JP2005213618A - Method and device for modifying surface of structure - Google Patents

Method and device for modifying surface of structure Download PDF

Info

Publication number
JP2005213618A
JP2005213618A JP2004024005A JP2004024005A JP2005213618A JP 2005213618 A JP2005213618 A JP 2005213618A JP 2004024005 A JP2004024005 A JP 2004024005A JP 2004024005 A JP2004024005 A JP 2004024005A JP 2005213618 A JP2005213618 A JP 2005213618A
Authority
JP
Japan
Prior art keywords
construction
heating
cooling
surface modification
solution treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004024005A
Other languages
Japanese (ja)
Inventor
Minoru Obata
稔 小畑
Shohei Kawano
昌平 川野
Yoshihisa Saito
宣久 斉藤
Tetsuo Yamamoto
哲夫 山本
Yutaka Ishiwatari
裕 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004024005A priority Critical patent/JP2005213618A/en
Publication of JP2005213618A publication Critical patent/JP2005213618A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for modifying a surface of a structure capable of efficiently and reliably preventing occurrence of damages by modifying the surface by material improvement of an execution part through a solution treatment and by compressive stress through stress improvement. <P>SOLUTION: The method for modifying the surface of the structure comprises a solution treatment step of heating the surface of an execution part of the structure at a temperature in the range of ≥ 900°C and ≤ 1,100°C by the high frequency induction heating, and a step of controlling the average cooling rate to be ≥ 30°C/sec when lowering the temperature of the surface of the execution part to 300°C from the solution treatment temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、オーステナイト系ステンレス鋼で製作された構造物の応力腐食割れ等のき裂の発生、進展を防止する表面改質方法及びその装置に関する。   The present invention relates to a surface modification method and apparatus for preventing the occurrence and development of cracks such as stress corrosion cracking of a structure made of austenitic stainless steel.

従来、オーステナイト系ステンレス鋼製の原子炉炉内構造物の損傷事例は溶接による熱影響部に限定され、熱鋭敏化により材料が劣化した応力腐食割れ感受性が高い部位で発生していた。しかしながら、近年、製造段階での加工硬化、引張残留応力、材質的な不均一など従来の応力腐食割れとは異なるメカニズムにより発生したと考えられる損傷が数多く報告されている。   Conventionally, examples of damage to reactor internal structures made of austenitic stainless steel have been limited to heat-affected zones caused by welding, and have occurred at sites where stress corrosion cracking susceptibility has deteriorated due to thermal sensitization. However, in recent years, many damages that are considered to have occurred due to a mechanism different from conventional stress corrosion cracking, such as work hardening in the manufacturing stage, tensile residual stress, and material non-uniformity, have been reported.

これらの損傷は、従来の熱鋭敏化に起因した応力腐食割れに比較すると、溶接線から十分離れた部位にも発生しており、その予防保全対策としては従来よりも広い面積を対象とした一層効率的な施工方法が求められている。これまで、実用化されている予防保全技術としては、レーザピーニング、ショットピーニングなどの応力改善技術あるいはレーザ溶体化、溶融による表面改質技術がある(例えば、特許文献1、2)。
特開2001-287062号公報(第4頁、図1−3)、 特開平7-75893号公報(第5頁、図3)
These damages also occur in parts far away from the weld line compared to conventional stress corrosion cracking due to thermal sensitization, and as a preventive maintenance measure, it is more targeted for a larger area than before. An efficient construction method is required. The preventive maintenance techniques that have been put into practical use include stress improvement techniques such as laser peening and shot peening, and surface modification techniques using laser solution and melting (for example, Patent Documents 1 and 2).
JP 2001-287062 A (page 4, Fig. 1-3), Japanese Unexamined Patent Publication No. 7-75893 (5th page, FIG. 3)

しかしながら、これら応力改善技術および表面改質技術のいずれも、溶接線近傍の限定された領域の施工を目的に開発されたものであり、上記のように溶接線から十分離れた部位に発生する損傷に対する予防保全技術として適用するためには飛躍的な施工効率の改善が必要となる。   However, both of these stress improvement technologies and surface modification technologies were developed for the purpose of constructing a limited area near the weld line, and damage that occurs at sites sufficiently away from the weld line as described above. In order to be applied as preventive maintenance technology, dramatic improvement in construction efficiency is required.

また、前述のように発生メカニズムについてもプラント供用期間中の材料劣化のみならず製造段階での熱履歴、加工履歴が影響している可能性が指摘されており、単に材質改善あるいは応力改善処理のみでは十分な対策技術とはならない可能性がある。   In addition, as mentioned above, it has been pointed out that the generation mechanism may be affected not only by material deterioration during the plant operation period but also by thermal history and processing history at the manufacturing stage. However, it may not be sufficient countermeasure technology.

そこで本発明は、上述した従来技術の課題に鑑みてなされたもので、施工部を溶体化処理による材質改善と応力改善処理による圧縮応力化により表面改質を行い、従来技術に比べて高効率でしかも確実に損傷の発生を防止することができるようにした構造物の表面改質方法及びその装置を提供することを目的とするものである。   Therefore, the present invention has been made in view of the above-mentioned problems of the prior art, and the surface of the construction part is improved by a material improvement by solution treatment and a compressive stress by a stress improvement process, which is more efficient than the conventional technique. In addition, it is an object of the present invention to provide a surface modification method for a structure and an apparatus thereof that can reliably prevent the occurrence of damage.

上記の目的を達成するため、請求項1に係る構造物の表面改質方法の発明は、構造物の施工部表面を高周波誘導加熱装置の加熱部により900℃以上1100℃以下の範囲内で加熱する溶体化処理工程と、前記施工部表面の温度を冷却装置により30℃/秒以上の平均冷却速度で溶体化処理温度から300℃まで冷却する冷却工程とからなることを特徴とする。   In order to achieve the above-mentioned object, the invention of the surface modification method for a structure according to claim 1 is directed to heating the surface of the construction part in the range of 900 ° C. or higher and 1100 ° C. or lower by the heating part of the high frequency induction heating device. And a cooling step in which the temperature of the surface of the construction part is cooled from the solution treatment temperature to 300 ° C. at an average cooling rate of 30 ° C./second or more by a cooling device.

また、請求項8に係る構造物の表面改質方法の発明は、構造物表面に存在するき裂深さを施工前検査により同定する工程と、請求項5または6項記載の施工パラメータを制御することにより同定されたき裂深さ以上の圧縮応力層を形成する工程とからき裂進展を防止することを特徴とする。   The invention of the surface modification method for a structure according to claim 8 includes a step of identifying a crack depth existing on the surface of the structure by a pre-construction inspection, and a control of construction parameters according to claim 5 or 6. It is characterized in that crack propagation is prevented from the step of forming a compressive stress layer having a depth greater than the crack depth identified.

また、請求項9に係る構造物の表面改質装置の発明は、構造物の施工部表面に対向して配置され高周波磁束誘導コイルを備えた加熱部と、この加熱部を移動させる加熱部駆動機構と、前記加熱部の高周波磁束誘導コイルに高周波の電力を供給する高周波電源装置と、前記加熱部駆動機構に制御信号および駆動電力を供給して前記加熱部を前記施工部表面に対して一定速度で移動させる加熱部駆動機構制御装置とから構成したことを特徴とする。   Further, the invention of the surface reforming apparatus for a structure according to claim 9 includes a heating unit provided with a high-frequency magnetic flux induction coil disposed facing the surface of the structure construction part, and a heating unit drive for moving the heating unit. A mechanism, a high-frequency power supply that supplies high-frequency power to the high-frequency magnetic flux induction coil of the heating unit, and a control signal and driving power to the heating unit drive mechanism to supply the heating unit to the surface of the construction unit. It is characterized by comprising a heating unit drive mechanism control device that moves at a speed.

本発明によれば、溶体化処理による材質改善と応力改善処理による圧縮応力化により表面改質を行うことにより、原子炉炉内機器の製造履歴および供用中の材質劣化に起因した応力腐食割れ等のき裂発生を防止し、さらに、すでに存在するき裂の進展を抑制する高効率でかつ効果的な表面改質方法及び改質装置を提供することができる。   According to the present invention, by performing surface modification by material improvement by solution treatment and compressive stress by stress improvement treatment, production history of reactor internal equipment, stress corrosion cracking due to material deterioration during service, etc. It is possible to provide a highly efficient and effective surface modification method and reforming apparatus that prevent cracks from occurring and further suppress the growth of existing cracks.

以下、図面を参照して本発明の実施例を説明する。
(実施例1)
図1は本発明の炉内構造物の表面改質装置に係る一実施例の使用状態を示す概念図である。
図1において、1は原子炉圧力容器(図示せず)内に設置されたオーステナイト系ステンレス鋼製のシュラウドであり、上部胴、中間部胴及び下部胴から構成されているが、図では上部格子板を載置する中間部胴2、上部胴3間の接続部分に注目して示している。
Embodiments of the present invention will be described below with reference to the drawings.
(Example 1)
FIG. 1 is a conceptual diagram showing a use state of an embodiment according to a surface reforming apparatus for an in-furnace structure of the present invention.
In FIG. 1, reference numeral 1 denotes an austenitic stainless steel shroud installed in a reactor pressure vessel (not shown), which is composed of an upper shell, an intermediate shell, and a lower shell. The connection part between the intermediate | middle part trunk | drum 2 and the upper trunk | drum 3 which mounts a board is noted and shown.

図で示すように、上部胴3は内径および外径とも中間部胴2よりも大径であり、中間部胴2および上部胴3の両者は、径の寸法差に見合った幅を有する中間部リング4を介して溶接により結合され、さらに、この中間部リング4上にベース5を介して上部格子板6を載置している。これらシュラウド1および上部格子板6を原子炉炉内構造物と呼んでいる。なお、7は前記上部胴3の上端部に溶接して設けた上部リングである。また8は原子炉圧力容器の上部に位置するオペレーティングフロアである。   As shown in the figure, the upper cylinder 3 has an inner diameter and an outer diameter larger than the intermediate cylinder 2, and both the intermediate cylinder 2 and the upper cylinder 3 have intermediate widths corresponding to the dimensional difference in diameter. The upper lattice plate 6 is mounted on the intermediate ring 4 via the base 5 by welding via the ring 4. The shroud 1 and the upper lattice plate 6 are called a reactor internal structure. Reference numeral 7 denotes an upper ring that is welded to the upper end of the upper body 3. Reference numeral 8 denotes an operating floor located at the top of the reactor pressure vessel.

そして、10は以上のように構成された炉内構造物であるシュラウド1の表面改質を行うための表面改質装置である。この表面改質装置10は以下述べる要素によって構成されている。   Reference numeral 10 denotes a surface modification apparatus for performing surface modification of the shroud 1 which is the in-furnace structure configured as described above. The surface modification apparatus 10 is composed of the following elements.

11は前記上部格子板6の上面のシュラウド1中心線C上に載置された支柱であり、この支柱11は内部に駆動部を収容するとともに、上端部に当該駆動部によって回転駆動される回転腕部12を取付けている。なお、回転腕部12の回転中心はシュラウド1中心線Cと一致させている。そして、当該回転腕部12はその先端部が前記上部胴3の上部リング7に十分届く寸法に形成されており、当該先端部の下面に前記上部リング7の上端面を踏面とする車輪13を取付けて、回転腕部12の荷重を前記支柱11と車輪13とによって分担して支えるようにしている。   11 is a column placed on the center line C of the shroud 1 on the upper surface of the upper grid plate 6, and this column 11 accommodates a drive unit therein and is rotated at the upper end by the drive unit. Arm 12 is installed. Note that the rotation center of the rotating arm portion 12 coincides with the shroud 1 center line C. The rotating arm 12 has a tip that is sufficiently dimensioned to reach the upper ring 7 of the upper body 3. A wheel 13 having a tread on the upper end surface of the upper ring 7 is provided on the lower surface of the tip. It is attached so that the load of the rotating arm portion 12 is shared and supported by the support column 11 and the wheel 13.

前記回転腕部12の先端部には前記車輪13を取付けるほかに、さらに加熱部支持部材14を下向きに取付けている。この加熱部支持部材14の先端部には加熱部(加熱ヘッド)15を取付けている。この加熱部15は高周波誘導加熱装置の構成要素である高周波磁束誘導コイルを内蔵しており、この高周波磁束誘導コイルで発生させた高周波磁束により施工部に渦電流を誘起させ、この渦電流によって施工部を溶体化処理温度まで加熱する。なお、本発明では以上の支柱11、回転腕部12、車輪13および加熱部支持部材14からなる部分を便宜上、加熱部駆動機構16と称する。   In addition to attaching the wheel 13 to the tip of the rotating arm 12, a heating unit support member 14 is further attached downward. A heating section (heating head) 15 is attached to the tip of the heating section support member 14. This heating unit 15 has a built-in high-frequency magnetic flux induction coil that is a component of the high-frequency induction heating device. The high-frequency magnetic flux generated by this high-frequency magnetic flux induction coil induces eddy currents in the construction part, and this eddy current causes construction. The part is heated to the solution treatment temperature. In the present invention, the above-described portion including the support column 11, the rotating arm portion 12, the wheel 13, and the heating portion support member 14 is referred to as a heating portion driving mechanism 16 for convenience.

そして、前記加熱部15の先端部には、加熱部15自体とシュラウド1の施工部表面との距離を一定に保持するための加熱部位置決め機構17を取付けている。加熱部15とシュラウドの施工部裏面との距離を一定に保持する理由は施工部表面への入熱量の変動を極力小さく抑えるためである。   A heating unit positioning mechanism 17 is attached to the tip of the heating unit 15 to keep the distance between the heating unit 15 itself and the surface of the construction part of the shroud 1 constant. The reason why the distance between the heating unit 15 and the back surface of the construction part of the shroud is kept constant is to suppress the fluctuation of the heat input to the surface of the construction part as much as possible.

なお、図1の例では前記加熱部支持部材14は、加熱部15が中間部リング4外周の溶接線近傍に位置する長さに設定しているが、勿論これに限定されるものではない。例えば、図示していないシュラウド1の中間部胴の溶接部あるいは下部リング近傍部について表面改質施工処理を行う場合にはそれに適合するように加熱部支持部材14の長さおよび形状を適宜選定すればよい。   In the example of FIG. 1, the heating part support member 14 is set to a length in which the heating part 15 is positioned in the vicinity of the weld line on the outer periphery of the intermediate part ring 4, but is not limited to this. For example, when the surface modification construction process is performed on the welded portion of the intermediate shell of the shroud 1 (not shown) or the vicinity of the lower ring, the length and shape of the heating portion support member 14 are appropriately selected so as to conform to it. That's fine.

一方、原子炉圧力容器の上方に位置するオペレーティングフロア8上には、前記加熱部15および加熱部駆動機構16用の電源および制御装置を載置している。すなわち、シュラウド1の表面改質施工処理の際に、前記加熱部15の高周波磁束誘導コイルに所望の周波数の高周波電力を供給するためにインバータ回路で構成した高周波電源装置18と、前記加熱部15が施工部に対して予定速度(例えば一定速度)で移動するように加熱部駆動機構16を制御するための加熱部駆動機構制御装置19とをオペレーティングフロア8上に載置している。   On the other hand, on the operating floor 8 located above the reactor pressure vessel, a power source and a control device for the heating unit 15 and the heating unit drive mechanism 16 are mounted. That is, during the surface modification construction process of the shroud 1, the high-frequency power supply device 18 configured by an inverter circuit for supplying high-frequency power of a desired frequency to the high-frequency magnetic flux induction coil of the heating unit 15, and the heating unit 15 Is mounted on the operating floor 8 with a heating unit driving mechanism control device 19 for controlling the heating unit driving mechanism 16 so as to move at a predetermined speed (for example, a constant speed) with respect to the construction unit.

なお、施工部の発熱量を効率的にかつ精度よく制御するためには施工部表面の検出温度をフィードバックして加熱部に供給される高周波電力を制御する必要がある。このため本実施例では図示はしていないが、施工部近傍の表面温度を検出する温度センサーを設け、この温度センサーの検出信号を高周波電源装置18にフィードバックして設定値との偏差信号に基づいてインバータ回路の点弧角を制御し、出力周波数および出力電力を制御するように構成されている。
そして、この高周波電源装置18から出力される高周波の電力は、高周波伝送用ケーブル20を通して前記加熱部15に供給されるようになっている。
In addition, in order to control the calorific value of a construction part efficiently and accurately, it is necessary to feed back the detected temperature of the construction part surface and to control the high frequency power supplied to a heating part. For this reason, although not shown in the present embodiment, a temperature sensor for detecting the surface temperature in the vicinity of the construction part is provided, and a detection signal of this temperature sensor is fed back to the high-frequency power supply device 18 based on a deviation signal from the set value. And controlling the firing angle of the inverter circuit to control the output frequency and the output power.
The high frequency power output from the high frequency power supply device 18 is supplied to the heating unit 15 through the high frequency transmission cable 20.

また、前記制御装置19からの加熱部用駆動信号および駆動電力は、ケーブル21を通して前記支柱11内に収納されている図示しない駆動部に供給されるようになっている。前記回転腕部12はこの駆動部により一定速度で回転させられ、加熱部支持部材14の先端部に設置している加熱部15をシュラウド1の施工部に対して一定速度で移動させる。   The heating unit drive signal and the drive power from the control device 19 are supplied to a drive unit (not shown) housed in the column 11 through the cable 21. The rotating arm 12 is rotated at a constant speed by the drive unit, and the heating unit 15 installed at the tip of the heating unit support member 14 is moved at a constant speed with respect to the construction part of the shroud 1.

なお、表面改質装置10は以上説明した支柱11からケーブル21までの構成要素のほかに、図示していないが溶体化処理した施工部を急速に冷却するための冷却装置(図2の22)も併せて備えている。   In addition to the components from the support column 11 to the cable 21 described above, the surface modification device 10 is a cooling device (22 in FIG. 2) for rapidly cooling the construction part that has been solution-treated, although not shown. Is also provided.

一般に、予防保全対象部となっている施工部の表面には溶接による引張残留応力と機械加工による引張応力が重畳して高い引張応力が残留していると考えられているので、当該施工部を溶体化処理した後に冷却装置によって急速にを冷却することによって、引張応力の低減あるいは冷却過程を制御することにより十分高い圧縮応力が形成することできる。   In general, it is considered that high tensile stress remains on the surface of the construction part that is subject to preventive maintenance due to the overlap of tensile residual stress by welding and tensile stress by machining. By cooling rapidly with a cooling device after solution treatment, a sufficiently high compressive stress can be formed by reducing the tensile stress or controlling the cooling process.

図2は、上述した表面改質装置10の加熱部15を中心にして描いたブロック構成図である。22は図1に示していない冷却装置であり、施工部を急速に冷却するために、例えば冷気噴射部あるいは冷水噴射部等を有している。   FIG. 2 is a block diagram illustrating the heating unit 15 of the surface modification apparatus 10 described above. Reference numeral 22 denotes a cooling device not shown in FIG. 1, and has, for example, a cold air injection unit or a cold water injection unit in order to rapidly cool the construction unit.

次に、以上説明した表面改質装置10を用いて原子炉炉内構造物等の表面改質方法の実施例について説明する。
本実施例では、実際に原子力発電プラントに供用されているシュラウド1の代わりに、シュラウド1と同じ材質のSUS316L鋼製モックアップ試験体を使用し、以下のようにして表面改質処理を行った。
Next, an embodiment of a surface modification method for a reactor internal structure or the like using the surface modification apparatus 10 described above will be described.
In this example, instead of the shroud 1 actually used in the nuclear power plant, a SUS316L steel mock-up specimen made of the same material as the shroud 1 was used, and the surface modification treatment was performed as follows. .

まず、高周波電源装置18の出力を250kW、周波数を300kHzに設定した状態で、平面状加熱コイルで構成した加熱部15をシュラウド1の中間部胴2および下部胴(図示せず)を結合する下部リング端面の高さ約100mm×幅約50mmに位置する部位に配置する。   First, in a state where the output of the high frequency power supply 18 is set to 250 kW and the frequency is set to 300 kHz, a heating unit 15 constituted by a planar heating coil is connected to a lower part (not shown) of an intermediate part cylinder 2 and a lower part cylinder (not shown) of the shroud 1. The ring end face is arranged at a site located about 100 mm high and about 50 mm wide.

次に、加熱部駆動機構16の回転腕部12を一定速度で回動させることにより、加熱部15を施工部に対して一定速度で移動させながら高周波誘導加熱により約3分間の溶体化処理を行った。   Next, by rotating the rotating arm 12 of the heating unit driving mechanism 16 at a constant speed, a solution treatment for about 3 minutes is performed by high-frequency induction heating while moving the heating unit 15 at a constant speed with respect to the construction part. went.

この場合の溶体化処理温度としては、シュラウド1がオーステナイト系ステンレス鋼製のため、オーステナイト相が安定化しさらに十分に拡散が起こり材質的に均一化する条件として900℃以上1100℃以下が最適である。実際に施工部中央部の表面温度を計測したところ、約1050℃に保持されていることが確認できた。   As the solution treatment temperature in this case, since the shroud 1 is made of austenitic stainless steel, 900 ° C. or more and 1100 ° C. or less is optimal as a condition for stabilizing the austenite phase and further sufficiently diffusing and making the material uniform. . When the surface temperature of the center of the construction part was actually measured, it was confirmed that the surface temperature was maintained at about 1050 ° C.

次に、溶体化処理後に前記冷却装置22から施工部に対して水を噴射し、施工部の温度を前述の約1050℃から室温付近まで急速冷却処理した。図3は溶体化処理後の施工部の冷却速度(℃/秒)と、表面に形成される残留応力との関係を示すグラフである。図3のグラフによれば、表面と内部とで大きな温度差を発生する30(℃/秒)以上の冷却速度の場合、溶体化処理後の残留応力改善効果が顕著である。これは高温に保持された施工部を冷却する過程において、材料の表面と内部とに大きな温度差が生じるために熱収縮に起因する応力が発生し、表面残留応力は圧縮側に変位し、表面より遅れて温度が低下する内部では引張側に応力が変位するからである。さらに、本実施例は高周波誘導加熱により施工部表面を急速加熱するので、板厚内部への急激な温度勾配を形成しやすいため、溶体化処理後の冷却方法と組み合わせことにより、高い圧縮応力を形成できるばかりでなく、圧縮応力層の厚さも制御することが可能である。   Next, after the solution treatment, water was sprayed from the cooling device 22 to the construction part, and the temperature of the construction part was rapidly cooled from about 1050 ° C. to near room temperature. FIG. 3 is a graph showing the relationship between the cooling rate (° C./second) of the construction part after the solution treatment and the residual stress formed on the surface. According to the graph of FIG. 3, in the case of a cooling rate of 30 (° C./second) or more that generates a large temperature difference between the surface and the inside, the effect of improving the residual stress after the solution treatment is remarkable. This is because in the process of cooling the construction part held at a high temperature, a large temperature difference occurs between the surface and the inside of the material, so stress due to thermal shrinkage occurs, and the surface residual stress is displaced to the compression side, This is because the stress is displaced toward the tension side in the interior where the temperature falls later. Furthermore, since the working part surface is rapidly heated by high frequency induction heating in this embodiment, it is easy to form a steep temperature gradient into the thickness of the plate. Therefore, in combination with the cooling method after solution treatment, a high compressive stress can be obtained. Not only can it be formed, it is also possible to control the thickness of the compressive stress layer.

なお、前記施工部の応力改善効果を確認するために、X線応力測定法によりシュラウド1の表面から約1mmの深さまでの周方向応力の残留応力分布を測定した。図4は横軸に表面からの深さ(mm)をとり、縦軸に残留応力(MPa)をとり、高周波加熱による表面改質処理後の測定結果を描いた図である。この図4のグラフから、表面すなわち深さ0mmの場合約650MPaの圧縮応力(マイナス符号は圧縮応力)が形成され、圧縮応力層は約0.5mmの深さまで達していることがわかる。   In addition, in order to confirm the stress improvement effect of the construction part, the residual stress distribution of the circumferential stress from the surface of the shroud 1 to a depth of about 1 mm was measured by the X-ray stress measurement method. FIG. 4 shows the measurement results after surface modification treatment by high-frequency heating, with the horizontal axis representing the depth (mm) from the surface and the vertical axis representing the residual stress (MPa). From the graph of FIG. 4, it can be seen that a compressive stress of about 650 MPa (minus sign is a compressive stress) is formed when the surface, that is, a depth of 0 mm, and the compressive stress layer reaches a depth of about 0.5 mm.

図5は、前述したモックアップ試験体に対する表面改質の施工部および未施工部の双方の部位から試験片を採取し、金属組織観察および表面からの硬度分布を測定し、横軸に施工部の表面からの深さ(mm)をとり、縦軸にビッカース硬さ(Hv)をとって、施工部および未施工部の硬度分布測定結果を比較して示したものである。この図5からわかるように、実線で示した未施工部には深さ約0.4mmの機械加工によると考えられる加工硬化層が存在するが、表面改質施工処理を行った部分では、破線で示すように前記加工硬化層が消失し内部とほぼ同等の硬さとなっている。この場合、組織は健全なオーステナイト単相組織であり、フェライト相や極端な加工組織は観察されなかった。   Fig. 5 shows specimens taken from both the surface-modified and non-processed parts of the mock-up specimen, and observed the metal structure and measured the hardness distribution from the surface. The Vickers hardness (Hv) is taken on the vertical axis, and the hardness distribution measurement results of the construction part and the non-working part are compared and shown. As can be seen from FIG. 5, there is a work hardened layer that is considered to be due to machining with a depth of about 0.4 mm in the non-worked part indicated by the solid line, but in the part subjected to the surface modification work process, the broken line As shown by the above, the work-hardened layer disappears and has almost the same hardness as the inside. In this case, the structure was a healthy austenite single phase structure, and a ferrite phase and an extreme processed structure were not observed.

図6は、施工面を高周波誘導加熱により溶体化処理を施した後、冷却装置22からの水流噴射による急冷処理によって形成した圧縮応力層の周波数依存性を示した図であり、横軸に表面改質施工部の表面からの深さ(mm)をとり、縦軸に残留応力(MPa)をとっている。図6中、実線は周波数が50kHz、出力が300kWの場合、一点鎖線は周波数が100kHz、出力が260kWの場合、破線は周波数が300kHz、出力250kWの場合の特性図である。なお、いずれの施工部とも溶体化処理条件は1050℃×3分間である。高周波誘導加熱の場合、表皮効果により渦電流の表皮深さは周波数が低いほど深いため、溶体化領域は材料内部まで及ぶと考えられる。そして急速冷却により形成される圧縮応力層厚さも変化し周波数が低いほど深い圧縮応力層が形成されている。   FIG. 6 is a diagram showing the frequency dependence of the compressive stress layer formed by rapid cooling treatment by water jet from the cooling device 22 after the solution surface is subjected to solution treatment by high-frequency induction heating. The depth (mm) from the surface of the modified construction part is taken, and the residual stress (MPa) is taken on the vertical axis. In FIG. 6, the solid line is a characteristic diagram when the frequency is 50 kHz and the output is 300 kW, the alternate long and short dash line is the frequency when the frequency is 100 kHz and the output is 260 kW, and the broken line is the characteristic diagram when the frequency is 300 kHz and the output is 250 kW. In any construction part, the solution treatment condition is 1050 ° C. × 3 minutes. In the case of high-frequency induction heating, the skin depth of the eddy current is deeper as the frequency is lower due to the skin effect, so the solution region is considered to extend to the inside of the material. The compressive stress layer thickness formed by rapid cooling also changes, and the deeper the compressive stress layer is formed, the lower the frequency.

なお、以上の説明では、施工部の加熱手段として高周波誘導加熱装置を挙げたが、加熱手段としてはこのほかにもヒータあるいはランプなどによる輻射加熱手段も適用可能である。しかし、高周波誘導加熱手段は施工部材に渦電流を誘起して表面層のみ加熱することができるので制御性が良好な上に、局部加熱が可能、周囲が加熱されない、エネルギー効率がよい、急熱が可能、装置が比較的コンパクトである等優れた特徴を有している。また、前述したように高周波誘導加熱の場合、渦電流の表皮深さは使用周波数が低ければが深く、高ければ浅いので、対象部材に応じて周波数を変えて渦電流の表皮深さを制御することにより、溶体化深さを自在に変化させることが可能である。このような理由から高周波誘導加熱手段は、施工部の加熱手段として最適である。   In the above description, a high-frequency induction heating device has been described as the heating means of the construction part. However, as the heating means, radiant heating means such as a heater or a lamp can also be applied. However, the high-frequency induction heating means can induce only eddy currents in the construction member and heat only the surface layer, so it has good controllability, local heating is possible, the surroundings are not heated, energy efficiency is good, and rapid heating The device has excellent features such as being relatively compact. In addition, as described above, in the case of high-frequency induction heating, the skin depth of eddy current is deeper if the operating frequency is low, and shallow if it is high, so the skin depth of eddy current is controlled by changing the frequency according to the target member. Thus, the solution depth can be freely changed. For these reasons, the high frequency induction heating means is optimal as the heating means for the construction part.

以上述べたように、本実施例は、構造物の施工部の表面を高周波誘導加熱により900℃以上1100℃以下の範囲内で加熱して溶体化処理し、その後前記施工部の表面温度を30℃/秒以上の平均冷却速度で溶体化処理温度から300℃まで冷却するようにしたので、材質改善と応力改善処理による圧縮応力化とを同時に実現し、従来に比べて高効率で信頼性の高い予防保全方法を提供することができる。
なお、本発明は以上述べた実施例1に記載の装置および方法に限定されるものではなく、以下述べるようにしてもよい。
As described above, in this example, the surface of the construction part of the structure is subjected to a solution treatment by heating in a range of 900 ° C. to 1100 ° C. by high frequency induction heating, and then the surface temperature of the construction part is set to 30. Cooling from the solution treatment temperature to 300 ° C at an average cooling rate of ℃ / sec or more, realizing material improvement and compressive stress by stress improvement treatment at the same time, higher efficiency and reliability than before High preventive maintenance methods can be provided.
The present invention is not limited to the apparatus and method described in the first embodiment, and may be described as follows.

(実施例2)
施工部に対する加熱手段として高周波誘導加熱を適用した場合、以下述べるように、溶体化処理温度、改質層深さ、施工後の表面圧縮応力値、圧縮応力層深さを決める施工制御パラメータとして、高周波誘導加熱装置の加熱部の出力周波数、出力電力、移動速度(または加熱部による加熱保持時間)あるいは冷却装置による施工部冷却速度のいずれ1つかあるいは2つ以上を組み合わせるようにしてもよい。
(Example 2)
When high frequency induction heating is applied as a heating means for the construction part, as described below, as a construction control parameter that determines the solution treatment temperature, the modified layer depth, the surface compressive stress value after construction, and the compressive stress layer depth, Any one or two or more of the output frequency, output power, moving speed (or heating holding time by the heating unit) of the heating unit of the high-frequency induction heating device, or the construction unit cooling rate by the cooling device may be combined.

すなわち、施工部表面の溶体化処理温度、改質層厚さおよび形成される圧縮応力値、圧縮応力層深さは、施工部の材料特性により適した値に制御する必要があり、特に加熱装置が高周波誘導加熱の場合には、渦電流の表皮深さを決める周波数が溶体化層深さおよび圧縮応力層深さを決める重要なパラメータとなる。一方、溶体化処理温度は周波数と共に渦電流密度を決める加熱装置の出力が主要な制御パラメータとなる。また、冷却速度は残留する圧縮応力値およびその深さを決める重要なパラメータとなる。さらに、移動式装置の場合は施工中の熱伝導による周囲および部材内部への熱拡散を支配する加熱装置の移動速度が主要なパラメータとなる。   That is, it is necessary to control the solution treatment temperature, the reformed layer thickness, the compressive stress value to be formed, and the compressive stress layer depth to a value more suitable for the material properties of the construction part. In the case of high frequency induction heating, the frequency that determines the skin depth of the eddy current is an important parameter that determines the depth of the solution layer and the depth of the compressive stress layer. On the other hand, the solution treatment temperature is mainly controlled by the output of the heating device that determines the eddy current density along with the frequency. The cooling rate is an important parameter for determining the residual compressive stress value and its depth. Further, in the case of a mobile device, the moving speed of the heating device that governs the thermal diffusion into the surroundings and inside the member due to heat conduction during construction is a major parameter.

いずれも、予想される施工部の材料特性に合わせて溶体化処理温度、改質層深さ、圧縮応力値、圧縮応力層深さを制御するための適正な施工パラメータの組み合わせを選択する必要がある。一方、後述する実施例3のバッチ式装置の場合には加熱部移動速度の代わりに加熱保持時間が施工パラメータとなる。   In any case, it is necessary to select the appropriate combination of construction parameters to control the solution treatment temperature, modified layer depth, compressive stress value, and compressive stress layer depth according to the expected material properties of the construction part. is there. On the other hand, in the case of the batch type apparatus of Example 3 described later, the heating and holding time is a construction parameter instead of the heating unit moving speed.

このように、施工パラメータを制御することにより圧縮応力値および深さの制御技術を応用して、仮にき裂が存在した場合にはき裂深さ以上の圧縮応力層を形成することによりき裂進展を抑制することも可能となる。   In this way, by applying compressive stress value and depth control technology by controlling the construction parameters, if a crack exists, a crack is formed by forming a compressive stress layer that is greater than the crack depth. It is also possible to suppress progress.

(実施例3)
図1に示した表面改質装置10を用いた施工方法では、加熱装置を加熱部駆動機構16により一定速度で移動させて表面改質施工処理を行う移動方式を採用したが、本発明はこの移動方式に限定されるものではない。
(Example 3)
In the construction method using the surface modification apparatus 10 shown in FIG. 1, a moving method is used in which the heating apparatus is moved at a constant speed by the heating unit drive mechanism 16 to perform the surface modification construction process. The movement method is not limited.

本実施例3は、加熱装置を固定した状態で所定の時間加熱保持することにより構造物の施工部表面の所定の一部分の領域について表面改質処理し、その後、表面改質処理範囲が一部重ね合うように順次表面改質処理を行い、最終的に施工対象部全体に亘って表面改質処理する(バッチ方式)方法を提供するものである。   In the third embodiment, a surface modification treatment is performed on a predetermined partial region of the surface of the construction portion of the structure by holding the heating device for a predetermined time in a fixed state, and then the surface modification treatment range is partially The present invention provides a method (batch method) in which surface modification treatment is sequentially performed so as to overlap, and finally the surface modification treatment is performed over the entire construction target portion.

(実施例4)
原子炉炉内構造物の建設時の溶接部に、上述した表面改質処理を適用するようにしてもよい。この場合、表面改質処理を施工された機器の信頼性向上、長寿命化を計ることができる。
Example 4
You may make it apply the surface modification process mentioned above to the welding part at the time of construction of a reactor internal structure. In this case, it is possible to improve the reliability and prolong the service life of the equipment subjected to the surface modification treatment.

(実施例5)
炉内構造物表面にき裂の存在が判明している場合、予め超音波探傷法あるいはECT(渦電流探傷法)等の手段によりそのき裂深さを定量化し、その後前述した表面改質施工処理方法を適用して、き裂深さ以上の圧縮応力層を施工部表面に形成することにより、き裂先端部に圧縮応力場を付与し、き裂進展を防止するようにしてもよい。
この方法は、シュラウド等供用中の負荷応力が小さい機器の場合、き裂先端に形成された圧縮応力場により長期間にわたりき裂進展を防止することが可能である。
(Example 5)
If the presence of cracks on the surface of the reactor internal structure is known, the crack depth is quantified in advance by means of ultrasonic flaw detection or ECT (eddy current flaw detection), and then the surface modification described above. By applying a treatment method and forming a compressive stress layer having a depth equal to or greater than the crack depth on the surface of the construction part, a compressive stress field may be applied to the crack tip to prevent crack propagation.
This method can prevent crack propagation over a long period of time due to the compressive stress field formed at the crack tip in the case of a device having a small load stress in service such as a shroud.

(実施例6)
本発明の表面改質処理方法を建設時の炉内構造物に適用する際のように気中で施工する場合には、図2に示す冷却装置22により施工部の溶体化処理後に強制空冷あるいは強制水冷によって急冷する必要がある。しかし、予防保全工法として適用する場合は、水中施工であることが想定されるため、溶体化処理後の冷却に際しては、水を自然対流あるいは加熱部の周囲から施工部へ強制的に送り込むことにより急速に冷却されることになるため、図1の冷却装置22のような特別の冷却装置は必ずしも必要ではない。したがって、予防保全工法の場合には施工装置も小型化が可能となり、狭隘部へのアクセスも可能である。
(Example 6)
In the case where the surface modification treatment method of the present invention is applied in the air as in the case of application to a reactor internal structure at the time of construction, forced cooling by the cooling device 22 shown in FIG. It is necessary to cool rapidly by forced water cooling. However, when it is applied as a preventive maintenance method, it is assumed that it is underwater construction, so when cooling after solution treatment, water is forced to be sent from natural convection or around the heating part to the construction part. A special cooling device such as the cooling device 22 of FIG. 1 is not necessarily required because it will be cooled rapidly. Therefore, in the case of the preventive maintenance method, the construction apparatus can be miniaturized and access to the narrow part is also possible.

本発明の表面改質装置の適用例を示す概念図。The conceptual diagram which shows the example of application of the surface modification apparatus of this invention. 図1に示す表面改質装置のブロック構成図。The block block diagram of the surface modification apparatus shown in FIG. シュラウドモックアップ試験体の冷却速度と表面に形成される残留応力の関係を示す図。The figure which shows the relationship between the cooling rate of a shroud mockup test body, and the residual stress formed in the surface. シュラウドモックアップ試験体表面に高周波誘導加熱、急冷処理により形成された圧縮応力層を示す応力分布図。The stress distribution figure which shows the compressive-stress layer formed in the shroud mockup test body surface by the high frequency induction heating and the rapid cooling process. シュラウドモックアップ試験体表層部の高周波誘導加熱による溶体化処理効果を示す施工部および未施工部の硬度分布図。The hardness distribution figure of the construction part which shows the solution treatment effect by the high frequency induction heating of a shroud mockup test body surface layer part, and a non-application part. シュラウドモックアップ試験体表面に高周波誘導加熱、急冷処理により形成された圧縮応力層厚さの周波数依存性を示す応力分布図。The stress distribution figure which shows the frequency dependence of the compressive-stress layer thickness formed in the shroud mockup test body surface by the high frequency induction heating and the rapid cooling process.

符号の説明Explanation of symbols

1…シュラウド、2…中間部胴、3…上部胴、4…中間部リング、5…ベース、6…上部格子板、7…上部リング8…オペレーティングフロア、10…表面改質装置、11…支柱、12…回転腕部、13…車輪、14…加熱部支持部材、15…加熱部(加熱ヘッド)、16…加熱部駆動機構、17…加熱部位置決め機構、18…高周波電源装置、19…加熱部駆動機構制御装置、20…高周波伝送用ケーブル、21…加熱部駆動機構部用信号および駆動電源ケーブル、22…冷却装置。

DESCRIPTION OF SYMBOLS 1 ... Shroud, 2 ... Middle part cylinder, 3 ... Upper part body, 4 ... Middle part ring, 5 ... Base, 6 ... Upper lattice board, 7 ... Upper ring 8 ... Operating floor, 10 ... Surface modification apparatus, 11 ... Post , 12 ... Rotating arm part, 13 ... Wheel, 14 ... Heating part support member, 15 ... Heating part (heating head), 16 ... Heating part drive mechanism, 17 ... Heating part positioning mechanism, 18 ... High frequency power supply device, 19 ... Heating Part drive mechanism control device, 20 ... high frequency transmission cable, 21 ... heating part drive mechanism signal and drive power cable, 22 ... cooling device.

Claims (11)

構造物の施工部表面を高周波誘導加熱装置の加熱部により900℃以上1100℃以下の範囲内で加熱する溶体化処理工程と、前記施工部表面の温度を冷却装置により30℃/秒以上の平均冷却速度で溶体化処理温度から300℃まで冷却する冷却工程とからなることを特徴とする構造物の表面改質方法。   A solution treatment step of heating the construction part surface of the structure within a range of 900 ° C. or more and 1100 ° C. or less by the heating part of the high frequency induction heating device, and an average of the temperature of the construction part surface of 30 ° C./second or more by the cooling device A method for surface modification of a structure, comprising a cooling step of cooling from a solution treatment temperature to 300 ° C. at a cooling rate. 前記溶体化処理工程は、前記高周波誘導加熱装置の加熱部を前記構造物の施工部表面に対して一定速度で移動させながら当該施工部表面を加熱することを特徴とする請求項1記載の構造物の表面改質方法。   2. The structure according to claim 1, wherein the solution treatment step heats the construction part surface while moving the heating part of the high-frequency induction heating device at a constant speed with respect to the construction part surface of the structure. Method for surface modification of objects. 前記溶体化処理工程は、前記高周波誘導加熱装置の加熱部を前記構造物の施工部表面中の一部分の領域に対峙するように固定した状態で当該施工部表面の一部分の領域を所定時間加熱保持して溶体化処理し、その後前記加熱部を他の領域に対峙するように固定した状態で所定時間加熱保持して溶体化処理し、以降これを繰り返して施工対象領域全体を溶体化処理することを特徴とする請求項1記載の構造物の表面改質方法。   In the solution treatment step, the heating unit of the high-frequency induction heating device is heated and held for a predetermined time in a part of the surface of the construction part in a state where the heating part is fixed to face a part of the part of the surface of the construction part of the structure. Then, a solution treatment is performed, and after that, the solution is heated and held for a predetermined time in a state where the heating unit is fixed so as to face another region, and thereafter, this is repeated to perform a solution treatment on the entire construction target region. The surface modification method for a structure according to claim 1, wherein: 前記冷却工程は、空気噴射による冷却手段あるいは水噴射による冷却手段の少なくとも一方の冷却手段で冷却することを特徴とする請求項2または3記載の構造物の表面改質方法。   4. The surface modification method for a structure according to claim 2, wherein the cooling step is performed by at least one of cooling means by air injection or cooling means by water injection. 構造物の施工部表面の溶体化処理温度、改質深さ、施工後の表面圧縮応力値、圧縮応力深さを決める施工制御パラメータが、前記溶体化処理工程における加熱部の出力周波数、出力電力、移動速度、冷却工程における冷却速度のいずれかあるいは2つ以上のパラメータの組み合わせであることを特徴とする請求項2記載の構造物の表面改質方法。   The solution control temperature, the modification depth, the surface compressive stress value after construction, and the construction control parameters that determine the compressive stress depth are the output frequency and output power of the heating part in the solution treatment step. 3. The surface modification method for a structure according to claim 2, wherein any one of a moving speed and a cooling speed in a cooling step or a combination of two or more parameters is used. 構造物の施工部表面の溶体化処理温度、改質深さ、施工後の表面圧縮応力値、圧縮応力深さを決める施工制御パラメータが、前記溶体化処理工程における加熱部の出力周波数、出力電力、加熱保持時間、冷却工程における冷却速度のいずれかあるいは2つ以上のパラメータの組み合わせであることを特徴とする請求項3記載の構造物の表面改質方法。   The solution control temperature, the modification depth, the surface compressive stress value after construction, and the construction control parameters that determine the compressive stress depth are the output frequency and output power of the heating part in the solution treatment step. 4. The method for surface modification of a structure according to claim 3, wherein any one of a heating retention time and a cooling rate in the cooling step or a combination of two or more parameters is used. 原子炉炉内構造物の建設時に、当該構造物の溶接部を表面改質処理することを特徴とする請求項1ないし6のいずれかに記載の構造物の表面改質方法。   The method for surface modification of a structure according to any one of claims 1 to 6, wherein a surface modification treatment is performed on a welded portion of the structure at the time of construction of the reactor internal structure. 構造物表面に存在するき裂深さを施工前検査により同定する工程と、特許請求の範囲5または6項記載の施工パラメータを制御することにより同定されたき裂深さ以上の圧縮応力層を形成する工程とからき裂進展を防止することを特徴とする構造物の表面改質方法。   A step of identifying the crack depth existing on the surface of the structure by pre-construction inspection, and forming a compressive stress layer greater than the identified crack depth by controlling the construction parameters described in claims 5 or 6 A method for modifying the surface of a structure, wherein crack propagation is prevented from occurring. 構造物の施工部表面に対向して配置され高周波磁束誘導コイルを備えた加熱部と、この加熱部を移動させる加熱部駆動機構と、前記加熱部の高周波磁束誘導コイルに高周波の電力を供給する高周波電源装置と、前記加熱部駆動機構に制御信号および駆動電力を供給して前記加熱部を前記施工部表面に対して予定速度で移動させる加熱部駆動機構制御装置とから構成したことを特徴とする構造物の表面改質装置。   A heating unit provided with a high-frequency magnetic flux induction coil disposed opposite to the surface of the construction part of the structure, a heating unit driving mechanism for moving the heating unit, and supplying high-frequency power to the high-frequency magnetic flux induction coil of the heating unit A high-frequency power supply device and a heating unit driving mechanism control device that supplies a control signal and driving power to the heating unit driving mechanism to move the heating unit at a predetermined speed with respect to the surface of the construction unit, Surface modification equipment for structures. 前記構造物の施工部表面を強制冷却する冷却手段を備えたことを特徴とする請求項9記載の構造物の表面改質装置。   The surface modification apparatus for a structure according to claim 9, further comprising a cooling unit that forcibly cools a surface of a construction portion of the structure. 前記構造物の施工部表面と前記加熱部との距離を一定に保持するための機構を備えたことを特徴とする請求項9記載の表面改質装置。
The surface modification apparatus according to claim 9, further comprising a mechanism for maintaining a constant distance between a surface of the construction portion of the structure and the heating portion.
JP2004024005A 2004-01-30 2004-01-30 Method and device for modifying surface of structure Pending JP2005213618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004024005A JP2005213618A (en) 2004-01-30 2004-01-30 Method and device for modifying surface of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004024005A JP2005213618A (en) 2004-01-30 2004-01-30 Method and device for modifying surface of structure

Publications (1)

Publication Number Publication Date
JP2005213618A true JP2005213618A (en) 2005-08-11

Family

ID=34906831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004024005A Pending JP2005213618A (en) 2004-01-30 2004-01-30 Method and device for modifying surface of structure

Country Status (1)

Country Link
JP (1) JP2005213618A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101642114B1 (en) * 2015-02-26 2016-07-25 한양대학교 산학협력단 Method for manufacturing stabilized austenitic stainless steel for improvement of mechanical properties
CN108950144A (en) * 2018-07-13 2018-12-07 重庆理工大学 The method of laser surface modification austenitic stainless steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101642114B1 (en) * 2015-02-26 2016-07-25 한양대학교 산학협력단 Method for manufacturing stabilized austenitic stainless steel for improvement of mechanical properties
CN108950144A (en) * 2018-07-13 2018-12-07 重庆理工大学 The method of laser surface modification austenitic stainless steel

Similar Documents

Publication Publication Date Title
JP4969221B2 (en) Deterioration part reproduction method, degradation part reproduction device
WO2008107660A1 (en) Method of relieving residual stress in a welded structure
Zammit et al. Discrete laser spot hardening of austempered ductile iron
JP3649223B2 (en) Heat treatment method and heat treatment apparatus for piping system
JP4317799B2 (en) Method for improving residual stress in pipes
KR101201659B1 (en) Deteriorated portion reproducing method and deteriorated portion reproducing device
JP2005213618A (en) Method and device for modifying surface of structure
US10161015B2 (en) Heat treatment method and method of manufacturing machine part
US11136634B2 (en) Method for heat treating by induction an alloy component for generating microstructure gradients and an alloy component heat treated according to the method
JP2010138474A (en) Method for producing corrosion-resistant member
JP6725435B2 (en) Surface modification method for structures
JP2003253337A (en) Process and apparatus for regenerating creep deteriorated part
KR20110105156A (en) Apparatus of surface treatment of ni-based superalloy and ni-based superalloy thereby
Hirohata et al. Residual stress reduction of fillet box welded joints by local heating using induction heating device
JPS5852428A (en) Heat treatment for improving stress of shaft
JP3675463B2 (en) Heat treatment method for piping system
JP2005227171A (en) Method and device for modifying surface of structure
CN113201627B (en) Local heat treatment method for inner wall of large quenched and tempered steel pressure container after repair welding
Scarpellini et al. Seamless induction hardening of a 42CrMo4 slewing bearing
Romanov et al. Hardening of Cylindrical Bars with Water Impinging Jet Quenching Technique
JPWO2005024083A1 (en) Reactor structure and manufacturing method and repair method thereof
JP2011045901A (en) Welding apparatus and welding method
Hirohata et al. Local heating for reducing residual stress and fatigue-performance improvement of welded joints
JP2004154807A (en) Welding method for structure and welding support system
CN117259993A (en) System and method for improving surface quality and mechanical property of material

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20070626