JP2005214850A - Load measuring method, and shoes with load sensor - Google Patents

Load measuring method, and shoes with load sensor Download PDF

Info

Publication number
JP2005214850A
JP2005214850A JP2004023401A JP2004023401A JP2005214850A JP 2005214850 A JP2005214850 A JP 2005214850A JP 2004023401 A JP2004023401 A JP 2004023401A JP 2004023401 A JP2004023401 A JP 2004023401A JP 2005214850 A JP2005214850 A JP 2005214850A
Authority
JP
Japan
Prior art keywords
load
shoe
strain
load sensor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004023401A
Other languages
Japanese (ja)
Other versions
JP4374596B2 (en
Inventor
Yoshiro Nojiri
芳郎 野尻
Nobuyoshi Tsujiuchi
伸好 辻内
Kazumi Koketsu
和美 纐纈
Yotaro Tsuchiya
陽太郎 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEITEKKU SYSTEM KK
Doshisha Co Ltd
Original Assignee
KEITEKKU SYSTEM KK
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEITEKKU SYSTEM KK, Doshisha Co Ltd filed Critical KEITEKKU SYSTEM KK
Priority to JP2004023401A priority Critical patent/JP4374596B2/en
Publication of JP2005214850A publication Critical patent/JP2005214850A/en
Application granted granted Critical
Publication of JP4374596B2 publication Critical patent/JP4374596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a load measuring method and shoes each with a load measuring sensor of a low cost arranged on a bottom face of the each shoe or the like to measure X-, Y- and Z-directional loads in the sole of a foot. <P>SOLUTION: Four-directional legs are formed into a shape of a three-component-force load sensor serving as the second strain part, in structure extended plate-likely from a four-dividing position at the substantially same angle from the first disk-like strain part and for serving as legs for the disk-like strain part to support the first strain part, and the large number of three-component-force load sensors attached with the first strain gage of a diaphragm shape on a reverse face of the first disk-like strain part, and the second strain gage in the second four-directional leg obverse and reverse faces or only in the reverse is arranged on the bottom faces of the shoes. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、足裏における荷重の分布や荷重の変化を測定する技術に関するものである。特には、次のような技術分野に関するものである。
1. 義足、義肢を装着した身障者の路面に対する体重の大きさ、体重分布を測定し、時系列で体重変化を図示すること。
2. ゴルフシューズ底面の対接地荷重を知るため小型荷重センサを踏面に取付け、クラブスイング時の踏面の分布荷重、水平方向の蹴力を時系列変化、最大分布荷重及び体重移動を測定しその時間変化ごとの軌跡を知ること。
3. 歩行障害者に靴底に荷重センサを分布して取付けた靴を履かせ歩行時の脚踏面の体重分布を測定し、最大荷重の位置変化を表示すること。
4. 走行距離競技者のスタート時、走行時の蹴力とその方向と大きさを解析をすること。
5. 両腕で荷物を持ち靴底に薄い荷重センサを複数個配置、装着した第二の靴底を履き、荷重センサから地面に作用する荷重を測定すること。
6. 手に持って品物の重量を測定する時、両手を開いて上面にして5本の指先と掌に複数の薄い、小型荷重センサを手袋中に装着し、両手にこの手袋をしてその上に品物を載せて持ち上げ、荷重センサから両手にかかる重量を測定すること。
The present invention relates to a technique for measuring a load distribution and a load change on a sole. In particular, it relates to the following technical fields.
1. Measure the size and weight distribution of the prosthetic leg and the handicapped with the prosthetic limbs on the road surface, and show the change in weight over time.
2. A small load sensor is attached to the tread to know the load against the ground of the bottom of the golf shoe, the distributed load on the tread during club swing, the horizontal kick force is measured over time, the maximum distributed load and the weight shift are measured and the time Know the trajectory of each change.
3. A person with a walking disability should wear shoes with load sensors distributed on the sole and measure the weight distribution on the tread surface during walking and display the change in position of the maximum load.
4. Running distance To analyze the kicking force and the direction and magnitude of the runner at the start.
5. Carry a load with both arms and place a number of thin load sensors on the sole, wear the second sole that you wear, and measure the load acting on the ground from the load sensor.
6. When measuring the weight of an item by holding it in your hand, open your hands and place multiple thin, small load sensors on the top of your fingers and palm, and put these gloves on your hands. Place the item on top of it, lift it up, and measure the weight on both hands from the load sensor.

義足、身障者の歩行時の体重測定では特開2002-90216(特許文献1)で示される空気袋内の空気圧を圧力センサで電気信号として検知しその圧力を電気指示計で読取る方法が示されている。   For measuring the weight of a prosthetic leg or handicapped person during walking, a method of detecting the air pressure in the air bag as an electric signal with a pressure sensor and reading the pressure with an electric indicator is disclosed in JP-A-2002-90216 Yes.

しかし、特許文献1に記載された方法では、常に、脚底全体に負荷される体重しか示されない。従って、身障者の義足脚の内側か外側なのか体重の区別が付かなくまた、歩行時の脚面の体重分布が測定できないという問題がある。
また、義足脚踏面についてはこの方式は更に不便をきたす。義足の取付け角度、大腿部との接合面の適性などが不明であるからである。
実際の走行時や、ゴルフスイング時、歩行障害者の歩行時に直接踏面に検出器を取付け、体重分布圧測定や、踏面における荷重解析をする方法は見当たらない。高価で、類似的に床側に一部を取り除き、そこへ面積の大きい台状3分力荷重センサをはめ込んで蹴力の反力から測定するものがあるが、走行時は歩幅が必しも台状3分力荷重センサと一致しないので不便をきたす。
脚踏面分布を測定するため荷重センサを複数個使用する場合には、最多では片脚靴底で10個以上必要になる。そのため現在市販されている垂直方向のみの荷重を測定する目的の荷重センサを調査すれば、例えば定格荷重5kgで外形12mm、厚さ4mmの商品を用いると、合計で¥33000となる。これを靴底では10個使用するので両脚底分では660000円になる。
このように、従来の技術では、構造的な問題に加えてコスト的な問題もある。
However, the method described in Patent Document 1 always shows only the weight applied to the entire sole. Therefore, there is a problem in that it is not possible to distinguish between the weight of the prosthetic leg of the handicapped person and the weight distribution of the leg surface during walking.
In addition, this method is further inconvenient with respect to the prosthetic leg tread surface. This is because the attachment angle of the artificial leg and the suitability of the joint surface with the thigh are unknown.
There is no way to attach a detector directly to the tread during actual running, golf swing, or walking with a walking handicapped to measure weight distribution pressure or analyze load on the tread. There is something that is expensive and similarly removes a part on the floor side, inserts a large three-part force sensor into it, and measures from the reaction force of the kick force, but the stride is necessary when running This is inconvenient because it does not match the trapezoidal three component force sensor.
When multiple load sensors are used to measure the tread surface distribution, at most 10 or more shoes are required for a single leg shoe sole. Therefore, if a load sensor for measuring the load only in the vertical direction that is currently on the market is investigated, for example, if a product with an outer diameter of 12 mm and a thickness of 4 mm is used with a rated load of 5 kg, the total is 33,000 yen. Since 10 of these are used on the soles, it costs 660,000 yen for both legs.
As described above, the conventional technique has a cost problem in addition to a structural problem.

そこで、本発明では、多数のセンサを使用することを考慮し金型成型によって多量生産が可能で低コストで提供できる荷重測定方法およびその方法に用いる違和感の無い荷重測定センサ付きの靴を提供することを目的としている。   Therefore, the present invention provides a load measuring method that can be mass-produced by mold molding and can be provided at a low cost in consideration of using a large number of sensors, and a shoe with a load measuring sensor that does not have a sense of incongruity used in the method. The purpose is that.

本願発明者は、既に、特願2003-036504において触圧センサ(3分力荷重センサ)を出願し、高さ1mmの最終寸法の触圧センサを製作する以前に諸特性がどの程度満足すべきものが得られるか5倍モデル(図1)を製作し調査した。図1にその外観を示す。そのセンサの高さは9mm、直径10mmの円板が、一辺25mmの正方形の中央に4個の脚で支えられて位置する大きさである。これらの3分力として合計36個を製作した。その荷重較正試験結果によれば、例えば、12個について観察すれば1個の1.27%を除いて定格荷重5kgに対して非直線性は0.07%〜0.45%、ヒステリシス0.01%〜0..29%、出力ひずみ1588×10-6〜2007×10-6であった。この結果から厚さを3mm程度にしたロードセルが製作可能になる知見を得て、本発明を成したものである。   The inventor of this application has already applied for a contact pressure sensor (3-component load sensor) in Japanese Patent Application No. 2003-036504, and to what extent various characteristics should be satisfied before manufacturing a contact pressure sensor with a final dimension of 1 mm in height. A five-fold model (Fig. 1) was manufactured and investigated. Figure 1 shows its appearance. The sensor has a height of 9 mm and a diameter of 10 mm so that a disc is supported by four legs at the center of a square with a side of 25 mm. A total of 36 pieces were produced as these three components. According to the results of the load calibration test, for example, if 12 pieces are observed, the non-linearity is 0.07% to 0.45% and the hysteresis is 0.01% to 0.229% with respect to the rated load of 5 kg except for one 1.27%. The output strain was 1588 × 10-6 to 2007 × 10-6. From this result, knowledge that a load cell having a thickness of about 3 mm can be manufactured is obtained, and the present invention is achieved.

即ち、本発明の請求項1の荷重測定方法は、
足底部に複数の3分力荷重センサを配設し、各3分力荷重センサからの信号を解析することによって、足裏における荷重の垂直方向成分および水平面内の互いに直交する2つの方向成分を測定することを特徴としている。
なお、足底部とは、靴やスリッパや靴下等の履物の、足の底に対応する部分をいう。また、3分力荷重センサとは、少なくとも直交する3本の軸X、Y、Z方向の荷重成分を測定することのできるセンサをいう。
請求項2の方法は、
前記3分力荷重センサとしては、
第1の円板状起歪部からほぼ等角度で4分割する位置より板状に延設されて円板状の起歪部の脚となって第1の起歪部を支持する構造であって、4方向脚を第2起歪部となる3分力荷重センサの形状をなし、第1の円板状起歪部の裏面にダイアフラム状の第1のひずみゲージと、4方向脚第2の表裏、或いは、裏のみに第2のひずみゲージを着設した3分力荷重センサを使用することを特徴としている。
そして、請求項3の荷重センサ付き靴は、
足底部に複数の3分力荷重センサが配設されていることを特徴としている。
請求項4は、
前記3分力荷重センサとしては、
第1の円板状起歪部からほぼ等角度で4分割する位置より板状に延設されて円板状の起歪部の脚となって第1の起歪部を支持する構造であって、4方向脚を第2起歪部となる3分力荷重センサの形状をなし、第1の円板状起歪部の裏面にダイアフラム状の第1のひずみゲージと、4方向脚第2の表裏、或いは、裏のみに第2のひずみゲージを着設した3分力荷重センサが使用されていることを特徴としている。
請求項5では、
各靴踏面と第2の靴底踏面の間に第2の靴底踏面の接地部分を荷重センサの大きさで区分して形成し、
それらの各区分上に3分力荷重センサをそれぞれ配設するとともに、前記3分力荷重センサの円板中央の穴と第2の靴底踏面裏面に小孔を設け、
前記穴と前記小孔の間を力伝達棒で連結し、
区分された接地部のX,Y,Z方向分力を測定するX,Y,Z方向のひずみゲージを配設し、
各接地部分上にある各3分力荷重センサの測定値に基づいて、脚に分担された体重(Z方向)、あるいは、蹴力(X方向)、横滑り力(Y方向)を検出するように構成したことを特徴としている。
請求項6では、
前記各ひずみゲージの引き出し線を、平坦で柔軟にするフレキシブル基板で構成したことを特徴としている。
請求項7では、
靴底の裏面に靴敷き皮と同じ形状で硬質ゴム敷き、皮あるいは薄いプラスチック板に穴明きバリ付き円板を食い込ませて取付け、そのほぼ中央部に3分力荷重センサと力伝達棒で連結し、それらをサンドウイッチ状態で挟み、
各接地部分上にある各3分力荷重センサの測定値に基づいて、脚に分担された体重(Z方向)、あるいは、蹴力(X方向)、横滑り力(Y方向)を検出するように構成したことを特徴としている。
That is, the load measuring method of claim 1 of the present invention is:
By arranging a plurality of three-component force sensors on the sole and analyzing the signals from each of the three-component force sensors, the vertical component of the load on the sole and two directional components orthogonal to each other in the horizontal plane are obtained. It is characterized by measuring.
In addition, a sole part means the part corresponding to the sole of footwear, such as shoes, slippers, and socks. The three-component force sensor refers to a sensor that can measure load components in at least three orthogonal X, Y, and Z directions.
The method of claim 2 comprises:
As the three-component load sensor,
The structure extends from the first disc-shaped strain generating portion into a plate shape from a position divided into four at approximately the same angle, and serves as a leg of the disc-shaped strain generating portion to support the first strain generating portion. The four-direction leg has the shape of a three-component force sensor that becomes the second strain-generating portion, the diaphragm-shaped first strain gauge on the back surface of the first disk-shaped strain-generating portion, and the four-direction leg second It is characterized by using a three-component force sensor with a second strain gauge attached only to the front or back side.
And the shoes with a load sensor of Claim 3 are
A plurality of three-component force load sensors are disposed on the bottom of the foot.
Claim 4
As the three-component load sensor,
The structure extends from the first disc-shaped strain generating portion into a plate shape from a position divided into four at approximately the same angle, and serves as a leg of the disc-shaped strain generating portion to support the first strain generating portion. The four-direction leg has the shape of a three-component force sensor that becomes the second strain-generating portion, the diaphragm-shaped first strain gauge on the back surface of the first disk-shaped strain-generating portion, and the four-direction leg second A three-component force sensor with a second strain gauge attached to the front or back side of the front or back is used.
In claim 5,
Forming the ground contact part of the second shoe sole tread between each shoe tread and the second shoe tread by the size of the load sensor,
A 3-component force sensor is disposed on each of the sections, and a small hole is provided in the hole in the center of the disc of the 3-component force sensor and the back surface of the second shoe sole.
Connecting the hole and the small hole with a force transmission rod,
Install strain gauges in the X, Y, and Z directions that measure the component force in the X, Y, and Z directions of the grounded sections.
Based on the measurement value of each 3-component load sensor on each grounding part, the weight (Z direction), kick force (X direction), skidding force (Y direction) assigned to the leg is detected. It is characterized by the construction.
In claim 6,
The lead wires of the strain gauges are formed of a flexible substrate that is flat and flexible.
In claim 7,
The bottom of the shoe is covered with hard rubber in the same shape as the shoe sole, and a disc with a perforated burr is inserted into the skin or thin plastic plate, and a 3-component force sensor and a force transmission rod are attached to the approximate center. Connect them, sandwich them in a sandwich,
Based on the measurement value of each 3-component load sensor on each grounding part, the weight (Z direction), kick force (X direction), skidding force (Y direction) assigned to the leg is detected. It is characterized by the construction.

本発明の荷重測定方法および荷重センサ付き靴によれば、従来では不可能であった脚踏面での体重やその分布荷重、蹴力測定が可能になるので、義足者に対するより正確な診断によって適切な義足が得られるという効果や、ゴルフスイング時の体重移動、前後の体重の掛かり方などが可視的に判別できるようになり、効果的な練習が可能となるという効果や、走行競技者の場合にはスタート時の蹴力(バネ力)の推移が判別できるので、効果的な練習が可能になるという効果が得られる。   According to the load measuring method and the shoe with a load sensor of the present invention, it is possible to measure the weight on the tread surface, its distributed load, and the kicking force, which was impossible in the past, so that more accurate diagnosis for a prosthetic leg person can be performed. The effect of obtaining an appropriate prosthetic leg, the weight shift during golf swing, how to apply weight before and after, etc. can be visually discerned, and the effect of enabling effective practice, In this case, since the transition of the kicking force (spring force) at the start can be determined, an effect of enabling effective practice is obtained.

(構造1、靴底に荷重センサ装着)
図2.には、本発明に使用する荷重センサの構造をしめす。この荷重センサ1は板厚1mm程度の薄い真鍮板、燐青銅板、洋白板あるいは、アルミ合金板を使用する。円形板10の裏面にダイアフラムひずみゲージRt1,Rc1,Rt2,Rc2を接着してZ方向の荷重を測定し、それから伸びる4本の脚11,13,12,14の表裏または、裏にそれぞれ2素子の単軸ひずみゲージRt3,Rc3,Rt4,Rc4,Rt5,Rc5,Rt6,Rc6を接着し、X方向の荷重はひずみゲージRt3,Rc3,Rt4,Rc4で測定し、Y方向の荷重はひずみゲージRt5,Rc5,Rt6,Rc6で測定する。
図2(b)、(c)に示したように、
Rt1, Rc1, Rt2, Rc2, は円形板10の裏面に、Rc3、Rc4、Rc5, Rc6は4脚11,13,12,14の上段に、Rt3, Rt4, Rt5, Rt6は下段に接着されている。5は荷重センサ1の中央部の穴15に挿入された力伝達棒である。
(Structure 1, load sensor mounted on the sole)
Fig. 2 shows the structure of the load sensor used in the present invention. The load sensor 1 uses a thin brass plate having a thickness of about 1 mm, a phosphor bronze plate, a white plate, or an aluminum alloy plate. Diaphragm strain gauges Rt1, Rc1, Rt2, and Rc2 are bonded to the back of the circular plate 10, and the load in the Z direction is measured. Then, two elements are attached to the front and back of the four legs 11, 13, 12, and 14, respectively. Single-axis strain gauges Rt3, Rc3, Rt4, Rc4, Rt5, Rc5, Rt6, Rc6 are bonded, load in X direction is measured with strain gauges Rt3, Rc3, Rt4, Rc4, load in Y direction is strain gauge Rt5 , Rc5, Rt6, Rc6.
As shown in FIGS. 2B and 2C,
Rt1, Rc1, Rt2, Rc2, are attached to the back of the circular plate 10, Rc3, Rc4, Rc5, Rc6 are attached to the upper part of the four legs 11, 13, 12, 14, and Rt3, Rt4, Rt5, Rt6 are attached to the lower part. Yes. Reference numeral 5 denotes a force transmission rod inserted into the hole 15 at the center of the load sensor 1.

円形板10面に垂直(Z方向)な力Pが負荷されると、図3(d)に示すようにRc1,Rc2は半径方向の応力σrに相当する圧縮ひずみ、Rt1,Rt2は円周方向の応力σcに相当する引張ひずみを受ける。
前記垂直な力P、即ち、図2(b)に示す下方向(Z方向)の力Pにより、円形板10の裏面に接着されたひずみゲージRt1,Rt2は引張りひずみを受け、ひずみゲージRc1,Rc2は圧縮ひずみを受けるように配設されている。
When a force P perpendicular (Z direction) is applied to the surface of the circular plate 10, as shown in FIG. 3 (d), Rc1 and Rc2 are compressive strains corresponding to the radial stress σr, and Rt1 and Rt2 are circumferential directions. It receives a tensile strain corresponding to the stress σc.
Due to the vertical force P, that is, the downward force (Z direction) P shown in FIG. 2B, the strain gauges Rt1, Rt2 bonded to the back surface of the circular plate 10 are subjected to tensile strain, and the strain gauges Rc1, Rc2 is arranged so as to receive a compressive strain.

図2(b)に示す右方向(X方向)に円形板10と平行な力が負荷されるとのひずみゲージRt3,Rt4は引張りひずみを受け、ひずみゲージRc4,Rc3は圧縮ひずみを受けるように、脚11、13の表面または裏面にそれぞれ配設されている。   Strain gauges Rt3 and Rt4 are subject to tensile strain and strain gauges Rc4 and Rc3 are subject to compressive strain when a force parallel to the circular plate 10 is applied in the right direction (X direction) shown in FIG. The legs 11 and 13 are disposed on the front and back surfaces, respectively.

図2(b)に示す手前方向(Y方向)即ち、図2(c)に示す右方向(Y方向)に、円形板と平行な力が負荷されるとのひずみゲージRt5, Rt6は引張りひずみを受け、ひずみゲージRc5, Rc6は圧縮ひずみを受けるように、脚12、14の表面または裏面にそれぞれ配設されている。   The strain gauges Rt5 and Rt6 when the force parallel to the circular plate is applied in the forward direction (Y direction) shown in FIG. 2 (b), that is, the right direction (Y direction) shown in FIG. Accordingly, the strain gauges Rc5 and Rc6 are respectively disposed on the front and back surfaces of the legs 12 and 14 so as to receive the compressive strain.

これらのひずみゲージはX,Y,Z方向ごとに、図3(a)、(b)、(c)に示すようにホイートストンブリッジを構成している。
即ち、ひずみゲージRt1, Rc1, Rt2, Rc2 で1個のホイートストンブリッジを構成して、Z方向の荷重を検出し、X、Y方向の荷重の影響を受けにくくしている。ひずみゲージRt3, Rc3, Rt4, Rc4,で1個の ホイートストンブリッジを構成して、X方向の荷重を検出し、Z、Y方向の荷重の影響を受けにくくしている。ひずみゲージRt5, Rc5, Rt6, Rc6で1個の ホイートストンブリッジを構成して、Y方向の荷重を検出し、X、Z方向の荷重の影響を受けにくくしている。
図3(a)、(b)、(c)において、符号Eは所定の定電圧の印加電圧を示し、符号eは荷重に応じた各ひずみゲージの抵抗変化の結果によって出力される出力電圧を示している。
そして、荷重センサのこれらの4本の脚11,12,13,14は底板2とリベット3で端部で固定される。
These strain gauges constitute a Wheatstone bridge as shown in FIGS. 3A, 3B, and 3C in the X, Y, and Z directions.
That is, the strain gauges Rt1, Rc1, Rt2, and Rc2 constitute one Wheatstone bridge to detect the load in the Z direction and make it less susceptible to the load in the X and Y directions. The strain gauges Rt3, Rc3, Rt4, and Rc4 make up one Wheatstone bridge, which detects the load in the X direction and is less susceptible to the effects of the load in the Z and Y directions. The strain gauges Rt5, Rc5, Rt6, and Rc6 make up one Wheatstone bridge to detect the load in the Y direction and make it less susceptible to the load in the X and Z directions.
3 (a), (b), and (c), symbol E indicates an applied voltage of a predetermined constant voltage, and symbol e indicates an output voltage that is output as a result of the resistance change of each strain gauge according to the load. Show.
These four legs 11, 12, 13, 14 of the load sensor are fixed at the ends by the bottom plate 2 and the rivets 3.

図4に各荷重センサの取付け法を示す。
第2靴底裏面4に設けた小孔41に力伝達棒5を挿入し、ウレタンゴムシート6を挟み接着剤を両面に塗布して、荷重センサ中央部の穴15に挿入する。この方法で第2靴底4と荷重センサ1を固定する。
Fig. 4 shows how to install each load sensor.
The force transmission rod 5 is inserted into the small hole 41 provided in the second shoe sole back surface 4, the urethane rubber sheet 6 is sandwiched between them, and an adhesive is applied to both surfaces, and is inserted into the hole 15 at the center of the load sensor. In this way, the second shoe sole 4 and the load sensor 1 are fixed.

各荷重センサの配置と数量は力を測定する目的により決定される。例えば図5、図6、図7はゴルフ靴、踏面に生ずる体重、及び荷物を持ち上げてその重量を測定する時に適当な方式である。図7に示した荷重センサ付き靴9Aについて説明する。
この方式では、接地靴底7に荷重センサ1の大きさとほぼ同じ大きさで厚い凸部71を一面に区分して形成する。荷重センサ1の配置位置間隔“l","h"を明確に設定し、後の体重分布図を観察する時の位置指定を可能にする。荷重センサ1はその真上位置に設置させる。図5は第2の靴底をはずして荷重センサの真上から見た図であり、接地靴底7の凸部71を点線で示した説明図である。
図8は通常の靴に第2の靴底を装着して構成した荷重センサ付き靴9Aの説明図である。
The placement and quantity of each load sensor is determined by the purpose of measuring the force. For example, FIG. 5, FIG. 6, and FIG. 7 are suitable methods for measuring the weight of a golf shoe, the weight generated on the tread, and the weight by lifting the load. The shoe 9A with a load sensor shown in FIG. 7 will be described.
In this method, a thick convex portion 71 is formed on the grounding shoe sole 7 so as to be substantially the same size as the load sensor 1 and divided into one surface. The arrangement position interval “l”, “h” of the load sensor 1 is clearly set, and the position designation when observing the subsequent weight distribution chart is made possible. The load sensor 1 is installed at a position directly above it. FIG. 5 is a diagram viewed from directly above the load sensor with the second shoe sole removed, and is an explanatory diagram showing the convex portion 71 of the grounding shoe sole 7 by a dotted line.
FIG. 8 is an explanatory diagram of a load sensor-equipped shoe 9A configured by attaching a second shoe sole to a normal shoe.

(配線)
配線網フレキシブル基板Fを図9に示す。
図9(a)は、図7における荷重センサ1のX方向の印加電圧Eの引き出し線と、出力電圧eの引き出し線4本で構成した、フレキシブル配線基板の第一層目F1を示している。
図9(b)は、荷重センサ1のY方向の印加電圧Eの引き出し線と、出力電圧eの引き出し線4本で構成したフレキシブル配線基板の第二層目F2を示している。
図9(c)は、荷重センサ1のZ方向の印加電圧Eの引き出し線と、出力電圧eの引き出し線4本で構成したフレキシブル配線基板の第三層目F3を示している。
(wiring)
The wiring network flexible substrate F is shown in FIG.
FIG. 9A shows the first layer F1 of the flexible wiring board, which is composed of a lead wire for the applied voltage E in the X direction of the load sensor 1 in FIG. 7 and four lead wires for the output voltage e. .
FIG. 9B shows a second layer F2 of the flexible wiring board constituted by the lead wire for the applied voltage E in the Y direction of the load sensor 1 and four lead wires for the output voltage e.
FIG. 9C shows a third layer F3 of the flexible wiring board constituted by the lead wire for the applied voltage E in the Z direction of the load sensor 1 and four lead wires for the output voltage e.

これらは図11(d)に示したように、長さD1,D2だけそれぞれ短くして積層しセンサ1のX,Y,Zの3方向の印加電圧Eの引き出し線と、出力電圧eの引き出し線を一体化している。同じ方法が別の荷重センサについても使用される。
図10(a),(b),(c)に示した別の荷重センサでは荷重センサ1の配線を避けて各層F1,F2,F3を一体化している。図11(a),(b),(c)に示した荷重センサ3の配線基板では、同様に、荷重センサ1と別の荷重センサとの配線を避けて各層F1,F2,F3を一体化する。
各フレキシブル基板の端末は図7に示す小型コネクタ82に接続し、更に多芯ケーブル81で図8に示す小型コネクタボ―ドに接続される。
As shown in FIG. 11 (d), the lengths D1 and D2 are respectively shortened and stacked, and the lead lines for the applied voltage E in the three directions X, Y, and Z of the sensor 1 and the output voltage e are drawn. Lines are integrated. The same method is used for other load sensors.
In another load sensor shown in FIGS. 10A, 10B and 10C, the layers F1, F2 and F3 are integrated so as to avoid the wiring of the load sensor 1. In the wiring board of the load sensor 3 shown in FIGS. 11A, 11B, and 11C, similarly, the layers F1, F2, and F3 are integrated by avoiding wiring between the load sensor 1 and another load sensor. To do.
The terminal of each flexible board is connected to a small connector 82 shown in FIG. 7, and further connected to a small connector board shown in FIG.

(靴底板と連結)
図8に示したように、接地靴底7の外周止め部72を本来の靴底41の周囲に嵌めこみ、必要に応じてベルトを用いて(図示せず)接地靴底7と本来の靴底41を一体化する。第2靴底4と接地靴底7の間はセンサ部分を除き図6に示すフェルト布21で充填され接続されている。更に、防水性を保持するために第2靴底4の周縁は本来の靴底41の外周に嵌め込まれ緊定される弾性ゴム材(図示せず)が取付けられる。
(Connected to the sole plate)
As shown in FIG. 8, the outer peripheral stopper 72 of the grounding shoe sole 7 is fitted around the original shoe sole 41, and a belt is used as necessary (not shown) to connect the grounding shoe sole 7 and the original shoe. The bottom 41 is integrated. The second shoe sole 4 and the ground contact shoe sole 7 are filled and connected with a felt cloth 21 shown in FIG. 6 except for the sensor portion. Further, in order to maintain waterproofness, an elastic rubber material (not shown) is attached to the periphery of the second shoe sole 4 so as to be fitted on the outer periphery of the original shoe sole 41 and tightened.

(小型コネクタからデータ処理器)
図7と8に示したように、靴側方にフレキシブル基板Fを出し、多芯線81で小型コネクタ82に中継し、布きはん83に内蔵したセンサ接続コネクタボード84をベルト86によって足首に装着する。このセンサ接続コネクタボード84には必要に応じてプリアンプやA/D変換手段等が内蔵されている。前記センサ接続コネクタボード84は、さらに、多芯ケーブル85で腰ベルト部の増幅器、切換器、及び必要に応じてA/D変換回路等に接続される。そして、測定データは必要目的に応じて、指示計に表示され、またメモリー回路もしくはICカード等の記憶媒体に記憶され、さらに、オフタイムに外部コンピュータに収録される。またリアルタイムで計測する時は送信部を内蔵してデジタル信号を送信して外部に受信部を置き、その信号を受信して外部コンピュータに収録できる。この状態は実際の靴底よりも5〜10mm高くなるだけで被測定者に通常の歩行状態とは何ら変化しないで測定できる。
体重測定の場合では、両脚に第2靴底に取付けたセンサ群を履き、足首部の小型コネクタボードを持ち、腰部のデータ−処理器に接続して、ベルトで取付けた指示計で、全体重、右脚の荷重、及び左脚の荷重を表示する。
(From small connector to data processor)
As shown in FIGS. 7 and 8, the flexible board F is extended to the side of the shoe, relayed to the small connector 82 by the multi-core wire 81, and the sensor connection connector board 84 built in the cloth stamp 83 is attached to the ankle by the belt 86. Mounting. This sensor connector board 84 incorporates a preamplifier, A / D conversion means and the like as necessary. The sensor connection connector board 84 is further connected to an amplifier, a switch, and an A / D conversion circuit as required by a multicore cable 85. The measurement data is displayed on an indicator according to the required purpose, stored in a storage medium such as a memory circuit or an IC card, and further recorded in an external computer at off-time. When measuring in real time, a transmitter is built in and a digital signal is transmitted, a receiver is placed outside, and the signal can be received and recorded in an external computer. This state is only 5 to 10 mm higher than the actual shoe sole, and the measurement subject can measure without any change from the normal walking state.
In the case of body weight measurement, a sensor group attached to the second shoe sole is worn on both legs, a small connector board on the ankle part, connected to a data processor on the waist part, and an indicator attached to the belt, , Display right leg load and left leg load.

(体重分布測定)
リアルタイムで測定する時は、腰に装着されている指示計、送信部(送信機、小型電池を内蔵)に多芯ケーブルで接続する。例えばRS232Cに変換されて受信側の外部コンピュータに接続され、立方体形態或いは体重重量ごとの色別で分布図を時系列で表示する。
また、オフタイムでの測定はICカードを装着する機能を付属すれば送信機を省いて歩行完了後、外部コンピュータに取り込んで図形解析する。
(Weight distribution measurement)
When measuring in real time, connect to the indicator and transmitter (with a transmitter and small battery) attached to the waist with a multicore cable. For example, it is converted to RS232C and connected to an external computer on the receiving side, and a distribution diagram is displayed in time series in a cubic form or by color for each body weight.
For off-time measurement, if a function to attach an IC card is attached, the transmitter is omitted and the walking is completed.

図12、13、14に示した荷重センサ付き靴9Bの構造を述べる。
(構造2 靴中敷きに荷重センサを内蔵)
まず、靴の中敷き形状にして、その中に、荷重センサ十数個を装着して測定する方法について述べる。この方式は靴接地面が平坦な運動靴に使用される。
図12、13に示したように、薄いプラスチック板91の上敷表皮にバリ付き金属板92を押し当ててバリを薄いプラスチック板91に食い込ませる。力伝達棒93によってバリ付き金属板92と底板94の付いた荷重センサ90の円板95の中心とを連結する。この状態では、既に、フレキシブル基板が脚の長さ方向と直角方向に引き出されている。従って、敷表皮に複数個の荷重センサが順序良く並べられている。
図14にバリ付き金属板を配置した状況を示す。この時、荷重センサの位置を“l" 、"h"で規制しておき荷重分布図が脚踏面の位置で図形観察できるようにする。荷重センサ間の隙間はフエルト布21で充填し、更に、木綿布96の袋でカバーをする。この状況は厚さ5mm程度の敷皮になる。小型コネクタは足首側面に置き、フレキシブル基板で第2靴底方式より直角に曲げて引き回しをして接続される。そして、この場合も、(構造1)と同じように、データが指示され、またデータの集録が腰部に装着した装置で処理されるように構成する。
The structure of the shoe 9B with load sensor shown in FIGS.
(Structure 2: Built-in load sensor on insoles)
First, a method will be described in which a shoe insole shape is used and a load sensor is installed in the inside of the shoe for measurement. This method is used for sports shoes with a flat shoe ground surface.
As shown in FIGS. 12 and 13, the metal plate 92 with burrs is pressed against the upper skin of the thin plastic plate 91 to cause the burrs to bite into the thin plastic plate 91. The metal plate 92 with burr and the center of the disc 95 of the load sensor 90 with the bottom plate 94 are connected by the force transmission rod 93. In this state, the flexible substrate has already been pulled out in a direction perpendicular to the length direction of the legs. Therefore, a plurality of load sensors are arranged in order on the floor covering.
Fig. 14 shows the situation where a metal plate with burrs is placed. At this time, the position of the load sensor is restricted by “l” and “h” so that the load distribution diagram can be observed in the figure at the position of the foot surface. The gap between the load sensors is filled with felt cloth 21 and further covered with a cotton cloth 96 bag. This situation results in a cover with a thickness of about 5 mm. The small connector is placed on the side of the ankle, and is bent by a flexible substrate at a right angle from the second shoe sole method and connected. In this case as well, as in (Structure 1), data is instructed and data acquisition is processed by a device attached to the waist.

本発明に使用する3分力荷重センサの立体図である。It is a three-dimensional view of the 3 component force load sensor used for this invention. 本発明に使用する3分力荷重センサの説明図である。図2の(a)は前記3分力荷重センサの平面図、図2の(b)は前記3分力荷重センサの側面図であり、図2の(a)のA−A線断面を示している。図2の(c)は前記3分力荷重センサの側面図であり、図2の(a)のB−B線断面を示している。It is explanatory drawing of the 3 component force load sensor used for this invention. 2A is a plan view of the three-component force load sensor, FIG. 2B is a side view of the three-component load sensor, and shows a cross-sectional view taken along line AA in FIG. ing. FIG. 2C is a side view of the three-component load sensor, and shows a cross section taken along line BB in FIG. 前記3分力荷重センサのひずみゲージ接続の説明図であり、図3の(a)はZ方向のひずみゲージのホイートストンブリッジの接続図、図3の(b)はX方向のひずみゲージのホイートストンブリッジの接続図、図3の(c)はY方向のひずみゲージのホイートストンブリッジの接続図である。図3の(d)はひずみゲージの動作説明図である。FIG. 3A is a connection diagram of a strain gauge Wheatstone bridge in the Z direction, and FIG. 3B is a Wheatstone bridge of a strain gauge in the X direction. FIG. 3C is a connection diagram of a Wheatstone bridge of a strain gauge in the Y direction. FIG. 3D is an explanatory view of the operation of the strain gauge. 第2靴底と荷重センサの連結図である。It is a connection figure of a 2nd shoe sole and a load sensor. 第2靴底をはずして荷重センサ真上から見た図、接地靴底の凸を点線で表した図である。It is the figure which removed the 2nd shoe sole and was seen from the load sensor, and the figure which represented the convex of the contact shoe sole with the dotted line. 荷重センサ装着位置と接地靴底の凸の位置を示した図である。It is the figure which showed the load sensor mounting position and the convex position of a grounding shoe sole. 第2靴底面に荷重センサを配置し、小型コネクタ取付けを示した図である。It is the figure which has arrange | positioned the load sensor to the 2nd shoe bottom face, and showed small connector attachment. 第2靴底面を本来の靴底に連結した図である。It is the figure which connected the 2nd shoe sole to the original shoe sole. 最初に配置した荷重センサ1のフレキシブル基板である。図9(a) は第1層目フレキシブル基板。図9(b)は第2層目フレキシブル基板、図9 (c)は第3層目フレキシブル基板である。It is the flexible substrate of the load sensor 1 arranged first. FIG. 9A shows the first layer flexible substrate. FIG. 9B shows a second-layer flexible substrate, and FIG. 9C shows a third-layer flexible substrate. 2番目に配置した荷重センサ2のフレキシブル基板である。図10(a) は第1層目フレキシブル基板、図10(b)は第2層目フレキシブル基板、図10 (c)は第3層目フレキシブル基板である。This is a flexible substrate of the load sensor 2 arranged second. 10A shows the first layer flexible substrate, FIG. 10B shows the second layer flexible substrate, and FIG. 10C shows the third layer flexible substrate. 3番目に配置した荷重センサ3のフレキシブル基板である。図11(a) は第1層目フレキシブル基板、図11(b)は第2層目フレキシブル基板、図11 (c)は第3層目フレキシブル基板である。図11(d)各フレキシブル基板の積層した状態を示す図である。This is a flexible substrate of the load sensor 3 arranged third. 11A shows the first layer flexible substrate, FIG. 11B shows the second layer flexible substrate, and FIG. 11C shows the third layer flexible substrate. FIG. 11 (d) is a diagram showing a state in which each flexible substrate is stacked. 敷皮方式にした荷重センサの取付けの断面側面を示した図である。It is the figure which showed the cross-sectional side surface of the attachment of the load sensor made into the covering method. 薄いプラスチク板(上敷表皮)と荷重センサの連結を示した図である。It is the figure which showed the connection of a thin plastic board (overlay skin) and a load sensor. 薄いプラスチク板(上敷表皮)にバリ付き金属板を配置して取付けた図である。It is the figure which arranged and attached the metal plate with a burr | flash to a thin plastic board (overlay skin).

符号の説明Explanation of symbols

1 3分力荷重センサ
10 第1起歪部
11,12,13,14 第2起歪部
Rc1,Rt1,Rc2,Rt2 第1のひずみゲージ
Rc3,Rc4,Rc5,Rc6,Rt3,Rt4,Rt5,Rt6 第2のひずみゲージ
9A、9B 荷重センサ付き靴
4 第2の靴底踏面
15 3分力荷重センサの円板中央の穴
41 第2の靴底踏面裏面の小孔
5 力伝達棒
Rc1,Rt1,Rc2,Rt2,Rc3,Rc4,Rc5,Rc6,Rt3,Rt4,Rt5,Rt6 ひずみゲージ
F フレキシブル基板
91 薄いプラスチック板
92 穴明きバリ付き円板
1 3 component force sensor
10 First straining part
11,12,13,14 Second strain generating part Rc1, Rt1, Rc2, Rt2 First strain gauge
Rc3, Rc4, Rc5, Rc6, Rt3, Rt4, Rt5, Rt6 Second strain gauge 9A, 9B Shoe with load sensor 4 Second shoe tread
15 Hole in the center of the 3-component load sensor disk
41 Small hole 5 on the back of the second shoe sole treading force transmission rod Rc1, Rt1, Rc2, Rt2, Rc3, Rc4, Rc5, Rc6, Rt3, Rt4, Rt5, Rt6 Strain gauge F Flexible substrate
91 thin plastic plate
92 Drilled burr disc

Claims (7)

足底部に複数の3分力荷重センサを配設し、各3分力荷重センサからの信号を解析することによって、足裏における荷重の垂直方向成分および水平面内の互いに直交する2つの方向成分を測定することを特徴とする荷重測定方法。 By arranging a plurality of three-component force sensors at the sole and analyzing the signals from each of the three-component load sensors, the vertical component of the load on the sole and two directional components orthogonal to each other in the horizontal plane are obtained. A load measuring method characterized by measuring. 前記3分力荷重センサとしては、
第1の円板状起歪部からほぼ等角度で4分割する位置より板状に延設されて円板状の起歪部の脚となって第1の起歪部を支持する構造であって、4方向脚を第2起歪部となる3分力荷重センサの形状をなし、第1の円板状起歪部の裏面にダイアフラム状の第1のひずみゲージと、4方向脚第2の表裏、或いは、裏のみに第2のひずみゲージを着設した3分力荷重センサを使用することを特徴とする請求項1に記載の荷重測定方法。
As the three-component load sensor,
The structure extends from the first disc-shaped strain generating portion into a plate shape from a position divided into four at approximately the same angle, and serves as a leg of the disc-shaped strain generating portion to support the first strain generating portion. The four-direction leg has the shape of a three-component force sensor that becomes the second strain-generating portion, the diaphragm-shaped first strain gauge on the back surface of the first disk-shaped strain-generating portion, and the four-direction leg second The load measuring method according to claim 1, wherein a three-component force sensor in which a second strain gauge is attached only on the front or back side of the head is used.
足底部に複数の3分力荷重センサが配設されていることを特徴とする荷重センサ付き靴。 A shoe with a load sensor, wherein a plurality of three-component force sensors are arranged on the sole. 前記3分力荷重センサとしては、
第1の円板状起歪部からほぼ等角度で4分割する位置より板状に延設されて円板状の起歪部の脚となって第1の起歪部を支持する構造であって、4方向脚を第2起歪部となる3分力荷重センサの形状をなし、第1の円板状起歪部の裏面にダイアフラム状の第1のひずみゲージと、4方向脚第2の表裏、或いは、裏のみに第2のひずみゲージを着設した3分力荷重センサが使用されていることを特徴とする請求項3に記載の荷重センサ付き靴。
As the three-component load sensor,
The structure extends from the first disc-shaped strain generating portion into a plate shape from a position divided into four at approximately the same angle, and serves as a leg of the disc-shaped strain generating portion to support the first strain generating portion. The four-direction leg has the shape of a three-component force sensor that becomes the second strain-generating portion, the diaphragm-shaped first strain gauge on the back surface of the first disk-shaped strain-generating portion, and the four-direction leg second The shoe with a load sensor according to claim 3, wherein a three-component force sensor having a second strain gauge attached to only the front or back side or the back side is used.
各靴踏面と第2の靴底踏面の間に第2の靴底踏面の接地部分を荷重センサの大きさで区分して形成し、
それらの各区分上に3分力荷重センサをそれぞれ配設するとともに、前記3分力荷重センサの円板中央の穴と第2の靴底踏面裏面に小孔を設け、
前記穴と前記小孔の間を力伝達棒で連結し、
区分された接地部のX,Y,Z方向分力を測定するX,Y,Z方向のひずみゲージを配設し、
各接地部分上にある各3分力荷重センサの測定値に基づいて、脚に分担された体重(Z方向)、あるいは、蹴力(X方向)、横滑り力(Y方向)を検出するように構成したことを特徴とする請求項3または4の何れかに記載の荷重センサ付き靴。
Forming the ground contact part of the second shoe sole tread between each shoe tread and the second shoe tread by the size of the load sensor,
A 3-component force sensor is disposed on each of the sections, and a small hole is provided in the hole in the center of the disc of the 3-component force sensor and the back surface of the second shoe sole.
Connecting the hole and the small hole with a force transmission rod,
Install strain gauges in the X, Y, and Z directions that measure the component force in the X, Y, and Z directions of the grounded sections.
Based on the measurement value of each 3-component load sensor on each grounding part, the weight (Z direction), kick force (X direction), skidding force (Y direction) assigned to the leg is detected. The shoe with a load sensor according to claim 3 or 4, wherein the shoe is configured.
前記各ひずみゲージの引き出し線を平坦で柔軟にするフレキシブル基板で構成したことを特徴とする請求項5に記載の荷重センサ付き靴。   6. The shoe with a load sensor according to claim 5, wherein the lead wire of each strain gauge is formed of a flexible substrate that makes the lead wire flat and flexible. 靴底の裏面に靴敷き皮と同じ形状で硬質ゴム敷き、皮あるいは薄いプラスチック板に穴明きバリ付き円板を食い込ませて取付け、そのほぼ中央部に3分力荷重センサと力伝達棒で連結し、それらをサンドウイッチ状態で挟み、
各接地部分上にある各3分力荷重センサの測定値に基づいて、脚に分担された体重(Z方向)、あるいは、蹴力(X方向)、横滑り力(Y方向)を検出するように構成したことを特徴とする請求項5または6の何れかに記載の荷重センサ付き靴。
The bottom of the shoe is covered with hard rubber in the same shape as the shoe sole, and a disc with a perforated burr is inserted into the skin or thin plastic plate, and a 3-component force sensor and a force transmission rod are attached to the approximate center. Connect them, sandwich them in a sandwich,
Based on the measurement value of each 3-component load sensor on each grounding part, the weight (Z direction), kick force (X direction), skidding force (Y direction) assigned to the leg is detected. The shoe with a load sensor according to claim 5, wherein the shoe is configured.
JP2004023401A 2004-01-30 2004-01-30 Load measurement method Expired - Fee Related JP4374596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004023401A JP4374596B2 (en) 2004-01-30 2004-01-30 Load measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004023401A JP4374596B2 (en) 2004-01-30 2004-01-30 Load measurement method

Publications (2)

Publication Number Publication Date
JP2005214850A true JP2005214850A (en) 2005-08-11
JP4374596B2 JP4374596B2 (en) 2009-12-02

Family

ID=34906444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004023401A Expired - Fee Related JP4374596B2 (en) 2004-01-30 2004-01-30 Load measurement method

Country Status (1)

Country Link
JP (1) JP4374596B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007325702A (en) * 2006-06-07 2007-12-20 Keitekku System:Kk Device for measuring standing posture balance
JP2008200182A (en) * 2007-02-19 2008-09-04 Bridgestone Sports Co Ltd Sole for sport shoe and sport shoe
JP2008298486A (en) * 2007-05-29 2008-12-11 Kochi Univ Of Technology System and method for estimating floor reaction force
FR2929827A1 (en) * 2008-04-14 2009-10-16 Commissariat Energie Atomique SOLE WITH FORCE SENSORS.
JP2010127921A (en) * 2008-12-01 2010-06-10 Kochi Univ Of Technology Moving type floor reaction force measuring device
US8212158B2 (en) * 2009-04-13 2012-07-03 Wiest Pieter C Weight measuring shoe having a retractable scale
JP2013503660A (en) * 2009-09-03 2013-02-04 ヤン,チャンミン Fabric sensing system gait analysis system and method
JP2013116546A (en) * 2011-12-05 2013-06-13 Hyundai Motor Co Ltd Module and method for measuring repulsive force for walking robot
CN108041764A (en) * 2018-01-17 2018-05-18 彭玉鑫 A kind of wearable vola array three-dimensional strength measurement system
WO2018179911A1 (en) * 2017-03-25 2018-10-04 アルプス電気株式会社 Force sensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007325702A (en) * 2006-06-07 2007-12-20 Keitekku System:Kk Device for measuring standing posture balance
JP2008200182A (en) * 2007-02-19 2008-09-04 Bridgestone Sports Co Ltd Sole for sport shoe and sport shoe
JP2008298486A (en) * 2007-05-29 2008-12-11 Kochi Univ Of Technology System and method for estimating floor reaction force
FR2929827A1 (en) * 2008-04-14 2009-10-16 Commissariat Energie Atomique SOLE WITH FORCE SENSORS.
WO2009136128A2 (en) * 2008-04-14 2009-11-12 Commissariat A L'energie Atomique Shoe sole having force sensors
WO2009136128A3 (en) * 2008-04-14 2009-12-30 Commissariat A L'energie Atomique Shoe sole having force sensors
JP2010127921A (en) * 2008-12-01 2010-06-10 Kochi Univ Of Technology Moving type floor reaction force measuring device
US8212158B2 (en) * 2009-04-13 2012-07-03 Wiest Pieter C Weight measuring shoe having a retractable scale
JP2013503660A (en) * 2009-09-03 2013-02-04 ヤン,チャンミン Fabric sensing system gait analysis system and method
JP2013116546A (en) * 2011-12-05 2013-06-13 Hyundai Motor Co Ltd Module and method for measuring repulsive force for walking robot
WO2018179911A1 (en) * 2017-03-25 2018-10-04 アルプス電気株式会社 Force sensor
CN108041764A (en) * 2018-01-17 2018-05-18 彭玉鑫 A kind of wearable vola array three-dimensional strength measurement system

Also Published As

Publication number Publication date
JP4374596B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
US20170336273A1 (en) Force sensing device
CN102308270B (en) Capacitive proximity tactile sensor
CN100534346C (en) Digital running shoes based on flexible array pressure sensor
CN205031261U (en) Intelligent socks of foot data are realized measuring through pressure sensor
JP4374596B2 (en) Load measurement method
JP4997595B2 (en) Floor reaction force estimation system and floor reaction force estimation method
James et al. Sensors and Wearable Technologies in Sport: Technologies, Trends and Approaches for Implementation
CN103142236B (en) Intelligent shoe pad and method for determining walking gait
US20150018721A1 (en) Pressure monitoring shoe
FR2929827A1 (en) SOLE WITH FORCE SENSORS.
CN106289597B (en) A method of using wearable plantar pressure detection device
US20060135888A1 (en) Device for determining a value that is representative of accelerations as well as an ergometer
EP3136069B1 (en) A force sensor
CN105725982A (en) Shoe sole pressure and temperature measuring insole based on optical fiber sensing technology
CN107334212A (en) Measure method, method for establishing model and the Intelligent insole of sole pressure center track
CN214560876U (en) Exoskeleton sole sensing system based on analog pressure sensor
CN111397774B (en) Distributed flexible force and position measuring device based on Hall effect
CN110973762A (en) Insole and foot pressure distribution measuring instrument and measuring method
CN109567315A (en) A kind of portable insole measuring vola three-dimensional stress constraint
Bransby-Zachary et al. Peak pressures in the forefoot
GB2575654A (en) A sensor insert for a shoe
CN210301008U (en) Flexible sole sensing plug-in
CN112621712A (en) Exoskeleton sole sensing system based on analog pressure sensor
CN112535472A (en) Sole dynamic gait analysis system and analysis method based on weight self-calibration
US20220334009A1 (en) A load sensing device for articles of footwear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

R150 Certificate of patent or registration of utility model

Ref document number: 4374596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees