JP2005216565A - Vacuum ultraviolet light generator - Google Patents

Vacuum ultraviolet light generator Download PDF

Info

Publication number
JP2005216565A
JP2005216565A JP2004019075A JP2004019075A JP2005216565A JP 2005216565 A JP2005216565 A JP 2005216565A JP 2004019075 A JP2004019075 A JP 2004019075A JP 2004019075 A JP2004019075 A JP 2004019075A JP 2005216565 A JP2005216565 A JP 2005216565A
Authority
JP
Japan
Prior art keywords
vacuum ultraviolet
dielectric
ultraviolet light
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004019075A
Other languages
Japanese (ja)
Other versions
JP4163128B2 (en
Inventor
Wataru Sasaki
亘 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANOTECH PHOTON KK
Original Assignee
NANOTECH PHOTON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANOTECH PHOTON KK filed Critical NANOTECH PHOTON KK
Priority to JP2004019075A priority Critical patent/JP4163128B2/en
Publication of JP2005216565A publication Critical patent/JP2005216565A/en
Application granted granted Critical
Publication of JP4163128B2 publication Critical patent/JP4163128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum ultraviolet ray generator of which designing and specification change are made easily, and irradiation intensity and irradiation distribution are controlled to prescribed values. <P>SOLUTION: In the vacuum ultraviolet ray generator 100, a container 1 is filled with an excimer gas that forms the vacuum ultraviolet ray by barrier discharge. Inside the container 1, three or more of electrodes 3 are installed, and arranged via dielectrics 2. With the present device, power supply devices 4 composed of high frequency high voltage electric power source devices are connected phase-asynchronously to neighboring electrodes. In the container 1, an excimer gas supply port 1a and an exhaust port 1b are formed, and a gas flow method to supply the excimer gas at a constant flow rate is adopted. In the power supply device 4, an electric power control unit 6 is respectively installed, and each electric power control unit 6 is controlled by a computer 7. Furthermore, in the each electric power control unit 6, a vacuum ultraviolet ray intensity measurement device 8 is installed, and based on the measurement values, power output of the power supply device 4 is controlled by the computer 7 via the electric power control unit 6, and prescribed power output intensity and distribution are obtained in a real time. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、真空紫外光発生装置に関し、特に大面積照射に適した平面発光型の真空紫外光発生装置に関するものである。   The present invention relates to a vacuum ultraviolet light generator, and more particularly to a flat-emitting vacuum ultraviolet light generator suitable for large area irradiation.

従来技術として、ひとつの真空紫外ランプ室内に誘電体で覆われた多数の電極を配置して、大面積を照射する真空紫外光発生装置では、多数の電極を交互にグループ化し、ひとつの給電装置により給電する方式が一般的に知られている(特許文献1参照。)。一方、独立した個々のランプ毎に給電装置を設けて給電する方式も知られている(特許文献2参照。)。   As a conventional technology, in a vacuum ultraviolet light generator that irradiates a large area by arranging a large number of electrodes covered with a dielectric in a single vacuum ultraviolet lamp chamber, a large number of electrodes are grouped alternately to provide a single power supply device. In general, a method of supplying power by using a power supply is known (see Patent Document 1). On the other hand, a method of supplying power by providing a power supply device for each independent lamp is also known (see Patent Document 2).

特許第2545489号公報Japanese Patent No. 2545489 特許第3059348号公報Japanese Patent No. 3059348

特許文献1の真空紫外光発生装置では、ひとつの電源から複数の電極に給電している。このように使用電極数にかかわりなく、1個の電源を用いる方式では、大面積平面発光型の真空紫外光発生装置のように使用する電極数が多い場合、大型の高電圧高周波装置を必要とし、製品への組み込みに多大の問題があった。また、電極数の変更、各電極対の仕様、たとえば電極の太さ、電極の間隔、長さなどを設計変更する度に、電源の仕様変更が必要となる。逆にいえば、用途に応じた電極数や各電極の仕様変更に自由度がなく、多様な用途に適用する汎用型の真空紫外光発生装置の製作は実際上困難であった。   In the vacuum ultraviolet light generator of Patent Document 1, power is supplied to a plurality of electrodes from one power source. In this way, regardless of the number of electrodes used, the method using one power source requires a large high-voltage high-frequency device when the number of electrodes used is large, such as a large-area planar light-emitting vacuum ultraviolet light generator. There were a lot of problems in the incorporation into the product. Further, whenever the design of the number of electrodes is changed and the specifications of each electrode pair, for example, the thickness of the electrodes, the interval between the electrodes, the length, etc., are changed, the specification of the power source needs to be changed. Conversely, there is no degree of freedom in changing the number of electrodes and the specifications of each electrode according to the application, and it was actually difficult to manufacture a general-purpose vacuum ultraviolet light generator that can be applied to various applications.

さらに、電極形状や電極配置のわずかな差異に基づき、隣り合った電極間の放電に供される電力が不均一になり、その結果、得られる照射強度の分布が不均一になるおそれがある。これを解決する方法として、交互の電極に微小な直列抵抗を接続し、直列抵抗を介して電力を供給し、抵抗値の調節によって放電を均一にする方法は容易に考えられる。しかし、この方法では、抵抗による電力の消費がランプの発光効率を低下するとともに、抵抗からの発熱の問題も生じる。何よりも個々の電極に供給される電力を抵抗で制御して、照射強度を調節することは、きわめて煩雑で実際上困難である。いずれにしても、電極毎に供与電力を制御するのが困難なため、均一な照度分布、所望の照度変化等を自在に得ることができなかった。   Furthermore, based on slight differences in electrode shape and electrode arrangement, the power supplied to the discharge between the adjacent electrodes becomes non-uniform, and as a result, the distribution of the obtained irradiation intensity may become non-uniform. As a method for solving this, a method in which a minute series resistance is connected to alternating electrodes, electric power is supplied through the series resistance, and the discharge is made uniform by adjusting the resistance value can be easily considered. However, in this method, the power consumption by the resistor reduces the luminous efficiency of the lamp, and the problem of heat generation from the resistor also occurs. Above all, it is extremely complicated and practically difficult to adjust the irradiation intensity by controlling the electric power supplied to each electrode with a resistance. In any case, since it is difficult to control the power supply for each electrode, a uniform illuminance distribution, a desired illuminance change, etc. cannot be freely obtained.

一方、特許文献2の真空紫外光発生装置では、独立したランプごとに電源が配置されている。しかし、この方式では、ランプとランプの間に発光がないため、均一な照射強度が得にくい。また、ランプごとの特性のばらつきや経年変化の相違により照射分布に不均一が生じ、そのたびに照射強度分布の調整を強いられる問題があった。   On the other hand, in the vacuum ultraviolet light generator of Patent Document 2, a power source is arranged for each independent lamp. However, in this method, since there is no light emission between the lamps, it is difficult to obtain uniform irradiation intensity. In addition, there is a problem in that the irradiation distribution becomes non-uniform due to the variation in the characteristics of each lamp and the change over time, and the adjustment of the irradiation intensity distribution is forced each time.

本発明は、前記のごとき課題を解決したもので、設計、仕様変更が自在で、かつ所期の照射強度、照度分布を得ることができる複数の電極を備えた大面積平面照射型の真空紫外光発生装置を提供することを目的としている。   The present invention solves the problems as described above, and can be designed and changed in specifications, and can be designed to have a large area plane irradiation type vacuum ultraviolet ray having a plurality of electrodes capable of obtaining an intended irradiation intensity and illuminance distribution. An object is to provide a light generator.

本発明の第1発明である真空紫外光発生装置は、誘電体バリア放電を行う真空紫外ランプを用いた真空紫外光発生装置において、ひとつの真空紫外ランプ室内に誘電体を介して配置された電極が3個以上あって、各隣り合った電極間に各1個の給電装置を位相非同期で接続したことを特徴としている。   The vacuum ultraviolet light generator according to the first aspect of the present invention is a vacuum ultraviolet light generator using a vacuum ultraviolet lamp that performs dielectric barrier discharge, and an electrode disposed through a dielectric in one vacuum ultraviolet lamp chamber. There are three or more, and one feeding device is connected between each adjacent electrode in a phase asynchronous manner.

本発明の第2発明である真空紫外光発生装置は、誘電体バリア放電を行う真空紫外ランプを用いた真空紫外光発生装置において、ひとつの真空紫外ランプ室内に誘電体を介して配置された電極が3個以上あって、これらの3個以上の電極を2以上のグループに分け、各グループ内の電極間に給電装置を位相非同期で接続したことを特徴としている。   A vacuum ultraviolet light generator according to a second invention of the present invention is a vacuum ultraviolet light generator using a vacuum ultraviolet lamp that performs dielectric barrier discharge, and is an electrode disposed through a dielectric in one vacuum ultraviolet lamp chamber. There are three or more, and these three or more electrodes are divided into two or more groups, and power feeding devices are connected in phase asynchronously between the electrodes in each group.

本発明の第3発明である真空紫外光発生装置は、誘電体バリア放電を行う真空紫外ランプを用いた真空紫外光発生装置において、ひとつの真空紫外ランプ室内に誘電体を介して配置された電極が3個以上あって、これらの3個以上の電極を2以上のグループに分け、各グループ内の電極間及び各グループ間に給電装置を位相非同期で接続したことを特徴としている。   A vacuum ultraviolet light generator according to a third invention of the present invention is a vacuum ultraviolet light generator using a vacuum ultraviolet lamp that performs dielectric barrier discharge, and is an electrode disposed through a dielectric in one vacuum ultraviolet lamp chamber. There are three or more, and these three or more electrodes are divided into two or more groups, and the power feeding devices are connected in phase asynchronously between the electrodes in each group and between each group.

これらの発明においては、複数の電極を、誘電体で覆われた誘電体被覆電極と誘電体で覆われていない誘電体無被覆電極で構成し、誘電体被覆電極と誘電体無被覆電極とを交互に配置して、誘電体被覆電極と誘電体無被覆電極間に給電装置を接続するようにしてもよい。   In these inventions, the plurality of electrodes are composed of a dielectric coated electrode covered with a dielectric and a dielectric uncoated electrode not covered with a dielectric, and the dielectric coated electrode and the dielectric uncoated electrode are provided. Alternatively, the power feeding device may be connected between the dielectric coated electrodes and the dielectric uncoated electrodes.

これらの発明においては、複数個の電極をひとつの誘電体の中に埋め込み、誘電体の少なくとも一部を真空紫外ランプ室内に充填されたエキシマガスに暴露して、暴露側でのみ平面発光させることもできる。   In these inventions, a plurality of electrodes are embedded in one dielectric, and at least a part of the dielectric is exposed to an excimer gas filled in a vacuum ultraviolet lamp chamber so that only the exposed side emits flat light. You can also.

これらの発明においては、電極と誘電体とが一体となった誘電体電極を用いることもできる。   In these inventions, a dielectric electrode in which an electrode and a dielectric are integrated can also be used.

これらの発明においては、給電装置が電極の両端に接続されていることが望ましい。   In these inventions, it is desirable that the power feeding device is connected to both ends of the electrode.

これらの発明においては、各給電装置に、誘電体の放電部への供給電力を独立に制御する電源制御装置を設けておくのが望ましい。   In these inventions, it is desirable to provide each power supply device with a power supply control device that independently controls the power supplied to the dielectric discharge section.

これらの発明において、各電源制御装置はコンピュータで制御するのがさらに望ましい。   In these inventions, it is more preferable that each power supply control device is controlled by a computer.

これらの発明において、コンピュータは、電源制御装置毎に設けられた真空紫外光強度検出器からの真空紫外光強度の信号を受けて、給電装置毎に供給電力を制御するのが望ましい。   In these inventions, it is desirable that the computer receives a signal of a vacuum ultraviolet light intensity from a vacuum ultraviolet light intensity detector provided for each power supply control device, and controls the supply power for each power supply device.

これらの発明において、給電装置として、電源の容量が30VA〜200VAの高圧インバータ電源を使用するのが実用的である。   In these inventions, it is practical to use a high-voltage inverter power supply having a power supply capacity of 30 VA to 200 VA as the power supply device.

本発明の真空紫外光発生装置によれば、下記の利点が得られる。
(1)設計、仕様変更が自在で、かつ所期の照射強度、照度分布を得ることができる複数の電極を備えた大面積平面照射型の真空紫外光発生装置を実現することができる。
(2)真空紫外光発生装置の電極対数を電源容量に関係なく、使用目的に応じて自在に増減でき、所期の照射面積を簡単に得ることができる。逆に言えば、電源の定格容量に応じて、所期の数の電極を接続できる。
(3)隣り合う電極ごとの電源あるいは電極グループ毎の電源を独立に制御して、発光強度をゼロから最大値まで増減でき、均一な面発光あるいは所期の強度分布を持つ不均一な面発光などを自在に得ることができる。この特性を利用して、大面積を高い精度で均一に照射できるばかりでなく、意識的に不均一な強度分布で被照射物を照射することも可能になる。
(4)電極径、電極間隔、エキシマガス流などによる照度の乱れの補正が容易である。
(5)電源装置を配置した電極対ごとに真空紫外光強度検出器を配置し、その強度信号を電源装置の制御装置にフィードバックして制御することにより、発光強度の安定化及び均一化をはかることができる。
According to the vacuum ultraviolet light generator of the present invention, the following advantages can be obtained.
(1) It is possible to realize a large-area plane irradiation type vacuum ultraviolet light generator including a plurality of electrodes that can be freely changed in design and specifications and can obtain desired irradiation intensity and illuminance distribution.
(2) The number of electrode pairs of the vacuum ultraviolet light generator can be freely increased or decreased according to the purpose of use regardless of the power source capacity, and the intended irradiation area can be easily obtained. Conversely, the desired number of electrodes can be connected according to the rated capacity of the power source.
(3) By controlling the power supply for each adjacent electrode or power supply for each electrode group independently, the light emission intensity can be increased or decreased from zero to the maximum value. Etc. can be obtained freely. Using this characteristic, not only can a large area be uniformly irradiated with high accuracy, but also an object to be irradiated can be consciously irradiated with a nonuniform intensity distribution.
(4) It is easy to correct illuminance disturbance due to electrode diameter, electrode interval, excimer gas flow, and the like.
(5) A vacuum ultraviolet light intensity detector is disposed for each electrode pair in which the power supply device is disposed, and the intensity signal is fed back and controlled to the control device of the power supply device, thereby stabilizing and equalizing the emission intensity. be able to.

以下、本発明を実施するための形態を、図1乃至図9を用いて説明する。まず、図1及び図2では、真空紫外光発生装置において、ひとつの容器内に、誘電体で覆われた複数の電極を対向配置した例を示す。図1は、この真空紫外光発生装置100を模式的に示す平面図であり、図2は図1の正面断面図である。図1、図2に示すように、真空紫外ランプ室として用いる密閉容器1内には、複数の電極3(3a、3b、3c、3d、3e、3f)が対向配置されている。各電極は誘電体2で覆われている。各隣り合った電極3a−3b間(電極3aと電極3bとの間)、電極3b−3c間、電極3c−3d間、電極3d−3e間、電極3e−3f間には、給電装置4が位相非同期で接続されている。この容器1内に、例えば、アルゴンのごときエキシマガスを充填して給電すると、均一な面発光が得られるばかりでなく、電源がひとつの場合と異なり、電源の容量に制限されることなく、所期の数の電極を用いることができる。また、図2に示すように、真空紫外光発生装置100には、真空紫外光取出し窓5が設けられている。尚、図1及び図2には、図示していないが、後述(図3参照)するように、容器1の一端には、エキシマガス供給口が設けられ、他端にはエキシマガス排出口が設けられており、本発明の真空紫外光発生装置100は、ガスフロー方式で使用される。   Hereinafter, embodiments for carrying out the present invention will be described with reference to FIGS. First, FIG.1 and FIG.2 shows the example which arrange | positioned the several electrode covered with the dielectric material in one container in the vacuum ultraviolet light generator. FIG. 1 is a plan view schematically showing the vacuum ultraviolet light generator 100, and FIG. 2 is a front sectional view of FIG. As shown in FIGS. 1 and 2, a plurality of electrodes 3 (3 a, 3 b, 3 c, 3 d, 3 e, 3 f) are arranged opposite to each other in a sealed container 1 used as a vacuum ultraviolet lamp chamber. Each electrode is covered with a dielectric 2. Between the adjacent electrodes 3a-3b (between the electrodes 3a and 3b), between the electrodes 3b-3c, between the electrodes 3c-3d, between the electrodes 3d-3e, and between the electrodes 3e-3f, the power feeding device 4 is provided. Connected asynchronously. When the container 1 is filled with an excimer gas such as argon and supplied with power, uniform surface emission is obtained, and unlike the case of a single power source, the capacity of the power source is not limited. Any number of electrodes can be used. Further, as shown in FIG. 2, the vacuum ultraviolet light generator 100 is provided with a vacuum ultraviolet light extraction window 5. Although not shown in FIGS. 1 and 2, an excimer gas supply port is provided at one end of the container 1 and an excimer gas discharge port is provided at the other end, as will be described later (see FIG. 3). The vacuum ultraviolet light generator 100 of the present invention is used in a gas flow method.

本発明において、容器1には、例えば金属、望ましくはステンレスを用いる。誘電体2には、ガラス、石英、セラミックス、望ましくはセラミックスを用いる。電極3には、金属、望ましくはアルミニウムを用いる。発光種ガスには、希ガス又は窒素、望ましくは希ガスのアルゴンを用いる。給電装置4には、高周波高圧電源装置、例えばネオンサイン用電源や、出力AC10kV、24kHzの小型のインバータ高圧電源装置を用いる。真空紫外光取出し窓5には、MgF2、LiF、CaF2、石英、サファイア、望ましくはMgF2を用いる。   In the present invention, the container 1 is made of metal, preferably stainless steel, for example. The dielectric 2 is made of glass, quartz, ceramics, preferably ceramics. The electrode 3 is made of metal, preferably aluminum. As the luminescent seed gas, a rare gas or nitrogen, preferably a rare gas argon is used. As the power feeding device 4, a high-frequency high-voltage power supply device such as a neon sign power supply or a small inverter high-voltage power supply device with an output AC of 10 kV and 24 kHz is used. For the vacuum ultraviolet light extraction window 5, MgF2, LiF, CaF2, quartz, sapphire, preferably MgF2 is used.

本発明者らの知見によれば、面発光型の真空紫外光発生装置では、誘電体2の静電容量と放電出力は比例関係にある。したがって、使用する電極3の径が大きいほど電極3の一本あたりの誘電体2の静電容量が大きくなり、大きな放電電力が得られる。用途により異なるので特定はできないが、電極径は一般に1〜30mm、望ましくは5〜20mmが実用範囲である。一方、放電空間の静電容量と電極間の間隔は逆比例関係にある。電極間隔は狭いほど放電空間の静電容量が大きくなり、電極間放電に消費されるエネルギーが増大する。この結果、電極間に存在するエキシマガスに効率よくエネルギーが注入され、発光出力の増加をもたらす。電極間隔は、一般的に2mm以下、望ましくは1mm以下が好適である。電極間隔が小さくなると、隣り合った電極3a−3b間、3b−3c間、3c−3d間、3d−3e間、3e−3f間のバリア放電は、照射方向に直交した電極間の微小放電が少なくなり、照射方向及び照射方向の反対側に発生する平面放電が大きくなる。この照射方向側平面放電のみを有効利用すれば、面発光全体の発光出力はさらに増大する。また、供給電源周波数と発光出力とは比例関係にあり、周波数が大きいほど発光出力は大きい。用途にもよるが、供給電源周波数は、少なくとも10kHz以上、望ましくは15kHz以上が好適である。   According to the knowledge of the present inventors, in the surface-emitting type vacuum ultraviolet light generator, the capacitance of the dielectric 2 and the discharge output are in a proportional relationship. Therefore, as the diameter of the electrode 3 to be used is larger, the capacitance of the dielectric 2 per electrode 3 is increased, and a large discharge power can be obtained. Although it cannot be specified because it varies depending on the application, the electrode diameter is generally in the range of 1 to 30 mm, preferably 5 to 20 mm. On the other hand, the capacitance of the discharge space and the distance between the electrodes are inversely proportional. The narrower the electrode spacing, the greater the capacitance of the discharge space, and the more energy is consumed in the interelectrode discharge. As a result, energy is efficiently injected into the excimer gas existing between the electrodes, resulting in an increase in light emission output. The electrode spacing is generally 2 mm or less, preferably 1 mm or less. When the electrode interval is reduced, the barrier discharge between the adjacent electrodes 3a-3b, 3b-3c, 3c-3d, 3d-3e, 3e-3f is caused by a small discharge between the electrodes orthogonal to the irradiation direction. And the plane discharge generated on the opposite side of the irradiation direction and the irradiation direction increases. If only this irradiation direction side plane discharge is effectively used, the light emission output of the entire surface emission is further increased. Further, the supply power frequency and the light emission output are in a proportional relationship, and the light emission output is larger as the frequency is higher. Although it depends on the application, the power supply frequency is preferably at least 10 kHz or more, preferably 15 kHz or more.

図3は、図1、図2で説明した真空紫外光発生装置の真空紫外ランプ室をガスフロー式にした一例を示す模式図である。図3に示すように、本形態の真空紫外光発生装置100には、容器1の一端には、エキシマガス供給口1aが設けられ、他端にはエキシマガス排出口1bが設けられている。密閉式容器では、例えばアルゴンエキシマ光による石英誘電体の分解で容器内の酸素やオゾンが蓄積され、真空紫外光を吸収して、時間経過とともに発光出力が減衰することが知られている。本発明者らの知見によれば、ガスフロー式の装置では、例えば大気雰囲気の容器内にアルゴンガスを大気圧、流量5000ml/min程度で流すと、約10分後には安定した一定の発光出力が得られる。また、この真空紫外光発生装置では、後述の実施例から明らかなように、均一な面発光強度と高い光変換効率を得ることができる。   FIG. 3 is a schematic view showing an example in which the vacuum ultraviolet lamp chamber of the vacuum ultraviolet light generator described in FIGS. As shown in FIG. 3, in the vacuum ultraviolet light generator 100 of this embodiment, an excimer gas supply port 1a is provided at one end of the container 1, and an excimer gas discharge port 1b is provided at the other end. In a sealed container, for example, it is known that oxygen and ozone in the container are accumulated by decomposition of a quartz dielectric by argon excimer light, and vacuum ultraviolet light is absorbed, and light emission output is attenuated over time. According to the knowledge of the present inventors, in the gas flow type apparatus, for example, when argon gas is allowed to flow in an atmospheric container at an atmospheric pressure and a flow rate of about 5000 ml / min, a stable and constant light emission output after about 10 minutes. Is obtained. Moreover, in this vacuum ultraviolet light generator, as will be apparent from Examples described later, uniform surface emission intensity and high light conversion efficiency can be obtained.

図4は、給電装置4に電源制御装置6を設けた例を示す模式図である。容器は図示しない。図4に示すように、隣り合った電極3a−3b間、3b−3c間、3c−3d間、3d−3e間、3e−3f間に給電装置4を設け、各給電装置4に電源制御装置6を設ける。これにより、各給電装置4を独立に制御することができる。電源制御装置6としては、抵抗変化、インダクタンス変化、電圧変化、電流変化、インバータの周波数変化、スイッチングの点弧角変化などを制御する装置を、単独あるいは組み合わせて用いる。電源制御装置6は、手動でもコンピュータ制御でもよい。   FIG. 4 is a schematic diagram illustrating an example in which the power supply control device 6 is provided in the power supply device 4. The container is not shown. As shown in FIG. 4, a power feeding device 4 is provided between adjacent electrodes 3 a-3 b, 3 b-3 c, 3 c-3 d, 3 d-3 e, 3 e-3 f, and each power feeding device 4 has a power control device. 6 is provided. Thereby, each electric power feeder 4 can be controlled independently. As the power supply control device 6, a device for controlling resistance change, inductance change, voltage change, current change, inverter frequency change, switching firing angle change, etc. is used alone or in combination. The power supply control device 6 may be manually operated or computer controlled.

図5は、図4の電源制御装置6をコンピュータ制御する例を示す模式図である。容器は図示しない。図5に示すように、各電源制御装置6はコンピュータ7に接続されている。また、必要に応じて、電源制御装置6毎に真空紫外光強度検出器8を設け、この検出器8の測定値に基づき、コンピュータ7及び電源制御装置6を介して、給電装置4の出力を制御することもできる。コンピュータの利用は、インバータの周波数変化、スイッチングの点弧角変化の制御には、特に好適である。制御手段の選択、操作により、本発明では、各給電装置4に接続された各電極(3a、3b、3c、3d、3e、3f、3g)の発光強度をゼロから最大値まで可変とすることができ、所期の照射光強度、照射光分布を容易に得ることができる。   FIG. 5 is a schematic diagram showing an example in which the power supply control device 6 of FIG. 4 is controlled by a computer. The container is not shown. As shown in FIG. 5, each power supply control device 6 is connected to a computer 7. Further, if necessary, a vacuum ultraviolet light intensity detector 8 is provided for each power supply control device 6, and the output of the power supply device 4 is output via the computer 7 and the power supply control device 6 based on the measured value of the detector 8. It can also be controlled. The use of a computer is particularly suitable for controlling the frequency change of the inverter and the change of the ignition angle of switching. By selecting and operating the control means, in the present invention, the emission intensity of each electrode (3a, 3b, 3c, 3d, 3e, 3f, 3g) connected to each power supply device 4 is made variable from zero to the maximum value. The desired irradiation light intensity and irradiation light distribution can be easily obtained.

図6は、電極の長さと1個の給電装置の容量を勘案して、電極をいくつかのグループに分け、グループ毎に各1個の給電装置を設け、かつ隣り合うグループ間にも、給電装置を配置した例を示す模式図である。容器は、図示しない。図6に示すように、電極3は、電極3aと電極3c(グループ3ac)、電極3bと電極3d(グループ3bd)、電極3eと電極3g(グループ3eg)、電極3fと電極3h(グループ3fh)にグループ化され、グループ3acとグループ3bd間及びグループ3egとグループ3fh間に給電装置4aと給電装置4bを設けるとともに、給電装置4aと給電装置4b間、すなわちグループ3ac−3bd間及びグループ3eg−3fh間にも給電装置4cが配置されている。この方式により、各電極グループ間に無声放電部ができる。面発光に斑が生じるのを回避するためには、隣り合った電源は隣り合った電極対のうちの一本を共有する形で接続するのが望ましい。いずれにしろ、本発明では、使用する電源の定格容量にあわせて接続する電極数を所期の数に選択できる。   In FIG. 6, considering the length of the electrode and the capacity of one power supply device, the electrodes are divided into several groups, one power supply device is provided for each group, and power is supplied between adjacent groups. It is a schematic diagram which shows the example which has arrange | positioned an apparatus. The container is not shown. As shown in FIG. 6, the electrode 3 includes an electrode 3a and an electrode 3c (group 3ac), an electrode 3b and an electrode 3d (group 3bd), an electrode 3e and an electrode 3g (group 3eg), an electrode 3f and an electrode 3h (group 3fh). And a power supply device 4a and a power supply device 4b are provided between the group 3ac and the group 3bd, and between the group 3eg and the group 3fh. A power feeding device 4c is also disposed therebetween. By this method, a silent discharge part is formed between each electrode group. In order to avoid the occurrence of spots in the surface light emission, it is desirable that adjacent power sources be connected so as to share one of the adjacent electrode pairs. In any case, in the present invention, the desired number of electrodes to be connected can be selected in accordance with the rated capacity of the power source to be used.

図7は、誘電体で覆われた電極(誘電体被覆電極)と誘電体で覆われていない電極(誘電体無被覆電極)とを交互に配置し、各隣り合う電極間に給電装置を設けた真空紫外光発生装置102の一例を示す模式図である。容器は図示しない。図7に示すように、電極3は、例えば隣り合った電極3aと電極3bのうち、電極3aは誘電体2で被覆されているが、電極3bは被覆されていない。以下同様に誘電体被覆電極と誘電体無被覆電極とを交互に配列し、誘電体被覆電極(3a、3c、3e、3g)と誘電体無被覆電極(3b、3d、3f)との間に給電装置4を接続する。この場合、誘電体被覆電極の誘電体2が、誘電体被覆電極と誘電体無被覆電極間に介在し、両者間の誘電体として機能しており、要は本発明では、各電極が誘電体で隔絶されていればよい。   In FIG. 7, electrodes covered with a dielectric material (dielectric-coated electrode) and electrodes not covered with a dielectric material (non-dielectric-coated electrode) are alternately arranged, and a power feeding device is provided between adjacent electrodes. 2 is a schematic diagram showing an example of a vacuum ultraviolet light generator 102. FIG. The container is not shown. As shown in FIG. 7, for example, of the adjacent electrodes 3 a and 3 b, the electrode 3 is covered with the dielectric 2, but the electrode 3 b is not covered. Similarly, the dielectric coated electrodes and the dielectric uncoated electrodes are alternately arranged, and between the dielectric coated electrodes (3a, 3c, 3e, 3g) and the dielectric uncoated electrodes (3b, 3d, 3f). The power feeding device 4 is connected. In this case, the dielectric 2 of the dielectric-coated electrode is interposed between the dielectric-coated electrode and the dielectric-uncoated electrode, and functions as a dielectric between them. In short, in the present invention, each electrode is a dielectric. As long as they are isolated from each other.

図8は、真空紫外光照射側の平面放電のみを利用する真空紫外光発生装置103の一例を示す模式図である。図8に示すように、複数の電極3(3a、3b、3c、3d、3e、3f、3g)は、ひとつの誘電体2内に平行に埋設されている。給電装置4は、各電極間に設ける。この場合、複数の電極3を内蔵した誘電体2は、一方の面だけが容器1内のエキシマガスに暴露されように配置されている。他方の面は、容器外に配置されている。このように構成することにより、複数の電極3は、エキシマガスの存在する容器1内でのみ平面放電Dが起こる。エキシマガスに暴露されていない面では、電極間の放電は起こらない。換言すれば、真空紫外光取り出し窓5のある照射側のみで高効率に均一な照射分布が得られる。図示していないが、容器1の外側に当たる電極部分は、必ずしも誘電体2で被覆する必要はない。また、図7に示すように電極が完全に誘電体内に埋め込まれている場合は、図示していないが、上側にもエキシマガス室を設けることにより、誘電体電極2の上側でも平面放電を起こさせ、真空紫外光を得ることができる。   FIG. 8 is a schematic diagram showing an example of a vacuum ultraviolet light generator 103 that uses only a flat discharge on the vacuum ultraviolet light irradiation side. As shown in FIG. 8, the plurality of electrodes 3 (3 a, 3 b, 3 c, 3 d, 3 e, 3 f, 3 g) are embedded in one dielectric 2 in parallel. The power feeding device 4 is provided between the electrodes. In this case, the dielectric 2 incorporating the plurality of electrodes 3 is arranged so that only one surface is exposed to the excimer gas in the container 1. The other surface is disposed outside the container. With this configuration, the plurality of electrodes 3 generate a flat discharge D only in the container 1 in which excimer gas exists. On the surface not exposed to the excimer gas, no discharge occurs between the electrodes. In other words, a uniform irradiation distribution can be obtained with high efficiency only on the irradiation side having the vacuum ultraviolet light extraction window 5. Although not shown in the drawing, the electrode portion that contacts the outside of the container 1 does not necessarily have to be covered with the dielectric 2. When the electrode is completely embedded in the dielectric as shown in FIG. 7, although not shown, an excimer gas chamber is also provided on the upper side to cause a planar discharge on the upper side of the dielectric electrode 2. And vacuum ultraviolet light can be obtained.

図9は、給電装置が電極の両端に接続されている真空紫外光発生装置104の一例を示す模式図である。本発明に使用される真空紫外ランプの電極は太い導体であるので、電気回路としては図9と図1は、全く同一である。しかし、本真空紫外光発生装置の電源は、出力約10kvの高電圧装置である。電源とランプを接続する銅線は、銅線自体の直径は1mm以下であるが、絶縁のためビニール等の樹脂で被覆され、外形が約10mmになる。このように形成された銅線は、硬くて曲がりにくい。この銅線を、図1に示したように一つの電極の同一端に2本ずつ、接続部が露出しないように安全に接続する事は非常に困難である。しかも、隣り合う電極の間隔は、約10mmと狭い。このため本発明では、図9に示すように、例えば、電極3bの一端を給電装置4の一端に銅線9bで接続し、電極3bの他端を他の給電装置4の端子に銅線9cで接続する。この銅線9cで電極3bと接続された給電装置4の他の端子は、電極3bに対向配置された電極3cの一端に銅線3cで接続される。つまり、電極3bの両端が別々の給電装置に銅線9b、9cで接続されることになる。このようにして、電極(3a、3b、3c、3d、3e、3f)と給電装置4を、銅線(9a、9b、9c、9d、9e、9f、9g、9h、9i、9j)で接続する。以上のように、給電装置と電極との接続は、異なる給電装置の端子に接続された銅線を、電極の同一端に接続せず、電極の両端に接続するように構成した。このように構成したことにより、高電圧電線の接続を容易にするのみならず、長尺の電極を用いた場合の電極軸方向の放電強度の不均一性を防止することができる。   FIG. 9 is a schematic diagram illustrating an example of the vacuum ultraviolet light generator 104 in which the power feeding device is connected to both ends of the electrode. Since the electrode of the vacuum ultraviolet lamp used in the present invention is a thick conductor, FIG. 9 and FIG. However, the power source of this vacuum ultraviolet light generator is a high voltage device with an output of about 10 kv. The copper wire connecting the power source and the lamp has a diameter of 1 mm or less, but is covered with a resin such as vinyl for insulation, and has an outer shape of about 10 mm. The copper wire thus formed is hard and difficult to bend. As shown in FIG. 1, it is very difficult to securely connect two copper wires to the same end of one electrode so that the connecting portion is not exposed. Moreover, the interval between adjacent electrodes is as narrow as about 10 mm. Therefore, in the present invention, as shown in FIG. 9, for example, one end of the electrode 3 b is connected to one end of the power feeding device 4 by a copper wire 9 b, and the other end of the electrode 3 b is connected to a terminal of another power feeding device 4. Connect with. The other terminal of the power feeding device 4 connected to the electrode 3b by the copper wire 9c is connected to one end of the electrode 3c arranged to face the electrode 3b by the copper wire 3c. That is, both ends of the electrode 3b are connected to separate power feeding devices by the copper wires 9b and 9c. In this way, the electrodes (3a, 3b, 3c, 3d, 3e, 3f) and the power feeding device 4 are connected by the copper wires (9a, 9b, 9c, 9d, 9e, 9f, 9g, 9h, 9i, 9j). To do. As described above, the connection between the power supply device and the electrode is configured such that the copper wires connected to the terminals of different power supply devices are not connected to the same end of the electrode, but are connected to both ends of the electrode. Such a configuration not only facilitates the connection of high-voltage electric wires, but also prevents non-uniformity in the discharge intensity in the electrode axis direction when a long electrode is used.

上記いずれの場合も金属電極と誘電体が一体となった誘電体被覆を有する電極(誘電体電極)を用いることは、電極形状の自由度が増し好適である。このような誘電体電極としては、陽極酸化したアルミニウム電極、金属電極に溶射や蒸着などの手段で誘電体皮膜を形成したものを好適に用いることができる。   In any of the above cases, it is preferable to use an electrode (dielectric electrode) having a dielectric coating in which a metal electrode and a dielectric are integrated, because the degree of freedom of the electrode shape is increased. As such a dielectric electrode, an anodized aluminum electrode or a metal electrode in which a dielectric film is formed by means such as spraying or vapor deposition can be suitably used.

本実施例では、図1に示す形態の真空紫外光発生装置100において、図3に示す形態の容器1を用いた。容器1は、ステンレス製で、大きさは200x200x100mmとした。容器1の上部両側に直径10mmφのガス供給口1aとガス排出口1bを設けた。容器1の下面には、MgF2製の直径100mmΦの真空紫外光取出し窓5を設けた。容器1内には、直径10mmΦ、長さ265mmのアルミニウム製電極3を、内径10mm、外形15mmの石英管からなる誘電体2で覆い、5本平行に配設した。電極間の距離は、誘電体外表面間で5mmとした。電極間には、給電装置4を接続した。給電装置4には、入力電圧100V、電源容量100VA、出力AC10kvの小型の高圧インバータ電源装置(長野愛知電機株式会社製商品名AN−10)を用いた。この装置により下記の条件で真空紫外光を発生させた。尚、高圧インバータ電源としては、電源の容量が、30VA〜200VAのものであればよい。
・印加電圧:6kV
・電源周波数:24kHz
・使用エキシマガス:アルゴン
・エキシマガス供給量:大気圧、5,000ml/min
・測定位置:電極から40mm
・測定機器:較正済真空紫外用フォトダイオード
・測定範囲:82x180mm発光面のうち、ダイオード可動範囲Φ80mm
In the present embodiment, the container 1 having the form shown in FIG. 3 was used in the vacuum ultraviolet light generator 100 having the form shown in FIG. The container 1 is made of stainless steel and has a size of 200 × 200 × 100 mm. A gas supply port 1 a and a gas discharge port 1 b having a diameter of 10 mmφ were provided on both upper sides of the container 1. On the lower surface of the container 1, a vacuum ultraviolet light extraction window 5 made of MgF 2 and having a diameter of 100 mmφ was provided. In the container 1, an aluminum electrode 3 having a diameter of 10 mmΦ and a length of 265 mm was covered with a dielectric 2 made of a quartz tube having an inner diameter of 10 mm and an outer diameter of 15 mm, and five wires were arranged in parallel. The distance between the electrodes was 5 mm between the dielectric outer surfaces. A power feeding device 4 was connected between the electrodes. A small high-voltage inverter power supply device (trade name AN-10 manufactured by Nagano Aichi Electric Co., Ltd.) having an input voltage of 100 V, a power supply capacity of 100 VA, and an output AC of 10 kv was used as the power supply device 4. With this apparatus, vacuum ultraviolet light was generated under the following conditions. In addition, as a high voltage | pressure inverter power supply, the capacity | capacitance of a power supply should just be 30VA-200VA.
・ Applied voltage: 6 kV
・ Power supply frequency: 24 kHz
Excimer gas used: Argon Excimer gas supply: Atmospheric pressure, 5,000 ml / min
・ Measurement position: 40mm from the electrode
・ Measuring equipment: calibrated photodiode for vacuum ultraviolet ・ Measuring range: 82 × 180 mm Out of light emitting surface, diode movable range Φ80 mm

前記条件で測定した結果、面発光強度の均一性は約±1.2%であった。放電電力は、放電電力測定回路(図示せず)により見積もり、オシロスコープ上に印加電圧とのリサージュ図形を描いて、その平行四辺形の面積から見積もった結果109Wであった。距離110mm離れた位置での照射強度は565μW/cmであった。またこの照射強度から発光体の全放射出力を算出した結果、2.4Wを得、これらの値から光変換効率を算出したところ、その効率は約2.2%であった。これは、従来の約2倍強の高い光変換効率にあたる。このことから本発明の給電方式によれば、きわめて高強度かつ均一な面発光真空紫外光が得られることが判明した。 As a result of measurement under the above conditions, the uniformity of the surface emission intensity was about ± 1.2%. The discharge power was estimated by a discharge power measurement circuit (not shown), and a Lissajous figure with the applied voltage was drawn on an oscilloscope, and the result was estimated to be 109 W from the area of the parallelogram. The irradiation intensity at a position 110 mm away was 565 μW / cm 3 . Moreover, as a result of calculating the total radiation output of the luminous body from this irradiation intensity, 2.4 W was obtained, and when the light conversion efficiency was calculated from these values, the efficiency was about 2.2%. This corresponds to a high light conversion efficiency that is about twice as high as the conventional one. From this, it has been found that according to the power feeding method of the present invention, extremely strong and uniform surface-emitting vacuum ultraviolet light can be obtained.

本発明の真空紫外光発生装置は、被照射物を大面積にわたり照射するもの、例えばフィルムの表面改質や、大面積半導体ウエハや、ICチップの洗浄や、ウエハの酸化皮膜除去への適用など、種々の洗浄装置、殺菌装置、塗料、樹脂の硬化装置に広く適用できる。また電極平行配置型以外の同軸型電極でも、複数の電極対を用いるものであれば、例えばオゾン発生装置の電極用電源装置にも適用可能である。   The vacuum ultraviolet light generator of the present invention is for irradiating an object to be irradiated over a large area, such as film surface modification, cleaning of a large area semiconductor wafer, IC chip, and removal of an oxide film on a wafer. It can be widely applied to various cleaning devices, sterilization devices, paints, and resin curing devices. Moreover, even if it is a coaxial type electrode other than an electrode parallel arrangement type, if it uses a some electrode pair, it is applicable also to the electrode power supply device of an ozone generator, for example.

本発明の真空紫外光発生装置を模式的に示す平面図である。It is a top view which shows typically the vacuum ultraviolet light generator of this invention. 図1の正面断面図である。It is front sectional drawing of FIG. 図1のランプ室をエキシマガス放流方式にした例を示す正面断面図である。It is front sectional drawing which shows the example which used the excimer gas discharge system for the lamp chamber of FIG. 図1の給電装置ごとに電源制御装置を配置した模式図である。It is the schematic diagram which has arrange | positioned the power supply control apparatus for every electric power feeder of FIG. 図4の電源制御装置をコンピュータで制御するようにした模式図である。FIG. 5 is a schematic diagram in which the power supply control device of FIG. 4 is controlled by a computer. 本発明の真空紫外光発生装置の異なった実施形態を示す模式図である。It is a schematic diagram which shows different embodiment of the vacuum ultraviolet light generator of this invention. 本発明の真空紫外光発生装置の異なった電極構造を示す模式図である。It is a schematic diagram which shows the different electrode structure of the vacuum ultraviolet light generator of this invention. 本発明の真空紫外光発生装置において、電極を誘電体に埋め込んだ方式を示す模式図である。In the vacuum ultraviolet light generator of this invention, it is a schematic diagram which shows the system which embedded the electrode in the dielectric material. 本発明の真空紫外光発生装置において、給電装置と電極との接続を示す模式図である。In the vacuum ultraviolet light generator of this invention, it is a schematic diagram which shows the connection of an electric power feeder and an electrode.

符号の説明Explanation of symbols

1 容器
1a ガス供給口
1b ガス排出口
2 誘電体
3 電極
3a、3b 電極
3c、3d 電極
3e、3f 電極
3g、3h 電極
4 給電装置
5 真空紫外光取り出し窓
6 電源制御装置
7 コンピュータ
8 真空紫外光強度検出器
9a、9b 銅線
9c、9d 銅線
9e、9f 銅線
9g、9h 銅線
9i、9j 銅線
100 真空紫外光発生装置
101 真空紫外光発生装置
102 真空紫外光発生装置
103 真空紫外光発生装置
104 真空紫外光発生装置
D 平面放電
DESCRIPTION OF SYMBOLS 1 Container 1a Gas supply port 1b Gas discharge port 2 Dielectric 3 Electrode 3a, 3b Electrode 3c, 3d Electrode 3e, 3f Electrode 3g, 3h Electrode 4 Feeding device 5 Vacuum ultraviolet light extraction window 6 Power supply control device 7 Computer 8 Vacuum ultraviolet light Intensity detector 9a, 9b Copper wire 9c, 9d Copper wire 9e, 9f Copper wire 9g, 9h Copper wire 9i, 9j Copper wire 100 Vacuum ultraviolet light generator 101 Vacuum ultraviolet light generator 102 Vacuum ultraviolet light generator 103 Vacuum ultraviolet light Generator 104 Vacuum ultraviolet light generator D Planar discharge

Claims (11)

誘電体バリア放電を行う真空紫外ランプを用いた真空紫外光発生装置において、ひとつの真空紫外ランプ室内に誘電体を介して配置された電極が3個以上あって、各隣り合った電極間に各1個の給電装置を位相非同期で接続したことを特徴とする真空紫外光発生装置。   In a vacuum ultraviolet light generation apparatus using a vacuum ultraviolet lamp that performs dielectric barrier discharge, there are three or more electrodes arranged through a dielectric in one vacuum ultraviolet lamp chamber, and each electrode is arranged between adjacent electrodes. A vacuum ultraviolet light generator characterized in that one power feeding device is connected in a phase asynchronous manner. 誘電体バリア放電を行う真空紫外ランプを用いた真空紫外光発生装置において、ひとつの真空紫外ランプ室内に誘電体を介して配置された電極が3個以上あって、これらの3個以上の電極を2以上のグループに分け、各グループ内の電極間に給電装置を位相非同期で接続したことを特徴とする真空紫外光発生装置。   In a vacuum ultraviolet light generation apparatus using a vacuum ultraviolet lamp for performing dielectric barrier discharge, there are three or more electrodes arranged through a dielectric in one vacuum ultraviolet lamp chamber, and these three or more electrodes are arranged. A vacuum ultraviolet light generator characterized in that it is divided into two or more groups, and a power feeding device is connected asynchronously between the electrodes in each group. 誘電体バリア放電を行う真空紫外ランプを用いた真空紫外光発生装置において、ひとつの真空紫外ランプ室内に誘電体を介して配置された電極が3個以上あって、これらの3個以上の電極を2以上のグループに分け、各グループ内の電極間及び各グループ間に給電装置を位相非同期で接続したことを特徴とする真空紫外光発生装置。   In a vacuum ultraviolet light generation apparatus using a vacuum ultraviolet lamp for performing dielectric barrier discharge, there are three or more electrodes arranged through a dielectric in one vacuum ultraviolet lamp chamber, and these three or more electrodes are arranged. A vacuum ultraviolet light generator characterized in that it is divided into two or more groups, and power feeding devices are connected in phase asynchronously between the electrodes in each group and between each group. 前記複数の電極が誘電体で覆われた誘電体被覆電極と誘電体で覆われていない誘電体無被覆電極とからなり、誘電体被覆電極と誘電体無被覆電極とが交互に配置され、誘電体被覆電極と誘電体無被覆電極間に給電装置を接続したことを特徴とする請求項1乃至請求項3のいずれかに記載の真空紫外光発生装置。   The plurality of electrodes are composed of a dielectric coated electrode covered with a dielectric and a dielectric uncoated electrode not covered with a dielectric, and the dielectric coated electrode and the dielectric uncoated electrode are alternately arranged to form a dielectric. The vacuum ultraviolet light generator according to any one of claims 1 to 3, wherein a power feeding device is connected between the body-coated electrode and the dielectric-uncoated electrode. 前記複数の電極がひとつの誘電体の中に埋め込まれ、該誘電体の少なくとも一部が前記真空紫外ランプ室内に充填されたガスに暴露されていることを特徴とする請求項1乃至請求項3のいずれかに記載の真空紫外光発生装置。   4. The plurality of electrodes are embedded in one dielectric, and at least a part of the dielectric is exposed to a gas filled in the vacuum ultraviolet lamp chamber. The vacuum ultraviolet light generator according to any one of the above. 前記電極と前記誘電体とが一体となった誘電体電極を用いることを特徴とする請求項1乃至請求項3のいずれかに記載の真空紫外光発生装置。   The vacuum ultraviolet light generator according to any one of claims 1 to 3, wherein a dielectric electrode in which the electrode and the dielectric are integrated is used. 前記給電装置が前記電極の両端に接続されていることを特徴とする請求項1に記載の真空紫外光発生装置。   The vacuum ultraviolet light generator according to claim 1, wherein the power feeding device is connected to both ends of the electrode. 前記給電装置が、前記誘電体の放電部への供給電力を独立に制御する電源制御装置を備えていることを特徴とする請求項1乃至請求項3のいずれかに記載の真空紫外光発生装置。   4. The vacuum ultraviolet light generator according to claim 1, wherein the power supply device includes a power supply control device that independently controls power supplied to the discharge portion of the dielectric. 5. . 前記電源制御装置がコンピュータ制御されていることを特徴とする請求項8に記載の真空紫外光発生装置。   9. The vacuum ultraviolet light generator according to claim 8, wherein the power supply control device is computer controlled. コンピュータが前記電源制御装置毎に設けられた真空紫外光強度検出器からの真空紫外光強度の信号を受けて、給電装置毎に供給電力を制御することを特徴とする請求項9記載の真空紫外光発生装置。   10. The vacuum ultraviolet light according to claim 9, wherein a computer receives a signal of a vacuum ultraviolet light intensity from a vacuum ultraviolet light intensity detector provided for each of the power supply control devices, and controls supply power for each power supply device. Light generator. 前記給電装置が、電源の容量が30VA〜200VAの高圧インバータ電源であることを特徴とする請求項1乃至請求項10のいずれかに記載の真空紫外光発生装置。   11. The vacuum ultraviolet light generator according to claim 1, wherein the power supply device is a high-voltage inverter power supply having a power supply capacity of 30 VA to 200 VA.
JP2004019075A 2004-01-27 2004-01-27 Vacuum ultraviolet light generator Expired - Fee Related JP4163128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004019075A JP4163128B2 (en) 2004-01-27 2004-01-27 Vacuum ultraviolet light generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004019075A JP4163128B2 (en) 2004-01-27 2004-01-27 Vacuum ultraviolet light generator

Publications (2)

Publication Number Publication Date
JP2005216565A true JP2005216565A (en) 2005-08-11
JP4163128B2 JP4163128B2 (en) 2008-10-08

Family

ID=34903402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004019075A Expired - Fee Related JP4163128B2 (en) 2004-01-27 2004-01-27 Vacuum ultraviolet light generator

Country Status (1)

Country Link
JP (1) JP4163128B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146251A (en) * 2010-01-14 2011-07-28 Fuji Mach Mfg Co Ltd Plasma gas generating device
WO2021194041A1 (en) * 2020-03-24 2021-09-30 (주)선재하이테크 System for controlling on/off of static electricity removal device by using vacuum ultraviolet rays

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102240690B (en) * 2011-04-21 2014-05-07 湖州机床厂有限公司 Extrusion molding technology of three-way pipe extrusion molding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146251A (en) * 2010-01-14 2011-07-28 Fuji Mach Mfg Co Ltd Plasma gas generating device
WO2021194041A1 (en) * 2020-03-24 2021-09-30 (주)선재하이테크 System for controlling on/off of static electricity removal device by using vacuum ultraviolet rays

Also Published As

Publication number Publication date
JP4163128B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
EP0703602B2 (en) Light source device using a dielectric barrier discharge lamp
JP2812736B2 (en) High power beam generator
US6664737B1 (en) Dielectric barrier discharge apparatus and process for treating a substrate
JP4163128B2 (en) Vacuum ultraviolet light generator
KR100725763B1 (en) Electric field ultraviolet rays lamp
JP4986509B2 (en) Ultraviolet continuous spectrum lamp and lighting device
JP3168848B2 (en) Dielectric barrier discharge lamp device
JP3230315B2 (en) Processing method using dielectric barrier discharge lamp
JPH05174792A (en) High output beam generator
KR102551707B1 (en) Hollow-Electrode Plasma Emitting Diode Device
US20040227469A1 (en) Flat panel excimer lamp
US8080946B2 (en) Flat discharge lamp and production method thereof
JP2004095441A (en) Excimer lamp lighting device
JP2010177137A (en) High-density plasma source, and forming method of high density plasma
JP3168847B2 (en) Dielectric barrier discharge lamp device
JP2006139992A (en) Flash discharge lamp and light energy irradiation equipment
KR19990024229A (en) Lamp using plasma
JPH04280058A (en) Glow-discharge lamp having anode prove
JP5239954B2 (en) lamp
JP4281701B2 (en) Excimer light irradiation equipment
JPH0554865A (en) Low pressure mercury vapor discharge lamp and light irradiation device
JPH08273872A (en) Low pressure mercury discharge lamp lighting device and ultraviolet ray irradiation device
JPH05283043A (en) Ultraviolet ray generation device
JPS6380463A (en) Optical source por light processing device and its using method
JPH05242863A (en) Low-pressure mercury vapor discharge lamp

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4163128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees