JP2005216768A - Sealed storage battery - Google Patents

Sealed storage battery Download PDF

Info

Publication number
JP2005216768A
JP2005216768A JP2004024387A JP2004024387A JP2005216768A JP 2005216768 A JP2005216768 A JP 2005216768A JP 2004024387 A JP2004024387 A JP 2004024387A JP 2004024387 A JP2004024387 A JP 2004024387A JP 2005216768 A JP2005216768 A JP 2005216768A
Authority
JP
Japan
Prior art keywords
storage battery
pressure
battery
sealing plug
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004024387A
Other languages
Japanese (ja)
Inventor
Sadahiro Katayama
禎弘 片山
Toshiki Tanaka
俊樹 田中
Kaori Hatsushiro
香織 初代
Minoru Kurokuzuhara
実 黒葛原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2004024387A priority Critical patent/JP2005216768A/en
Publication of JP2005216768A publication Critical patent/JP2005216768A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed storage battery suitable for quick charging, housing a pressure switch mechanism inside, easy to set a valve opening pressure, with low scatter of valve opening pressure, free from such a disorder that the pressure valve opens before the pressure switch is operated when the storage battery is quickly charged, or a seal is broken caused by the disorder of the valve. <P>SOLUTION: The sealed storage battery, housing the pressure switch mechanism connecting and disconnecting a charge current to be supplied to the battery in compliance with the inner pressure thereof, comprises: a through-hole 10 formed on a connection terminal 6 as a component member of the pressure switch, which is sealed by a sealing plug 9 at normal time; and a valve opening means opening the through-hole by breaking or removing the sealing plug when the inner pressure of the battery is abnormally increased. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

充電時の蓄電池の内部圧力変化によりグロメット中央部分が上下に移動し、該グロメット中央部分に装着されている円筒状の接続端子が連動して上下に動くことで、充電電流のスイッチが遮断および接続される電流遮断接続機構を持つ密閉形蓄電池に関する。   The central part of the grommet moves up and down due to changes in the internal pressure of the storage battery during charging, and the cylindrical connection terminal attached to the central part of the grommet moves up and down in conjunction with this to cut off and connect the charging current switch. The present invention relates to a sealed storage battery having a current interrupting connection mechanism.

ポータブル機器の電源として主に用いられている密閉形蓄電池としては、ニッケル水素蓄電池、ニッケルカドミウム電池や小型シール鉛電池、リチウムイオン電池がある。特に、ニッケル水素蓄電池は充放電サイクル性能に優れ、サイクルサービス用に適した蓄電池として重用されている。これら密閉形蓄電池を過充電や過放電したり、大電流で充電や放電したりすると電解液が分解されてガスが発生し、蓄電池の内部圧力が上昇し、ついには蓄電池のシールが破壊したり、極端な場合には蓄電池が破裂する虞がある。近年、サイクルサービス用の蓄電池に対して充電時間を短縮させたいとの要求が高まり、該要求に応えるために15〜30分間で充電を完了させるという従来に無かった急速充電を可能とする技術が開発されつつある。   As a sealed storage battery mainly used as a power source for portable equipment, there are a nickel metal hydride storage battery, a nickel cadmium battery, a small sealed lead battery, and a lithium ion battery. In particular, nickel-metal hydride storage batteries are excellent in charge / discharge cycle performance and are frequently used as storage batteries suitable for cycle service. If these sealed batteries are overcharged or overdischarged, or charged or discharged with a large current, the electrolyte is decomposed and gas is generated, the internal pressure of the battery rises, and eventually the battery seal is broken. In extreme cases, the storage battery may burst. In recent years, there has been a demand for shortening the charging time for a storage battery for cycle service, and a technology that enables unprecedented quick charging to complete charging in 15 to 30 minutes in order to meet the request. It is being developed.

例えば密閉形ニッケル水素蓄電池を前記のような急速充電により充電しようとした場合、電池温度上昇とともに電池内部において電解液の分解によりガスが発生し、蓄電池の内部圧力が上昇する。充電中に電池温度や電池内部の圧力が異常に上昇するのを防ぐために、
充電時の電池内部圧力上昇に着目して、電池内部に充電時の電池内圧力変化により充電電流を遮断および接続することが可能な機構(以下圧力スイッチと記述する)を持つ密閉形蓄電池が提案されている。(例えば特許文献1参照)
For example, when an attempt is made to charge a sealed nickel-metal hydride storage battery by rapid charging as described above, gas is generated due to decomposition of the electrolyte in the battery as the battery temperature rises, and the internal pressure of the storage battery increases. To prevent battery temperature and internal pressure from rising abnormally during charging,
Focusing on the rise in internal battery pressure during charging, a sealed storage battery with a mechanism (hereinafter referred to as a pressure switch) capable of interrupting and connecting the charging current by changing the internal pressure of the battery during charging is proposed. Has been. (For example, see Patent Document 1)

米国特許明細書US2002/0119364(Fig2A,Fig2B) 該特許文献に提案されている密閉形蓄電池は、図4に示すような圧力スイッチ構造を備えている。図4において、4は極群12を収納した電漕缶であって、合成樹脂の成形品であるグロメット5の中央部分に設けた透孔に接続端子6を気密に挿通させ、グロメット5の周縁部を電槽缶の開口端部に狭持させることによってガスケットを適用した場合と同様に封止されている(クリンプシール方式)。 前記接続端子6と極群の12を構成する正極との間は、正極タブ端子13で接続され、前記グロメット5にはキャップ1及び圧力スイッチの第2端子2が嵌合されている。また、圧力スイッチの第2端子2とキャップ1で囲まれた空間には、加圧バネ3が配置され、常時は、該加圧バネ3の押圧力により、接続端子6に接合された圧力スイッチの第1端子7を前記圧力スイッチの第2端子2に押しつけ、圧力スイッチがオンの状態にある。US Patent Specification US2002 / 0119364 (FIG. 2A, FIG. 2B) The sealed storage battery proposed in this patent document has a pressure switch structure as shown in FIG. In FIG. 4, reference numeral 4 denotes an electric can that accommodates the electrode group 12, and the connection terminal 6 is inserted through a through hole provided in a central portion of the grommet 5, which is a synthetic resin molded product. It is sealed in the same manner as when a gasket is applied by clamping the part to the open end of the battery case (crimp seal method). The connection terminal 6 and the positive electrode constituting the pole group 12 are connected by a positive electrode tab terminal 13, and the cap 1 and the second terminal 2 of the pressure switch are fitted into the grommet 5. A pressure spring 3 is disposed in a space surrounded by the second terminal 2 of the pressure switch and the cap 1, and the pressure switch is normally joined to the connection terminal 6 by the pressing force of the pressure spring 3. The first terminal 7 is pressed against the second terminal 2 of the pressure switch, and the pressure switch is on.

前記グロメット5の中央部分は、蓄電池の内部圧力の大きさに応じて上方に撓み変形することが可能なように肉薄に成形されている。充電時に蓄電池の内部圧力が高くなると、前記グロメット5の中央部分が上方に撓み変形し、該変形に連動して圧力スイッチの第1端子7が上方向に移動し、圧力スイッチの第2端子2から離れるために圧力スイッチがオフの状態になる。蓄電池の内部圧力が低下すると、前記加圧バネ3の押圧力によって圧力スイッチの第1端子7が下方向に移動して基の位置に戻り、圧力スイッチがオンの状態に復帰する。   The central part of the grommet 5 is formed thin so that it can be bent upward and deformed according to the internal pressure of the storage battery. When the internal pressure of the storage battery increases during charging, the central portion of the grommet 5 bends and deforms upward, and the first terminal 7 of the pressure switch moves upward in conjunction with the deformation, and the second terminal 2 of the pressure switch. The pressure switch turns off to leave. When the internal pressure of the storage battery decreases, the first terminal 7 of the pressure switch moves downward by the pressing force of the pressure spring 3 and returns to the original position, and the pressure switch returns to the on state.

前記のように、図4に示す構成の密閉形蓄電池は、充電時の蓄電池の内部圧力の変化によりガスケットが撓み変形し、グロメットに装着された圧力スイッチの第1端子7が上下に移動して、圧力スイッチのオン・オフを司る構造を備える。   As described above, in the sealed storage battery having the configuration shown in FIG. 4, the gasket is bent and deformed by the change in the internal pressure of the storage battery during charging, and the first terminal 7 of the pressure switch attached to the grommet is moved up and down. A structure for controlling on / off of the pressure switch is provided.

前記提案によれば、充電時に電池内部圧力が一定圧力に達すると充電電流が遮断され、電池内部圧力が一定圧力以下になると再度接続され充電され、電池内部圧力変化に連動したオン・オフ(パルス)充電が行われる。
このオン・オフ充電機構は、充電時の蓄電池の内部圧力変化によりグロメットが上下に移動し、グロメットに装着されている円筒状の電流取り出し端子が連動して上下に動くことで、充電電流のスイッチが遮断および接続される構成となっている。
According to the above proposal, when the battery internal pressure reaches a certain pressure during charging, the charging current is cut off, and when the battery internal pressure falls below the certain pressure, the battery is connected again and charged, and the on / off (pulse) linked to the battery internal pressure change. ) Charging is performed.
This on / off charging mechanism moves the grommet up and down due to the internal pressure change of the storage battery during charging, and the cylindrical current extraction terminal attached to the grommet moves up and down in conjunction with the charging current switch. Is configured to be cut off and connected.

このような電池内部に充電時の電池内圧力変化により充電電流を遮断および通電することが可能な機構を持つ密閉形蓄電池は、内部圧力変化による充電電流制御が働くことで、電池温度の上昇も抑えられる特徴を有している。急速充電以外にも蓄電池を過充電、過放電したり大電流で放電させた場合以外に電池が高温に曝された場合にも蓄電池の内部圧力が異常に上昇し、ついにはクリンプシールの破壊に至る虞がある。従って、万一スイッチ機構が正常に作動しないときのことや、電池が高温に曝されたときのことを考慮して、前記圧力スイッチとは別に、蓄電池の内部に蓄積したガスを外部に放出させる機構(以下弁機構または弁と記述する)を設けることが望ましい。   Such a sealed storage battery having a mechanism capable of interrupting and energizing the charging current due to a change in the internal pressure of the battery during charging causes the battery temperature to rise due to the charging current control by the internal pressure change. It has features that can be suppressed. In addition to overcharging, the internal pressure of the storage battery rises abnormally when the battery is exposed to high temperatures other than when it is overcharged, overdischarged or discharged with a large current, eventually destroying the crimp seal. There is a risk of reaching. Therefore, in consideration of when the switch mechanism does not operate normally or when the battery is exposed to high temperature, the gas accumulated inside the storage battery is released to the outside separately from the pressure switch. It is desirable to provide a mechanism (hereinafter referred to as a valve mechanism or a valve).

前記圧力スイッチを内蔵する密閉型蓄電池において、簡便な弁機構として、例えばグロメット5に肉薄部8を設けておき、蓄電池内部の圧力が異常に上昇したときに前記ガスケットに設けた肉薄部を破断させて内部に蓄積したガスを排出させるという弁機構がある。   In a sealed storage battery incorporating the pressure switch, as a simple valve mechanism, for example, a thin portion 8 is provided in the grommet 5 and the thin portion provided in the gasket is broken when the pressure inside the storage battery rises abnormally. There is a valve mechanism that discharges the gas accumulated inside.

しかし、検討の結果前記グロメット5に設けた肉薄部8を破断させて内部に蓄積したガスを排出させるという弁機構の場合、例えばポリプロピレン樹脂の成形品であるグロメット5を破断させようとすると極めて大きな力を必要とし、前記肉薄部の厚さを数分の1mm程度と極めて薄くする必要がある。また、前記破断強度は、肉薄部の寸法精度のみでなく成形時の樹脂の流れ具合によっても左右されるのでバラツキが大きくなり易い。さらに、グロメットの中央に設けた透孔に接続端子を挿入したり、電池を組み立てるときにクリンプシールする工程でグロメットにストレスが加わり、該ストレスが機械的強度の弱い肉薄部8の破断強度を変えてしまうために開弁の動作圧力のバラツキがさらに大きくなる傾向がある。このように、グロメットに肉薄部を設けて破断させるにはにおいては、開弁の動作圧力が不安定でありバラツキが大きく、極端な場合には通常使用時(蓄電池の内部圧力が異常に上昇してない状態)においても開弁してしまう欠点のあることが判明した。   However, in the case of a valve mechanism in which the thin portion 8 provided in the grommet 5 is broken and the gas accumulated therein is discharged as a result of examination, for example, if the grommet 5 which is a molded product of polypropylene resin is to be broken, it is extremely large It is necessary to reduce the thickness of the thin portion to about a few millimeters. Moreover, since the said breaking strength is influenced not only by the dimensional accuracy of a thin part but the flow of the resin at the time of shaping | molding, variation tends to become large. Furthermore, stress is applied to the grommet in the process of inserting a connection terminal into a through-hole provided in the center of the grommet or crimp-sealing when assembling the battery, and the stress changes the breaking strength of the thin portion 8 having low mechanical strength. Therefore, there is a tendency that the variation in the operating pressure of the valve opening is further increased. In this way, in order to break the grommet by providing a thin part, the operating pressure of the valve opening is unstable and varies widely, and in extreme cases during normal use (the internal pressure of the storage battery increases abnormally). It has been found that there is a drawback that the valve is opened even in a state where it is not.

本発明は、前記従来技術の欠点に鑑みなされたものであって、充電中に蓄電池の内部圧力の大きさに応答して充電電流をオン・オフする圧力スイッチ機構を備えた密閉形蓄電池において、開弁の動作が安定した開弁動作の信頼性の高い密閉型蓄電池を提供せんとするものである。   The present invention has been made in view of the drawbacks of the prior art, and in a sealed storage battery having a pressure switch mechanism that turns on and off a charging current in response to the internal pressure of the storage battery during charging. It is an object of the present invention to provide a sealed battery with a highly reliable valve opening operation with a stable valve opening operation.

本発明においては、以下の構成とすることによって前記課題を解決することができる。
本発明に係る密閉形蓄電池は、充電時に蓄電池の内部圧力変化に応答して、充電電流を遮断又は通電させる電流断続スイッチ機構を内蔵する密閉型蓄電池であって、
蓄電池の内部圧力が異常に上昇したときに、蓄電池の内部圧力変化により上下する接続端子に貫通孔を形成させる開弁手段を備えることを特徴とする密閉型蓄電池である。(請求項1)
In this invention, the said subject can be solved by setting it as the following structures.
A sealed storage battery according to the present invention is a sealed storage battery that incorporates a current on / off switch mechanism that cuts off or energizes a charging current in response to a change in internal pressure of the storage battery during charging,
When the internal pressure of the storage battery rises abnormally, the sealed storage battery is characterized by comprising valve-opening means for forming a through-hole in a connection terminal that goes up and down due to a change in the internal pressure of the storage battery. (Claim 1)

本発明に係る密閉形蓄電池は、前記接続端子に設けた電池内部と外部を連通する貫通孔の内側または外側端部を密封栓によって封止し、蓄電池の内部圧力が異常に上昇したときに前記密封栓を破断または排除することを特徴とする請求項1に記載の密閉形蓄電池である。(請求項2)   In the sealed storage battery according to the present invention, the inner or outer end of the through-hole communicating between the inside and the outside of the battery provided in the connection terminal is sealed with a sealing plug, and when the internal pressure of the storage battery rises abnormally, 2. The sealed storage battery according to claim 1, wherein the sealing plug is broken or eliminated. (Claim 2)

本発明に係る密閉形蓄電池は、前記接続端子に設けた電池内部と外部を連通する貫通孔の内側端部を密封栓によって封止し、蓄電池の内部圧力が異常に上昇したときに、前記貫通孔の中に配置した棒状部材が前記密封栓を押圧することによって密封栓を破断または排除することを特徴とする請求項2に記載の密閉形蓄電池である。(請求項3)   In the sealed storage battery according to the present invention, the inner end of a through hole that communicates the inside and outside of the battery provided in the connection terminal is sealed with a sealing plug, and when the internal pressure of the storage battery rises abnormally, the penetration 3. The sealed storage battery according to claim 2, wherein a rod-shaped member disposed in the hole presses the sealing plug to break or eliminate the sealing plug. (Claim 3)

本発明に係る密閉形蓄電池は、前記接続端子に設けた電池内部と外部を連通する貫通孔の内側端部に樹脂製密封栓を嵌着し、蓄電池の内部圧力が異常に上昇したときに、前記貫通孔の中に配置した棒状部材が前記密封栓を押圧することによって、前記樹脂製密封栓を下方に押し抜くことを特徴とする請求項3に記載の密閉形蓄電池である。(請求項4)
なお、ここでいうところの蓄電池の内部圧力が異常に上昇するとは、該内部圧力が前記圧力スイッチの動作圧を超えて上昇する状態をいう。
The sealed storage battery according to the present invention has a resin sealing plug fitted to the inner end of the through hole that communicates the inside and outside of the battery provided in the connection terminal, and when the internal pressure of the storage battery rises abnormally, 4. The sealed storage battery according to claim 3, wherein the resin-made sealing plug is pushed downward by a rod-shaped member disposed in the through-hole pressing the sealing plug. 5. (Claim 4)
Here, the abnormal increase in the internal pressure of the storage battery here means a state in which the internal pressure increases beyond the operating pressure of the pressure switch.

請求項1〜4に記載の発明では、従来のグロメットに肉薄部を形成し、該肉薄部を弁とするものと比較して、
電池個々の開弁圧力のバラツキが小さくできるため、開弁圧力の設定を低くする必要がなくなる。このために、通常使用時における電池において、グロメットの肉薄部が破断して寿命となる不具合等が生じる問題が解決できる。また、請求項4に記載の発明によれば、開弁機構の組立が容易な密閉形蓄電池とすることができる。
In invention of Claims 1-4, compared with what forms a thin part in the conventional grommet, and uses this thin part as a valve,
Since the variation in the valve opening pressure of each battery can be reduced, it is not necessary to set the valve opening pressure low. For this reason, in the battery at the time of normal use, the problem which the malfunction etc. which the thin part of a grommet fractures | ruptures and becomes a lifetime can be solved. Moreover, according to the invention of Claim 4, it can be set as the sealed storage battery with easy assembly of a valve opening mechanism.

以下、本発明を実施の形態により説明するが、本発明はこれに限定されるものではない。
(第1の実施形態)
図1に基づいて本発明のニッケル水素電池の開弁構造の第1実施形態について説明する。
図1において、4は極群12を収納した電漕缶であって、中央部に円柱状の接続端子6を装着させたグロメット5によって封止されている。
前記グロメット5は、例えばポリプロピレン製の成形品であり、中央部分に撓み性を付与するために水平壁部分5′が肉薄に成型されている。前記接続端子6と極群の12を構成する正極との間は、正極タブ端子13で接続され、前記グロメット5には金属製キャップ1及び圧力スイッチの第2端子2が嵌合されている。キャップ1にはキャップ内空間と外部空間を連通させるための小孔14が設けられている。
また、圧力スイッチの第2端子2とキャップ1で囲まれた空間には金蔵製加圧バネ3が配置され、常時は、接続端子6に接合された圧力スイッチの第1端子7が前記圧力スイッチの第2端子2の面に押圧され、圧力スイッチがオンの状態になっている。
Hereinafter, the present invention will be described with reference to embodiments, but the present invention is not limited thereto.
(First embodiment)
A first embodiment of the valve opening structure of the nickel metal hydride battery of the present invention will be described with reference to FIG.
In FIG. 1, reference numeral 4 denotes an electric can that accommodates a pole group 12, and is sealed by a grommet 5 having a columnar connection terminal 6 mounted at the center.
The grommet 5 is a molded product made of, for example, polypropylene, and a horizontal wall portion 5 'is thinly molded in order to impart flexibility to the central portion. The connection terminal 6 and the positive electrode constituting the pole group 12 are connected by a positive electrode tab terminal 13, and the grommet 5 is fitted with a metal cap 1 and a second terminal 2 of a pressure switch. The cap 1 is provided with a small hole 14 for communicating the space inside the cap and the external space.
Also, a metal pressure spring 3 is arranged in a space surrounded by the second terminal 2 of the pressure switch and the cap 1, and the first terminal 7 of the pressure switch joined to the connection terminal 6 is normally the pressure switch. The pressure switch is turned on by being pressed against the surface of the second terminal 2.

蓄電池の内部圧力が上昇した時には、該内部圧力に押されてグロメット5が上方に撓み変形し、該変形に連動して圧力スイッチの第1端子7が上方に移動して圧力スイッチの第2端子2から離れ、圧力スイッチがオフの状態になる。また、蓄電池の内部圧力が低下すると前記バネ3の押圧力に押されて前記グロメット5が下方に変形し、圧力スイッチの第1端子7が下方向に移動して圧力スイッチの第2端子2に当接して圧力スイッチがオンの状態に戻る。なお、加圧バネ3と圧力スイッチの第1端子7の間には絶縁性フィルム15が配置され、加圧バネ3と圧力スイッチの第1端子7は絶縁されている。   When the internal pressure of the storage battery rises, the grommet 5 is bent upward by being pushed by the internal pressure, and the first terminal 7 of the pressure switch moves upward in conjunction with the deformation, and the second terminal of the pressure switch. 2 and the pressure switch is turned off. When the internal pressure of the storage battery decreases, the grommet 5 is deformed downward by the pressing force of the spring 3, and the first terminal 7 of the pressure switch moves downward to the second terminal 2 of the pressure switch. The pressure switch returns to the on state upon contact. An insulating film 15 is disposed between the pressure spring 3 and the first terminal 7 of the pressure switch, and the pressure spring 3 and the first terminal 7 of the pressure switch are insulated.

本発明においては、図1に示すように接続端子6に電池内空間と外部空間を連通させるための貫通孔10を設ける。本実施の形態では前記貫通孔10の内側端部にポリプロピレン等の軟質樹脂(例えば熱可塑性樹脂)またはゴムの成形品である密封栓9を嵌合させて貫通孔10を封止する。さらに、貫通孔10の内部に棒状部材11を配置する。常時(グロメットの中央部分5が上方に撓み変形してない状態)は、棒状部材11の長さがキャップ1の内面と密封栓9の端面との間の距離に比べて短く、密封栓9に対して下方むきの押圧力が加わらない。しかし。電池内部の圧力が異常に上昇して、グロメット5の中央部分が上方に撓み、キャップ1の内面と密封栓9の距離が短くなって、棒状部材11の一方の端面がキャップ1の内面に当接し、グロメット5の中央部分がさらに上方へ撓み変形すると、棒状部材11が密封栓9を下方に押圧して、ついには密封栓9が貫通孔10から押し抜かれ、電池の内部空間に蓄積されたガスは、前記貫通孔10を通って外部に放出される。   In the present invention, as shown in FIG. 1, the connection terminal 6 is provided with a through hole 10 for communicating the battery internal space and the external space. In the present embodiment, the through hole 10 is sealed by fitting a sealing plug 9, which is a molded product of a soft resin (for example, thermoplastic resin) or rubber such as polypropylene, to the inner end portion of the through hole 10. Further, a rod-shaped member 11 is disposed inside the through hole 10. At all times (the state where the central portion 5 of the grommet is not bent upward and deformed), the length of the rod-shaped member 11 is shorter than the distance between the inner surface of the cap 1 and the end surface of the sealing plug 9, and the sealing plug 9 On the other hand, no downward pressing force is applied. However. When the pressure inside the battery rises abnormally, the central portion of the grommet 5 bends upward, the distance between the inner surface of the cap 1 and the sealing plug 9 is shortened, and one end surface of the rod-shaped member 11 contacts the inner surface of the cap 1. When the central portion of the grommet 5 is further bent upward and deformed, the rod-like member 11 presses the sealing plug 9 downward, and finally the sealing plug 9 is pushed out from the through hole 10 and accumulated in the internal space of the battery. The gas is discharged to the outside through the through hole 10.

該実施形態における開弁動作圧力を決定付ける主なる因子は、グロメット5の中央部の撓み変形の大きさの度合い、棒状部材11の長さとキャップ1の内面と密封栓9の間の距離、貫通孔10に挿入された密封栓9が接続端子に6に保持される保持力、加圧バネ3の押圧力である。このうち、密封栓9が接続端子に6に保持される保持力の大きさは最もバラツキ易い因子であるが、本願発明の場合電池の内圧が作用して撓み変形するグロメット中央部分の面積が密封栓の太さ(断面積)に比べてはるかに大きく、グロメット中央部分に加わる内圧によって生み出される大きな力が棒状部材11を介して小さな密封栓に加わることになる。従って、棒状部材11を介して密封栓に加わる押圧力は、密封栓を単に貫通孔10に嵌合させることによって得られる保持力に比べてはるかに大きいために開弁の動作圧力が密封栓の保持力に左右される度合いは小さい。その他の因子は、部材の成形寸法や機械的な加工寸法の精度に大きく依存するが、現該加工においては現技術をもってすれば容易に極めて高い寸法精度が得られる。その結果として高い精度の開弁動作圧力が達成される。   The main factors that determine the valve opening operating pressure in the present embodiment are the degree of the bending deformation of the central portion of the grommet 5, the length of the rod-shaped member 11, the distance between the inner surface of the cap 1 and the sealing plug 9, and the penetration The sealing plug 9 inserted into the hole 10 is the holding force held by the connection terminal 6 and the pressing force of the pressure spring 3. Among these, the magnitude of the holding force at which the sealing plug 9 is held by the connection terminal 6 is the most likely factor, but in the case of the present invention, the area of the central part of the grommet that is bent and deformed by the internal pressure of the battery is sealed. It is much larger than the thickness (cross-sectional area) of the stopper, and a large force generated by the internal pressure applied to the central part of the grommet is applied to the small sealing stopper via the rod-shaped member 11. Therefore, the pressing force applied to the sealing plug via the rod-shaped member 11 is much larger than the holding force obtained by simply fitting the sealing plug to the through hole 10, so that the operating pressure of the valve opening is that of the sealing plug. The degree to which the holding force depends is small. Other factors greatly depend on the accuracy of the molding dimensions and mechanical processing dimensions of the member, but in the current processing, extremely high dimensional accuracy can be easily obtained with the current technology. As a result, a highly accurate valve opening operating pressure is achieved.

なお、密封栓9とキャップ1の内面の距離は、密封栓9を貫通孔10に挿入したときの挿入位置によって左右されるが、図1の(イ)に示すように、密封栓9の内部端面を接続端子6の内部端面と面一になるように挿入するか、図1(ロ)に示すように、密封栓9の側面に段差を設け、段差位置以上は深く挿入できないようにストッパーとしての機能を付与することによって、容易に密封栓9の挿入位置を一定にすることができる。また、前記棒状部材11を介してキャップ1と接続端子6が電気的に短絡することのないように、棒状部材11を硬質の合成樹脂製品とするかまたは金属製の棒状部材を適用する場合にはキャップ1の内面に電気絶縁性物質、例えば合成樹脂フィルム16を配置する。   The distance between the sealing plug 9 and the inner surface of the cap 1 depends on the insertion position when the sealing plug 9 is inserted into the through-hole 10, but as shown in FIG. Insert the end face so that it is flush with the inner end face of the connection terminal 6 or provide a step on the side of the sealing plug 9 as shown in FIG. By providing the above function, the insertion position of the sealing plug 9 can be easily made constant. Further, in order to prevent the cap 1 and the connection terminal 6 from being electrically short-circuited via the rod-shaped member 11, the rod-shaped member 11 is a hard synthetic resin product or a metal rod-shaped member is applied. Is arranged on the inner surface of the cap 1 with an electrically insulating material, for example, a synthetic resin film 16.

該第1の実施形態においては、密封栓の配置は軟質樹脂製の密閉栓を単に接続端子6に設けた貫通孔の内側端部に挿入させるのみであり、開弁は、棒状部材11を貫通孔10の中に挿入するのみであって、部材の接合や貼り付け等の工程がなく、開弁機構の組立が極めて簡単である。   In the first embodiment, the sealing plug is simply inserted into the inner end portion of the through hole provided in the connection terminal 6 by the insertion of the soft resin sealing plug, and the valve opening passes through the rod-shaped member 11. It is only inserted into the hole 10 and there is no process such as joining or pasting of members, and the assembly of the valve opening mechanism is extremely simple.

(第2の実施形態)
図2は、第2の実施形態を示す図である。前記図1に示した第1の実施形態の密封栓9に変えて、接続端子6の外側端面に合成樹脂フィルムや金属箔または合成樹脂イルムと金属箔のラミネートフィルムからなる密封栓9′を貼付することによって貫通孔10の外側端部を気密に封止する。キャップ1の内面には針状突起11′を配置し、蓄電池の内圧が異常に上昇して接続端子6が上方に移動したときに棒状部材11′が密封栓9′を突き通すことによって開弁する。該第2の実施形態の場合も密封栓9′を突き通すに際して大きな力を必要とせず、蓄電池の内部圧力の大きさに応じて生じるグロメットの撓みの程度が安定しておれば、高い圧力精度で開弁動作が可能である。但し、キャップ1の内面に棒状部材または針状部材11′を設けたり、接続端子6の外側端面にフィルム状密封栓9′を貼付する必要があり、第1の実施の形態に比べて、組立が複雑になる欠点がある。
(Second Embodiment)
FIG. 2 is a diagram illustrating a second embodiment. In place of the sealing plug 9 of the first embodiment shown in FIG. 1, a sealing plug 9 'made of a synthetic resin film, a metal foil, or a laminate film of a synthetic resin film and a metal foil is attached to the outer end face of the connection terminal 6. By doing so, the outer end of the through hole 10 is hermetically sealed. A needle-like protrusion 11 'is arranged on the inner surface of the cap 1, and the valve-like member 11' is opened by penetrating the sealing plug 9 'when the internal pressure of the storage battery rises abnormally and the connection terminal 6 moves upward. . In the case of the second embodiment, a large force is not required when penetrating the sealing plug 9 ', and if the degree of bending of the grommet generated according to the internal pressure of the storage battery is stable, the pressure accuracy is high. Valve opening operation is possible. However, it is necessary to provide a rod-like member or needle-like member 11 ′ on the inner surface of the cap 1, or to attach a film-like sealing plug 9 ′ to the outer end face of the connection terminal 6, which is an assembly as compared with the first embodiment. Has the disadvantage of becoming complicated.

(第3の実施形態)
図3は、第3の実施形態を示す図である。前記図1に示した第1の実施形態の密封栓9に変えて、接続端子6の内側端面にポリエステルなどの合成樹脂フィルムやニッケルやステンレスなどの金属箔または該合成樹脂イルムと金属箔のライネートフィルムからなる密封栓9″を貼付することによって貫通孔10の内側端部を気密に封止する。貫通孔10の内部には前記第1の実施形態同様棒状部材11を配置する。蓄電池の内圧が異常に上昇して接続端子6が上方に移動したときに棒状部材11が密封栓9″を突き通すことによって開弁する。該第3の実施形態の場合も密封栓9″を突き通すに際して大きな力を必要とせず、蓄電池の内部圧力の大きさに応じて生じるグロメットの撓みの程度が安定しておれば、高い圧力精度で開弁動作が可能である。但し、接続端子6の外側端面にフィルム状密封栓9″を貼付する必要があり、第1の実施の形態に比べて、組立がやや複雑になる欠点がある。
(Third embodiment)
FIG. 3 is a diagram illustrating a third embodiment. In place of the sealing plug 9 of the first embodiment shown in FIG. 1, a synthetic resin film such as polyester, a metal foil such as nickel or stainless steel, or a film of the synthetic resin film and a metal foil is formed on the inner end surface of the connection terminal 6. The inner end of the through hole 10 is hermetically sealed by sticking a sealing plug 9 ″ made of a film. A rod-like member 11 is disposed inside the through hole 10 as in the first embodiment. When the internal pressure rises abnormally and the connection terminal 6 moves upward, the rod-shaped member 11 opens by penetrating the sealing plug 9 ″. In the case of the third embodiment as well, a large force is not required when penetrating the sealing plug 9 ″, and if the degree of bending of the grommet generated according to the magnitude of the internal pressure of the storage battery is stable, the pressure accuracy is high. However, it is necessary to affix a film-like sealing plug 9 ″ to the outer end face of the connection terminal 6, and there is a drawback that the assembly is slightly complicated as compared with the first embodiment.

(開弁動作圧力調査実験)
前記図1(イ)に示した第1の実施形態に係るAAサイズの密閉型ニッケル水素蓄電池(実施例電池)30個と、図4に示した比較例に係るAAサイズの密閉型ニッケル水素蓄電池(比較例電池)30個を用意した。但し、本実験では、実施例電池、比較例電池共に金属製加圧バネ3と圧力スイッチの第1端子7を絶縁するための絶縁フィルム15を設けず、金属製バネ3を介して、キャップ1と圧力スイッチの第1端子7が常に電気的に接続されている(圧力スイッチのスイッチ機能を停止させた)構成とした。実施例電池、比較例電池共にガスケット5をポリプロピレンの成形品とした。グロメット5の中央に直径4.0mmの透孔を設け、該透孔に直径が4.3mmの接続端子を挿通させた。グロメット5の中央部分に撓み性を付与するためにグロメット5の水平壁5′の肉厚を0.8mmと薄く設定した。比較例電池の場合は、グロメット5の水平壁5′に、段面がV字型であって、深さが0.5mm、長さが4mmの円弧状の溝を等間隔で3箇所設けた。一方、実施例電池においては円柱状の接続端子6の中央に直径2.3mmの貫通孔10を設けた。該貫通孔の内側端に直径2.5mm、長さが2mmのポリプロピレン製密封栓9をその内側端面が接続端子6の内側端面と面一になるように挿入した。前記貫通孔の中に、直径が2mmのステンレス製棒状部材11を挿入した。なお、前記密封栓9とキャップ1の内面の距離を5mm、棒状部材11の長さを4mmに設定した。また、実施例電池のキャップの内面にはポリエステルフィルムを貼付し、キャップ1と棒状部材11の接触を絶った。実施例電池、比較例電池共にその定格容量を2000mAhとした。
(Valve opening pressure investigation experiment)
30 AA-size sealed nickel-metal hydride storage batteries (example batteries) according to the first embodiment shown in FIG. 1 (a) and an AA-size sealed nickel-metal hydride storage battery according to the comparative example shown in FIG. (Comparative battery) 30 pieces were prepared. However, in this experiment, neither the example battery nor the comparative example battery is provided with the insulating film 15 for insulating the metal pressure spring 3 and the first terminal 7 of the pressure switch, and the cap 1 is interposed via the metal spring 3. And the first terminal 7 of the pressure switch are always electrically connected (the switch function of the pressure switch is stopped). In both the example battery and the comparative battery, the gasket 5 was a molded product of polypropylene. A through hole having a diameter of 4.0 mm was provided in the center of the grommet 5, and a connection terminal having a diameter of 4.3 mm was inserted through the through hole. In order to impart flexibility to the central part of the grommet 5, the thickness of the horizontal wall 5 'of the grommet 5 was set as thin as 0.8 mm. In the case of the comparative battery, three circular arc grooves having a V-shaped step surface, a depth of 0.5 mm, and a length of 4 mm were provided at equal intervals on the horizontal wall 5 ′ of the grommet 5. . On the other hand, in the example battery, a through hole 10 having a diameter of 2.3 mm was provided in the center of the columnar connection terminal 6. A polypropylene sealing plug 9 having a diameter of 2.5 mm and a length of 2 mm was inserted into the inner end of the through hole so that the inner end surface thereof was flush with the inner end surface of the connection terminal 6. A stainless rod member 11 having a diameter of 2 mm was inserted into the through hole. The distance between the sealing plug 9 and the inner surface of the cap 1 was set to 5 mm, and the length of the rod-shaped member 11 was set to 4 mm. Moreover, the polyester film was affixed on the inner surface of the cap of the example battery, and the contact between the cap 1 and the rod-shaped member 11 was cut off. The rated capacity of both the example battery and the comparative example battery was 2000 mAh.

満充電状態にある実施例電池および比較例電池を周囲温度20℃において、2ItAの定電流にて全ての被検電池が開弁するまで充電を行い、この間蓄電池の内部圧力をモニターした。該充電における開弁時の電池の内部圧力をもって該電池の開弁の動作圧力とした。図5(イ)は実施例電池の開弁の動作圧力の分布を示すヒストグラム、図5(ロ)は比較例電池の開弁の動作圧力の分布を示すヒストグラムである。   The example battery and the comparative battery in the fully charged state were charged at an ambient temperature of 20 ° C. at a constant current of 2 ItA until all the test batteries were opened, and the internal pressure of the storage battery was monitored during this time. The internal pressure of the battery when the valve was opened during charging was used as the operating pressure for opening the battery. FIG. 5 (a) is a histogram showing the distribution of the operating pressure for opening the valve of the example battery, and FIG. 5 (b) is a histogram showing the distribution of the operating pressure for opening the valve of the comparative example battery.

クリンプシールによってシールされたAAサイズの密閉型蓄電池において開弁機構を設けていない場合、電池の内圧が上昇したときには通常クリンプシールが破壊(破裂を伴う虞がある)され、そのときの蓄電池内部の圧力は約3メガパスカル(MPa)である。図5(イ)、図5(ロ)に示すように実施例電池、比較例電池ともに開弁動作圧力は、2.5MPa以下の圧力で開弁しており、クリンプシール部分が破壊されることはなかった。ただし、図5(ロ)に示すように比較例電池においては、開弁の動作圧力が、1.6〜2.5MPaの広い範囲に分布し、図5(イ)に示す実施例電池の開弁動作圧力の分布に比べてバラツキが大きい。比較例電池の開弁の動作圧力のバラツキが大きいのは、前記のようにグロメット成形品の破断強度を一定にさせるのが難しいうえに、電池組立時にストレスが加わるためにグロメットの肉薄部の破断強度がさらに変化することによる。これに対して、第1の実施形態に係る蓄電池においては、開弁動作圧力が、制御が容易な弁構成部材の寸法精度によって決まるので安定した動作圧力が得られたものと考えられる。   When the AA size sealed storage battery sealed by the crimp seal is not provided with a valve opening mechanism, the crimp seal is normally destroyed (may cause explosion) when the internal pressure of the battery rises. The pressure is about 3 megapascals (MPa). As shown in FIG. 5 (a) and FIG. 5 (b), both the example battery and the comparative example battery are opened at a pressure of 2.5 MPa or less, and the crimp seal portion is destroyed. There was no. However, as shown in FIG. 5 (b), in the comparative battery, the valve opening operating pressure is distributed over a wide range of 1.6 to 2.5 MPa, and the opening of the example battery shown in FIG. The variation is larger than the distribution of valve operating pressure. The variation in the valve operating pressure of the comparative battery is large because, as mentioned above, it is difficult to keep the breaking strength of the grommet molded product constant, and because the stress is applied during battery assembly, the thin portion of the grommet breaks. Due to further changes in strength. On the other hand, in the storage battery according to the first embodiment, it is considered that a stable operating pressure is obtained because the valve opening operating pressure is determined by the dimensional accuracy of the valve constituent member that can be easily controlled.

圧力スイッチの動作圧力は、加圧バネの押圧力、グロメットの水平壁部分の寸法などを変えることにより任意の値に設定可能であるが、低く設定すると充電中に圧力スイッチが頻繁に動作してスイッチがオフの状態にある時間が増え、所定時間内に充電を完了させることが困難となる。電池特性の低下を招かず、かつ、所定時間内に充電を完了させるためには、圧力スイッチの動作圧力を1.7〜2MPaに設定するのが好ましい。例えば圧力スイッチの動作圧力を1.7MPaに設定した場合、比較例電池においては30個中1個が、圧力スイッチが動作する以前に開弁してしまう不具合が生じる。実施例電池の場合は、開弁動作圧力のバラツキが小さく、何れの電池においても開弁動作圧力が圧力スイッチの動作圧力に比べて大きいので、比較例電池のような不具合が生じる虞がない。   The operating pressure of the pressure switch can be set to any value by changing the pressing force of the pressurizing spring, the dimension of the horizontal wall of the grommet, etc., but if it is set low, the pressure switch will operate frequently during charging. The time during which the switch is off increases, and it becomes difficult to complete charging within a predetermined time. It is preferable to set the operating pressure of the pressure switch to 1.7 to 2 MPa so that the battery characteristics are not deteriorated and the charging is completed within a predetermined time. For example, when the operating pressure of the pressure switch is set to 1.7 MPa, in the comparative battery, one out of 30 batteries opens before the pressure switch operates. In the case of the battery of the example, the variation in the valve opening operating pressure is small, and in any battery, the valve opening operating pressure is larger than the operating pressure of the pressure switch.

また、比較例電池の場合、開弁動作圧力を制御することが難しく、動作圧力を任意の値に設定することが困難であるが、本発明に係る密閉型蓄電池においては、弁構成部材の寸法を選ぶことによって開弁動作圧力を任意の値に設定することが容易であり、弁設計の自由度を拡げることができる。   Further, in the case of the comparative battery, it is difficult to control the valve opening operating pressure and it is difficult to set the operating pressure to an arbitrary value. However, in the sealed storage battery according to the present invention, the dimensions of the valve constituent members By selecting, it is easy to set the valve opening operating pressure to an arbitrary value, and the degree of freedom in valve design can be expanded.

請求項1〜4に記載の発明では、従来のグロメットに肉薄部を設けた弁構造のものと比較して、
電池個々の開放圧力のバラツキが小さくできるため、開放圧力の設定を低くする必要がなく、通常使用時における電池において、グロメットの肉薄部が破断して寿命となる不具合等が生じない密閉形蓄電池が得られるので産業上の利用可能性は極めて大きい。
In the inventions according to claims 1 to 4, in comparison with the valve structure in which the conventional grommet is provided with a thin portion,
Since the variation in the release pressure of each battery can be reduced, there is no need to reduce the setting of the release pressure. Since it is obtained, the industrial applicability is extremely large.

本発明の第1の実施形態に係る密閉型蓄電池の弁構造を示す図である。It is a figure which shows the valve structure of the sealed storage battery which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る密閉型蓄電池の弁構造を示す図である。It is a figure which shows the valve structure of the sealed storage battery which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る密閉型蓄電池の弁構造を示す図である。It is a figure which shows the valve structure of the sealed storage battery which concerns on the 3rd Embodiment of this invention. 比較例電池の弁構造を示す図である。It is a figure which shows the valve structure of a comparative example battery. 実施例電池および比較例電池の開弁動作圧力の分布を示すヒストグラムである。It is a histogram which shows distribution of the valve opening operation pressure of an Example battery and a comparative example battery.

符号の説明Explanation of symbols

1 キャップ
2 圧力スイッチの第2端子
3 加圧バネ
5 グロメット
6 接続端子
7 圧力スイッチの第1端子
8 ガスケット肉薄部
9、9′、9″ 密封栓
10 貫通孔
11 棒状部材

1 Cap 2 Second terminal of pressure switch 3 Pressure spring 5 Grommet 6 Connection terminal
7 Pressure switch first terminal 8 Gasket thin portion 9, 9 ', 9 "Seal plug 10 Through hole 11 Bar-shaped member

Claims (4)

充電時に蓄電池の内部圧力変化に応答して、充電電流を遮断又は通電させる電流断続スイッチ機構を内蔵する密閉型蓄電池であって、
蓄電池の内部圧力が異常に上昇したときに、蓄電池の内部圧力変化により上下する接続端子に貫通孔を形成させる開弁手段を備えることを特徴とする密閉型蓄電池。
In response to the internal pressure change of the storage battery at the time of charging, a sealed storage battery incorporating a current intermittent switch mechanism that cuts off or energizes the charging current,
A sealed storage battery comprising valve opening means for forming a through hole in a connection terminal that rises and falls due to a change in internal pressure of the storage battery when the internal pressure of the storage battery rises abnormally.
前記開弁手段が、
前記接続端子に設けた電池内部と外部を連通する貫通孔の内側または外側端部を密封栓によって封止し、蓄電池の内部圧力が異常に上昇したときに前記密封栓を破断または排除することを特徴とする請求項1に記載の密閉型蓄電池。
The valve opening means
Sealing the inside or outside end of the through hole that communicates the inside and outside of the battery provided in the connection terminal with a sealing plug, and breaking or eliminating the sealing plug when the internal pressure of the storage battery rises abnormally The sealed storage battery according to claim 1, wherein:
前記開弁手段が、
前記接続端子に設けた電池内部と外部を連通する貫通孔の内側端部を密封栓によって封止し、蓄電池の内部圧力が異常に上昇したときに、前記貫通孔の中に配置した棒状部材が前記密封栓を押圧することによって密封栓を破断または排除することを特徴とする請求項2に記載の密閉型蓄電池。
The valve opening means
A rod-shaped member disposed in the through-hole when the inner end of the through-hole communicating with the outside of the battery provided in the connection terminal is sealed with a sealing plug and the internal pressure of the storage battery rises abnormally The sealed storage battery according to claim 2, wherein the sealing plug is broken or eliminated by pressing the sealing plug.
前記開弁手段が、
前記接続端子に設けた電池内部と外部を連通する貫通孔の内側端部に樹脂製密封栓を嵌着し、蓄電池の内部圧力が異常に上昇したときに、前記貫通孔の中に配置した棒状部材が前記密封栓を押圧することによって、前記樹脂製密封栓を下方に押し抜くことを特徴とする請求項3に記載の密閉型蓄電池。

























The valve opening means
A resin-like sealing plug is fitted to the inner end of the through hole that communicates the inside and outside of the battery provided in the connection terminal, and when the internal pressure of the storage battery rises abnormally, it is a rod that is placed in the through hole The sealed storage battery according to claim 3, wherein when the member presses the sealing plug, the resin sealing plug is pushed downward.

























JP2004024387A 2004-01-30 2004-01-30 Sealed storage battery Pending JP2005216768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004024387A JP2005216768A (en) 2004-01-30 2004-01-30 Sealed storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004024387A JP2005216768A (en) 2004-01-30 2004-01-30 Sealed storage battery

Publications (1)

Publication Number Publication Date
JP2005216768A true JP2005216768A (en) 2005-08-11

Family

ID=34907083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004024387A Pending JP2005216768A (en) 2004-01-30 2004-01-30 Sealed storage battery

Country Status (1)

Country Link
JP (1) JP2005216768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152071A (en) * 2007-12-20 2009-07-09 Ntt Facilities Inc Battery monitor, sealed battery, and sealed battery pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152071A (en) * 2007-12-20 2009-07-09 Ntt Facilities Inc Battery monitor, sealed battery, and sealed battery pack

Similar Documents

Publication Publication Date Title
JP5011664B2 (en) Sealed secondary battery
KR100659881B1 (en) Lithium ion battery
JP3693844B2 (en) Battery-sensitive piezoelectric path blocking mechanism
JP4213846B2 (en) Sealed battery
JP2008530757A (en) End cap assembly and ventilation for high power batteries
JP4692985B2 (en) Sealed prismatic battery
JP2007080598A (en) Sealed square battery
JP2009087729A (en) Closed battery
JP6719504B2 (en) Feedthroughs, gas relief valves and associated storage batteries forming terminals for metal ion electrochemical storage batteries
JP2014137891A (en) Square secondary battery
JP3649491B2 (en) Batteries with explosion-proof function
JP2008210620A (en) Nonaqueous electrolyte secondary battery
JP2005056648A (en) Sealed battery
JP2002500415A (en) Pressure-responsive current breaker for electrochemical cells
JP2009048866A (en) Closed storage battery
JP2001325935A (en) Sealed alkaline battery
JP2005216768A (en) Sealed storage battery
JPH10247483A (en) Safety structure of sealed battery
JP3527548B2 (en) Safety device for secondary battery and non-aqueous electrolyte secondary battery with safety device
KR100624935B1 (en) Cylindrical Li Secondary Battery
JPH10334883A (en) Safety structure for sealed battery
JP2005216776A (en) Sealed storage battery and charger for the same
JPH02288063A (en) Safety device of battery
JP2006066175A (en) Sealed storage battery
JPH11111244A (en) Sealed storage battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404