給されると、図9に示すように、第2電磁コイル33によって、鉄心部22bから、下部部材2b、吸引部2e、出力軸5、及び上部部材2aを通って鉄心部22aに至る磁気回路Mを形成する磁束が発生される。また、第1電磁コイル32が発生させる磁束は、図8に示すように、鉄心部22a,22bにおいては、第2磁気回路としての磁気回路L(N極から、磁石保持部2f、上部部材2a、出力軸5、吸引部2e、下部部材2b、及び磁石保持部2gを通ってS極に至る)を回る永久磁石4の磁束と逆向きで、且つ永久磁石の磁束数よりも多量である。更に、第2電磁コイル33が発生させる磁束は、出力軸5が吸引部2eに当接した状態において、出力軸5及び吸引部2eでは、磁気回路Lを回る永久磁石4の磁束と逆向きで、且つ永久磁石4の磁束と合成されることにより、永久磁石4の磁束による磁気的引力をコイルばね24の弾性力よりも弱める。   Further, the first electromagnetic coil 32 and the second electromagnetic coil 33 are different from each other in the winding direction of the wound winding. Therefore, when an excitation current is supplied to the first electromagnetic coil 32, the upper member 2a, the output shaft 5, the suction portion 2e, and the lower member 2b are moved from the iron core portion 22a by the first electromagnetic coil 32 as shown in FIG. Magnetic flux is generated that forms a magnetic circuit K as a second magnetic circuit that passes through and reaches the iron core 22b. When an excitation current similar to the excitation current supplied to the first electromagnetic coil 32 is supplied to the second electromagnetic coil 33, as shown in FIG. Magnetic flux is generated that forms a magnetic circuit M that reaches the iron core portion 22a through the member 2b, the suction portion 2e, the output shaft 5, and the upper member 2a. Further, as shown in FIG. 8, the magnetic flux generated by the first electromagnetic coil 32 is, in the iron core portions 22a and 22b, the magnetic circuit L (from the N pole, the magnet holding portion 2f and the upper member 2a as the second magnetic circuit). , Opposite to the magnetic flux of the permanent magnet 4 that passes through the output shaft 5, the suction portion 2e, the lower member 2b, and the magnet holding portion 2g and reaches the S pole), and is larger than the number of magnetic fluxes of the permanent magnet. Further, the magnetic flux generated by the second electromagnetic coil 33 is opposite to the magnetic flux of the permanent magnet 4 that rotates around the magnetic circuit L in the output shaft 5 and the suction portion 2e in a state where the output shaft 5 is in contact with the suction portion 2e. In addition, by combining with the magnetic flux of the permanent magnet 4, the magnetic attractive force due to the magnetic flux of the permanent magnet 4 is weaker than the elastic force of the coil spring 24.

尚、鉄心部22a,22bにより形成される間隙23は、出力軸5がコイルばね6の弾性力によって反吸引部2e側に保持され、第1電磁コイル32及び第2電磁コイル33のいずれにも励磁電流が供給されていない非通電時において、永久磁石4の磁束が形成する第1磁気回路としての磁気回路J中に形成されている。更に、間隙23は、電磁コイル31によって跨がれている。   In addition, the gap 23 formed by the iron core portions 22a and 22b is such that the output shaft 5 is held on the side opposite to the suction portion 2e by the elastic force of the coil spring 6, and both of the first electromagnetic coil 32 and the second electromagnetic coil 33 are used. It is formed in the magnetic circuit J as the first magnetic circuit formed by the magnetic flux of the permanent magnet 4 when no excitation current is supplied. Further, the gap 23 is straddled by the electromagnetic coil 31.

本実施形態では、上記第2実施形態と同様に、上記第1実施形態の電磁ソレノイド装置1において、吸引部2eの上端面を被っていた当接部材9は備えられていない。
上記のように構成された電磁ソレノイド装置30の動作を説明する。
In the present embodiment, similarly to the second embodiment, the electromagnetic solenoid device 1 of the first embodiment is not provided with the contact member 9 covering the upper end surface of the suction part 2e.
The operation of the electromagnetic solenoid device 30 configured as described above will be described.

図7に示すように、出力軸5がコイルばね6の弾性力によって反吸引部2e側に保持され、第1電磁コイル32及び第2電磁コイル33のいずれにも励磁電流が供給されていない非通電時において、ソレノイド本体21内及び出力軸5では、出力軸5及び吸引部2e間の磁気抵抗よりも間隙23の磁気抵抗の方が小さい。従って、永久磁石4の磁束は、N極から、磁石保持部2f、上部部材2a、鉄心部22a,22b、下部部材2b、及び磁石保持部2gを通ってS極に至る磁気回路Jを形成する。   As shown in FIG. 7, the output shaft 5 is held on the side opposite to the suction portion 2 e by the elastic force of the coil spring 6, and no excitation current is supplied to either the first electromagnetic coil 32 or the second electromagnetic coil 33. During energization, the magnetic resistance in the gap 23 is smaller in the solenoid body 21 and in the output shaft 5 than in the magnetic resistance between the output shaft 5 and the suction portion 2e. Therefore, the magnetic flux J of the permanent magnet 4 forms a magnetic circuit J from the N pole to the S pole through the magnet holding portion 2f, the upper member 2a, the iron core portions 22a and 22b, the lower member 2b, and the magnet holding portion 2g. .

図7に示すように、第1電磁コイル32に励磁電流が供給されると、第1電磁コイル32によって、磁気回路Kを形成する磁束が発生する。この発生する磁束は、永久磁石4の磁束の方向と同様に下部部材2bから上部部材2aに向かう方向である。また、第1電磁コイル32により発生する磁束数は、永久磁石4のそれよりも多い。従って、磁気回路Jを回っていた永久磁石4の磁束は、磁気回路Kを回る第1電磁コイル32の磁束によって押し戻されて、N極から、磁石保持部2f、上部部材2a、出力軸5、吸引部2e、下部部材2b、及び磁石保持部2gを通ってS極に至る磁気回路Lを形成する。その結果、第1電磁コイル32の磁束と永久磁石4の磁束との合成磁束が出力軸5から吸引部2eを通過し、この合成磁束によりコイルばね6の弾性力よりも大きな磁気的引力が発生されるため、コイルばね24の弾性力に抗して出力軸5が吸引部2e側へ移動される。そして、出力軸5は吸引部2eに当接する。   As shown in FIG. 7, when an excitation current is supplied to the first electromagnetic coil 32, a magnetic flux that forms the magnetic circuit K is generated by the first electromagnetic coil 32. The generated magnetic flux is in a direction from the lower member 2b toward the upper member 2a in the same manner as the direction of the magnetic flux of the permanent magnet 4. Further, the number of magnetic fluxes generated by the first electromagnetic coil 32 is larger than that of the permanent magnet 4. Accordingly, the magnetic flux of the permanent magnet 4 that has traveled around the magnetic circuit J is pushed back by the magnetic flux of the first electromagnetic coil 32 that travels around the magnetic circuit K, and from the north pole, the magnet holding portion 2f, the upper member 2a, the output shaft 5, A magnetic circuit L that reaches the south pole through the suction part 2e, the lower member 2b, and the magnet holding part 2g is formed. As a result, a combined magnetic flux of the magnetic flux of the first electromagnetic coil 32 and the magnetic flux of the permanent magnet 4 passes from the output shaft 5 through the attracting portion 2e, and a magnetic attractive force larger than the elastic force of the coil spring 6 is generated by this combined magnetic flux. Therefore, the output shaft 5 is moved toward the suction portion 2e against the elastic force of the coil spring 24. And the output shaft 5 contacts the suction part 2e.

次に、第1電磁コイル32への励磁電流の供給を停止すると、第1電磁コイル32からは磁束が発生されない。出力軸5が吸引部2eに当接している状態においては、ソレノイド本体21内及び出力軸5において間隙23での磁気抵抗が最も大きいため、永久磁石4の磁束は、第1電磁コイル32への通電時と同じく磁気回路Lを回り続ける。この時、コイルばね24の弾性力は、磁気回路Lを回る永久磁石4の磁束が発生させる磁気的引力よりも小さいため、出力軸5は、吸引部2eに当接した状態のまま保持される。   Next, when the supply of the excitation current to the first electromagnetic coil 32 is stopped, no magnetic flux is generated from the first electromagnetic coil 32. In the state where the output shaft 5 is in contact with the suction portion 2e, the magnetic resistance in the gap 23 in the solenoid body 21 and the output shaft 5 is the largest, so that the magnetic flux of the permanent magnet 4 is applied to the first electromagnetic coil 32. The magnetic circuit L continues to be rotated as in the case of energization. At this time, since the elastic force of the coil spring 24 is smaller than the magnetic attractive force generated by the magnetic flux of the permanent magnet 4 that rotates around the magnetic circuit L, the output shaft 5 is held in contact with the attracting portion 2e. .

吸引部2eに当接した状態の出力軸5を、図7に示される反吸引部2e側に保持される状態に戻すには、図9に示すように、第2電磁コイル33に励磁電流を供給して磁気回路Mを形成する。この時、第2電磁コイル33は、出力軸5及び吸引部2eにおいて、磁気回路Lを回る永久磁石4の磁束と逆向きの磁束で、且つ永久磁石4の磁束と第2電磁コイル33が発生させる磁束との合成磁束により発生される磁気的引力よりもコイルばね24の弾性力が大きくなるような磁束を発生させている。その結果、コイルばね24の弾性力によって、出力軸5は、図9に二点鎖線で示された反吸引部2e側へ移動される。   In order to return the output shaft 5 in contact with the suction part 2e to the state held on the side opposite to the suction part 2e shown in FIG. 7, an excitation current is applied to the second electromagnetic coil 33 as shown in FIG. The magnetic circuit M is formed by supplying. At this time, the second electromagnetic coil 33 is generated in the output shaft 5 and the attracting portion 2e with a magnetic flux opposite to the magnetic flux of the permanent magnet 4 that circulates the magnetic circuit L, and the magnetic flux of the permanent magnet 4 and the second electromagnetic coil 33 are generated. The magnetic flux is generated such that the elastic force of the coil spring 24 is larger than the magnetic attractive force generated by the combined magnetic flux with the magnetic flux to be generated. As a result, due to the elastic force of the coil spring 24, the output shaft 5 is moved to the side opposite to the suction portion 2e indicated by a two-dot chain line in FIG.

上記したように、本実施形態によれば、前記第1実施形態の(1),(3)の効果に加えて、以下の効果をも有する。
(1)第1電磁コイル32及び第2電磁コイル33への非通電時に出力軸5が吸引部2eに当接した状態において、コイルばね24の弾性力は、磁気回路Lを回る永久磁石4の磁束により発生される磁気的引力よりも小さいため、非通電時でも出力軸5を吸引部2e側へ移動させた状態を保つことができる。従って、電力を消費することなく出力軸5を吸引部2e側へ移動させた状態を保つことができる。
As described above, according to the present embodiment, in addition to the effects (1) and (3) of the first embodiment, the following effects are also obtained.
(1) When the output shaft 5 is in contact with the attracting portion 2e when the first electromagnetic coil 32 and the second electromagnetic coil 33 are not energized, the elastic force of the coil spring 24 is applied to the permanent magnet 4 that rotates around the magnetic circuit L. Since it is smaller than the magnetic attractive force generated by the magnetic flux, the output shaft 5 can be kept in the state of being moved toward the attracting part 2e even when no current is applied. Therefore, the state where the output shaft 5 is moved to the suction part 2e side can be maintained without consuming electric power.

(2)磁気回路J中に間隙23が形成されていることから、電磁コイル31への非通電時に出力軸5が吸引部2eに当接した状態において、永久磁石4の磁束は、ソレノイド本体2において間隙23が形成されている磁気回路Jを回らず、全て吸引部2eと当接している出力軸5を通過する磁気回路Lを回る。従って、電磁コイル31への非通電時において、ソレノイド本体2に間隙23が形成されていない前記第1実施形態の電磁ソレノイド装置1よりも、より確実に出力軸5を吸引部2e側に移動させた状態を保つことができる。   (2) Since the gap 23 is formed in the magnetic circuit J, the magnetic flux of the permanent magnet 4 is applied to the solenoid body 2 in a state where the output shaft 5 is in contact with the attracting portion 2e when the electromagnetic coil 31 is not energized. In FIG. 5, the magnetic circuit J in which the gap 23 is formed is not rotated, but the magnetic circuit L that passes through the output shaft 5 that is in contact with the suction portion 2e is rotated. Therefore, when the electromagnetic coil 31 is not energized, the output shaft 5 is moved to the suction portion 2e side more reliably than the electromagnetic solenoid device 1 of the first embodiment in which the gap 23 is not formed in the solenoid body 2. Can be kept.

(3)第1電磁コイル32と第2電磁コイル33とは互いに異なる方向の磁気回路を形成する。出力軸5を吸引部2e側へ移動させる場合と、出力軸5を反吸引部2e側へ移動させる場合とでは、電磁コイルによって互いに逆方向の磁気回路を形成する必要がある。そのため、電磁コイル3を1つ備えただけの上記第1及び第2実施形態の電磁ソレノイド装置1,20では励磁電流を制御して互いに逆方向の磁気回路B,F及び磁気回路H,Mを形成しなければならない。しかし、本実施形態の電磁ソレノイド装置30は、第1電磁コイル32と第2電磁コイル33とを備えていることから、第1電磁コイル32へ励磁電流を供給するか第2電磁コイル33へ励磁電流を供給するかという、励磁電流の供給先の切換のみで互いに異なる磁気回路K,Mを形成することができ、出力軸5の制御を容易に行うことができる。   (3) The first electromagnetic coil 32 and the second electromagnetic coil 33 form magnetic circuits in different directions. When the output shaft 5 is moved to the suction portion 2e side and when the output shaft 5 is moved to the anti-attraction portion 2e side, it is necessary to form magnetic circuits in opposite directions by the electromagnetic coil. Therefore, in the electromagnetic solenoid devices 1 and 20 according to the first and second embodiments having only one electromagnetic coil 3, the exciting current is controlled so that the magnetic circuits B and F and the magnetic circuits H and M in the opposite directions are arranged. Must be formed. However, since the electromagnetic solenoid device 30 of the present embodiment includes the first electromagnetic coil 32 and the second electromagnetic coil 33, an excitation current is supplied to the first electromagnetic coil 32 or the second electromagnetic coil 33 is excited. Different magnetic circuits K and M can be formed only by switching the excitation current supply destination, ie, whether to supply current, and the output shaft 5 can be easily controlled.

(4)第1電磁コイル32及び第2電磁コイル33がインシュレータ31aの筒部31bに巻回されると、筒部31bは第1電磁コイル32及び第2電磁コイル33によって鉄心部22a,22b側へ押さえ込まれるため、鉄心部22a,22bが安定して保持される。その結果、鉄心部22a,22bによって形成され、電磁コイル31によって跨がれている間隙23は、一定の間隔を安定して保たれる。   (4) When the first electromagnetic coil 32 and the second electromagnetic coil 33 are wound around the cylindrical portion 31b of the insulator 31a, the cylindrical portion 31b is moved to the iron core portions 22a and 22b side by the first electromagnetic coil 32 and the second electromagnetic coil 33. Therefore, the iron core portions 22a and 22b are stably held. As a result, the gap 23 formed by the iron core portions 22a and 22b and straddling the electromagnetic coil 31 is stably maintained at a constant interval.

尚、本発明の各実施形態は、以下のように変更してもよい。
○上記第1実施形態では、出力軸5は、吸引部2e側へ移動すると、吸引部2eに当接するが、当接しないように構成してもよい。この場合、電磁コイル3への励磁電流の供給を停止すると、永久磁石4の磁束は、図1に示す磁気回路Aを回るため、出力軸5は、コイルばね6の弾性力により反吸引部2e側へ移動される。
Each embodiment of the present invention may be modified as follows.
In the first embodiment, the output shaft 5 contacts the suction unit 2e when moved to the suction unit 2e side, but may be configured not to contact. In this case, when the supply of the excitation current to the electromagnetic coil 3 is stopped, the magnetic flux of the permanent magnet 4 rotates around the magnetic circuit A shown in FIG. Moved to the side.

○上記第1実施形態では、コイルばね6の弾性力は、図3に示すように、磁気回路Cを回る永久磁石4の磁束により発生される磁気的引力よりも小さく形成されているが、大きく形成されていてもよい。この場合、電磁コイル3への励磁電流の供給を停止すると、コイルばね6の弾性力により、出力軸5は反吸引部2e側へ移動される。   In the first embodiment, the elastic force of the coil spring 6 is smaller than the magnetic attractive force generated by the magnetic flux of the permanent magnet 4 that rotates around the magnetic circuit C as shown in FIG. It may be formed. In this case, when the supply of the excitation current to the electromagnetic coil 3 is stopped, the output shaft 5 is moved to the anti-suction part 2e side by the elastic force of the coil spring 6.

○上記第2及び第3実施形態では、間隙23は、電磁コイル3,31によって跨がれているが、跨がれない構成であってもよい。その場合、第2実施形態においては磁気回路E中に、第3実施形態においては磁気回路J中に間隙23を形成する。   In the second and third embodiments, the gap 23 is straddled by the electromagnetic coils 3, 31, but may be configured not to straddle. In that case, the gap 23 is formed in the magnetic circuit E in the second embodiment and in the magnetic circuit J in the third embodiment.

○上記第1実施形態において、電磁コイル3を上記第3実施形態の電磁コイル31に変えてもよい。
上記各実施形態から把握できる技術的思想を以下に記載する。
In the first embodiment, the electromagnetic coil 3 may be changed to the electromagnetic coil 31 of the third embodiment.
The technical idea that can be grasped from each of the above embodiments will be described below.

(イ)請求項2に記載の電磁ソレノイド装置であって、前記電磁コイルへの非通電時に前記出力軸が前記吸引部に当接した状態において、前記永久磁石の磁束の一部は前記出力軸を通る磁気回路を形成し、前記弾性部材の弾性力は、前記永久磁石の磁束の一部による磁気的引力よりも小さくなるように形成されていることを特徴とする電磁ソレノイド装置。   (A) The electromagnetic solenoid device according to claim 2, wherein a part of the magnetic flux of the permanent magnet is the output shaft in a state where the output shaft is in contact with the attracting portion when the electromagnetic coil is not energized. The electromagnetic solenoid device is characterized in that an elastic force of the elastic member is formed to be smaller than a magnetic attractive force due to a part of the magnetic flux of the permanent magnet.

(ロ)請求項3又は請求項4に記載の電磁ソレノイド装置であって、前記ソレノイド本体において、前記電磁コイルが挿入されている部分には、前記電磁コイルへの非通電時に前記出力軸が前記吸引部に当接した状態において、前記永久磁石の磁束は、前記出力軸を通過する磁気回路を形成し、前記弾性部材の弾性力は、前記永久磁石の磁束による磁気的引力よりも小さくなるように形成されていることを特徴とする電磁ソレノイド装置。   (B) The electromagnetic solenoid device according to claim 3 or 4, wherein, in the solenoid body, the portion where the electromagnetic coil is inserted is connected to the output shaft when the electromagnetic coil is not energized. The magnetic flux of the permanent magnet forms a magnetic circuit that passes through the output shaft in the state of contact with the attracting portion, and the elastic force of the elastic member is smaller than the magnetic attractive force due to the magnetic flux of the permanent magnet. An electromagnetic solenoid device characterized in that the electromagnetic solenoid device is formed.

第1実施形態の電磁ソレノイドを示す断面図。Sectional drawing which shows the electromagnetic solenoid of 1st Embodiment. 第1実施形態の電磁ソレノイドの動作を示す断面図。Sectional drawing which shows operation | movement of the electromagnetic solenoid of 1st Embodiment. 第1実施形態の電磁ソレノイドの動作を示す断面図。Sectional drawing which shows operation | movement of the electromagnetic solenoid of 1st Embodiment. 第2実施形態の電磁ソレノイドを断面図。Sectional drawing of the electromagnetic solenoid of 2nd Embodiment. 第2実施形態の電磁ソレノイドの動作を示す断面図。Sectional drawing which shows operation | movement of the electromagnetic solenoid of 2nd Embodiment. 第2実施形態の電磁ソレノイドの動作を示す断面図。Sectional drawing which shows operation | movement of the electromagnetic solenoid of 2nd Embodiment. 第3実施形態の電磁ソレノイドを示す断面図。Sectional drawing which shows the electromagnetic solenoid of 3rd Embodiment. 第3実施形態の電磁ソレノイドの動作を示す断面図。Sectional drawing which shows operation | movement of the electromagnetic solenoid of 3rd Embodiment. 第3実施形態の電磁ソレノイドの動作を示す断面図。Sectional drawing which shows operation | movement of the electromagnetic solenoid of 3rd Embodiment.

符号の説明Explanation of symbols

2,21…ソレノイド本体、2d…保持部、2e…吸引部、3,31…電磁コイル、4…永久磁石、5…出力軸、6,24…弾性部材としてのコイルばね、23…間隙、32…第1電磁コイル、33…第2電磁コイル、A,E,J…第1磁気回路としての磁気回路、B,C,F,G,K,L…第2磁気回路としての磁気回路、M…磁気回路。   DESCRIPTION OF SYMBOLS 2,21 ... Solenoid main body, 2d ... Holding | maintenance part, 2e ... Attraction | suction part, 3,31 ... Electromagnetic coil, 4 ... Permanent magnet, 5 ... Output shaft, 6,24 ... Coil spring as an elastic member, 23 ... Gap, 32 ... 1st electromagnetic coil, 33 ... 2nd electromagnetic coil, A, E, J ... Magnetic circuit as 1st magnetic circuit, B, C, F, G, K, L ... Magnetic circuit as 2nd magnetic circuit, M ... magnetic circuit.

Claims (5)

磁性体よりなり磁気的引力により移動する出力軸と、
前記出力軸を移動可能に保持する保持部、及び前記出力軸と対向し前記磁気的引力により前記出力軸を吸引する吸引部を備えた磁性体よりなるソレノイド本体と、
前記ソレノイド本体の一部が貫通されるようにして前記ソレノイド本体に装着され前記ソレノイド本体の内部及び前記出力軸を通過する磁気回路を形成する電磁コイルと、
前記出力軸と前記吸引部との間の磁気的引力に対抗する方向に前記出力軸を付勢する弾性部材と
を備えた電磁ソレノイド装置であって、
前記ソレノイド本体の内部を通る磁気回路を形成するように配置された永久磁石を備え、
前記電磁コイルへの非通電時において、前記永久磁石の磁気は前記ソレノイド本体内で前記電磁コイルの内部を通過する第1磁気回路を形成し、
前記電磁コイルへの通電時において、前記電磁コイルの磁束と前記永久磁石の磁束との合成磁束が前記出力軸を通過する第2磁気回路を形成し、該合成磁束により前記弾性部材の弾性力を超える磁気的引力を発生させ、前記出力軸を前記吸引部側へ移動させるように形成されたことを特徴とする電磁ソレノイド装置。
An output shaft made of a magnetic material and moved by magnetic attraction;
A solenoid body made of a magnetic body having a holding portion that holds the output shaft movably, and a suction portion that faces the output shaft and attracts the output shaft by the magnetic attraction;
An electromagnetic coil that is mounted on the solenoid body so as to penetrate a part of the solenoid body and forms a magnetic circuit passing through the inside of the solenoid body and the output shaft;
An electromagnetic solenoid device comprising: an elastic member that biases the output shaft in a direction that opposes a magnetic attractive force between the output shaft and the attraction unit;
Comprising a permanent magnet arranged to form a magnetic circuit passing through the interior of the solenoid body;
When deenergizing the electromagnetic coil, the magnetism of the permanent magnet forms a first magnetic circuit that passes through the inside of the electromagnetic coil in the solenoid body,
When energizing the electromagnetic coil, a combined magnetic flux of the magnetic flux of the electromagnetic coil and the magnetic flux of the permanent magnet forms a second magnetic circuit that passes through the output shaft, and the combined magnetic flux increases the elastic force of the elastic member. An electromagnetic solenoid device configured to generate a magnetic attraction force exceeding, and to move the output shaft toward the attraction portion.
請求項1に記載の電磁ソレノイド装置であって、
前記出力軸は、前記吸引部に当接可能であり、
前記電磁コイルへの非通電時において、前記永久磁石の磁束が発生させる磁気的引力により、前記出力軸が前記吸引部に当接した状態を保つように形成されたことを特徴とする電磁ソレノイド装置。
The electromagnetic solenoid device according to claim 1,
The output shaft is capable of contacting the suction portion;
An electromagnetic solenoid device formed so as to keep the output shaft in contact with the attraction portion by a magnetic attractive force generated by a magnetic flux of the permanent magnet when the electromagnetic coil is not energized. .
請求項1に記載の電磁ソレノイド装置であって、
前記出力軸は、前記吸引部に当接可能であり、
前記ソレノイド本体において、前記第1磁気回路中には間隙が形成され、
前記電磁コイルへの非通電時において、前記永久磁石の磁束が発生させる磁気的引力により、前記出力軸が前記吸引部に当接した状態を保つように形成されたことを特徴とする電磁ソレノイド装置。
The electromagnetic solenoid device according to claim 1,
The output shaft is capable of contacting the suction portion;
In the solenoid body, a gap is formed in the first magnetic circuit,
An electromagnetic solenoid device formed so as to keep the output shaft in contact with the attraction portion by a magnetic attractive force generated by a magnetic flux of the permanent magnet when the electromagnetic coil is not energized. .
請求項3に記載の電磁ソレノイド装置であって、
前記間隙は、前記電磁コイルによって跨がれていることを特徴とする電磁ソレノイド装置。
The electromagnetic solenoid device according to claim 3,
The electromagnetic solenoid device, wherein the gap is straddled by the electromagnetic coil.
請求項2乃至請求項4に記載の電磁ソレノイド装置であって、
前記電磁コイルは、前記永久磁石の前記出力軸を通過する磁気回路と同じ方向の磁気回路を形成する第1電磁コイルと、前記永久磁石の前記出力軸を通過する磁気回路とは異なる方向の磁気回路を形成する第2電磁コイルとから構成され、
前記第1電磁コイルへの通電時において、前記第1電磁コイルの磁束と前記永久磁石の磁束との合成磁束が前記出力軸を通過する前記第2磁気回路を形成し、該合成磁束により前記弾性部材の弾性力を超える磁気的引力を発生させ、前記出力軸を前記吸引部側へ移動させ、
前記第2電磁コイルへの通電時に前記出力軸が前記吸引部に当接した状態において、前記出力軸を通過する前記永久磁石の磁束と前記第2電磁コイルの磁束との合成磁束による磁気的引力は前記弾性部材の弾性力よりも弱く、前記弾性部材の弾性力により前記出力軸を反吸引部側へ移動させるように形成されたことを特徴とする電磁ソレノイド装置。
The electromagnetic solenoid device according to claim 2, wherein:
The electromagnetic coil includes a first electromagnetic coil that forms a magnetic circuit in the same direction as a magnetic circuit that passes through the output shaft of the permanent magnet, and a magnetic field in a direction different from that of the magnetic circuit that passes through the output shaft of the permanent magnet. A second electromagnetic coil forming a circuit,
When the first electromagnetic coil is energized, a combined magnetic flux of the magnetic flux of the first electromagnetic coil and the magnetic flux of the permanent magnet forms the second magnetic circuit that passes through the output shaft, and the elastic force is generated by the combined magnetic flux. Generating a magnetic attractive force exceeding the elastic force of the member, and moving the output shaft to the suction part side;
Magnetic attraction due to a combined magnetic flux of the magnetic flux of the permanent magnet passing through the output shaft and the magnetic flux of the second electromagnetic coil in a state where the output shaft is in contact with the attraction portion when the second electromagnetic coil is energized. Is an electromagnetic solenoid device that is weaker than the elastic force of the elastic member and is configured to move the output shaft to the side opposite to the suction portion by the elastic force of the elastic member.
JP2004021818A 2004-01-29 2004-01-29 Electromagnetic solenoid device Pending JP2005217172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004021818A JP2005217172A (en) 2004-01-29 2004-01-29 Electromagnetic solenoid device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004021818A JP2005217172A (en) 2004-01-29 2004-01-29 Electromagnetic solenoid device

Publications (1)

Publication Number Publication Date
JP2005217172A true JP2005217172A (en) 2005-08-11

Family

ID=34905337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021818A Pending JP2005217172A (en) 2004-01-29 2004-01-29 Electromagnetic solenoid device

Country Status (1)

Country Link
JP (1) JP2005217172A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162537A (en) * 2014-02-27 2015-09-07 株式会社日本自動車部品総合研究所 Solenoid apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162537A (en) * 2014-02-27 2015-09-07 株式会社日本自動車部品総合研究所 Solenoid apparatus

Similar Documents

Publication Publication Date Title
KR100442676B1 (en) Magnet movable electromagnetic actuator
US7605680B2 (en) Electromagnetic actuator
US4994776A (en) Magnetic latching solenoid
KR101823228B1 (en) Magnetic flux control device
JP2005064491A (en) Single-coil solenoid having permanent magnet with bidirectional assist capabilities, manufacturing method therefor, non-magnetic switch for the single-coil solenoid, and the single-coil solenoid kit
JP2008193760A (en) Linear motor
JP6642485B2 (en) Electromagnetic relay
TW200711192A (en) Super-conducting device and axial gap type super-conducting motor
KR101841936B1 (en) Solenoid actuator
CN108780689B (en) Solenoid coil
KR20050019037A (en) Electromagnetic device
JP2008135590A (en) Solenoid
JP2005217172A (en) Electromagnetic solenoid device
CN110546858B (en) Permanent magnet biasing system and method
JP2018120840A (en) Electromagnetic relay
JP6587472B2 (en) Actuator
JP6554492B2 (en) solenoid
JP2019046719A (en) Electromagnetic relay
JP2005204449A (en) Linear motor with core
JP2004172516A (en) Polarized electromagnet device
EP1265259A1 (en) Electromagnetic solenoid actuator
JP2005353321A (en) Delay-type electromagnet device
JP2010098037A (en) Bidirectional latching solenoid
JP2023028684A (en) Electromagnetic valve device with self-holding plunger
JP2018123840A (en) Electromagnetic valve