JP2005213315A - Production method for macromolecular polymer porous film and macromolecular polymer porous film - Google Patents

Production method for macromolecular polymer porous film and macromolecular polymer porous film Download PDF

Info

Publication number
JP2005213315A
JP2005213315A JP2004019426A JP2004019426A JP2005213315A JP 2005213315 A JP2005213315 A JP 2005213315A JP 2004019426 A JP2004019426 A JP 2004019426A JP 2004019426 A JP2004019426 A JP 2004019426A JP 2005213315 A JP2005213315 A JP 2005213315A
Authority
JP
Japan
Prior art keywords
polymer
solvent
water
solution
porous film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004019426A
Other languages
Japanese (ja)
Inventor
Kenta Nishihara
健太 西原
Akimitsu Tsukuda
佃  明光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004019426A priority Critical patent/JP2005213315A/en
Publication of JP2005213315A publication Critical patent/JP2005213315A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method for a macromolecular polymer porous film, which excels in forming a thin film and can easily control stable porous characteristics. <P>SOLUTION: The macromolecular polymer porous film is obtained by the followings. After a solution composed of a macromolecular polymer insoluble in water, a solvent (solvent 1) which is a good solvent for the macromolecular polymer and compatible with water, and a solvent (solvent 2) which is a poor solvent for the macromolecule polymer and compatible with water, in the state of being mutually dissolved, is made to a film shape on a supporting body, ≥0.5 wt.% water, based on the amount of the solvents (the solvents 1 and 2), is absorbed in the solution, precipitating the macromolecule polymer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、フィルター、分離膜、電池用セパレーター、プリント基板などに好適に使用できる高分子重合体多孔質膜の製造方法、および高分子重合体多孔質膜に関する。   The present invention relates to a method for producing a polymer porous membrane that can be suitably used for filters, separation membranes, battery separators, printed boards, and the like, and a polymer polymer porous membrane.

従来、高分子重合体多孔質膜の溶液製膜法での製造方法としては、例えば特許文献1で、ポリアミック酸溶液をキャストした後に多孔質フィルムを積層し、貧溶媒に浸漬することを特徴とする製造方法が開示されている。また、特許文献2では、ポリマーをキャストした後に液状の保護層を積層し、貧溶媒に浸漬することを特徴とする製造方法が開示されている。   Conventionally, as a method for producing a polymer porous membrane by a solution casting method, for example, in Patent Document 1, after casting a polyamic acid solution, a porous film is laminated and immersed in a poor solvent. A manufacturing method is disclosed. Patent Document 2 discloses a manufacturing method characterized by laminating a liquid protective layer after casting a polymer and immersing it in a poor solvent.

しかしながら、これら上記の方法では、ポリマー溶液をキャストした後に、再度保護層を積層する必要があり工程が複雑となる。また、流動性を持つポリマー溶液上に保護層を設けるため、安定した積層が困難であり、多孔質膜の特性の制御も困難となる。   However, in these above methods, it is necessary to laminate a protective layer again after casting the polymer solution, which complicates the process. Further, since the protective layer is provided on the polymer solution having fluidity, stable lamination is difficult, and it is difficult to control the characteristics of the porous film.

また、特許文献3では、ポリマー溶液に貧溶媒を加え、ゲル状ポリマー溶液とした後に製膜することを特徴とする製造方法が開示されているが、この方法では、ゲル化した溶液を均一にキャストすることは困難であり、薄い多孔質膜が製造しづらい。   Patent Document 3 discloses a production method characterized in that a poor solvent is added to a polymer solution to form a gel polymer solution, and then a film is formed. In this method, the gelled solution is uniformly formed. It is difficult to cast and it is difficult to produce a thin porous membrane.

さらに、特許文献4では、ポリマー溶液に金属酸化物微粒子を分散させたものをキャストし膜を得た後、金属酸化物微粒子を溶解除去することを特徴とする製造方法が開示されている。しかしながら、この方法では、空孔の大きさが金属酸化物微粒子の径より小さいものが得られず、また、膜厚に対して金属酸化物微粒子の径を小さくしていくと、溶解除去が困難となり膜中に残存してしまうという問題があった。
特開平11−310658号公報 特開2003−165128号公報 特開2002−327084号公報 特開2001−98106号公報
Further, Patent Document 4 discloses a manufacturing method characterized in that after a metal oxide fine particle dispersed in a polymer solution is cast to obtain a film, the metal oxide fine particle is dissolved and removed. However, with this method, it is not possible to obtain a pore having a size smaller than that of the metal oxide fine particles, and it is difficult to dissolve and remove the metal oxide fine particles with respect to the film thickness. There was a problem that it remained in the film.
JP-A-11-310658 JP 2003-165128 A JP 2002-327084 A JP 2001-98106 A

本発明は、上記した従来の問題を解決し、薄膜化に優れ、安定した多孔質特性を容易に制御しうる高分子重合体多孔質膜の製造方法および高分子重合体多孔質膜を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a method for producing a polymer porous membrane that is excellent in thinning and that can easily control stable porous properties, and a polymer porous membrane For the purpose.

上記目的を達成するための本発明は、非水溶性を示す高分子重合体と、前記高分子重合体に対し良溶媒で且つ水に対し相溶性を示す溶媒(溶媒1)と、前記高分子重合体に対し貧溶媒で且つ水に対し相溶性を示す溶媒(溶媒2)とからなる、互いに相溶した溶液を支持体上において膜形状とした後、溶媒(溶媒1および溶媒2)に対し0.5重量%以上の水を前記溶液に吸収させて前記高分子重合体を析出させる高分子重合体多孔質膜の製造方法を特徴とする。   In order to achieve the above object, the present invention provides a polymer that exhibits water insolubility, a solvent (solvent 1) that is a good solvent for the polymer and is compatible with water, and the polymer. A solution compatible with each other, which is a poor solvent for the polymer and a solvent compatible with water (solvent 2), is formed into a film shape on the support, and is then added to the solvent (solvent 1 and solvent 2). It is characterized by a method for producing a high molecular weight polymer porous membrane in which 0.5% by weight or more of water is absorbed into the solution and the high molecular weight polymer is precipitated.

本発明によれば、以下に説明するとおり、所望の空孔率、ガーレ値を有しつつ、高強度であり、薄膜化が可能な多孔質膜が得られ、フィルター、分離膜、電池用セパレーター、プリント基板などに好適に使用できる。   According to the present invention, as will be described below, a porous membrane having a desired porosity and a Gurley value and having a high strength and capable of being thinned is obtained. A filter, a separation membrane, and a battery separator It can be suitably used for printed circuit boards.

本発明において用いる、非水溶性を示す高分子重合体(以下、単にポリマーということがある)とは、一般的に非水溶性を示す高分子のことを指し、例えば−30〜80℃において、水に対する溶解度が1重量%未満であることが好ましい。具体的には、例えば、ポリエチレン、ポリプロピレン、ポリエステル、ポリスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、芳香族ポリアミド、フッ素系樹脂などを用いることができる。これらポリマーは単独で使用しても、数種の混合物であっても構わない。高強度であり、薄膜化が可能であることから、芳香族ポリアミドが好ましい。   As used in the present invention, a polymer that exhibits water insolubility (hereinafter sometimes simply referred to as a polymer) refers to a polymer that generally exhibits water insolubility, for example, at −30 to 80 ° C. It is preferred that the solubility in water is less than 1% by weight. Specifically, for example, polyethylene, polypropylene, polyester, polysulfone, polycarbonate, polyamide, polyimide, polyamideimide, aromatic polyamide, fluorine resin, and the like can be used. These polymers may be used alone or in a mixture of several kinds. Aromatic polyamide is preferred because of its high strength and possible thinning.

本発明において、ポリマーに対し良溶媒で且つ水に対し相溶性を示す溶媒(以下、溶媒1ということがある)とは、用いるポリマーを溶解しかつ水とも相溶する溶媒のことをいい、種々の有機溶媒を用いることができる。ここで、上記溶媒としては、例えば−30〜80℃において、用いるポリマーの溶解度が1重量%以上である溶媒であれば好ましい。具体的には、溶解性、溶媒の抽出の容易性の点から、N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミドなどの非プロトン性有機極性溶媒が好ましい。   In the present invention, a solvent that is a good solvent for a polymer and that is compatible with water (hereinafter sometimes referred to as solvent 1) refers to a solvent that dissolves the polymer used and is compatible with water. These organic solvents can be used. Here, as the solvent, for example, a solvent in which the solubility of the polymer to be used is 1% by weight or more at −30 to 80 ° C. is preferable. Specifically, aprotic organic polar solvents such as N-methylpyrrolidone, dimethylacetamide, and dimethylformamide are preferable from the viewpoint of solubility and ease of solvent extraction.

本発明において、ポリマーに対し貧溶媒で且つ水に対し相溶性を示す溶媒(以下、溶媒2ということがある)とは、用いるポリマーの溶解度は低く、水とは相溶する溶媒のことをいい、種々の有機溶媒を用いることができる。ここで、上記溶媒としては、例えば−30〜80℃において、用いるポリマーの溶解度が1重量%未満である溶媒であれば好ましい。具体的には、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサン、トリオキサン等、水溶性エーテル系溶媒、メタノール、エタノール、1−プロパノール、2−プロパーノール、エチレングリコール、ジエチレングリコール等、水溶性アルコール系溶媒を用いることができる。また、エチレングリコールやジエチレングリコールの重合体についても好ましく用いることができる。   In the present invention, a solvent that is a poor solvent for a polymer and that is compatible with water (hereinafter sometimes referred to as solvent 2) refers to a solvent that has a low polymer solubility and is compatible with water. Various organic solvents can be used. Here, as the solvent, for example, a solvent in which the solubility of the polymer to be used is less than 1% by weight at −30 to 80 ° C. is preferable. Specifically, a water-soluble ether solvent such as dimethyl ether, diethyl ether, tetrahydrofuran, dioxane, trioxane or the like, or a water-soluble alcohol solvent such as methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol, diethylene glycol or the like should be used. Can do. Moreover, it can use preferably also about the polymer of ethylene glycol or diethylene glycol.

本発明において、非水溶性を示す高分子重合体(ポリマー)と、前記ポリマーに対し良溶媒で且つ水に対し相溶性を示す溶媒と、前記ポリマーに対し貧溶媒で且つ水に対し相溶性を示す溶媒とからなる溶液は、それぞれ互いに相溶・溶解し合った状態であることが好ましく、液中に浮遊物、沈殿物等が無く均一に完全相溶した溶液であることが好ましい。例えば、上記溶液がゲル化して流動性を失っていたり、浮遊物、沈殿物等が発生していると、薄膜化が困難となる上に、多孔質特性にムラが生じやすくなる。   In the present invention, a high molecular weight polymer (polymer) showing water insolubility, a solvent that is a good solvent for the polymer and compatible with water, a poor solvent for the polymer and a compatibility with water The solution composed of the solvent shown is preferably in a mutually compatible / dissolved state, and is preferably a solution that is completely and completely compatible without any suspended matter or precipitate in the solution. For example, if the solution is gelled and loses fluidity, or suspended matter, precipitates, etc. are generated, it is difficult to make a thin film, and unevenness in the porous properties is likely to occur.

本発明においては、上記溶液を支持体上において膜形状とした後、溶媒(溶媒1および溶媒2の総量)に対し0.5重量%以上の水を吸収させてポリマーを析出させ、高分子重合体多孔質膜とする。特に、良好な流動性を持ち、均一に完全相溶した溶液を用いることにより、均一に薄い膜を支持体上にキャストすることができ、さらに水を吸収させることにより、ポリマーに対する溶媒の溶解度を低下させ、速やかに多孔質膜化を行うことができる。水の吸収量が0.5重量%未満であると、ポリマーが析出しない場合や、また、析出したとしても水を吸収させた後に長時間待つ必要が生じる場合がある。また、水の吸収量が30重量%を超えると、水によってポリマー濃度が低下し、多孔質膜の強度が低下し脆くなることがある。また、上記の過程において、多孔質膜表面に水と溶媒との混合物が液滴を形成しないことが好ましい。溶液の組成によるが、高湿度下で多量の水分を吸収させると、表面に液滴を形成することがあり、これにより溶液組成に斑を生じてしまい、多孔質膜物性の斑となり得るからである。   In the present invention, after the above solution is formed into a film shape on the support, 0.5% by weight or more of water is absorbed with respect to the solvent (total amount of the solvent 1 and the solvent 2) to precipitate the polymer. Combined porous membrane. In particular, by using a solution that has good fluidity and is completely and completely compatible, a uniformly thin membrane can be cast on the support, and further by absorbing water, the solubility of the solvent in the polymer can be increased. The porous film can be rapidly formed. If the amount of water absorbed is less than 0.5% by weight, the polymer may not be precipitated, or even if it is precipitated, it may be necessary to wait for a long time after absorbing the water. On the other hand, when the amount of water absorption exceeds 30% by weight, the polymer concentration may be lowered by water, and the strength of the porous membrane may be lowered and become brittle. In the above process, it is preferable that the mixture of water and the solvent does not form droplets on the surface of the porous membrane. Depending on the composition of the solution, if a large amount of moisture is absorbed under high humidity, droplets may be formed on the surface, which may cause spots on the solution composition, resulting in spots on the properties of the porous film. is there.

また、上記したポリマーに対し貧溶媒で且つ水に対し相溶性を示す溶媒(溶媒2)は、炭素数2〜25の水溶性アルコール類であることが好ましい。炭素数を変更することにより、空孔の大きさ、空孔率を細かく調整可能であり、揮発性が低いため溶液組成が安定し、容易に混合、抽出ができることから、エチレングリコール及びその重合体がより好ましい。   Moreover, it is preferable that the solvent (solvent 2) which is a poor solvent with respect to the above-mentioned polymer and is compatible with water is a water-soluble alcohol having 2 to 25 carbon atoms. By changing the number of carbons, the size and porosity of the pores can be finely adjusted, and since the volatility is low, the solution composition is stable and can be easily mixed and extracted. Is more preferable.

また本発明において好ましく用いることができる芳香族ポリアミドとしては、次の式(1)及び/又は式(2)で表される繰り返し単位を有するものが好適である。
式(1):
Moreover, as aromatic polyamide which can be preferably used in this invention, what has a repeating unit represented by following formula (1) and / or Formula (2) is suitable.
Formula (1):

Figure 2005213315
Figure 2005213315

式(2): Formula (2):

Figure 2005213315
Figure 2005213315

ここで、Ar1、Ar2、Ar3の基としては、例えば、 Here, as the group of Ar 1 , Ar 2 , Ar 3 , for example,

Figure 2005213315
Figure 2005213315

等が挙げられ、X、Yの基は、
−O−、−CH2−、−CO−、−CO2−、−S−、−SO2−、−C(CH32−等から選択することができる。
And the groups of X and Y are
-O -, - CH 2 -, - CO -, - CO 2 -, - S -, - SO 2 -, - C (CH 3) 2 - may be selected from such.

更に、これらの芳香環上の水素原子の一部が、フッ素や臭素、塩素等のハロゲン基(特に塩素)、ニトロ基、メチルやエチル、プロピル等のアルキル基(特にメチル基)、メトキシやエトキシ、プロポキシ等のアルコキシ基等の置換基で置換されているものが、吸湿率を低下させ湿度変化による寸法変化が小さくなるため好ましい。また、重合体を構成するアミド結合中の水素が他の置換基によって置換されていてもよい。本発明に用いられる芳香族ポリアミドは、上記の芳香環がパラ配向性を有しているものが、全芳香環の80モル%以上、より好ましくは90モル%以上をしめていることが好ましい。ここでいうパラ配向性とは、芳香核上主鎖を構成する2価の結合手が互いに同軸または平行にある状態をいう。このパラ配向性が80モル%未満の場合、高分子重合体多孔質膜の剛性および耐熱性が不十分となる場合がある。更に、芳香族ポリアミドが式(3)で表される繰り返し単位を60モル%以上含有する場合、延伸性及び多孔質特性が特に優れることから好ましい。
式(3):
Furthermore, some of the hydrogen atoms on these aromatic rings are halogen groups such as fluorine, bromine and chlorine (especially chlorine), nitro groups, alkyl groups such as methyl, ethyl and propyl (especially methyl groups), methoxy and ethoxy. Those substituted with a substituent such as an alkoxy group such as propoxy are preferred because the moisture absorption is lowered and the dimensional change due to humidity change is reduced. In addition, hydrogen in the amide bond constituting the polymer may be substituted with another substituent. In the aromatic polyamide used in the present invention, the above aromatic ring having para orientation is preferably 80 mol% or more, more preferably 90 mol% or more of the total aromatic ring. Para-orientation here means a state in which the divalent bonds constituting the main chain on the aromatic nucleus are coaxial or parallel to each other. When this para-orientation is less than 80 mol%, the high molecular weight polymer porous membrane may have insufficient rigidity and heat resistance. Furthermore, when the aromatic polyamide contains 60 mol% or more of the repeating unit represented by the formula (3), it is preferable because stretchability and porous properties are particularly excellent.
Formula (3):

Figure 2005213315
Figure 2005213315

本発明の方法により得られる高分子重合体多孔質膜としては、ガーレ値が0.5〜1、000sec/100ccであることが好ましい。多孔質膜のガーレ値がこの範囲であると、フィルター、分離膜、電池用セパレーター、プリント基板などに好適に使用できる。   The polymer polymer porous membrane obtained by the method of the present invention preferably has a Gurley value of 0.5 to 1,000 sec / 100 cc. When the Gurley value of the porous membrane is within this range, it can be suitably used for filters, separation membranes, battery separators, printed boards and the like.

次に本発明の多孔質膜の製造方法について、芳香族ポリアミドをポリマーとして用いた場合を代表例として、以下説明する。   Next, the method for producing a porous membrane of the present invention will be described below using a case where an aromatic polyamide is used as a polymer as a representative example.

芳香族ポリアミドを、例えば酸クロリドとジアミンから得る場合には、N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミドなどの非プロトン性有機極性溶媒中で、溶液重合したり、水系媒体を使用する界面重合などで合成する。単量体として酸クロリドとジアミンを使用するとポリマ溶液中で塩化水素が副生するが、これを中和する場合には水酸化カルシウム、炭酸カルシウム、炭酸リチウムなどの無機の中和剤、またエチレンオキサイド、プロピレンオキサイド、アンモニア、トリエチルアミン、トリエタノールアミン、ジエタノールアミンなどの有機の中和剤が使用するとよい。また、イソシアネートとカルボン酸との反応から芳香族ポリアミドを得る場合には、非プロトン性有機極性溶媒中、触媒の存在下で行うことができる。   When an aromatic polyamide is obtained from, for example, acid chloride and diamine, solution polymerization in an aprotic organic polar solvent such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, interfacial polymerization using an aqueous medium, etc. Synthesize with When acid chloride and diamine are used as monomers, hydrogen chloride is by-produced in the polymer solution. To neutralize this, inorganic neutralizers such as calcium hydroxide, calcium carbonate, lithium carbonate, and ethylene Organic neutralizers such as oxide, propylene oxide, ammonia, triethylamine, triethanolamine, and diethanolamine are preferably used. Moreover, when obtaining aromatic polyamide from reaction of isocyanate and carboxylic acid, it can carry out in presence of a catalyst in an aprotic organic polar solvent.

本発明の多孔質膜を得るためにはポリマの固有粘度ηinh(ポリマ0.5gを98重量%硫酸中で100mlの溶液として30℃で測定した値)は、0.5(dl/g)以上であることが多孔質膜にした時のハンドリング性が良くなるので好ましい。 In order to obtain the porous membrane of the present invention, the intrinsic viscosity η inh of the polymer (value measured at 30 ° C. in a 100 ml solution of 0.5 g of polymer in 98 wt% sulfuric acid) is 0.5 (dl / g) The above is preferable because the handling property when a porous film is formed is improved.

製膜原液には溶解助剤として無機塩、例えば塩化カルシウム、塩化マグネシウム、塩化リチウム、硝酸リチウムなどを添加する場合もある。また、製膜原液としては、中和後のポリマー溶液に、水溶性アルコール類を混合して用いてもよいし、一旦、ポリマーを単離後、非プロトン性有機極性溶媒に再溶解し、水溶性アルコール類を混合して用いてもよい。製膜原液中のポリマー濃度は2〜30重量%程度が好ましい。薄く、安定した多孔質特性の多孔質膜を効率良く得られることから、より好ましくは8〜25重量%、さらに好ましくは12〜20重量%である。また、水を吸収させた際、速やかにポリマーが析出されるため、混合される水溶性アルコール類は2重量%〜40重量%が好ましい。より好ましくは5〜30重量%、さらに好ましくは、10〜25重量%である。   In some cases, an inorganic salt such as calcium chloride, magnesium chloride, lithium chloride, lithium nitrate, or the like is added to the stock solution as a dissolution aid. In addition, as a film-forming stock solution, water-soluble alcohols may be used by mixing with a neutralized polymer solution, or once the polymer is isolated, it is redissolved in an aprotic organic polar solvent and dissolved in water. A mixture of alcoholic alcohols may be used. The polymer concentration in the film-forming stock solution is preferably about 2 to 30% by weight. Since a thin and stable porous film having a stable porous property can be obtained efficiently, it is more preferably 8 to 25% by weight, still more preferably 12 to 20% by weight. Moreover, since a polymer precipitates rapidly when water is absorbed, 2 to 40 weight% of water-soluble alcohols mixed are preferable. More preferably, it is 5-30 weight%, More preferably, it is 10-25 weight%.

上記のようにして調製された製膜原液は、いわゆる溶液製膜法により多孔質膜化が行われる。溶液製膜法には乾湿式法、湿式法、析出法などがあり、いずれの方法で製膜しても差し支えないが、多孔質膜の内部構造が均一のものが得られることから析出法がより好ましい。   The film-forming stock solution prepared as described above is made into a porous film by a so-called solution film-forming method. The solution casting method includes dry and wet methods, wet methods, and deposition methods, and any method can be used. However, since the inner structure of the porous membrane is uniform, the deposition method can be used. More preferred.

析出法で高分子多孔質膜を製造する場合、溶液をガラス板や、ドラム、エンドレスベルト等の支持体上に流延することによって、膜形状とした後、水を吸収させることにより、ポリマーを析出させる。この時、水を吸収させる方法は、霧状の水を付着させる方法、水中に導入する方法、調湿空気中に導入する方法、いずれの方法でも差し支えないが、水の吸収速度、量を細かくコントロール可能である調湿空気中へ導入する方法が好適に用いられる。   When a polymer porous membrane is produced by the precipitation method, the polymer is obtained by absorbing the water after making the membrane shape by casting the solution on a support such as a glass plate, a drum or an endless belt. Precipitate. At this time, the method of absorbing water may be any of the method of adhering mist-like water, the method of introducing into water, or the method of introducing into humidity-controlled air. A method of introducing into the conditioned air that can be controlled is preferably used.

膜形状とした溶液を調湿空気中へ導入する場合、相対湿度で5〜100%に調湿された空気中にて、ポリマーを析出させることが好ましい。この時の温度は−30℃〜80℃であると好適である。湿度、温度、溶液の組成、導入する時間など各種の条件によって一概には限定できないが、条件により得られる多孔質膜の特徴の一例を挙げると、高温高湿下においては、空孔径の大きい貫通孔を有した多孔質膜が得られ、低温低湿下においては、空孔径の小さい繊維状の高分子が網目状または、不織布状に重なっている多孔質膜が得られるため、このような傾向を踏まえ、適宜条件を変更して、目的の特性を有する多孔質膜を得ることが可能である。   When the solution in the form of a film is introduced into the conditioned air, it is preferable to deposit the polymer in the air conditioned to 5 to 100% relative humidity. The temperature at this time is preferably −30 ° C. to 80 ° C. Although it cannot be generally limited by various conditions such as humidity, temperature, solution composition, and introduction time, an example of the characteristics of the porous film obtained by the conditions is as follows. A porous membrane having pores can be obtained, and under low temperature and low humidity, a porous membrane in which fibrous polymers with small pore diameters are overlapped in a network or nonwoven fabric is obtained. In consideration of the above, it is possible to obtain a porous film having desired characteristics by appropriately changing the conditions.

ポリマー析出を終えた溶液(高分子膜)は、次の湿式工程の湿式浴に導入され、脱溶媒が行われる。この時、支持体から剥離し湿式浴へ導入しても良いし、支持体と共に湿式浴へ導入した後、剥離を行っても構わない。浴組成は、高分子に対する溶解度が低ければ特に限定されないが、水、あるいは有機溶媒/水の混合系を用いるのが、経済性、取扱いの容易さから好ましい。また、湿式浴中には無機塩が含まれていてもよい。   The solution (polymer film) after the polymer deposition is introduced into a wet bath in the next wet process, and the solvent is removed. At this time, it may be peeled off from the support and introduced into the wet bath, or may be peeled off after being introduced into the wet bath together with the support. The bath composition is not particularly limited as long as the solubility in the polymer is low, but it is preferable to use water or an organic solvent / water mixed system in view of economy and ease of handling. Further, the wet bath may contain an inorganic salt.

この際、多孔質膜中の不純物を減少させるために、浴組成は有機媒/水=70/30〜20/80、浴温度40℃以上であることが好ましい。さらに、最後に40℃以上の水浴に通すことが有効である。   At this time, in order to reduce impurities in the porous film, the bath composition is preferably organic medium / water = 70/30 to 20/80, and the bath temperature is 40 ° C. or higher. Furthermore, it is effective to finally pass through a water bath at 40 ° C. or higher.

脱溶媒を終えた多孔質膜は、熱処理が行われる。この時の温度は、高温時の寸法安定性が向上するため、より高温にて行われることが好ましいが、用いたポリマーの熱分解温度以下で行う必要がある。芳香族ポリアミドにおいては、350〜400℃において熱分解が行われるため、それ以下の温度で熱処理が行われる。好ましくは250〜320℃である。   The porous film that has been desolvated is subjected to heat treatment. The temperature at this time is preferably higher because the dimensional stability at high temperature is improved, but it is necessary to be lower than the thermal decomposition temperature of the polymer used. In the aromatic polyamide, thermal decomposition is performed at 350 to 400 ° C., and thus heat treatment is performed at a temperature lower than that. Preferably it is 250-320 degreeC.

本発明の方法によって得られる多孔質膜は、ガーレ値が0.5〜1,000sec/100ccであることが好ましい。本発明の製法によれば、たとえガーレ値が小さくとも、機械強度を維持することが可能であり、また、ガーレ値が大きくとも、好適な空孔率、空孔径を付与することが可能である。ガーレ値が0.5sec/100ccより小さいと、強度が著しく低下し、ガーレ値が1,000sec/100ccより大きいと、フィルターやセパレーター等に現実的に使用することが困難となる。   The porous film obtained by the method of the present invention preferably has a Gurley value of 0.5 to 1,000 sec / 100 cc. According to the production method of the present invention, even if the Gurley value is small, it is possible to maintain the mechanical strength, and even if the Gurley value is large, it is possible to provide a suitable porosity and pore diameter. . When the Gurley value is smaller than 0.5 sec / 100 cc, the strength is remarkably reduced. When the Gurley value is larger than 1,000 sec / 100 cc, it is difficult to use the filter practically for a filter or a separator.

本発明の高分子重合体多孔質膜は、フィルター、分離膜、電池用セパレーター、プリント基板などに好適に使用できる。   The polymeric polymer porous membrane of the present invention can be suitably used for filters, separation membranes, battery separators, printed boards and the like.

[物性の測定方法ならびに効果の評価方法]
本発明における物性の測定方法、効果の評価方法は次の方法に従って行った。
[Methods for measuring physical properties and methods for evaluating effects]
The measurement method of physical properties and the evaluation method of effects in the present invention were performed according to the following methods.

(1)ガーレ値
JIS−P8117に規定された方法に従って測定を行った。試料の多孔質膜を直径28.6cm、面積645mm2の円孔に締め付ける。内筒により(内筒重量567g)、筒内の空気を試験円孔部から筒外へ通過させる。空気100ccが通過する時間を測定し、ガーレ値とした。測定装置として、B型ガーレデンソメーター(安田精機製作所製)を使用した。
(1) Gurley value It measured according to the method prescribed | regulated to JIS-P8117. The porous membrane of the sample is clamped in a circular hole having a diameter of 28.6 cm and an area of 645 mm 2 . By the inner cylinder (inner cylinder weight 567 g), the air in the cylinder is allowed to pass from the test hole to the outside of the cylinder. The time required for 100 cc of air to pass through was measured and used as the Gurley value. As a measuring device, a B-type Garredenometer (manufactured by Yasuda Seiki Seisakusho) was used.

(2)空孔率
多孔質膜を100mm四方の正方形に切り取り、重量W(g)、厚みZ(mm)を測定した。使用したポリマーの比重H(g/mm2)を用いて、次式より空孔率を求めた。
(2) Porosity The porous membrane was cut into a 100 mm square, and weight W (g) and thickness Z (mm) were measured. Using the specific gravity H (g / mm 2 ) of the polymer used, the porosity was determined from the following equation.

空孔率(%)=100−100×((W/H)/(1002×Z))
(3)厚み
関西アンリツ電子株式会社製電子マイクロメーター(検出器型番:K107C、触針半径1.5mm、触針荷重1.5g)を用いて、長さ方向に100mm間隔で5カ所測定した平均値を厚みとした。
Porosity (%) = 100-100 × ((W / H) / (100 2 × Z))
(3) Thickness Using an electronic micrometer manufactured by Kansai Anritsu Electronics Co., Ltd. (detector model number: K107C, stylus radius 1.5 mm, stylus load 1.5 g), an average measured at five locations at 100 mm intervals in the length direction. The value was taken as thickness.

(4)破断強度
JIS−K7127に規定された方法に従って測定を行った。ロボットテンシロンRTA(オリエンテック社製)を用いて25℃、相対湿度65%において測定した。試験片は幅10mm、長さ100mmで引っ張り速度は300mm/分である。
(4) Breaking strength Measurement was performed according to the method defined in JIS-K7127. Measurement was performed at 25 ° C. and a relative humidity of 65% using Robot Tensilon RTA (Orientec). The test piece has a width of 10 mm, a length of 100 mm, and a pulling speed of 300 mm / min.

(5)水分吸収率
重量既知のガラス板に膜状に塗布した後、窒素雰囲気下、吸湿しないようにして重量を0.01g単位まで正確に秤量し、ガラス板の重量を除いた重量(W0)を導く。ここから溶液の組成に従い溶媒、貧溶媒の合計重量(Y0)を導く。多孔質膜化を終えた後、再び同様に測定、計算を行い、溶液の組成に従い溶媒、貧溶媒、及び吸収された水の合計重量(Y1)を導き、以下の式で水分吸収率を求める。
(5) Moisture absorption rate After coating in a film form on a glass plate with a known weight, the weight was accurately weighed to the nearest 0.01 g in a nitrogen atmosphere without moisture absorption, and the weight excluding the weight of the glass plate (W0 ) From this, the total weight (Y0) of the solvent and the poor solvent is derived according to the composition of the solution. After the formation of the porous film, the same measurement and calculation are performed again, and the total weight (Y1) of the solvent, the poor solvent, and the absorbed water is derived according to the composition of the solution, and the moisture absorption rate is obtained by the following equation. .

水分吸収率(%)=100×((Y1−Y0)/Y1)
(6)電池特性
A.電解液の調製
LiC49SO3をリン酸トリメチルに溶解させたのち、プロピレンカーボネートを加えて混合し、プロピレンカーボネートとリン酸トリメチルとの体積比が1:2の混合溶媒にLiC49SO3を0.6モル/リットル溶解させた有機電解液を調製した。このようにして得られた有機電解液の引火点を調べるため、この電解液を所定の温度まで加熱して液面近傍に火を近づけ、引火するかどうかを調べた。100℃、150℃、200℃のいずれの温度のテストでも引火せず、この電解液の引火点は200℃以上であることが分かった。
Moisture absorption rate (%) = 100 × ((Y1-Y0) / Y1)
(6) Battery characteristics A. Preparation of Electrolytic Solution After dissolving LiC 4 F 9 SO 3 in trimethyl phosphate, propylene carbonate was added and mixed, and LiC 4 F 9 was added to a mixed solvent having a volume ratio of propylene carbonate to trimethyl phosphate of 1: 2. An organic electrolytic solution in which SO 3 was dissolved at 0.6 mol / liter was prepared. In order to investigate the flash point of the organic electrolyte solution thus obtained, the electrolyte solution was heated to a predetermined temperature, and a fire was brought close to the liquid surface to investigate whether it would ignite. In any test at 100 ° C., 150 ° C., and 200 ° C., no ignition was performed, and it was found that the flash point of the electrolytic solution was 200 ° C. or more.

B.電池の作成
リチウムコバルト酸化物(LiCoO2)に黒鉛とポリフッ化ビニリデンとを加え、溶剤で分散させたスラリーを、厚さ10μmの正極集電体のアルミニウム箔の両面に均一に塗布して乾燥し、圧縮成形して帯状の正極を作製した。正極の厚みは40μmであった。
B. Preparation of Battery A slurry in which graphite and polyvinylidene fluoride are added to lithium cobalt oxide (LiCoO 2 ) and dispersed in a solvent is uniformly applied to both sides of the aluminum foil of a positive electrode current collector having a thickness of 10 μm and dried. The belt-shaped positive electrode was produced by compression molding. The thickness of the positive electrode was 40 μm.

コークスと、粘着剤としてのポリフッ化ビニリデンとを混合して負極合剤とし、これを溶剤で分散させてスラリーにした。この負極合剤スラリーを、負極集電体としての厚さが10μmの帯状の銅箔の両面に均一に塗布して乾燥し、圧縮成形して帯状の負極前駆体を作製した。負極前駆体の処理液として、LiC49SO3をリン酸トリメチルに溶解させたのち、エチレンカーボネートを加えて混合することにより、処理液を調製した。負極前駆体の両側に処理液を含浸させたセパレータを介してリード体を圧着したLiフォイルで鋏み込み、ホルダーに入れ、負極前駆体を正極、Li極を負極として、放電および充電を行った。その後、分解し、負極前駆体をジメチルカーボネートで洗浄し、乾燥して、負極を作製した。負極の厚みは50μmであった。 Coke and polyvinylidene fluoride as an adhesive were mixed to form a negative electrode mixture, which was dispersed in a solvent to form a slurry. This negative electrode mixture slurry was uniformly applied to both surfaces of a 10 μm-thick strip-shaped copper foil as a negative electrode current collector, dried, and compression molded to prepare a strip-shaped negative electrode precursor. As a treatment liquid for the negative electrode precursor, LiC 4 F 9 SO 3 was dissolved in trimethyl phosphate, and then ethylene carbonate was added and mixed to prepare a treatment liquid. The lead body was squeezed with Li foil through a separator impregnated with a treatment liquid on both sides of the negative electrode precursor, placed in a holder, and discharged and charged using the negative electrode precursor as the positive electrode and the Li electrode as the negative electrode. Then, it decomposed | disassembled, the negative electrode precursor was wash | cleaned with dimethyl carbonate, and it dried and produced the negative electrode. The thickness of the negative electrode was 50 μm.

次に、上記の帯状正極を、各実施例のセパレータ用フィルムを介して、上記シート状負極と重ね、渦巻状に巻回して渦巻状電極体としたのち、内径13mmの有底円筒状の電池ケース内に充填し、正極および負極のリード体の溶接を行った後、有機電解液を電池ケース内に注入した。電池ケースの開口部を封口し、電池の予備充電を行い、筒形の有機電解液二次電池を作製した。   Next, the belt-like positive electrode is overlapped with the sheet-like negative electrode through the separator film of each example and wound into a spiral electrode body, and then a bottomed cylindrical battery having an inner diameter of 13 mm. After filling the case and welding the positive and negative electrode lead bodies, the organic electrolyte was poured into the battery case. The opening of the battery case was sealed and the battery was precharged to produce a cylindrical organic electrolyte secondary battery.

C.電池容量
作成した各二次電池について、35mAで充電4.1V、放電2.7Vで放充電させ、1サイクル目と10サイクル目の放電容量を調べた。1サイクル目の放電容量を基準として、10回目の放電容量が、
A:95%以上
B:90%以上95%未満
C:90%未満
のランクで評価し、ランクB以上を合格とした。
C. Battery capacity Each of the produced secondary batteries was charged at 35 mA and discharged at 4.1 V and discharged at 2.7 V, and the discharge capacities at the first and tenth cycles were examined. Based on the discharge capacity at the first cycle, the discharge capacity at the 10th time is
A: 95% or more B: 90% or more and less than 95% C: Evaluation was made with a rank of less than 90%, and rank B or more was regarded as acceptable.

以下に実施例に基づいて本発明をより具体的に説明するが、本発明はこれらに限定されるものでないことは言うまでもない。   Hereinafter, the present invention will be described more specifically based on examples, but it goes without saying that the present invention is not limited thereto.

(実施例1)
脱水したN−メチル−2−ピロリドンに80モル%に相当する2−クロルパラフェニレンジアミンと20モル%に相当する4、4’−ジアミノジフェニルエーテルとを溶解させ、これに98.5モル%に相当する2−クロルテレフタル酸クロリドを添加し、2時間撹拌により重合後、炭酸リチウムで中和を行い、ポリマー濃度が11重量%の芳香族ポリアミド溶液を得た。この溶液を水で再沈してポリマーを取り出した。
(Example 1)
2-chloroparaphenylenediamine corresponding to 80 mol% and 4,4′-diaminodiphenyl ether corresponding to 20 mol% are dissolved in dehydrated N-methyl-2-pyrrolidone, which corresponds to 98.5 mol%. 2-chloro terephthalic acid chloride was added, polymerized by stirring for 2 hours, and then neutralized with lithium carbonate to obtain an aromatic polyamide solution having a polymer concentration of 11% by weight. This solution was reprecipitated with water to remove the polymer.

このポリマーを15重量%、N−メチル−2−ピロリドン75重量%、ジエチレングリコール10重量%となるよう量り取り、ポリマーをN−メチル−2−ピロリドンに溶解させた後ジエチレングリコール加え、均一に完全相溶したポリマー溶液を得た。   The polymer was weighed to 15% by weight, 75% by weight of N-methyl-2-pyrrolidone, and 10% by weight of diethylene glycol, dissolved in N-methyl-2-pyrrolidone, and then added with diethylene glycol. A polymer solution was obtained.

このポリマー溶液を、バーコーターを用いてガラス板上に約50μmの膜状に形成し、20℃、相対湿度80%に調整されたオーブン中に1時間静置し、析出を行い多孔質膜とした。この時の水分吸収率は15%であった。この多孔質膜をガラス板から剥離し、50℃の水浴にて1時間、溶媒や不純物の抽出を行なった。その後アルミ製の枠に固定し、3時間風乾後、320℃にて1分間の熱処理を行った。   This polymer solution is formed into a film of about 50 μm on a glass plate using a bar coater, and left in an oven adjusted to 20 ° C. and a relative humidity of 80% for 1 hour to perform precipitation, did. The moisture absorption rate at this time was 15%. The porous film was peeled from the glass plate, and the solvent and impurities were extracted for 1 hour in a 50 ° C. water bath. Thereafter, it was fixed to an aluminum frame, air-dried for 3 hours, and then heat-treated at 320 ° C. for 1 minute.

得られた多孔質膜の厚みは、41.7μm、破断強度は140MPa、空孔率は25%、ガーレ値は302sec/100ccであった。   The thickness of the obtained porous film was 41.7 μm, the breaking strength was 140 MPa, the porosity was 25%, and the Gurley value was 302 sec / 100 cc.

得られた多孔質膜を用いて、電池を作製し、放電容量の低下を測定したところ、98%を維持していた。   Using the obtained porous membrane, a battery was prepared and the decrease in discharge capacity was measured. As a result, 98% was maintained.

(実施例2〜5)
実施例1と同様にして得たポリマーを用いて、表1の組成の溶液を得た。これらポリマー溶液を、バーコーターを用いてガラス板上に約50μmの膜状に形成し、20℃、相対湿度80%に調整されたオーブン中に1時間静置し、析出を行い多孔質膜とした。この時の水分吸収率を表1に併せ示す。この多孔質膜をガラス板から剥離し、50℃の水浴にて1時間、溶媒や不純物の抽出を行なった。その後アルミ製の枠に固定し、3時間風乾後、320℃にて1分間の熱処理を行い、多孔質膜を得た。得られた多孔質膜の物性を表1に示した。
(Examples 2 to 5)
Using the polymer obtained in the same manner as in Example 1, a solution having the composition shown in Table 1 was obtained. These polymer solutions are formed into a film shape of about 50 μm on a glass plate using a bar coater, and left in an oven adjusted to 20 ° C. and a relative humidity of 80% for 1 hour to perform precipitation, did. The moisture absorption rate at this time is also shown in Table 1. The porous film was peeled from the glass plate, and the solvent and impurities were extracted for 1 hour in a 50 ° C. water bath. Thereafter, it was fixed to an aluminum frame, air-dried for 3 hours, and then heat treated at 320 ° C. for 1 minute to obtain a porous film. The physical properties of the obtained porous membrane are shown in Table 1.

(実施例6)
20℃、相対湿度10%に調整されたオーブン中に20分静置した以外は実施例と同様に行い多孔質膜を得た。得られた多孔質膜の物性を表1に示した。
(Example 6)
A porous membrane was obtained in the same manner as in Example except that it was allowed to stand for 20 minutes in an oven adjusted to 20 ° C. and relative humidity 10%. The physical properties of the obtained porous membrane are shown in Table 1.

(実施例7)
20℃、相対湿度80%に調整されたオーブン中に3時間静置した以外は実施例と同様に行い多孔質膜を得た。得られた多孔質膜の物性を表1に示した。
(Example 7)
A porous membrane was obtained in the same manner as in Example except that it was allowed to stand for 3 hours in an oven adjusted to 20 ° C. and relative humidity 80%. The physical properties of the obtained porous membrane are shown in Table 1.

(比較例1)
実施例1と同様にして得られたポリマーを用いて、ポリマーが15重量%、N−メチル−2−ピロリドン85重量%となるよう混合し、均一に完全相溶したポリマー溶液を得た。
(Comparative Example 1)
Using the polymer obtained in the same manner as in Example 1, the polymer was mixed at 15% by weight and N-methyl-2-pyrrolidone 85% by weight to obtain a uniformly and completely compatible polymer solution.

このポリマー溶液を、バーコーターを用いてガラス板上に約50μmの膜状に形成し、20℃、相対湿度80%に調整されたオーブン中に1時間静置し、析出を行い多孔質膜とした。この時の水分吸収率は18%であった。この多孔質膜をガラス板から剥離し、50℃の水浴にて1時間、溶媒や不純物の抽出を行なった。その後アルミ製の枠に固定し、3時間風乾後、320℃にて1分間の熱処理を行った。   This polymer solution is formed into a film of about 50 μm on a glass plate using a bar coater, and left in an oven adjusted to 20 ° C. and a relative humidity of 80% for 1 hour to perform precipitation, did. The moisture absorption rate at this time was 18%. The porous film was peeled from the glass plate, and the solvent and impurities were extracted for 1 hour in a 50 ° C. water bath. Thereafter, it was fixed to an aluminum frame, air-dried for 3 hours, and then heat-treated at 320 ° C. for 1 minute.

得られた多孔質膜の厚みは、32.4μm、破断強度は180MPa、空孔率は25%、通気が認められずガーレ値、電池特性は測定不可能であった。   The obtained porous membrane had a thickness of 32.4 μm, a breaking strength of 180 MPa, a porosity of 25%, no aeration, and a Gurley value and battery characteristics were not measurable.

(比較例2)
実施例1と同様にして得られたポリマーを用いて、このポリマーを15重量%、N−メチル−2−ピロリドン75重量%、ジエチレングリコール10重量%となるよう量り取り、ポリマーをN−メチル−2−ピロリドンに溶解させた後ジエチレングリコール加え、均一に完全相溶したポリマー溶液を得た。
(Comparative Example 2)
Using the polymer obtained in the same manner as in Example 1, this polymer was weighed to 15% by weight, N-methyl-2-pyrrolidone 75% by weight, and diethylene glycol 10% by weight. -After dissolving in pyrrolidone, diethylene glycol was added to obtain a uniformly and completely compatible polymer solution.

このポリマー溶液を、バーコーターを用いてガラス板上に約50μmの膜状に形成し、20℃、窒素雰囲気下に調整されたオーブン中に1時間静置したが、ポリマーが析出しなかった。   This polymer solution was formed into a film of about 50 μm on a glass plate using a bar coater and allowed to stand in an oven adjusted at 20 ° C. in a nitrogen atmosphere for 1 hour, but no polymer was deposited.

(比較例3)
実施例1と同様にして得られたポリマーを用いて、このポリマーを2重量%、N−メチル−2−ピロリドン88重量%、ジエチレングリコール10重量%となるよう量り取り、ポリマーをN−メチル−2−ピロリドンに溶解させた後ジエチレングリコール加え、均一に完全相溶したポリマー溶液を得た。
(Comparative Example 3)
Using the polymer obtained in the same manner as in Example 1, this polymer was weighed out to 2% by weight, N-methyl-2-pyrrolidone 88% by weight, and diethylene glycol 10% by weight. -After dissolving in pyrrolidone, diethylene glycol was added to obtain a uniformly and completely compatible polymer solution.

このポリマー溶液を、バーコーターを用いてガラス板上に約50μmの膜状に形成し、20℃、相対湿度80%に調整されたオーブン中に2時間静置し、析出を行い多孔質膜とした。この時の水分吸収率は32%であった。この多孔質膜をガラス板から剥離し、50℃の水浴にて1時間、溶媒や不純物の抽出を行なった。その後アルミ製の枠に固定し、3時間風乾後、320℃にて1分間の熱処理を行った。   This polymer solution is formed into a film of about 50 μm on a glass plate using a bar coater, and left in an oven adjusted to 20 ° C. and a relative humidity of 80% for 2 hours to perform precipitation, did. The water absorption rate at this time was 32%. The porous film was peeled from the glass plate, and the solvent and impurities were extracted for 1 hour in a 50 ° C. water bath. Thereafter, it was fixed to an aluminum frame, air-dried for 3 hours, and then heat-treated at 320 ° C. for 1 minute.

得られた多孔質膜の厚みは、53.3μm、破断強度は25MPa、空孔率は70%、ガーレ値は0.4sec/100ccであった。   The thickness of the obtained porous film was 53.3 μm, the breaking strength was 25 MPa, the porosity was 70%, and the Gurley value was 0.4 sec / 100 cc.

得られた多孔質膜を用いて、電池を作製し、放電容量の低下を測定したところ、87%に低下していた。   Using the obtained porous membrane, a battery was produced and the reduction in discharge capacity was measured. As a result, it was found to be 87%.

Figure 2005213315
Figure 2005213315

本発明は、フィルター、分離膜、電池用セパレーター、プリント基板などに好適に使用できる高分子重合体多孔質膜の製造方法に関するが、その応用範囲が、これらに限られるものではない。   The present invention relates to a method for producing a high molecular weight polymer porous membrane that can be suitably used for a filter, a separation membrane, a battery separator, a printed circuit board, and the like, but its application range is not limited thereto.

Claims (5)

非水溶性を示す高分子重合体と、前記高分子重合体に対し良溶媒で且つ水に対し相溶性を示す溶媒(溶媒1)と、前記高分子重合体に対し貧溶媒で且つ水に対し相溶性を示す溶媒(溶媒2)とからなる、互いに相溶した溶液を支持体上において膜形状とした後、溶媒(溶媒1および溶媒2)に対し0.5重量%以上の水を前記溶液に吸収させて前記高分子重合体を析出させる高分子重合体多孔質膜の製造方法。 A water-insoluble polymer, a solvent that is a good solvent for the polymer and water-compatible (solvent 1), a solvent that is poor for the polymer, and water A compatible solution composed of a compatible solvent (solvent 2) is formed into a film shape on a support, and then 0.5% by weight or more of water is added to the solution (solvent 1 and solvent 2). A method for producing a high molecular weight polymer porous membrane, wherein the high molecular weight polymer is deposited by absorption into a polymer. 0.5〜30重量%の水を前記溶液に吸収させる、請求項1に記載の高分子重合体多孔質膜の製造方法。 The method for producing a porous polymer porous membrane according to claim 1, wherein 0.5 to 30% by weight of water is absorbed into the solution. 溶媒2が、炭素数2〜25の水溶性アルコール類である、請求項1または2に記載の高分子重合体多孔質膜の製造方法。 The method for producing a porous polymer porous membrane according to claim 1 or 2, wherein the solvent 2 is a water-soluble alcohol having 2 to 25 carbon atoms. 前記非水溶性を示す高分子重合体が芳香族ポリアミドである、請求項1〜3のいずれかに記載の高分子重合体多孔質膜の製造方法。 The method for producing a porous polymer polymer membrane according to any one of claims 1 to 3, wherein the water-insoluble polymer is an aromatic polyamide. 請求項1〜4のいずれかに記載の製造方法によって製造された、ガーレ値が0.5〜1,000sec/100ccである高分子重合体多孔質膜。 A high molecular weight polymer porous membrane having a Gurley value of 0.5 to 1,000 sec / 100 cc produced by the production method according to claim 1.
JP2004019426A 2004-01-28 2004-01-28 Production method for macromolecular polymer porous film and macromolecular polymer porous film Pending JP2005213315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004019426A JP2005213315A (en) 2004-01-28 2004-01-28 Production method for macromolecular polymer porous film and macromolecular polymer porous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004019426A JP2005213315A (en) 2004-01-28 2004-01-28 Production method for macromolecular polymer porous film and macromolecular polymer porous film

Publications (1)

Publication Number Publication Date
JP2005213315A true JP2005213315A (en) 2005-08-11

Family

ID=34903640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004019426A Pending JP2005213315A (en) 2004-01-28 2004-01-28 Production method for macromolecular polymer porous film and macromolecular polymer porous film

Country Status (1)

Country Link
JP (1) JP2005213315A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225499A (en) * 2005-02-17 2006-08-31 Toray Ind Inc Aromatic polyamide porous film
JP2007204518A (en) * 2006-01-31 2007-08-16 Toray Ind Inc Porous film containing aromatic polyamide or aromatic polyimide, separator for battery and method for producing the same
WO2010150794A1 (en) * 2009-06-23 2010-12-29 Canon Kabushiki Kaisha Method of producing porous polymer film and porous polymer film produced by the method
JP2013032491A (en) * 2011-06-28 2013-02-14 Toray Ind Inc Aromatic polyamide porous film and battery separator, and method for producing the same
KR20190033171A (en) * 2017-09-21 2019-03-29 에스케이이노베이션 주식회사 Manufacturing method of microporous membrane
US11407876B2 (en) 2019-08-29 2022-08-09 Toyota Jidosha Kabushiki Kaisha Method of producing porous body of ethylene-vinyl alcohol copolymer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225499A (en) * 2005-02-17 2006-08-31 Toray Ind Inc Aromatic polyamide porous film
JP2007204518A (en) * 2006-01-31 2007-08-16 Toray Ind Inc Porous film containing aromatic polyamide or aromatic polyimide, separator for battery and method for producing the same
WO2010150794A1 (en) * 2009-06-23 2010-12-29 Canon Kabushiki Kaisha Method of producing porous polymer film and porous polymer film produced by the method
JP2011006520A (en) * 2009-06-23 2011-01-13 Canon Inc Method for manufacturing porous polymer film and porous polymer film manufactured by the same manufacturing method
US8916619B2 (en) 2009-06-23 2014-12-23 Canon Kabushiki Kaisha Method of producing porous polymer film and porous polymer film produced by the method
JP2013032491A (en) * 2011-06-28 2013-02-14 Toray Ind Inc Aromatic polyamide porous film and battery separator, and method for producing the same
KR20190033171A (en) * 2017-09-21 2019-03-29 에스케이이노베이션 주식회사 Manufacturing method of microporous membrane
KR102400797B1 (en) * 2017-09-21 2022-05-24 에스케이이노베이션 주식회사 Manufacturing method of microporous membrane
US11407876B2 (en) 2019-08-29 2022-08-09 Toyota Jidosha Kabushiki Kaisha Method of producing porous body of ethylene-vinyl alcohol copolymer

Similar Documents

Publication Publication Date Title
JP5176318B2 (en) Aromatic polyamide porous film, method for producing aromatic polyamide porous film, and secondary battery
JP5644506B2 (en) Aromatic polyamide porous membrane, and capacitor and battery separator using the same
KR101892769B1 (en) Polyimide Nanoweb with Amidized Surface and Method for Preparing
JP6398298B2 (en) Aromatic polyamide / aromatic polyimide composite porous membrane, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
TW201014016A (en) Sodium secondary battery
JP6969143B2 (en) Porous Membrane and Laminated Porous Membrane
JP2007016211A (en) Porous film comprising aromatic polyamide and/or aromatic polyimide and separator for battery
JP2008056905A (en) Method for producing polymeric porous membrane and the resultant polymeric porous membrane
CN106229445A (en) A kind of lithium ion battery separator and preparation method thereof and lithium ion battery
JP6299168B2 (en) Aromatic polyamide porous membrane and battery separator
CN101638490A (en) Polyimide porous membrane and preparation method and lithium ion battery thereof
JP2011068883A (en) Aromatic polyamide porous membrane, porous film, and battery separator
Miao et al. Superior thermal stability of PVA/cellulose composite membranes for lithium-ion battery separators prepared by impregnation method with noncovalent cross-linking of intermolecular multiple hydrogen-bonds
JPH11250890A (en) Porous polymer film for battery separator
JP2005213315A (en) Production method for macromolecular polymer porous film and macromolecular polymer porous film
JP4923411B2 (en) Aromatic polyamide porous film
JP5251055B2 (en) Porous membrane containing aromatic polyamide
CN101645497B (en) Polyimide porous membrane, preparation method thereof and lithium ion battery
JP6398304B2 (en) Aromatic polyamide porous membrane and battery separator
CN114709558A (en) High-heat-resistance polyamide-imide composite diaphragm and preparation method thereof
JP2006306945A (en) Polymer porous film and method for producing the same
JP6154101B2 (en) Separator made of aromatic polyamide nanofiber structure
JP2004204119A (en) Porous film and electrochemical element using the same
JP5853607B2 (en) Method for producing aromatic polyamide porous membrane, porous membrane obtained thereby, and battery separator using the same
JP5794054B2 (en) Totally aromatic polyamide porous membrane and non-aqueous electrolyte separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316