JP2005216595A - Electromagnetic induction heating device - Google Patents

Electromagnetic induction heating device Download PDF

Info

Publication number
JP2005216595A
JP2005216595A JP2004019648A JP2004019648A JP2005216595A JP 2005216595 A JP2005216595 A JP 2005216595A JP 2004019648 A JP2004019648 A JP 2004019648A JP 2004019648 A JP2004019648 A JP 2004019648A JP 2005216595 A JP2005216595 A JP 2005216595A
Authority
JP
Japan
Prior art keywords
electromagnetic induction
induction heating
magnetic field
heating coil
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004019648A
Other languages
Japanese (ja)
Inventor
Masatake Tanimitsu
正剛 谷光
Hideo Tomita
英雄 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004019648A priority Critical patent/JP2005216595A/en
Publication of JP2005216595A publication Critical patent/JP2005216595A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic induction heating device characteristically composed by using an electromagnetic induction heating coil having a strip-like and uniform heating characteristic. <P>SOLUTION: A winding structure 3 similar to that of a stator of a conventional linear motor or an A.C. rotary machine is applied; a polyphase alternating current of a commercial frequency or a high frequency exceeding it is carried to the respective windings 3 from a power conversion device 2 for outputting a plurality of alternating currents relatively different in phase; and an electric conductor 5 used as a heating object of the electromagnetic induction heating is disposed at a place where an original moving member is disposed to generate either a moving magnetic field or a rotating magnetic field. Thereby, the electric conductor 5 can be uniformly heated in a strip-like form. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、被加熱電気導体を帯状の形状特性をもって均一に加熱することができる電磁誘導加熱装置に関する。 The present invention relates to an electromagnetic induction heating apparatus capable of uniformly heating an electric conductor to be heated with a band-like shape characteristic.

従来の電磁誘導加熱装置は、巻線構造が単相で渦巻形の電磁誘導加熱コイルまたはフェライトなどの磁性体の形状に沿って単相の巻線が施された構造の電磁誘導加熱コイルを使用して、単相の交流電流を出力する電力変換装置を用いてこれらの電磁誘導加熱コイルに単相の交流電流を流すことにより、これらの電磁誘導加熱コイルから放射される交番磁束に起因する被加熱電気導体の渦電流によるジュール熱発生の原理を用いて、この被加熱電気導体の表面を加熱するものである。
従来の電磁誘導加熱装置について、例えば特許文献1には物理学で呼称されるアラゴの円板の原理に基づき渦電流を被加熱電気導体表面に発生させ該渦電流に起因するジュール熱を利用して該被加熱電気導体を加熱する電磁誘導加熱方式並びにその装置が提案されているが特許文献1に記載の該電磁誘導加熱を実施するためには磁界発生源上の静止点から見た該被加熱電気導体の位置を所定速度で機械的に移動させる必要がある。
従来の電磁誘導加熱装置について、例えば特許文献2に記載の電磁誘導加熱装置には複数の巻線による電磁誘導加熱コイルの実施例が記載されているが特許文献2に記載の電磁誘導加熱装置に属する電磁誘導加熱コイルの巻線には全て同相で大きさが等しい交流電流を1回路のみ流すものである。
Conventional electromagnetic induction heating devices use a single-phase, spiral-shaped electromagnetic induction heating coil or an electromagnetic induction heating coil with a single-phase winding along the shape of a magnetic material such as ferrite. By using a power converter that outputs a single-phase alternating current, a single-phase alternating current is caused to flow through these electromagnetic induction heating coils, so that the magnetic flux caused by the alternating magnetic flux radiated from these electromagnetic induction heating coils is reduced. The surface of the heated electric conductor is heated using the principle of Joule heat generation by the eddy current of the heating electric conductor.
With respect to a conventional electromagnetic induction heating device, for example, in Patent Document 1, eddy current is generated on the surface of an electric conductor to be heated based on the principle of Arago's disk called physics, and Joule heat resulting from the eddy current is used. An electromagnetic induction heating method and apparatus for heating the heated electric conductor have been proposed. In order to perform the electromagnetic induction heating described in Patent Document 1, the object viewed from a stationary point on the magnetic field generation source is proposed. It is necessary to mechanically move the position of the heating electrical conductor at a predetermined speed.
As for the conventional electromagnetic induction heating device, for example, the electromagnetic induction heating device described in Patent Document 2 describes an example of an electromagnetic induction heating coil using a plurality of windings. Only one circuit of alternating current having the same phase and the same magnitude flows through the windings of the electromagnetic induction heating coil to which it belongs.

特開平05−082248号公報Japanese Patent Laid-Open No. 05-082248

特願2002−342115Japanese Patent Application No. 2002-342115

従来の単相巻線構造の電磁誘導加熱コイルを使用して平面状の被加熱電気導体を加熱する場合、交番磁束の放射の指向性が該電磁誘導加熱コイルの形状に依存するため、該被加熱電気導体の発熱の形状特性がこの磁束の指向性に依存する。したがって、ある形状を目的とする被加熱電気導体の加熱には従来の電磁誘導加熱コイルが適しているが、平面上を帯状の形状特性をもって均一に加熱する用途において従来の電磁誘導加熱コイルは加熱形状特性を満足しないことが課題である。 When a planar heated conductor is heated using an electromagnetic induction heating coil having a conventional single-phase winding structure, the radiation directivity of alternating magnetic flux depends on the shape of the electromagnetic induction heating coil. The shape characteristic of heat generation of the heating electric conductor depends on the directivity of the magnetic flux. Therefore, a conventional electromagnetic induction heating coil is suitable for heating an electric conductor to be heated for a certain shape, but a conventional electromagnetic induction heating coil is heated in an application in which uniform heating is performed with a band-like shape characteristic on a flat surface. The problem is that the shape characteristics are not satisfied.

単相の交流電流を流して交番磁束を発生させる従来の電磁誘導加熱コイルは、交番磁束の腹と節の位置が該電磁誘導加熱コイル上のある静止点から見ると空間的に一方向に移動せず、被加熱金属導体において腹の部分の磁束が放射される位置では渦電流損によるジュール熱が大きく、該被加熱金属導体において節の部分の磁束が放射される位置では該渦電流損によるジュール熱は該腹の位置の場合と比較して小さいため、該被加熱電気導体の表面全体で見たとき加熱分布が不均一になる。   A conventional electromagnetic induction heating coil that generates alternating magnetic flux by flowing a single-phase alternating current moves spatially in one direction when viewed from a stationary point on the electromagnetic induction heating coil. In the heated metal conductor, the Joule heat due to the eddy current loss is large at the position where the magnetic flux in the antinode portion is radiated, and the eddy current loss is caused in the position where the magnetic flux in the node portion is radiated in the heated metal conductor. Since the Joule heat is small compared to the case of the antinode, the heating distribution becomes non-uniform when viewed over the entire surface of the heated conductor.

従来の電磁誘導加熱装置について単相の交流電流を流すことにより電磁誘導加熱コイルから放射される交番磁界の概念は下記の数式で記述できる。   The concept of an alternating magnetic field radiated from an electromagnetic induction heating coil by flowing a single-phase alternating current in a conventional electromagnetic induction heating device can be described by the following mathematical formula.

Figure 2005216595
Figure 2005216595

上記数1において磁束密度をB、磁束密度の最大値をBm、コイルのある静止点の位置をθ、時刻をt、角速度をωとする。数1を非特許文献1に解説される2回転磁界理論により展開すると下記の数式で記述できる。 In the above equation 1, the magnetic flux density is B, the maximum value of the magnetic flux density is B m , the position of the stationary point with the coil is θ, the time is t, and the angular velocity is ω. When Equation 1 is expanded by the two-rotation magnetic field theory explained in Non-Patent Document 1, it can be described by the following mathematical formula.

最新電気機器学(宮入庄太著、丸善)Latest Electrical Engineering (Shota Miyairi, Maruzen)

Figure 2005216595
Figure 2005216595

上記数2の右辺の第1項をBf、第2項をBbとするとBfとBbはそれぞれ大きさが等しく移動方向が異なる移動磁界または回転磁界のいずれかである。請求項1または請求項3から請求項5のいずれかに記載の電磁誘導加熱装置について移動磁界または回転磁界の概念は電磁誘導加熱コイル上のある静止点から見て数2のBfまたはBbのどちらか1つの磁界分布が独立して存在するように電磁誘導加熱コイルを実現するものである。 If the first term on the right side of Equation 2 is B f and the second term is B b , then B f and B b are either a moving magnetic field or a rotating magnetic field having the same magnitude and different moving directions. 6. The electromagnetic induction heating device according to claim 1, wherein the concept of a moving magnetic field or a rotating magnetic field is expressed by B f or B b of Formula 2 when viewed from a certain stationary point on the electromagnetic induction heating coil. The electromagnetic induction heating coil is realized so that any one of the magnetic field distributions exists independently.

該2回転磁界理論の展開式について該数2の右辺の第1項Bf、第2項Bbをそれぞれ下記のように数式で表現する。 The first term B f and the second term B b on the right-hand side of the equation 2 are expressed by the following mathematical formulas for the expansion formula of the two-rotating magnetic field theory.

Figure 2005216595
Figure 2005216595

Figure 2005216595
Figure 2005216595

上記数3、4においてBmf≠Bmb、ωf≠ωbとすると数2に記載の数式は下記のように記述できる。 If B mf ≠ B mb and ω f ≠ ω b in the above equations 3 and 4, the mathematical formula described in equation 2 can be described as follows.

Figure 2005216595
Figure 2005216595

上記数5で表現される磁界分布も移動磁界または回転磁界である。請求項1または請求項3から請求項5のいずれかに記載の電磁誘導加熱コイルは数5で表現される磁界分布の実現も含むものであり、請求項2に記載の電力変換装置は該電磁誘導加熱コイルに数5で表現される磁界分布を実現するために複数個の交流電流を出力するものである。
請求項1に係る発明は、既存の交流回転機と該交流回転機を駆動するための多相交流電流を出力する電力変換装置の結合構造に似ているが、該交流回転機は該電力変換装置から出力される電気的エネルギーを該交流回転機の回転子の回転トルクに作用させるというエネルギーの電気機械変換を行うものである。一方、請求項1に記載する電磁誘導加熱コイルは該電力変換装置から出力される電気的エネルギーを該電磁誘導加熱コイルに供給することにより被加熱金属導体表面にレンツの法則に起因して渦電流を発生させ該渦電流によるジュール熱を積極的に利用して該被加熱金属導体を加熱するものであることを特徴とし、該電磁誘導加熱コイルはエネルギーの電気熱変換を実現するものである。
請求項2に係る発明は、商用電源周波数に等しい周波数、または該商用電源周波数を超える高周波のいずれかの交流電流を複数個の電流回路について該電流回路の個数を必要十分に満たす個数の該交流電流を出力することを特徴する電力変換装置を請求項1に記載の電磁誘導加熱装置において使用することにより、複数の巻線で構成される該電磁誘導加熱コイルに相対的に位相が異なる複数個の交流電流を供給することを実現するものである。
請求項3に係る発明は、従来の単相交流電流による電磁誘導加熱コイルから放射される単相交番磁界における腹と節の位置を空間的に一方向に移動させることにより該被加熱電気導体表面に生じる渦電流回路を空間的に同じ方向に移動させて該被加熱電気導体を帯状の形状特性をもって均一に加熱することを実現するものである。
請求項4に係る発明は請求項1または請求項3のいずれかに記載の電磁誘導加熱コイルを従来のリニアモータの固定子構造を利用して実施し移動磁界により被加熱電気導体を電磁誘導加熱する該電磁誘導加熱コイルにより請求項1に記載の電磁誘導加熱装置を実現するものである。
請求項5に係る発明は請求項1または請求項3のいずれかに記載の電磁誘導加熱コイルを従来の交流回転機の固定子構造を利用して実施し回転磁界により被加熱電気導体を電磁誘導加熱する該電磁誘導加熱コイルにより請求項1に記載の電磁誘導加熱装置を実現するものである。
The magnetic field distribution expressed by Equation 5 is also a moving magnetic field or a rotating magnetic field. The electromagnetic induction heating coil according to any one of claims 1 to 3 to 5 includes realization of a magnetic field distribution expressed by Formula 5, and the power conversion device according to claim 2 includes the electromagnetic A plurality of alternating currents are output in order to realize the magnetic field distribution expressed by Equation 5 in the induction heating coil.
The invention according to claim 1 is similar to a combined structure of an existing AC rotating machine and a power converter that outputs a multiphase AC current for driving the AC rotating machine. Electromechanical conversion of energy is performed in which electrical energy output from the device is applied to the rotational torque of the rotor of the AC rotating machine. On the other hand, the electromagnetic induction heating coil according to claim 1 supplies eddy current to the surface of the metal conductor to be heated due to Lenz's law by supplying the electric energy output from the power converter to the electromagnetic induction heating coil. And the heated metal conductor is heated by actively using Joule heat generated by the eddy current, and the electromagnetic induction heating coil realizes electrothermal conversion of energy.
According to the second aspect of the present invention, an AC current having a frequency equal to a commercial power supply frequency or a high frequency exceeding the commercial power supply frequency is a sufficient number of the AC circuits to satisfy the number of the current circuits for a plurality of current circuits. A plurality of electric power converters that output current are used in the electromagnetic induction heating device according to claim 1, and a plurality of electromagnetic induction heating coils that are composed of a plurality of windings are relatively different in phase. It is possible to supply an alternating current of.
According to a third aspect of the present invention, the surface of the electric conductor to be heated is moved spatially in one direction in the single-phase alternating magnetic field radiated from the electromagnetic induction heating coil by the conventional single-phase alternating current. The heated eddy current circuit is moved uniformly in the same direction spatially to heat the heated electric conductor uniformly with a band-like shape characteristic.
According to a fourth aspect of the present invention, the electromagnetic induction heating coil according to any one of the first or third aspect is implemented using a stator structure of a conventional linear motor, and the heated electric conductor is electromagnetically heated by a moving magnetic field. The electromagnetic induction heating device according to claim 1 is realized by the electromagnetic induction heating coil.
According to a fifth aspect of the present invention, the electromagnetic induction heating coil according to any one of the first or third aspect is implemented using a stator structure of a conventional AC rotating machine, and the heated electric conductor is electromagnetically induced by a rotating magnetic field. The electromagnetic induction heating device according to claim 1 is realized by the electromagnetic induction heating coil to be heated.

請求項1に記載の電磁誘導加熱装置を製作すると電気的に独立した複数の巻線の構造を有する電磁誘導加熱コイルに相対的に位相の異なる多相交流電流をこの個数を必要十分に満たす個数の出力する電力変換装置を有することを特徴とする電磁誘導加熱装置であり、該多相交流電流を該電磁誘導加熱コイルの各巻線に流すことにより移動磁界または回転磁界を発生することによりレンツの法則に従う渦電流回路の損失に起因するジュール熱をもって電気導体を電磁誘導加熱することを特徴とする電磁誘導加熱装置となる。   When the electromagnetic induction heating device according to claim 1 is manufactured, a number of electromagnetic induction heating coils having a plurality of electrically independent winding structures satisfying the necessary and sufficient number of multiphase alternating currents having relatively different phases. An electromagnetic induction heating device characterized by having a power conversion device that outputs a moving magnetic field or a rotating magnetic field by causing the multiphase alternating current to flow through each winding of the electromagnetic induction heating coil. The electromagnetic induction heating apparatus is characterized in that the electric conductor is electromagnetically heated with Joule heat resulting from the loss of the eddy current circuit according to the law.

請求項2に記載の電力変換装置を製作するとこれは複数の巻線回路にそれぞれ相対的に位相が異なる多相交流電流を出力する電力変換装置であり該多相交流電流の各相の周波数は商用電源周波数またはこれを超える高周波の交流電流を出力する電力変換装置であり該多相交流電流の各相の周波数は等価な周波数または各々異なる周波数のいずれかの周波数の交流電流を出力する電力変換装置を有することを特徴とする電磁誘導加熱機となる。   When the power conversion device according to claim 2 is manufactured, this is a power conversion device that outputs a multiphase alternating current having relatively different phases to a plurality of winding circuits, and the frequency of each phase of the multiphase alternating current is A power converter that outputs alternating current of high frequency exceeding commercial power supply frequency, and the power of each phase of the multiphase alternating current outputs alternating current of either equivalent frequency or different frequency It becomes an electromagnetic induction heater characterized by having an apparatus.

請求項3に記載の電磁誘導加熱コイルを製作するとこれは複数個の電気的に独立した巻線を有するものであり請求項2に記載の電力変換装置における複数個の出力系統を各巻線に独立して接続することにより各巻線に流れる交流電流について相対的に位相が異なるように制御された多相交流電流で各巻線に流れる交流電流の周波数について商用周波数またはそれを超える高周波のいずれかの多相交流電流で各巻線に流れる交流電流の周波数について等価な周波数または各々異なる周波数のいずれかの周波数の多相交流電流であり各々の巻線に交流電流が流れることにより電磁誘導による誘導磁界が各巻線部分に生じて各誘導磁界のベクトル要素を含む磁界分布を該電磁誘導加熱コイルについて総合的に求めると時刻経過について被加熱電気導体に渦電流を発生させるための磁界の強弱分布が該電磁誘導加熱コイルのある静止点から見て空間的に一方向に移動させる電磁誘導加熱コイルを有することを特徴とする電磁誘導加熱装置となる。
請求項4に記載の従来のリニアモータの固定子巻線構造と同様の巻線構造の電磁誘導加熱コイルを製作すると、これは複数個の巻線により構成されているものであり、これに該リニアモータの駆動電源、または請求項2に記載の電力変換装置を該電磁誘導加熱コイルに接続して相対的に位相が異なる多相交流電流を個々の巻線回路に流すことにより、磁界の強弱分布が従来のリニアモータの可動子が移動する方向に従って空間的に一方向に移動する。従来のリニアモータはフレミングの左手の法則によって該電力変換装置から供給されるエネルギーが該可動子のトルクに寄与して該可動子を機械的に一方向に移動させるものである。これに対して請求項3または請求項4のいずれかに記載の電磁誘導加熱コイルは該可動子が本来存在する位置に被加熱電気導体を配して該被加熱電気導体の位置を固定子に対して拘束することによりレンツの法則に従う該被加熱電気導体表面の渦電流に起因するジュール熱発生に積極的に寄与するものだから該磁界強弱分布は該電磁誘導加熱コイルの形状の直線方向に移動するためレンツの法則による該渦電流回路も該磁界の強弱分布の移動と同じ方向に移動させることにより該渦電流損による該ジュール熱発生源が該直線方向に移動し該電磁誘導加熱コイルの形状に沿って帯状の形状特性をもって該被加熱電気導体を加熱することができる。
請求項5に記載の従来の交流回転機の固定子巻線構造と同様の巻線構造の電磁誘導加熱コイルを製作すると、これは複数個の巻線により構成されているものであり、これに該交流回転機の駆動電源、または請求項2に記載の電力変換装置を該電磁誘導加熱コイルに接続して相対的に位相が異なる多相交流電流を個々の巻線回路に流すことにより、磁界の強弱分布が従来の交流回転機の可動子が回転する方向に従って空間的に一方向に移動する。従来の交流回転機はフレミングの左手の法則によって該電力変換装置から供給されるエネルギーが該可動子の回転トルクに寄与して該可動子を機械的に回転させるものであるが、請求項3または請求項5のいずれかに記載の電磁誘導加熱コイルは該可動子が本来存在する位置に被加熱電気導体を配して該被加熱電気導体の位置を固定子に対して拘束することによりレンツの法則に従う該被加熱電気導体表面の渦電流に起因するジュール熱発生に積極的に寄与するものである。そのため該磁界強弱分布は該電磁誘導加熱コイルの形状の回転方向に移動するためレンツの法則による該渦電流回路も該磁界の強弱分布の移動と同じ方向に回転させることにより該渦電流損による該ジュール熱発生源が該回転方向に回転し該電磁誘導加熱コイルの形状に沿って帯状の形状特性をもって該被加熱電気導体を加熱することができる。
When the electromagnetic induction heating coil according to claim 3 is manufactured, it has a plurality of electrically independent windings, and a plurality of output systems in the power converter according to claim 2 are independent of each winding. The frequency of the alternating current flowing in each winding is a multiphase alternating current that is controlled so that the phase of the alternating current flowing in each winding is relatively different. A multi-phase alternating current of either a frequency equivalent to the frequency of the alternating current flowing through each winding with a phase alternating current or a frequency different from each other, and an alternating current flowing through each winding causes an induction magnetic field due to electromagnetic induction. When the magnetic field distribution generated in each winding part and including the vector element of each induction magnetic field is comprehensively determined for the electromagnetic induction heating coil, An electromagnetic induction heating device having an electromagnetic induction heating coil that moves the magnetic field strength distribution for generating eddy current in one direction spatially as viewed from a stationary point of the electromagnetic induction heating coil. .
When an electromagnetic induction heating coil having a winding structure similar to the stator winding structure of the conventional linear motor according to claim 4 is manufactured, it is constituted by a plurality of windings. By connecting the drive power source of the linear motor or the power conversion device according to claim 2 to the electromagnetic induction heating coil and flowing a multiphase alternating current having a relatively different phase through each winding circuit, the strength of the magnetic field is increased. The distribution moves in one direction spatially according to the direction in which the mover of the conventional linear motor moves. In the conventional linear motor, the energy supplied from the power conversion device contributes to the torque of the movable element according to Fleming's left-hand rule and mechanically moves the movable element in one direction. On the other hand, in the electromagnetic induction heating coil according to claim 3 or 4, the heated electric conductor is disposed at a position where the movable element originally exists, and the position of the heated electric conductor is used as a stator. The magnetic field strength distribution moves in the linear direction of the shape of the electromagnetic induction heating coil because it contributes to the generation of Joule heat caused by eddy currents on the surface of the heated electrical conductor according to Lenz's law by constraining Therefore, by moving the eddy current circuit according to Lenz's law in the same direction as the movement of the intensity distribution of the magnetic field, the Joule heat generation source due to the eddy current loss moves in the linear direction, and the shape of the electromagnetic induction heating coil The heated electric conductor can be heated with a band-like shape characteristic.
When an electromagnetic induction heating coil having a winding structure similar to the stator winding structure of the conventional AC rotating machine according to claim 5 is manufactured, it is constituted by a plurality of windings. A drive power supply of the AC rotating machine or the power conversion device according to claim 2 is connected to the electromagnetic induction heating coil, and a multiphase AC current having a relatively different phase is caused to flow through each winding circuit to thereby generate a magnetic field. The strength distribution of this moves spatially in one direction according to the direction in which the mover of the conventional AC rotating machine rotates. In the conventional AC rotating machine, the energy supplied from the power converter contributes to the rotational torque of the movable element according to Fleming's left-hand rule, and mechanically rotates the movable element. The electromagnetic induction heating coil according to any one of claims 5 to 7, wherein the heated electric conductor is disposed at a position where the movable element originally exists, and the position of the heated electric conductor is restrained with respect to the stator. It actively contributes to the generation of Joule heat caused by eddy currents on the surface of the heated electrical conductor according to the law. Therefore, since the magnetic field strength distribution moves in the direction of rotation of the shape of the electromagnetic induction heating coil, the eddy current circuit according to Lenz's law is also rotated in the same direction as the movement of the strength distribution of the magnetic field, so A Joule heat generation source rotates in the rotation direction, and the heated electric conductor can be heated with a band-like shape characteristic along the shape of the electromagnetic induction heating coil.

本発明の電磁誘導加熱装置について装置構成を図1に示す。図1において、符号2は本発明の電力変換装置であり、商用周波数または該商用周波数を超える高周波の交流電流を出力し、該交流電流電流回路の個数を必要十分に満たす個数の該交流電流を出力することを特徴とする。図1において、符号3は本発明の電磁誘導加熱コイルであり、該渦電流を発生させるための磁界の強弱分布を該電磁誘導加熱コイル上の静止点から見て空間的に一方向に移動させることを特徴とする。図1において、符号1は該電力変換装置の入力電源である。図1において、符号4は該電磁誘導加熱コイル3に交流電流を流すことにより発生する移動磁界または回転磁界のいずれかの磁束線を表し、符号5は該電磁誘導加熱装置の加熱対象物である被加熱電気導体である。図1において、符号6はレンツの法則により発生した該被加熱電気導体表面に生じる渦電流の電流路を表すものである。 The apparatus configuration of the electromagnetic induction heating apparatus of the present invention is shown in FIG. In FIG. 1, reference numeral 2 denotes a power converter of the present invention, which outputs a commercial frequency or a high-frequency alternating current exceeding the commercial frequency, and supplies a number of the alternating currents that sufficiently and sufficiently satisfy the number of the alternating current circuit. It is characterized by outputting. In FIG. 1, reference numeral 3 denotes an electromagnetic induction heating coil according to the present invention, which moves the intensity distribution of a magnetic field for generating the eddy current in one direction spatially when viewed from a stationary point on the electromagnetic induction heating coil. It is characterized by that. In FIG. 1, reference numeral 1 denotes an input power source of the power converter. In FIG. 1, reference numeral 4 represents a magnetic flux line of either a moving magnetic field or a rotating magnetic field generated by passing an alternating current through the electromagnetic induction heating coil 3, and reference numeral 5 represents a heating object of the electromagnetic induction heating device. Heated electrical conductor. In FIG. 1, reference numeral 6 represents a current path of an eddy current generated on the surface of the heated electric conductor generated by Lenz's law.

本発明の電磁誘導加熱装置について、複数個の巻線回路について相対的に位相の異なる複数個の交流電流を出力する電力変換装置および複数個の巻線回路に交流電流を流すことにより交番磁界を発生する電磁誘導加熱コイルの電気回路の概念について図2に示す。図2において、該電力変換装置の出力数と該巻線回路の個数をN個として、Nは2以上の自然数である。図2において符号7、8、9、10で表す該電力変換装置の出力交流電圧および符号15、16、17、18で表す該電力変換装置の出力交流電流は、三角関数で各々の位相情報を表現できるものであり、これは該交流電圧の波形および該交流電流の波形をフーリエ級数展開によってこれらの基本波を三角関数で表現できる矩形波や三角波などでも良い。符号7、8、9、10はそれぞれ相対的に位相が異なる電圧であり、符号15、16、17、18はそれぞれ相対的に位相が異なる電流である。図2において、符号11、12、13、14は該電磁誘導加熱コイルの巻線である。図2はおいて、符号19、20、21、22は各々の巻線に該交流電流が流れることにより発生する交番磁界の磁束線を表すものである。   In the electromagnetic induction heating device of the present invention, an alternating magnetic field is generated by flowing an alternating current through a plurality of winding circuits and a power conversion device that outputs a plurality of alternating currents having relatively different phases with respect to the plurality of winding circuits. The concept of the electric circuit of the generated electromagnetic induction heating coil is shown in FIG. In FIG. 2, where N is the number of outputs of the power converter and the number of winding circuits, N is a natural number of 2 or more. In FIG. 2, the output AC voltage of the power converter represented by reference numerals 7, 8, 9, and 10 and the output AC current of the power converter represented by reference numerals 15, 16, 17, and 18 represent each phase information as a trigonometric function. The AC voltage waveform and the AC current waveform may be expressed by a square wave or a triangular wave that can express these fundamental waves as a trigonometric function by Fourier series expansion. Reference numerals 7, 8, 9, and 10 are voltages having relatively different phases, and reference numerals 15, 16, 17, and 18 are currents having relatively different phases. In FIG. 2, reference numerals 11, 12, 13, and 14 denote windings of the electromagnetic induction heating coil. In FIG. 2, reference numerals 19, 20, 21, and 22 represent magnetic flux lines of an alternating magnetic field generated when the alternating current flows through each winding.

図2の電気回路の概念をもとに本発明の電力変換装置と電磁誘導加熱コイルの電気回路の実施例を図3に示す。ここでは、複数の巻線回路37、38、39の個数を3個としている。図3における電力変換装置の電力ゲート素子30、31、32、33、34、35の構成は、電気工学においてフル・ブリッジ方式と呼称される。本発明の電力変換装置について電力ゲート素子の構成は電気工学において呼称されるハーフ・ブリッジ方式でも良い。図3において36、37、38の巻線接続構造は、電気工学においてスター結線と呼称されるものであるが、これは電気工学において呼称されるデルタ結線でも良い。図3に示す電気回路の基本的な概念は、本発明の電力変換装置の出力が3個を超える場合でもこれに準じて考えることができる。
図3に示す電力変換装置の電力ゲート素子30、31、32、33、34、35について、スイッチングのタイミングの実施例を図4に示す。図4のスイッチングのタイミングは電気工学において6ステップ三相スイッチングと呼称される。図4に示す電力ゲート素子のスイッチングの基本的な概念は、本発明の電力変換装置の出力が3個を超える場合でもこれに準じて考えることができる。
FIG. 3 shows an embodiment of the electric circuit of the power conversion device and electromagnetic induction heating coil according to the present invention based on the concept of the electric circuit of FIG. Here, the number of the plurality of winding circuits 37, 38, 39 is three. The configuration of the power gate elements 30, 31, 32, 33, 34, and 35 of the power conversion device in FIG. 3 is referred to as a full bridge system in electrical engineering. In the power conversion device of the present invention, the configuration of the power gate element may be a half-bridge system called in electrical engineering. In FIG. 3, the winding connection structure of 36, 37, and 38 is referred to as a star connection in electrical engineering, but may be a delta connection referred to in electrical engineering. The basic concept of the electric circuit shown in FIG. 3 can be considered according to this even when the output of the power converter of the present invention exceeds three.
FIG. 4 shows an example of switching timing for the power gate elements 30, 31, 32, 33, 34, and 35 of the power conversion apparatus shown in FIG. The switching timing of FIG. 4 is referred to as 6-step three-phase switching in electrical engineering. The basic concept of switching of the power gate element shown in FIG. 4 can be considered according to this even when the output of the power conversion device of the present invention exceeds three.

本発明の電磁誘導加熱コイルについて、複数個の巻線回路に流れる交流電流の相対的な位相差を制御することにより磁界の強弱分布をコイルのある静止点からみて空間的に一方向に移動させる方式を移動磁界あるいは回転磁界と呼称し、これは交流回転機を扱う分野ではごく一般的に知られている原理である。特にリニアモータの場合は移動磁界、交流回転機の場合は回転磁界と呼称することは一般に知られている。本発明の電磁誘導加熱コイルについて、実施例の説明の便宜上この習慣に従って、リニアモータの巻線構造を利用した電磁誘導加熱コイルを移動磁界式電磁誘導加熱コイル、交流回転機の巻線構造を利用した電磁誘導加熱コイルを回転磁界式電磁誘導加熱コイルとそれぞれ仮称する。   With respect to the electromagnetic induction heating coil of the present invention, by controlling the relative phase difference of alternating currents flowing through a plurality of winding circuits, the magnetic field strength distribution is spatially moved in one direction as seen from a stationary point of the coil. The system is called a moving magnetic field or a rotating magnetic field, and this is a principle that is generally known in the field of handling AC rotating machines. In particular, it is generally known that a linear motor is called a moving magnetic field, and an AC rotating machine is called a rotating magnetic field. For the electromagnetic induction heating coil of the present invention, the electromagnetic induction heating coil using the linear motor winding structure is used as the moving magnetic field type electromagnetic induction heating coil and the AC rotating machine winding structure according to this custom for convenience of explanation of the embodiment. The electromagnetic induction heating coils thus prepared are tentatively referred to as rotating magnetic field type electromagnetic induction heating coils.

本発明の移動磁界式電磁誘導加熱コイルを実施する場合は、まず図5に示す歯型に似た立体形状の磁性体を用意する。該磁性体の素材には磁歪損やヒステリシス損が少ないフェライトなどが良い。該磁性体において立体的に複数個の巻線を実施することにより本発明の電磁誘導加熱コイルを実現する。該巻線の方法はリニアモータと同様に全節巻や短節巻などが考えられ、全節巻による巻線を図6に、また短節巻による巻線を図7にそれぞれ示す。ここでは図6、図7について両者とも3個の巻線36、37、38で構成されるものとして、これに接続して使用する本発明の電力変換装置は、商用電源の周波数、またはそれを超える高周波の交流電流を出力し、互いに位相が異なる該交流電流を出力するものである。特に3個の該出力交流電流を平衡三相の条件で設定すると、該交流電流は3つの巻線にはそれぞれ120度ずつ位相が異なり同じ大きさの電流となる。また、図6、7における電気回路は本発明の電力変換装置をハーフ・ブリッジ方式で構成し、本発明の電磁誘導加熱コイルの巻線をスター結線にしたものと等価である。   When implementing the moving magnetic field type electromagnetic induction heating coil of the present invention, first, a three-dimensional magnetic body similar to the tooth shape shown in FIG. 5 is prepared. The material of the magnetic material is preferably a ferrite with little magnetostriction loss and hysteresis loss. The electromagnetic induction heating coil of the present invention is realized by three-dimensionally implementing a plurality of windings in the magnetic body. As the winding method, full-pitch winding, short-pitch winding, etc. can be considered as in the case of the linear motor. FIG. 6 shows a winding with full-pitch winding, and FIG. 7 shows a winding with short-pitch winding. 6 and FIG. 7, both of which are constituted by three windings 36, 37, and 38, and the power converter of the present invention connected to this is used for the frequency of the commercial power source or A high-frequency alternating current exceeding that is output, and the alternating currents having different phases are output. In particular, when the three output AC currents are set under balanced three-phase conditions, the AC currents are of the same magnitude with different phases by three degrees in the three windings. 6 and 7 is equivalent to the power converter of the present invention configured by a half-bridge system and the windings of the electromagnetic induction heating coil of the present invention being star-connected.

図6ならびに図7に示す移動磁界の巻線を従来のリニアモータにおける固定子と見立てれば、それぞれ該リニアモータの設計仕様による可動子を該リニアモータの該固定子の位置に合わせて配することにより、該可動子は移動磁界に合わせて該固定子の延伸方向にフレミングの左手の法則に従い一方向に移動することは周知の事実である。また、該可動子を固定子の位置から見て移動しないように人為的に拘束する状態で配したときは、該可動子上にレンツの法則により発生する渦電流に起因するジュール熱が発生することも、従来から一般的に知られていることである。しかしながら、本発明では、本来は機械的に動くように設計されている該リニアモータの固定子の作用に電気機械変換を至らしめるのではなく、該固定子からの電気エネルギーが被加熱電気導体の表面に発生するジュール熱に積極的に寄与するように作用することを特徴としている。該被加熱電気導体は、従来の該リニアモータの可動子と同様な構造でなくても良く、該電磁誘導加熱コイルの延伸方向に沿って平面状の該被加熱電気導体を配し、本発明の電力変換装置により商用周波数、または該商用周波数を超える高周波電流で該電磁誘導加熱コイルの複数の巻線に相対的に位相が異なる該高周波電流を流すことにより、該被加熱電気導体の加熱が実現する。   If the winding of the moving magnetic field shown in FIG. 6 and FIG. 7 is considered as a stator in a conventional linear motor, the mover according to the design specifications of the linear motor is arranged in accordance with the position of the stator of the linear motor. Thus, it is a well-known fact that the mover moves in one direction in accordance with Fleming's left-hand rule in the extension direction of the stator in accordance with the moving magnetic field. Also, when the mover is placed in an artificially constrained state so as not to move from the position of the stator, Joule heat is generated on the mover due to eddy currents generated by Lenz's law. This is also generally known from the past. However, in the present invention, the electromechanical conversion is not brought about by the action of the stator of the linear motor, which is originally designed to move mechanically, but the electric energy from the stator is applied to the heated electric conductor. It is characterized by acting to positively contribute to Joule heat generated on the surface. The heated electric conductor does not have to have the same structure as that of the conventional mover of the linear motor. The flat heated electric conductor is arranged along the extending direction of the electromagnetic induction heating coil. By passing the high-frequency currents having different phases relative to the plurality of windings of the electromagnetic induction heating coil at a commercial frequency or a high-frequency current exceeding the commercial frequency by the power conversion device, the heated electric conductor is heated. Realize.

本発明の移動磁界式電磁誘導加熱コイルの実施例について図5のフェライトに図7に示す要領で短節巻を施しこれを2極の移動磁界式電磁誘導加熱コイル67と呼称し、本発明の電力変換装置2を使用して該巻線に多相交流電流を供給し被加熱電気導体5を加熱する様子を図8に示す。前記2極とは、ある時刻における該電磁誘導加熱コイル67から照射される磁界分布の強弱について、N極が1つ、S極が1つ発生し、合わせて2極と呼称する。図8において、例えば該被加熱電気導体5は短冊状のステンレスの延板でも良く、この形が平面状でも良い。また、該被加熱電気導体5の素材は、該ステンレスに限らず、該移動磁界式電磁誘導加熱コイルの巻線区分によらず、レンツの法則により交番磁界に起因する渦電流が該被加熱金属導体に流れ該渦電流によるジュール熱が発生するものならば良い。図8において、該移動磁界式電磁誘導加熱コイル67と被加熱電気導体5は空間的に符号68に示す距離をもって互いに被接触であっても該被加熱電気導体5は発熱することから、この発熱要因は明らかに電磁誘導加熱の原理に基づくものである。   In the embodiment of the moving magnetic field type electromagnetic induction heating coil of the present invention, a short-pitch winding is applied to the ferrite of FIG. 5 in the manner shown in FIG. 7, and this is referred to as a two-pole moving magnetic field type electromagnetic induction heating coil 67. FIG. 8 shows a state in which a multiphase alternating current is supplied to the windings using the power converter 2 to heat the heated electrical conductor 5. The term “two poles” refers to the intensity of the magnetic field distribution radiated from the electromagnetic induction heating coil 67 at a certain time, where one N pole and one S pole are generated and collectively referred to as two poles. In FIG. 8, for example, the heated electric conductor 5 may be a strip-shaped stainless steel plate, and this shape may be planar. Further, the material of the heated electric conductor 5 is not limited to the stainless steel, and the eddy current caused by the alternating magnetic field is not affected by the winding magnetic field electromagnetic induction heating coil according to Lenz's law. Any material that flows in the conductor and generates Joule heat due to the eddy current may be used. In FIG. 8, even if the moving magnetic field type electromagnetic induction heating coil 67 and the heated electric conductor 5 are in contact with each other at a distance spatially indicated by reference numeral 68, the heated electric conductor 5 generates heat. The factor is clearly based on the principle of electromagnetic induction heating.

本発明の移動磁界式電磁誘導加熱コイルの強弱分布が該電磁誘導加熱コイルのある静止点から見て空間的に一方向に移動する様子を磁束放射面について水平方向で見たものを図9に示す。図9において、該電磁誘導加熱コイル67に本発明の電力変換装置2を接続するものとして、この電気的条件は平衡三相とする。平衡三相の位相について、それぞれU相、V相、W相と呼称し、これらの相についてU相の巻線70、73にはU相の交流電流、V相の巻線72、75にはV相の交流電流、W相の巻線71、74にはW相の交流電流を流すものとする。該電磁誘導加熱コイル67の磁束照射面に垂直方向を軸として、U相の巻線70と73は互いに異なる周回方向の巻線、V相の巻線72と75は互いに異なる周回方向の巻線、W相の巻線71と74は互いに異なる周回方向の巻線であり、巻線70、72、74は互いに等しい周回方向の巻線、巻線71、73、75は互いに等しい周回方向の巻線である。平衡三相の位相に合わせてある時刻t=0の磁界の強弱分布を実線78、そこから時刻がΔtだけ経過したt=0+Δtにおける磁界の強弱分布を破線79で示す。図9において、該電磁誘導コイル67のある静止点から見た磁界の強弱分布が時間経過を伴って幾何学的なベクトル要素として該電磁誘導加熱コイル67の直線方向77に移動する。これは、本発明の電磁誘導加熱コイルの特徴である。この磁界強度の空間的な移動方向に従って、被加熱電気導体5の表面における渦電流回路6が移動するので、これは該被加熱電気導体5の表面に発生する該渦電流に起因するジュール熱も該移動方向77に移動し、該電磁誘導加熱の形状に沿って帯状に該被加熱金属導体5を加熱することができる。   FIG. 9 shows a horizontal direction of the magnetic flux radiation surface in which the strength distribution of the moving magnetic field type electromagnetic induction heating coil of the present invention moves spatially in one direction when viewed from a stationary point of the electromagnetic induction heating coil. Show. In FIG. 9, it is assumed that the electric power converter 2 of the present invention is connected to the electromagnetic induction heating coil 67, and this electrical condition is balanced three-phase. The balanced three-phase phases are referred to as the U-phase, V-phase, and W-phase, respectively. For these phases, the U-phase windings 70 and 73 have a U-phase AC current, and the V-phase windings 72 and 75 have a It is assumed that a W-phase AC current and a W-phase AC current flow through the W-phase windings 71 and 74. The U-phase windings 70 and 73 are different in winding direction and the V-phase windings 72 and 75 are different in winding direction around the direction perpendicular to the magnetic flux irradiation surface of the electromagnetic induction heating coil 67. W-phase windings 71 and 74 are windings in different circumferential directions, windings 70, 72, 74 are windings in the same circumferential direction, and windings 71, 73, 75 are windings in the same circumferential direction. Is a line. The strength distribution of the magnetic field at time t = 0 corresponding to the balanced three-phase phase is indicated by a solid line 78, and the strength distribution of the magnetic field at time t = 0 + Δt after the time Δt has elapsed therefrom is indicated by a broken line 79. In FIG. 9, the intensity distribution of the magnetic field viewed from a stationary point of the electromagnetic induction coil 67 moves in the linear direction 77 of the electromagnetic induction heating coil 67 as a geometric vector element with time. This is a feature of the electromagnetic induction heating coil of the present invention. The eddy current circuit 6 moves on the surface of the heated electric conductor 5 in accordance with the spatial movement direction of the magnetic field strength, and this also causes Joule heat caused by the eddy current generated on the surface of the heated electric conductor 5. The metal conductor 5 to be heated can move in the moving direction 77 and can be heated in a band shape along the shape of the electromagnetic induction heating.

本発明の回転磁界式電磁誘導加熱コイルの実施例を図10に示す。図10において、巻線の構造は従来の2極の三相誘導回転機の固定子と同様のもので、図10における移動磁界式誘導加熱コイル67の磁束照射面について該磁束照射面の垂線が中心軸85と直角に交わるように該磁束照射面を配したものと同等である。図10において、一例として巻線70、71、72、73、74、75の構造は電気工学にて呼称される単節巻であるが、これらの構造は電気工学にて呼称される全節巻でも良い。図10において巻線70、71、72、73、74、75は電気工学で呼称されるスター結線あるいはデルタ結線のいずれかの巻線を施し本発明の電力変換装置に接続する。本発明に係り交流電圧源64、65、66の構造は電気工学において呼称されるハーフ・ブリッジ式であるが、これは電気工学にて呼称されるフル・ブリッジでも良い。本発明の電磁誘導加熱コイルは進相コンデンサを使用して磁界の強弱分布を空間的に一方向に移動させる仕組みの交流回転機の固定子構造を使用しても良い。該回転式電磁誘導加熱コイル84の被加熱電気導体は従来の交流回転機の可動子の構造でなくても良く、特に該被加熱電気導体製のパイプの表面を周回方向に帯状に加熱する用途に適している。   An embodiment of the rotating magnetic field type electromagnetic induction heating coil of the present invention is shown in FIG. In FIG. 10, the winding structure is the same as that of the stator of a conventional two-pole three-phase induction rotating machine, and the perpendicular to the magnetic flux irradiation surface of the moving magnetic field induction heating coil 67 in FIG. This is equivalent to the magnetic flux irradiation surface arranged so as to intersect the central axis 85 at a right angle. In FIG. 10, as an example, the structures of the windings 70, 71, 72, 73, 74, and 75 are single-pitch windings referred to in electrical engineering, but these structures are all-pitch windings referred to in electrical engineering. But it ’s okay. In FIG. 10, windings 70, 71, 72, 73, 74, and 75 are connected to the power conversion device of the present invention by applying either star connection or delta connection called electrical engineering. According to the present invention, the structure of the AC voltage sources 64, 65, 66 is a half bridge type called in electrical engineering, but this may be a full bridge called in electrical engineering. The electromagnetic induction heating coil of the present invention may use a stator structure of an AC rotating machine that uses a phase advance capacitor to spatially move the magnetic field strength distribution in one direction. The electric conductor to be heated of the rotary electromagnetic induction heating coil 84 may not have the structure of the mover of the conventional AC rotating machine, and in particular, it is used for heating the surface of the pipe made of the electric conductor to be wound in a loop shape. Suitable for

本発明の電磁誘導加熱装置について本発明の移動磁界式電磁誘導加熱コイルの適用例を図11に示す。図11において符号80は被着材を表し符号81は該被着材80に塗布された熱可塑性または熱硬化性のいずれかの接着特性を現す接着剤である。図11において、該被着材80と被加熱電気導体5を該接着剤81で接着する際に本発明の電力変換装置を接続した移動磁界式電磁誘導加熱コイル67を使用して該被加熱電気導体5を加熱すると該接着剤81に熱作用が生じて接着効果を促進して従来よりも短い時間で接着することができる。また図11に示す接着構造体を解体する際に該移動磁界式電磁誘導加熱コイル67を使用して該被加熱電気導体5を加熱することにより該接着剤81の溶融化または炭化のいずれかの劣化効果を得ることができ該被着材80と該被加熱電気導体5を容易に解体することができるので接着構造体の解体時に係る材料の分離分別作業の能率が改善される。該移動磁界式電磁誘導加熱コイル67の加熱範囲は該移動磁界式電磁誘導加熱コイル67の磁束照射面の面積に沿って帯状の形状特性となり、該移動磁界式電磁誘導加熱コイル67の巻線数の増減により加熱範囲の帯長方向の寸法82が決定され該移動磁界式電磁誘導加熱コイル67の骨組みとなる磁性体の形状により加熱範囲の帯幅方向の寸法83が決定されることが該移動磁界式電磁誘導加熱コイル67の特徴である。   FIG. 11 shows an application example of the moving magnetic field type electromagnetic induction heating coil of the present invention for the electromagnetic induction heating apparatus of the present invention. In FIG. 11, reference numeral 80 denotes an adherend, and reference numeral 81 denotes an adhesive that exhibits either thermoplastic or thermosetting adhesive properties applied to the adherend 80. In FIG. 11, when the adherend 80 and the heated electric conductor 5 are bonded with the adhesive 81, the moving electric field electromagnetic induction heating coil 67 to which the power converter of the present invention is connected is used. When the conductor 5 is heated, a thermal action is generated in the adhesive 81 to promote the bonding effect, and the bonding can be performed in a shorter time than before. Further, when the bonded structure shown in FIG. 11 is disassembled, the heated electric conductor 5 is heated by using the moving magnetic field type electromagnetic induction heating coil 67 to either melt or carbonize the adhesive 81. Since the deterioration effect can be obtained and the adherend 80 and the heated electric conductor 5 can be easily disassembled, the efficiency of the material separation and separation work at the time of disassembly of the bonded structure is improved. The heating range of the moving magnetic field type electromagnetic induction heating coil 67 has a belt-like shape characteristic along the area of the magnetic flux irradiation surface of the moving magnetic field type electromagnetic induction heating coil 67. It is determined that the dimension 82 in the belt length direction of the heating range is determined by the increase / decrease of the heating range, and the dimension 83 in the band width direction of the heating range is determined by the shape of the magnetic material that forms the framework of the moving magnetic field type electromagnetic induction heating coil 67. This is a feature of the magnetic field type electromagnetic induction heating coil 67.

本発明の電磁誘導加熱装置について回転磁界式電磁誘導加熱コイルの適用例を図12に示す。図12における実施例は本発明の電磁誘導加熱装置を水あるいはアルコールあるいは水蒸気などの流体加熱装置として使用したときの一例である。図12において符号90は流体貯蔵タンクを表すものであり特に水を蓄える場合は水源と呼称しても良い。図12において符号87は流体送り出しポンプであり流体吸入口88と流体送出口89を有している。該流体貯蔵タンク90と該流体送り出しポンプ87は吸入口側連結パイプ91により連結されており該被加熱電気導体製のパイプ86と該流体送り出しポンプ89とは送出口側連結パイプ92により連結されている。図12において本発明の電力変換装置を回転磁界式電磁誘導加熱コイル84に接続して該被加熱電気導体製のパイプ86を加熱する際に該被加熱電気導体製のパイプ86の内径部分に流体を流すと該流体は該被加熱電気導体製のパイプ86から熱エネルギーを奪い取るため送出口側連結パイプ92の位置と比較して被加熱流体排出口93に位置する流体は温度が高くなる。従来の交番磁界による電磁誘導加熱装置と比較して本発明の回転磁界式電磁誘導加熱コイル84は該被加熱電気導体製のパイプ86を複数個束ねて該回転磁界式電磁誘導加熱コイル84に挿入しても各被加熱電気導体製のパイプ86における流体の加熱効果を一様に得られることを特徴とする。   FIG. 12 shows an application example of a rotating magnetic field type electromagnetic induction heating coil in the electromagnetic induction heating apparatus of the present invention. The embodiment in FIG. 12 is an example when the electromagnetic induction heating device of the present invention is used as a fluid heating device such as water, alcohol or water vapor. In FIG. 12, reference numeral 90 represents a fluid storage tank, and may be referred to as a water source particularly when water is stored. In FIG. 12, reference numeral 87 denotes a fluid delivery pump, which has a fluid suction port 88 and a fluid delivery port 89. The fluid storage tank 90 and the fluid delivery pump 87 are connected by a suction port side connection pipe 91, and the heated conductor pipe 86 and the fluid delivery pump 89 are connected by a delivery port side connection pipe 92. Yes. In FIG. 12, when the power converter of the present invention is connected to the rotating magnetic field type electromagnetic induction heating coil 84 to heat the pipe 86 made of the heated electric conductor, a fluid is applied to the inner diameter portion of the pipe 86 made of the heated electric conductor. When the fluid flows, the fluid takes heat energy from the pipe 86 made of the heated electric conductor, so that the temperature of the fluid located at the heated fluid discharge port 93 becomes higher than the position of the outlet connection pipe 92. Compared with a conventional electromagnetic induction heating device using an alternating magnetic field, the rotating magnetic field type electromagnetic induction heating coil 84 of the present invention is bundled with a plurality of pipes 86 made of the heated electric conductor and inserted into the rotating magnetic field type electromagnetic induction heating coil 84. However, the heating effect of the fluid in each pipe 86 made of each heated electric conductor can be obtained uniformly.

本発明の装置構成の一例を示す。An example of the apparatus structure of this invention is shown. 本発明の装置構成について電気回路の基本概念を示す。The basic concept of an electric circuit is shown about the apparatus structure of this invention. 本発明の装置構成について電力変換装置の一例を示す。An example of a power converter is shown about the device composition of the present invention. 本発明の電力変換装置に関して図3に示すゲート素子についてスイッチングのタイミング図の一例を示す。FIG. 4 shows an example of a switching timing diagram for the gate element shown in FIG. 3 for the power converter of the present invention. 本発明の移動磁界式電磁誘導加熱コイルに関して、該電磁誘導加熱コイルの一部品である磁性体の構造の一例を示す。An example of the structure of a magnetic body that is a component of the electromagnetic induction heating coil according to the moving magnetic field type electromagnetic induction heating coil of the present invention will be shown. 図5に示す磁性体にリニアモータの全節巻を三相構造で実施した一例を示す。An example in which the whole body winding of the linear motor is implemented in a three-phase structure on the magnetic body shown in FIG. 図5に示す磁性体にリニアモータの短節巻を三相構造で実施した一例を示す。An example in which a short-ply winding of a linear motor is implemented in a three-phase structure on the magnetic body shown in FIG. 本発明の移動磁界式電磁誘導加熱コイルと被加熱電気導体の配置構成の一例を示す。An example of arrangement | positioning structure of the moving magnetic field type electromagnetic induction heating coil of this invention and a to-be-heated electrical conductor is shown. 本発明における移動磁界式電磁誘導加熱コイルコイルから照射される磁束の強弱分布の概念を示す。The concept of the strength distribution of the magnetic flux irradiated from the moving magnetic field type electromagnetic induction heating coil coil in this invention is shown. 本発明の回転磁界式電磁誘導加熱コイルと電力変換装置の一例を示す。An example of the rotating magnetic field type electromagnetic induction heating coil and power converter of this invention is shown. 本発明における移動磁界式電磁誘導加熱コイルの解体性接着に関する実施の一例を示す。An example regarding the implementation regarding the dismantling adhesion | attachment of the moving magnetic field type electromagnetic induction heating coil in this invention is shown. 本発明における回転磁界式電磁誘導加熱コイルの流体の加熱装置に関する実施の一例を示す。An example regarding the implementation regarding the heating apparatus of the fluid of the rotating magnetic field type electromagnetic induction heating coil in this invention is shown.

符号の説明Explanation of symbols

1 電力変換装置の入力電源
2 電力変換装置
3 電磁誘導加熱コイル
4 磁束線
5 被加熱電気導体
6 渦電流回路
7 第1番目の交流電圧源
8 第2番目の交流電圧源
9 第3番目の交流電圧源
10 第N番目の交流電圧源
11 第1番目の巻線
12 第2番目の巻線
13 第3番目の巻線
14 第N番目の巻線
15 第1番目の巻線に流れる交流電流
16 第2番目の巻線に流れる交流電流
17 第3番目の巻線に流れる交流電流
18 第N番目の巻線に流れる交流電流
19 第1番目の巻線に誘起する磁束
20 第2番目の巻線に誘起する磁束
21 第3番目の巻線に誘起する磁束
22 第N番目の巻線に誘起する磁束
23 第1の整流用ダイオード
24 第2の整流用ダイオード
25 第3の整流用ダイオード
26 第4の整流用ダイオード
27 平滑用リアクタ
28 平滑用コンデンサ
29 電力変換装置の制御回路
30 電力ゲート素子U
31 電力ゲート素子X
32 電力ゲート素子V
33 電力ゲート素子Y
34 電力ゲート素子W
35 電力ゲート素子Z
36 U相の巻線
37 V相の巻線
38 W相の巻線
39 電力ゲート素子状態表示の軸
40 電力ゲート素子UのON状態
41 電力ゲート素子U、XのOFF状態
42 電力ゲート素子XのON状態
43 電力ゲート素子VのON状態
44 電力ゲート素子V,YのOFF状態
45 電力ゲート素子YのON状態
46 電力ゲート素子WのON状態
47 電力ゲート素子W,ZのOFF状態
48 電力ゲート素子ZのON状態
49 電力ゲート素子U,Xの時間軸
50 電力ゲート素子V,Yの時間軸
51 電力ゲート素子W、Zの時間軸
52 電力ゲート素子XがOFFの時刻
53 電力ゲート素子WがOFFの時刻
54 電力ゲート素子YがOFFの時刻
55 電力ゲート素子UがOFFの時刻
56 電力ゲート素子ZがOFFの時刻
57 電力ゲート素子VがOFFの時刻
58 出力電圧波形の1周期
59 デットタイム
60 歯型の磁性体
61 歯型の磁性体の平面図
62 歯型の磁性体の正面図
63 歯型の磁性体の側面図
64 U相の交流電圧源
65 V相の交流電圧源
66 W相の交流電圧源
67 移動磁界式電磁誘導加熱コイル
68 コイルと被加熱物体との距離
69 磁束照射面
70 U相N極巻線
71 W相S極巻線
72 V相N極巻線
73 U相S極巻線
74 W相N極巻線
75 V相S極巻線
76 磁界強度と極性を表現する軸
77 コイル上の位置座標を表現する軸
78 時刻t=0の磁界強弱分布
79 時刻t=0+Δtの磁界強弱分布
80 被着材
81 接着剤
82 加熱範囲の帯長方向の寸法
83 加熱範囲の帯幅方向の寸法
84 回転磁界式電磁誘導加熱コイル
85 中心軸
86 被加熱電気導体製のパイプ
87 流体送り出しポンプ
88 流体吸入口
89 流体送出口
90 流体貯蔵タンク
91 吸入口側連結パイプ
92 送出口側連結パイプ
93 被加熱流体排出口
DESCRIPTION OF SYMBOLS 1 Input power source of power converter 2 Power converter 3 Electromagnetic induction heating coil 4 Magnetic flux line 5 Heated electric conductor 6 Eddy current circuit 7 First AC voltage source 8 Second AC voltage source 9 Third AC Voltage source 10 Nth AC voltage source 11 First winding 12 Second winding 13 Third winding 14 Nth winding 15 AC current 16 flowing in the first winding 16 AC current 17 flowing in the second winding 17 AC current 18 flowing in the third winding 18 AC current flowing in the Nth winding 19 Magnetic flux 20 induced in the first winding 20 Second winding Magnetic flux 21 induced in the third winding 22 magnetic flux induced in the Nth winding 23 first rectifier diode 24 second rectifier diode 25 third rectifier diode 26 fourth Rectifier diode 27 smoothing reactor 28 flat Capacitor for slip 29 Power control device control circuit 30 Power gate element U
31 Power gate element X
32 Power gate element V
33 Power gate element Y
34 Power gate element W
35 Power gate element Z
36 U-phase winding 37 V-phase winding 38 W-phase winding 39 Power gate element state display axis 40 Power gate element U ON state 41 Power gate elements U, X OFF state 42 Power gate element X ON state 43 ON state of power gate element V 44 OFF state of power gate elements V and Y 45 ON state of power gate element Y 46 ON state of power gate element W 47 OFF state of power gate elements W and Z 48 Power gate element Z ON state 49 Time axis 50 of power gate elements U and X Time axis 51 of power gate elements V and Y Power gate element W and time axis 52 of Z Time 53 when power gate element X is OFF 53 Power gate element W is OFF Time 54 power gate element Y is OFF time 55 power gate element U is OFF time 56 power gate element Z is OFF time 57 power gate element V is OF F time 58 One cycle of output voltage waveform 59 Dead time 60 Tooth-shaped magnetic body 61 Plan view of tooth-shaped magnetic body 62 Front view of tooth-shaped magnetic body 63 Side view of tooth-shaped magnetic body 64 U-phase AC voltage source 65 V-phase AC voltage source 66 W-phase AC voltage source 67 Moving magnetic field type electromagnetic induction heating coil 68 Distance between coil and object to be heated 69 Magnetic flux irradiation surface 70 U-phase N-pole winding 71 W-phase S-pole Winding 72 V-phase N-pole winding 73 U-phase S-pole winding 74 W-phase N-pole winding 75 V-phase S-pole winding 76 A shaft 77 representing the magnetic field strength and polarity A shaft 78 representing the position coordinates on the coil Magnetic field strength distribution 79 at time t = 0 Magnetic field strength distribution 80 at time t = 0 + Δt Adhering material 81 Adhesive 82 Dimension in the length direction of the heating range 83 Dimension in the width direction of the heating range 84 Rotating magnetic field type electromagnetic induction heating coil 85 Center shaft 86 Pipe 87 made of heated conductor 87 Flow Feed pump 88 fluid inlet 89 fluid outlet 90 fluid reservoir tank 91 suction port side connecting pipe 92 the delivery port side connecting pipe 93 heated fluid outlet

Claims (5)

レンツの電磁誘導の法則に基づき電気導体内に渦電流を発生させて該渦電流によるジュール熱の発生を利用して該電気導体を加熱する電磁誘導加熱装置で、複数個の巻線回路について相対的に位相の異なる複数個の交流電流を出力する電力変換装置と複数個の巻線回路に相対的に位相の異なる複数個の交流電流を流すことにより移動磁界または回転磁界のいずれかを発生する電磁誘導加熱コイルにより構成されることを特徴とする電磁誘導加熱装置。 An electromagnetic induction heating device that generates eddy currents in an electrical conductor based on Lenz's law of electromagnetic induction and uses the generation of Joule heat by the eddy currents to A moving magnetic field or a rotating magnetic field is generated by flowing a plurality of alternating currents having relatively different phases through a power converter that outputs a plurality of alternating currents having different phases and a plurality of winding circuits. An electromagnetic induction heating device comprising an electromagnetic induction heating coil. 請求項1に記載の電磁誘導加熱装置において、商用電源周波数に等しい周波数または該商用電源周波数を超える高周波のいずれかの交流電流を複数個の電流回路について該電流回路の個数を必要十分に満たす個数の該交流電流出力を有し該交流電流の各相の周波数は等価または各々異なる周波数の多相交流電流を出力する電力変換装置により構成されることを特徴とする電磁誘導加熱装置。 2. The electromagnetic induction heating apparatus according to claim 1, wherein an AC current having a frequency equal to a commercial power supply frequency or a high frequency exceeding the commercial power supply frequency is a sufficient number of current circuits for a plurality of current circuits. An electromagnetic induction heating device comprising: a power conversion device that outputs a multiphase alternating current having a frequency equal to or different from each other in frequency of each phase of the alternating current. 請求項1に記載の電磁誘導加熱装置において、複数個の巻線回路に流れる複数個の交流電流の相対的な位相差を制御することにより該渦電流を発生させるための磁界の強弱分布を該電磁誘導加熱コイル上の静止点から見て空間的に一方向に移動させる電磁誘導加熱コイルにより構成されることを特徴とする電磁誘導加熱装置。 2. The electromagnetic induction heating device according to claim 1, wherein the intensity distribution of the magnetic field for generating the eddy current is controlled by controlling a relative phase difference between a plurality of alternating currents flowing through the plurality of winding circuits. An electromagnetic induction heating apparatus comprising an electromagnetic induction heating coil that moves spatially in one direction when viewed from a stationary point on the electromagnetic induction heating coil. 請求項1から請求項3のいずれかに記載の電磁誘導加熱装置において、請求項3に記載の電磁誘導加熱コイルを従来のリニアモータの固定子構造で実施して移動磁界により被加熱電気導体を電磁誘導加熱する電磁誘導加熱コイルで構成されることを特徴とする電磁誘導加熱装置。 The electromagnetic induction heating device according to any one of claims 1 to 3, wherein the electromagnetic induction heating coil according to claim 3 is implemented by a stator structure of a conventional linear motor, and an electric conductor to be heated is moved by a moving magnetic field. An electromagnetic induction heating device comprising an electromagnetic induction heating coil for electromagnetic induction heating. 請求項1から請求項3のいずれかに記載の電磁誘導加熱装置において、請求項3に記載の電磁誘導加熱コイルを従来の交流回転機の固定子構造で実施して回転磁界により被加熱電気導体を電磁誘導加熱する電磁誘導加熱コイルで構成されることを特徴とする電磁誘導加熱装置。
The electromagnetic induction heating device according to any one of claims 1 to 3, wherein the electromagnetic induction heating coil according to claim 3 is implemented with a stator structure of a conventional AC rotating machine, and an electric conductor to be heated by a rotating magnetic field. An electromagnetic induction heating device comprising an electromagnetic induction heating coil that electromagnetically heats the heat.
JP2004019648A 2004-01-28 2004-01-28 Electromagnetic induction heating device Pending JP2005216595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004019648A JP2005216595A (en) 2004-01-28 2004-01-28 Electromagnetic induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004019648A JP2005216595A (en) 2004-01-28 2004-01-28 Electromagnetic induction heating device

Publications (1)

Publication Number Publication Date
JP2005216595A true JP2005216595A (en) 2005-08-11

Family

ID=34903806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004019648A Pending JP2005216595A (en) 2004-01-28 2004-01-28 Electromagnetic induction heating device

Country Status (1)

Country Link
JP (1) JP2005216595A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054331A (en) * 2009-08-31 2011-03-17 Mitsui Eng & Shipbuild Co Ltd Induction heating method and induction heating device
JP2011054322A (en) * 2009-08-31 2011-03-17 Mitsui Eng & Shipbuild Co Ltd Induction heating method and induction heating device
JP2011053403A (en) * 2009-09-01 2011-03-17 Canon Inc Fixing device
CN113621776A (en) * 2021-08-20 2021-11-09 西安热工研究院有限公司 Method for heat treatment of wind generating set frame

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054331A (en) * 2009-08-31 2011-03-17 Mitsui Eng & Shipbuild Co Ltd Induction heating method and induction heating device
JP2011054322A (en) * 2009-08-31 2011-03-17 Mitsui Eng & Shipbuild Co Ltd Induction heating method and induction heating device
JP2011053403A (en) * 2009-09-01 2011-03-17 Canon Inc Fixing device
CN113621776A (en) * 2021-08-20 2021-11-09 西安热工研究院有限公司 Method for heat treatment of wind generating set frame
CN113621776B (en) * 2021-08-20 2023-08-29 西安热工研究院有限公司 Method for heat treatment of wind generating set rack

Similar Documents

Publication Publication Date Title
US7615904B2 (en) Brushless high-frequency alternator and excitation method for three-phase AC power-frequency generation
US10523074B2 (en) Electrical energy conversion system in the form of an induction motor or generator with variable coil winding patterns exhibiting multiple and differently gauged wires according to varying braid patterns
JP5631893B2 (en) Method of feeding and charging using cancellation means, and composite electric device
KR101011396B1 (en) Motor and motor system
US8076814B2 (en) Brushless high-frequency alternator and excitation method for DC, single-phase and multi-phase AC power-frequency generation
JP5827026B2 (en) Rotating electric machine and rotating electric machine drive system
CN103441633B (en) Switched reluctance mechanism
JP6529614B2 (en) Power converter
TW201330455A (en) Electric motor/generator
EP3081429A1 (en) Control method for integrated electric drive and charger apparatus for a grid enabled vehicle
JP6711326B2 (en) Drive system of rotating electric machine
Tanabe et al. Vibration reduction method in SRM with a smoothing voltage commutation by PWM
JP5674383B2 (en) System and method for exciting an electrical machine with an unrestricted current waveform
JP2016525857A5 (en)
JP6333834B2 (en) Generator for hydroelectric turbine
JP2014014197A (en) Single-phase brushless motor
GB2511082A (en) Reluctance machines
JP2012016267A (en) System and method for non-sinusoidal current waveform excitation of electrical generators
JP2005216595A (en) Electromagnetic induction heating device
JP2008109823A (en) Rotary electric machine
WO2022020382A1 (en) Magnetohydrodynamic pump for molten salts and method of operating
JP2010136523A (en) Drive control device for rotary electric machine
Gupta et al. Three-phase alternating current liquid metal vortex magnetohydrodynamic generator
Flankl et al. Energy harvesting with single-sided linear induction machines featuring secondary conductive coating
US11735971B1 (en) Electric motor, generator and commutator system, device and method