JP2005214928A - Deterioration diagnostic method for inner face of pipe screw-joined part by ultrasonic wave - Google Patents

Deterioration diagnostic method for inner face of pipe screw-joined part by ultrasonic wave Download PDF

Info

Publication number
JP2005214928A
JP2005214928A JP2004025461A JP2004025461A JP2005214928A JP 2005214928 A JP2005214928 A JP 2005214928A JP 2004025461 A JP2004025461 A JP 2004025461A JP 2004025461 A JP2004025461 A JP 2004025461A JP 2005214928 A JP2005214928 A JP 2005214928A
Authority
JP
Japan
Prior art keywords
pipe
echo
probe
corrosion
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004025461A
Other languages
Japanese (ja)
Other versions
JP3828115B2 (en
Inventor
Yukinobu Tanaka
幸悦 田中
Shintaro Sakamoto
晋太郎 酒本
Toshio Fukuda
敏男 福田
Fumito Arai
史人 新井
Yasuhisa Hasegawa
泰久 長谷川
Futoshi Kobayashi
太 小林
Hiroki Yui
拓紀 油井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Original Assignee
Shinryo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp filed Critical Shinryo Corp
Priority to JP2004025461A priority Critical patent/JP3828115B2/en
Publication of JP2005214928A publication Critical patent/JP2005214928A/en
Application granted granted Critical
Publication of JP3828115B2 publication Critical patent/JP3828115B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To diagnose deterioration in an inner face of pipe screw-joined part without inserting a probe into a pipe, to diagnose the deterioration without requiring operation stop and draining for a piping facility, and to diagnose the deterioration without executing work for a tapered part for ultrasonic measurement on an outer face of a pipe. <P>SOLUTION: An ultrasonic wave is made incident from an outside of the pipe, using the surface SH wave probe by an angle beam flaw detection method, echo data are sampled while moving the probe with an equal interval along a circumferential direction of the pipe, an echo in a pipe end part is extracted from the respective echo data, and corrosion is detected by detecting a position where an end face echo height gets minimum with respect to the circumferential direction of the pipe. An echo amplitude from a screw part is expressed by a numeral model to be compared with an envelope of the observed echo data, and a pipe axial-directional distance from the probe to the corrosion is estimated based on a time when an error gets maximum on a time axis. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は空調用配管や各種のパイプ構造体におけるねじ接合部内面の局部劣化を超音波探傷法を用いて診断する方法に関する。   The present invention relates to a method for diagnosing local deterioration of an inner surface of a screw joint in an air conditioning pipe and various pipe structures using an ultrasonic flaw detection method.

配管のねじ接合部の検査は放射線検査が一般的であるが、放射線検査は取り扱い資格が必要であり、測定時の被曝対策が必要となるなど実用的でない。
超音波探傷法による残存肉厚測定が好適とされるが、配管のねじ接合部に超音波を垂直に入射しても(垂直探傷法)、ねじ面で反射・散乱し配管内面まで伝播しないため、ねじ接合部の内面における腐食の検出は困難である。
The inspection of screw joints in piping is generally radiation inspection, but radiation inspection requires handling qualifications and is not practical because exposure measures at the time of measurement are required.
Residual wall thickness measurement by the ultrasonic flaw detection method is suitable, but even if ultrasonic waves are incident vertically on the threaded joint of the pipe (vertical flaw detection method), they are reflected and scattered by the screw surface and do not propagate to the inner surface of the pipe. It is difficult to detect corrosion on the inner surface of the screw joint.

超音波による斜角探傷法では、水晶振動子からパルス(縦波)を出すとくさびと金属の境界で屈折するときに横波となって板の中を往復する性質を利用して、溶接などの欠陥を検出できることが知られている。このときの横波には、分子が板の表面と垂直に振動するSV波(vertically-polarized shear wave )と分子が板の表面と平行に振動するSH波(horizontally-polarized shear wave )とが発生することが知られている。   In the oblique angle flaw detection method using ultrasonic waves, when a pulse (longitudinal wave) is emitted from a quartz oscillator, it reciprocates in the plate when it is refracted at the boundary between the wedge and the metal. It is known that defects can be detected. In this case, an SV wave (vertically-polarized shear wave) in which molecules oscillate perpendicularly to the surface of the plate and an SH wave (horizontally-polarized shear wave) in which molecules oscillate parallel to the surface of the plate are generated. It is known.

ねじ接合は小口径配管に用いられるため配管肉厚が薄い。斜角探触子として一般的なSV波探触子では屈折角は最大でも80°程度であり、これを配管ねじ部に適用した場合、超音波は配管端部に到達する前に配管内面とねじ面との間で反射を繰り返すので、エコーデータの解析が非常に困難となる。
特開昭63−298054「パイプのねじ継手部超音波探傷方法」では、配管内面に探触子を接触させて超音波データを測定する。しかし、配管内に探触子を挿入する必要があり、設備の運転停止、及び水抜きが必要となる。配管外面に超音波測定用のテーパ部を加工しておく必要があり、実用的でない。 特開平1−235848「管の継手部のねじの超音波探傷方法およびその装置」では、継手外面から超音波によりねじ部の欠陥を検出することができる。しかし、雌ねじ側(継手側)の欠陥は検出できるが、雄ねじ側(管側)の内面腐食や欠陥は検出できない。 特開平11−14608「電磁超音波探触子」には、SH波による超音波探触子とSV波による超音波探触子の相違点が記載されている。 雑誌「非破壊検査」45巻、5号、343頁以下には「SH波の往復通過率に関する実験的検討」という論文が掲載され、雑誌「非破壊検査」45巻、9号、688頁以下には「表面SH波及びSH斜角探触子のエコーの指向性に関する実験的検討」という論文が掲載されている。
Since screw joining is used for small-diameter pipes, the pipe thickness is thin. In a general SV wave probe as a bevel angle probe, the refraction angle is about 80 ° at the maximum, and when this is applied to a pipe thread portion, the ultrasonic wave reaches the pipe inner surface before reaching the pipe end. Since reflections are repeated between the screw surfaces, it is very difficult to analyze echo data.
In Japanese Patent Laid-Open No. 63-298054 “Screw joint ultrasonic inspection method for pipes”, ultrasonic data is measured by bringing a probe into contact with the inner surface of a pipe. However, it is necessary to insert a probe into the pipe, and it is necessary to stop the operation of the equipment and drain the water. It is necessary to machine an ultrasonic measurement taper part on the pipe outer surface, which is not practical. In JP-A-1-235848 “Ultrasonic flaw detection method and apparatus for screw of joint portion of pipe”, a defect of the screw portion can be detected by ultrasonic waves from the outer surface of the joint. However, defects on the female thread side (joint side) can be detected, but internal corrosion and defects on the male thread side (pipe side) cannot be detected. Japanese Patent Application Laid-Open No. 11-14608 “Electromagnetic ultrasonic probe” describes differences between an ultrasonic probe using an SH wave and an ultrasonic probe using an SV wave. The journal "Non-destructive inspection", Volume 45, No. 5, pages 343 and below contains a paper titled "Experimental study on the round-trip rate of SH waves". Published a paper entitled "Experimental study on directivity of echoes of surface SH waves and SH bevel probes".

本発明の第1の目的は、配管内に探触子を挿入することなく配管ねじ接合部内面の劣化を診断する方法を提供することにある。
本発明の第2の目的は、配管設備の運転停止や水抜きを必要とすることなく配管ねじ接合部内面の劣化を診断する方法を提供することにある。
本発明の第3の目的は、配管外面に超音波測定用のテーパ部を加工することなく配管ねじ接合部内面の劣化を診断する方法を提供することにある。
A first object of the present invention is to provide a method for diagnosing deterioration of an inner surface of a pipe screw joint without inserting a probe into the pipe.
A second object of the present invention is to provide a method for diagnosing deterioration of the inner surface of a pipe screw joint without requiring operation stop of the piping facility or draining.
A third object of the present invention is to provide a method for diagnosing deterioration of the inner surface of a pipe screw joint without processing a taper for ultrasonic measurement on the outer surface of the pipe.

前述した課題を解決するため、本発明では、第1の態様として、斜角探傷法による表面SH波探触子を用いて、配管の外側から超音波をねじ部手前から斜めに入射し、局部腐食が存在した場合に配管端面からのエコー情報が変化することを利用して腐食を検出する方法を提供する。この際、探触子を配管周方向に等間隔で移動させながらエコーデータをサンプリングし、各エコーデータから配管端部のエコー(端面エコー)を抽出し、配管周方向に対して端面エコー高さが極小となる位置を検出することによって腐食を検出する。これにより、配管ねじ接合部内面の劣化を診断する。   In order to solve the above-described problem, in the present invention, as a first aspect, using a surface SH wave probe by an oblique flaw detection method, ultrasonic waves are obliquely incident from the front of the screw portion and are locally applied from the outside of the pipe. Provided is a method for detecting corrosion using the fact that echo information from a pipe end face changes when corrosion is present. At this time, the echo data is sampled while moving the probe at equal intervals in the pipe circumferential direction, the echo of the pipe end (end face echo) is extracted from each echo data, and the end face echo height with respect to the pipe circumferential direction. Corrosion is detected by detecting the position where becomes minimum. Thereby, the deterioration of the inner surface of the pipe screw joint is diagnosed.

本発明はその第2の態様として、ねじ部からのエコー振幅を数値モデルで表現し、実測したエコーデータの包絡線と比較し、時間軸上で誤差が最大となる時間から、探触子から腐食までの配管軸方向距離を推定する。これにより、配管ねじ接合部内面の劣化をより具体的に診断する。   As a second aspect of the present invention, the echo amplitude from the screw portion is expressed by a numerical model, compared with the envelope of the actually measured echo data, and from the time when the error is maximum on the time axis, from the probe Estimate the axial distance of the pipe until corrosion. Thereby, the deterioration of the inner surface of the pipe screw joint is more specifically diagnosed.

本発明で用いた表面SH波探触子は、横波で振動方向が水平方向であるSH波を発信し、そのSH波が主に表面近傍(屈折角85〜90°)を伝播するような入射角に設定した探触子である。   The surface SH wave probe used in the present invention transmits an SH wave having a transverse wave and a horizontal vibration direction, and the SH wave is mainly incident near the surface (refraction angle 85 to 90 °). A probe set at a corner.

使用する機材としては以下のようなものを利用した。
(1)超音波パルス送受信機:パルスレシーバー、超音波探傷機など
(2)超音波探触子:表面SH波探触子
(3)エコーデータサンプリング用機器:パソコンなど
The following equipment was used.
(1) Ultrasonic pulse transmitter / receiver: Pulse receiver, ultrasonic flaw detector, etc. (2) Ultrasonic probe: Surface SH wave probe (3) Echo data sampling equipment: PC, etc.

局部腐食の検出・位置検出の手順は以下のような工程である。
(1)配管表面をやすり等で平滑に仕上げる
(2)接触媒質(例えば商品名ソニコートSHN−B25)を塗布して、探触子を配管に接触させる
(3)探触子を配管周方向に等間隔で移動させながらエコーデータをサンプリングする
(4)各エコーデータから配管端部のエコー(端面エコー)を抽出し、配管周方向に対して端面エコー高さが極小となる位置を検出することによって腐食を検出する
(5)4の測定点におけるエコーデータの包絡線を求め、エコー高さの数値モデルと比較することにより腐食の位置を推定する。
The procedure for detecting and detecting local corrosion is as follows.
(1) Finishing the pipe surface smoothly with a file or the like (2) Applying a contact medium (for example, trade name Sonicoat SHN-B25) and bringing the probe into contact with the pipe (3) Placing the probe in the pipe circumferential direction Echo data is sampled while moving at equal intervals. (4) Extracting pipe end echoes (end face echoes) from each echo data, and detecting the position where the end face echo height is minimized relative to the pipe circumferential direction. (5) The envelope of the echo data at the four measurement points is obtained and the position of the corrosion is estimated by comparing with the numerical model of the echo height.

(1)取り扱い資格が不要である。測定時の被曝対策が不要となる
(2)設備を稼働させたままの状態で検査が可能である。配管に検査用の加工をする必要がない
(3)表面SH波探触子は屈折角が大きいので超音波によるねじ接合部の検査が可能となる
(4)超音波によって雄ねじ側の内面腐食や欠陥を検出することができる。
(1) No handling qualification is required. (2) Inspection can be performed with the equipment in operation. It is not necessary to process the pipe for inspection. (3) Since the surface SH wave probe has a large refraction angle, it is possible to inspect the screw joint by ultrasonic waves. Defects can be detected.

以下、添付図の実施態様を参照しながら本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments of the accompanying drawings.

図1に超音波探触子10を用いた斜角探傷法による配管ねじ部11での伝播模式図を、図2にねじ部でのエコーの一例をそれぞれ示す。このエコーは、超音波が直接ねじ部で反射したもの及び配管内面で反射しさらにねじ部で反射したものが重畳した波形となっている。   FIG. 1 shows a schematic diagram of propagation in the pipe thread portion 11 by the oblique flaw detection method using the ultrasonic probe 10, and FIG. 2 shows an example of echoes in the thread portion. This echo has a waveform in which an ultrasonic wave directly reflected by a screw portion and a reflection of the ultrasonic wave on the inner surface of the pipe and further reflected by the screw portion are superimposed.

図3に示すように、ねじ接合部の配管内面に局部腐食12が存在する場合、腐食で反射したエコー(欠陥エコー)は、図4に一例を示すようにねじ部からのエコーと重畳するため容易に観測することはできない。そのため、エコーデータからねじ部のエコーを消去することが理想であるが、ねじ部のエコーは配管の周方向測定位置によって大きく異なり、またねじ加工時の機械の調整によってねじの仕上がり寸法が若干異なり、その影響がエコーに及ぶので、検査する配管ごとに異なることが予想され、ねじ部のエコーを消去することは容易でない。   As shown in FIG. 3, when local corrosion 12 is present on the pipe inner surface of the screw joint portion, the echo (defect echo) reflected by the corrosion is superimposed on the echo from the screw portion as shown in FIG. It cannot be observed easily. Therefore, it is ideal to erase the echo of the screw part from the echo data, but the echo of the screw part varies greatly depending on the measurement position in the circumferential direction of the pipe, and the finished dimensions of the screw differ slightly depending on the adjustment of the machine during screw processing. Since the influence affects the echo, it is expected to be different for each pipe to be inspected, and it is not easy to eliminate the echo of the screw portion.

図3に示した配管端部からのエコー(端面エコー)に注目すると、このエコーは図4ではほとんど観測されていない。局部腐食が存在する場合、図3に示すように腐食により超音波の伝播が遮られて端部まで伝播しにくくなるので、端面エコー高さが減少するのである。従って、探触子を配管周方向に走査したエコーデータから端面エコー高さを抽出し、端面エコー高さが極小となる位置を検索すれば、腐食を検出できることになる。   When attention is paid to the echo (end-face echo) from the pipe end shown in FIG. 3, this echo is hardly observed in FIG. When local corrosion exists, as shown in FIG. 3, the propagation of ultrasonic waves is blocked by the corrosion and it is difficult to propagate to the end, so that the end echo height is reduced. Therefore, corrosion can be detected by extracting the end face echo height from echo data obtained by scanning the probe in the pipe circumferential direction and searching for a position where the end face echo height is minimized.

腐食の位置は腐食からのエコーが観測される時間から求めることができるが、ねじ部においてはねじ部のエコーと重畳して観測され、腐食からのエコーを抽出することは非常に困難である。ここで、ねじ部のエコー高さは腐食がなければ探触子からの距離に応じて減衰するが、腐食からのエコーが重畳している場合、その観測される時間においてエコー高さが大きく変化する。そこで、腐食がない場合のねじ部のエコー高さを数値モデルで表し、モデルとエコーデータの包絡線との比較によりエコー高さが大きく変化する時間を抽出することによって腐食位置を推定する。ここでエコーデータの包絡線とはピークを結んだ線であり、本発明では正のピークのみを用いて包絡線を求める。   The position of the corrosion can be determined from the time when the echo from the corrosion is observed. However, in the screw portion, it is observed superimposed on the echo of the screw portion, and it is very difficult to extract the echo from the corrosion. Here, the echo height of the screw part attenuates according to the distance from the probe if there is no corrosion, but when the echo from the corrosion is superimposed, the echo height changes greatly at the observed time. To do. Therefore, the echo height of the screw portion when there is no corrosion is expressed by a numerical model, and the corrosion position is estimated by extracting the time when the echo height changes greatly by comparing the model and the envelope of the echo data. Here, the envelope of the echo data is a line connecting peaks, and in the present invention, the envelope is obtained using only the positive peak.

本実施態様では人工腐食配管として、図5に示すように、配管用炭素鋼鋼管(SGP黒)50AをJIS規格(B0203 管用テーパねじ)でねじ加工し、その内面に人工腐食(平底穴)12を機械加工したものを用いる。   In this embodiment, as an artificial corrosion pipe, as shown in FIG. 5, a carbon steel pipe for piping (SGP black) 50A is threaded with JIS standard (B0203 taper screw for pipe), and artificial corrosion (flat bottom hole) 12 is formed on the inner surface thereof. The machined one is used.

人工腐食配管として表1に示す6パターンの人工腐食配管を用いる。腐食の深さは全て1mmである。

Figure 2005214928
6 patterns of artificial corrosion pipes shown in Table 1 are used as the artificial corrosion pipes. The depth of corrosion is all 1 mm.
Figure 2005214928

図6に示すように、局部腐食12の軸線方向位置をX,配管周方向の位置をYとすると、腐食が存在する位置(Y=0)を中心に、周方向に1mmピッチでプラスマイナス7mmまでエコーデータをサンプリングし端面エコー高さを計測した。図7,8にそれぞれ端面エコー高さ曲線を示す。これより腐食の位置は、腐食の大きさ及び位置にかかわらず端面エコー高さが極小値となる位置であることがわかる。よって配管ねじ部の全周測定データから端面エコー高さを抽出し、その極小値を検索することによって腐食を検出することができる。   As shown in FIG. 6, assuming that the position of the local corrosion 12 in the axial direction is X and the position in the circumferential direction of the pipe is Y, the position where the corrosion exists (Y = 0) is the center, and the circumferential direction is 1 mm pitch plus or minus 7 mm. The echo data was sampled to measure the edge echo height. 7 and 8 show end face echo height curves, respectively. From this, it can be seen that the position of corrosion is a position where the height of the end face echo becomes a minimum value regardless of the magnitude and position of the corrosion. Therefore, corrosion can be detected by extracting the end face echo height from the entire circumference measurement data of the pipe thread portion and searching for the minimum value.

次に、局部腐食の位置の推定について説明する。腐食が存在しなければ、観測されるエコーデータはエコー高さが時間とともに減衰する。そのため、超音波の減衰によるエコー高さの変化を数値モデルによって表す。   Next, estimation of the position of local corrosion will be described. In the absence of corrosion, the observed echo data will decay in echo height over time. Therefore, a change in echo height due to attenuation of ultrasonic waves is represented by a numerical model.

超音波の減衰は指数関数によって以下のように表される。

Figure 2005214928
ここで、P0 :振動子直前の音圧、x:音波の伝搬距離、Px:距離xだけ伝搬後の音圧である。このとき、αを減衰係数と称する。減衰係数αは、図9に示すようなφ1mmの水平横穴を設けた試験片を用い、探触子との距離Lを変化させながら横穴からのエコー高さを実測することによって求める。ただし、図10に示すように、超音波は指向性をもっているため、角度が変化するとエコーの振幅が変化するので、屈折角θに応じた指向性を考慮する必要がある。 The attenuation of ultrasonic waves is expressed by an exponential function as follows.
Figure 2005214928
Here, P 0 is the sound pressure immediately before the transducer, x is the propagation distance of the sound wave, and Px is the sound pressure after propagation by the distance x. At this time, α is referred to as an attenuation coefficient. The attenuation coefficient α is obtained by measuring the echo height from the horizontal hole while changing the distance L to the probe using a test piece provided with a horizontal horizontal hole of φ1 mm as shown in FIG. However, as shown in FIG. 10, since the ultrasonic wave has directivity, the amplitude of the echo changes when the angle changes. Therefore, it is necessary to consider the directivity according to the refraction angle θ.

図11に示すように、振動子(水晶振動子など)14の断面について振動子を長さ方向にN等分して考えると、点Dにおけるエコー高さHD は以下の2式によって表され、実測値と良く一致することが確認されている。

Figure 2005214928
ここで k=2π/λ、k’=2π/λw、λ:鋼中の波長、λw:探触子アクリル内での波長、α:入射角、A:振動子の入射面への投影面積である。 As shown in FIG. 11, (such as a crystal oscillator) vibrator Taken N equally divided vibrator in the longitudinal direction for 14 cross-section, the echo height H D at point D is expressed by the following expression 2 It is confirmed that the measured values agree well.
Figure 2005214928
Where k = 2π / λ, k ′ = 2π / λw, λ: wavelength in steel, λw: wavelength in the probe acrylic, α: incident angle, A: projected area on the incident surface of the transducer is there.

本発明で用いた探触子の場合、H=10mm、α=24.9°であり、周波数5MHz及び音速を鋼:3230m/s、アクリル:1360m/sとすると、λ、λwがそれぞれ求められ、図12に示すような指向性が求められる。従って、図9のように求められたエコー高さを、そのときの角度φにおいて上記の式によって求められるエコー高さを正規化した値で除することによって指向性の影響を取り除いた上でプロットすると、図13のようなグラフが得られる。これを最小2乗法によって指数関数で近似すると、減衰係数αを求めることができる。   In the case of the probe used in the present invention, when H = 10 mm and α = 24.9 °, and when the frequency is 5 MHz and the sound velocity is steel: 3230 m / s and acrylic: 1360 m / s, λ and λw are obtained respectively. The directivity as shown in FIG. 12 is required. Accordingly, the echo height obtained as shown in FIG. 9 is plotted after removing the influence of directivity by dividing the echo height obtained by the above equation at the angle φ at that time by the normalized value. Then, a graph as shown in FIG. 13 is obtained. When this is approximated by an exponential function by the least square method, the attenuation coefficient α can be obtained.

以上のように超音波の減衰と指向性を定量化し、簡易的なエコー高さモデルを作成する。ねじ部における超音波の伝播は非常に複雑であるため、ここでは図14に示すように配管の内面で反射しさらにねじの谷頂部において反射したエコー高さのみを上記の減衰と指向性によって表す。各ねじ谷頂部までの超音波伝播距離X(X0 +X1n+X2n)と角度φn によって減衰と指向性を算出し、それらの積によってエコー高さを求める。このようにして求められたエコー高さモデルを図15に示す。配管はSGP50Aを対象とし、ねじの各寸法はJIS規格に従った。 As described above, the attenuation and directivity of ultrasonic waves are quantified, and a simple echo height model is created. Since the propagation of ultrasonic waves in the threaded portion is very complicated, only the echo height reflected at the inner surface of the pipe and reflected at the top of the threaded valley is represented by the above attenuation and directivity as shown in FIG. . Attenuation and directivity are calculated from the ultrasonic propagation distance X (X 0 + X 1n + X 2n ) and the angle φn to each screw root, and the echo height is obtained from the product of them. The echo height model thus obtained is shown in FIG. Piping was intended for SGP50A, and each screw dimension was in accordance with JIS standards.

探触子を周方向に移動して測定したエコーデータにおいて、端面エコーが最小となる測定個所が腐食の中心位置と考えられる。そこでこの位置において測定したエコーデータのエンベロープ(包絡線)と図15に示すエコー高さモデルとを比較し、エコー高さの差が最大となる位置(横軸の値から算出)が腐食の存在する位置であると判断する。その際、エコーデータの横軸(時間軸)は超音波の音速を乗ずることにより伝搬距離に変換しておく。さらにエコーデータのエンベロープとエコー高さモデルとの誤差が最小となるように、モデルに適当な係数を乗じてレベル(水平方向)を調整しておく。これにより、減衰を求めるときに使用した試験片の横穴と実際のねじの反射源との反射率の差によるエコー高さへの影響を考慮することができる。   In the echo data measured by moving the probe in the circumferential direction, the measurement location where the end face echo is minimum is considered to be the central position of corrosion. Therefore, the envelope (envelope) of the echo data measured at this position is compared with the echo height model shown in FIG. 15, and the position where the difference in echo height is maximum (calculated from the value on the horizontal axis) is the presence of corrosion. It is determined that it is a position to perform. At this time, the horizontal axis (time axis) of the echo data is converted into the propagation distance by multiplying the sound velocity of the ultrasonic wave. Further, the level (horizontal direction) is adjusted by multiplying the model by an appropriate coefficient so that the error between the echo data envelope and the echo height model is minimized. Thereby, the influence on the echo height due to the difference in reflectance between the side hole of the test piece used for obtaining the attenuation and the reflection source of the actual screw can be taken into consideration.

実験結果として、表2に人工腐食を用いた腐食位置の推定実験結果を示す。腐食の大きさはφ4mmとφ6mmであり、深さは1mmで統一し、探触子からの水平距離はいずれも43mmとした。ここで表2の推定値は上記の方法によって求められた超音波の伝播距離を探触子からの水平距離に換算した値である。

Figure 2005214928
As an experimental result, Table 2 shows an estimation experimental result of the corrosion position using artificial corrosion. The magnitude of corrosion was φ4 mm and φ6 mm, the depth was unified at 1 mm, and the horizontal distance from the probe was 43 mm for both. Here, the estimated value in Table 2 is a value obtained by converting the propagation distance of the ultrasonic wave obtained by the above method into a horizontal distance from the probe.
Figure 2005214928

ここで、ねじ接合によるエコー高さへの影響を確認した。ねじ接合の際にはテープ状もしくは液状のシール剤を雄ねじに施すため、ねじ面の反射率低下によるエコー高さの減少が予想される。そのため、いくつかのサンプル配管(炭素鋼鋼管50A)において、シール加工及び継手接続の前後でねじ部のエコーを測定し、それぞれのエコー高さの絶対値を比較した。加工前後の振幅の違いを評価するために、エコーデータの絶対値を平均し、加工前後の差を求めた。これを表3に示す。

Figure 2005214928
Here, the influence on the echo height by screw joining was confirmed. Since a tape-like or liquid sealant is applied to the male screw at the time of screw joining, the echo height is expected to decrease due to a decrease in the reflectance of the screw surface. Therefore, in some sample pipes (carbon steel pipe 50A), the echoes of the thread portions were measured before and after the sealing process and joint connection, and the absolute values of the respective echo heights were compared. In order to evaluate the difference in amplitude before and after processing, the absolute values of echo data were averaged to determine the difference before and after processing. This is shown in Table 3.
Figure 2005214928

表3から理解されるように、シールテープの場合はほとんどエコー高さの減少がないが、液状シール剤を使用した場合は全てにおいてエコー高さが減少し、最大で20%弱の減少が確認された。エコー高さが増加しているものについては、探触子の接触状態の影響が大きいと考えられる。従って、液状シール剤を使用している場合はエコー高さの減少を考慮し、パルサーレシーバーや超音波探傷器など機器の増幅率設定を調節することによって影響を低減させる必要がある。上記の実施例はシール加工及び継手接続をしない配管を用いて行った。   As can be seen from Table 3, in the case of the seal tape, there is almost no decrease in the echo height, but in the case of using the liquid sealant, the echo height is decreased in all cases, and a maximum decrease of less than 20% is confirmed It was done. For the case where the echo height is increased, the influence of the contact state of the probe is considered to be large. Therefore, when a liquid sealant is used, it is necessary to reduce the influence by adjusting the amplification factor setting of a device such as a pulsar receiver or an ultrasonic flaw detector in consideration of a decrease in echo height. The above examples were performed using piping without sealing and joint connection.

以上、詳細に説明したように、本発明の診断方法によれば、配管内に探触子を挿入することなく配管ねじ接合部内面の劣化を診断することができ、その際配管設備の運転停止や水抜きを必要とすることはなく、配管外面に超音波測定用のテーパ部を加工することなく配管ねじ接合部内面の劣化が診断できることになり、その技術的効果には極めて顕著なものがある。   As described above in detail, according to the diagnostic method of the present invention, it is possible to diagnose the deterioration of the inner surface of the pipe screw joint without inserting a probe into the pipe, and at that time, the operation of the piping facility is stopped. No deterioration of the inner surface of the pipe screw joint can be diagnosed without processing the taper part for ultrasonic measurement on the outer surface of the pipe, and the technical effect is extremely remarkable. is there.

斜角探傷法による超音波の伝播を表す模式図。The schematic diagram showing the propagation of the ultrasonic wave by the bevel flaw detection method. 配管ねじ部におけるエコーデータを表すグラフ。The graph showing the echo data in a piping thread part. 腐食が存在する場合の超音波の伝播を表す模式図。The schematic diagram showing propagation of an ultrasonic wave when corrosion exists. 腐食が存在する場合のエコーデータを表すグラフ。A graph representing echo data in the presence of corrosion. ねじ接合部内面に人工腐食を施した状態の断面図。Sectional drawing of the state which gave artificial corrosion to the screw-joint part inner surface. ねじ接合部内面の測定位置を表す断面図。Sectional drawing showing the measurement position of a screw junction part inner surface. 端面エコー高さの変化を表すグラフ。The graph showing the change of end face echo height. 端面エコー高さの変化を表すグラフ。The graph showing the change of end face echo height. 斜角探傷法における減衰率の測定方法を表す模式図。The schematic diagram showing the measuring method of the attenuation factor in a bevel flaw detection method. 探触子の指向性を測定した実測値のグラフ。The graph of the actual measurement value which measured the directivity of the probe. 探触子の指向性を計算する方法を表す模式図。The schematic diagram showing the method of calculating the directivity of a probe. 探触子の指向性を計算した結果を表すグラフ。A graph showing the result of calculating the directivity of the probe. 減衰によるエコー高さの変化を表すグラフ。A graph showing a change in echo height due to attenuation. 斜角探傷法をねじ部に適用する状態を表す模式図。The schematic diagram showing the state which applies a bevel flaw detection method to a thread part. エコー高さモデルの超音波伝播距離の変化を表すグラフ。The graph showing the change of the ultrasonic propagation distance of an echo height model.

符号の説明Explanation of symbols

10 超音波探触子
11 配管ねじ部
12 人工腐食(平底穴)
14 水晶振動子
10 Ultrasonic probe 11 Piping screw part 12 Artificial corrosion (flat bottom hole)
14 Crystal resonator

Claims (2)

空調用配管や各種のパイプ構造体におけるねじ接合部内面の局部劣化を超音波探傷法を用いて診断する方法であって、
斜角探傷法による表面SH波探触子を用いて配管の外側から超音波をねじ部手前から斜めに入射し、
前記探触子を配管周方向に等間隔で移動させながらエコーデータをサンプリングし、
各エコーデータから配管端部のエコーを抽出し、
配管周方向に対して端面エコー高さが極小となる位置を検出することによって腐食を検出する、
以上の工程から成ることを特徴とするねじ接合部内面の局部劣化を超音波探傷法を用いて診断する方法。
It is a method for diagnosing local deterioration of the inner surface of a screw joint in air conditioning piping and various pipe structures using an ultrasonic flaw detection method,
Using a surface SH wave probe by the oblique angle flaw detection method, ultrasonic waves are incident obliquely from the front of the screw part from the outside of the pipe,
Sampling echo data while moving the probe at equal intervals in the pipe circumferential direction,
Extract echo at pipe end from each echo data,
Corrosion is detected by detecting the position where the end face echo height becomes minimum with respect to the pipe circumferential direction.
A method for diagnosing local deterioration of an inner surface of a screw joint using the ultrasonic flaw detection method, comprising the above steps.
請求項1記載の診断方法であって、さらに、ねじ部からのエコー振幅を数値モデルで表現し、実測したエコーデータの包絡線と比較し、時間軸上で誤差が最大となる時間から前記探触子から腐食までの配管軸方向距離を推定する工程を包含することを特徴とする診断方法。 2. The diagnostic method according to claim 1, further comprising: expressing the echo amplitude from the threaded portion by a numerical model, comparing it with an envelope of actually measured echo data, and determining the search from the time when the error is maximum on the time axis. A diagnostic method comprising a step of estimating a pipe axial direction distance from a contactor to corrosion.
JP2004025461A 2004-02-02 2004-02-02 Deterioration diagnosis method for inner surface of pipe thread joint by ultrasonic Expired - Lifetime JP3828115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004025461A JP3828115B2 (en) 2004-02-02 2004-02-02 Deterioration diagnosis method for inner surface of pipe thread joint by ultrasonic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004025461A JP3828115B2 (en) 2004-02-02 2004-02-02 Deterioration diagnosis method for inner surface of pipe thread joint by ultrasonic

Publications (2)

Publication Number Publication Date
JP2005214928A true JP2005214928A (en) 2005-08-11
JP3828115B2 JP3828115B2 (en) 2006-10-04

Family

ID=34907843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004025461A Expired - Lifetime JP3828115B2 (en) 2004-02-02 2004-02-02 Deterioration diagnosis method for inner surface of pipe thread joint by ultrasonic

Country Status (1)

Country Link
JP (1) JP3828115B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004457A (en) * 2016-07-01 2018-01-11 非破壊検査株式会社 Corrosion inspection method and corrosion inspection device for unexposed portion of inspection object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004457A (en) * 2016-07-01 2018-01-11 非破壊検査株式会社 Corrosion inspection method and corrosion inspection device for unexposed portion of inspection object

Also Published As

Publication number Publication date
JP3828115B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
EP1707956B1 (en) Method and system for inspecting objects using ultrasound scan data
WO2017008621A1 (en) Micro-magnetic detection method and device
Titov et al. Pulse-echo NDT of adhesively bonded joints in automotive assemblies
Baskaran et al. TOFD imaging: Ultrasonic TOFD flaw sizing and imaging in thin plates using embedded signal identification technique (ESIT)
JP4116483B2 (en) Tubular ultrasonic inspection method and apparatus
Ma et al. The reflection of guided waves from simple dents in pipes
US9372176B2 (en) Ultrasonic inspection method
CN108918667B (en) Wedge defect detection method
Fei et al. Simultaneous velocity, thickness and profile imaging by ultrasonic scan
JPS5858463A (en) Non-destructive inspection measuring method for metal structure
Demčenko et al. Ultrasonic measurements of undamaged concrete layer thickness in a deteriorated concrete structure
JP5192939B2 (en) Defect height estimation method by ultrasonic flaw detection
CN111458415B (en) Method for detecting coupling state of ultrasonic phased array transducer and workpiece to be detected
Al-Ataby et al. Towards automatic flaw sizing using ultrasonic time-of-flight diffraction
JP2009058238A (en) Method and device for defect inspection
Nath et al. Sizing of surface-breaking cracks in complex geometry components by ultrasonic time-of-flight diffraction (TOFD) technique
JP3828115B2 (en) Deterioration diagnosis method for inner surface of pipe thread joint by ultrasonic
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
JPH10221309A (en) Determining method of welded part, measuring method of unwelded part, and inspecting device of the welded part
JP2002243703A (en) Ultrasonic flaw detector
CN103207240B (en) The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field
JP2011047655A (en) Defect recognition method and defect recognition device using ultrasonic wave
Cegla et al. Modeling the effect of roughness on ultrasonic scattering in 2D and 3D
Takimoto et al. An echo analysis method for the ultrasonic measurement of micrometric wall-thickness loss inside pipes
Kummer et al. Effect of fill conditions on bulk wave scattering from a through-hole

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

R150 Certificate of patent or registration of utility model

Ref document number: 3828115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250