JP2005213113A - Apparatus for growing oxide single crystal - Google Patents

Apparatus for growing oxide single crystal Download PDF

Info

Publication number
JP2005213113A
JP2005213113A JP2004024025A JP2004024025A JP2005213113A JP 2005213113 A JP2005213113 A JP 2005213113A JP 2004024025 A JP2004024025 A JP 2004024025A JP 2004024025 A JP2004024025 A JP 2004024025A JP 2005213113 A JP2005213113 A JP 2005213113A
Authority
JP
Japan
Prior art keywords
growth
single crystal
crystal
growth vessel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004024025A
Other languages
Japanese (ja)
Inventor
Hiroko Wakabayashi
裕子 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2004024025A priority Critical patent/JP2005213113A/en
Publication of JP2005213113A publication Critical patent/JP2005213113A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the quality of a growing crystal in a growth vessel is degraded by thermal stress because the temperature gradient during descending of the growth vessel and at the time of completion of the descending becomes large relatively when the temperature gradient is made large at the solid-liquid interface position in a conventional apparatus, in the growth of the oxide single crystal by a vertical Bridgman method. <P>SOLUTION: In the growth apparatus, a cylindrical heat insulating part is arranged at a part lower than the lowest part of the growth vessel at the position at the time of completion of descending of the growth vessel in a furnace core tube. Thereby, the temperature gradient is made small during descending of the growth vessel and at the time of completion of the descending without changing the temperature gradient at the solid-liquid interface position, and the high quality crystal can be grown. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、酸化物単結晶の育成装置に関する。更に詳しくはボレート系酸化物結晶である四ほう酸リチウム単結晶の育成装置に関するものである。   The present invention relates to an oxide single crystal growth apparatus. More specifically, the present invention relates to a growth apparatus for lithium tetraborate single crystal, which is a borate-based oxide crystal.

酸化物単結晶の一つである四ほう酸リチウム単結晶は、弾性表面波素子の基板結晶として用いられ、光学的用途も報告されている。このような四ほう酸リチウム単結晶を人工的に育成する方法として、チョクラルスキー法や垂直ブリッジマン法が知られており、その製法に沿った単結晶育成装置が様々に発明されている。   A lithium tetraborate single crystal, which is one of oxide single crystals, is used as a substrate crystal of a surface acoustic wave device, and optical applications have been reported. As a method for artificially growing such a lithium tetraborate single crystal, the Czochralski method and the vertical Bridgman method are known, and various single crystal growing apparatuses have been invented in accordance with the manufacturing method.

図4に、従来の垂直ブリッジマン(VB)法を用いた酸化物単結晶の育成装置の一部を示す。育成炉41において、炉心管42内には後述する育成容器44が配置及び縦方向に移動できる空間が設けられている。又、炉心管42内は不活性雰囲気又は酸化性雰囲気に置換されている。育成容器44の外側底部には育成容器44を支持する支持台45が設けられており、その下には育成容器44及び支持台45を、炉心管42内を上下に移動させる駆動装置が接続されている。   FIG. 4 shows a part of an apparatus for growing an oxide single crystal using the conventional vertical Bridgman (VB) method. In the growth furnace 41, a space in which a later-described growth vessel 44 can be arranged and moved in the vertical direction is provided in the core tube 42. Further, the inside of the furnace core tube 42 is replaced with an inert atmosphere or an oxidizing atmosphere. A support base 45 that supports the growth container 44 is provided at the bottom of the outer side of the growth container 44, and a drive device that moves the growth container 44 and the support base 45 up and down in the core tube 42 is connected to the support base 45. ing.

育成炉41に配したヒーター43により炉心管内を加熱し、炉心管内上方が酸化物単結晶の融点温度より高温に、下方は融点温度より低温になるように温度設定し、前記の炉心管42内に、種結晶46とその上部に育成する酸化物単結晶原料47を収容した育成容器44を、種結晶46上部が融点以上の温度となる位置に来るように挿入する。その後、最適速度で育成容器44を、育成炉内を下方に移動させることで、種結晶上部の原料下部から上部まで徐々に単結晶化させる。   The inside of the reactor core tube is heated by a heater 43 disposed in the growth furnace 41, the temperature is set so that the upper part in the furnace core tube is higher than the melting point temperature of the oxide single crystal and the lower part is lower than the melting point temperature. Then, the growth vessel 44 containing the seed crystal 46 and the oxide single crystal raw material 47 to be grown thereon is inserted so that the upper portion of the seed crystal 46 is at a temperature equal to or higher than the melting point. Thereafter, the growth vessel 44 is moved downward in the growth furnace at an optimum speed, so that the single crystal is gradually formed from the raw material lower portion to the upper portion of the seed crystal upper portion.

前記のような酸化物単結晶の育成装置については、以下のような文献が開示されている。   The following documents are disclosed about the apparatus for growing an oxide single crystal as described above.

特開2001−106597号公報JP 2001-106597 A 特開平9−20596号公報Japanese Patent Laid-Open No. 9-20596

尚、出願人は前記した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を、本件出願時までに発見するに至らなかった。   In addition, the applicant has not found any prior art documents related to the present invention by the time of filing of the present application other than the prior art documents specified by the above prior art document information.

垂直ブリッジマン法育成において、高品質の酸化物結晶を育成するには炉心管内の固液界面となる温度位置での温度制御が重要である。固液界面での温度勾配が小さいとセル成長や光散乱体等が発生し、育成結晶の品質を低下させる為、高品質な結晶を得るためには固液界面での温度勾配を大きくする必要がある。   In the vertical Bridgman method growth, temperature control at the temperature position that becomes the solid-liquid interface in the core tube is important for growing high-quality oxide crystals. If the temperature gradient at the solid-liquid interface is small, cell growth, light scatterers, etc. occur and the quality of the grown crystal is degraded. To obtain high-quality crystals, it is necessary to increase the temperature gradient at the solid-liquid interface. There is.

しかし、従来の育成装置では固液界面位置での温度勾配を大きくすると、育成容器を降下させ育成結晶全体が融点以下の温度に達した位置における炉心管内の温度勾配も相対的に大きくなる為、育成結晶の上部と下部との温度差が大きくなり、それに伴う熱応力も大きくなるため、結晶の品質を低下させ問題であった。また、この熱応力が限界値を超えるとクラックが発生した。   However, in the conventional growth apparatus, if the temperature gradient at the solid-liquid interface position is increased, the temperature gradient in the furnace tube at the position where the growth crystal is lowered and the temperature of the entire growth crystal reaches the temperature below the melting point becomes relatively large. The temperature difference between the upper part and the lower part of the grown crystal is increased, and the thermal stress associated therewith is increased. Further, cracks occurred when the thermal stress exceeded the limit value.

尚、固液界面位置での温度勾配を変えずに、育成容器の降下中及び降下終了時の温度勾配を小さくするために、縦方向にヒーターを分割して、個別に制御することが考えられるが、ヒーターの細分化にはヒーター1個当たりの最小長さに限界があり、良熱伝導率体からなる炉心管が分割されたヒーターより内側にある為、ヒーターの分割のみで縦方向の温度勾配を部分的に大きく変化させることは実際には難しい。   In order to reduce the temperature gradient during the descent of the growth vessel and at the end of the descent without changing the temperature gradient at the solid-liquid interface position, it is possible to divide the heater in the vertical direction and control it individually. However, there is a limit to the minimum length per heater for subdivision of the heater, and the furnace core tube made of a good thermal conductivity material is inside the divided heater. It is actually difficult to change the gradient partly.

前記従来技術の課題を解決するため、本発明は、ヒーターにより上部を融点より高温に、下部を融点より低温に設定された炉心管内に育成容器を配置し、この育成容器内に種結晶と原料を充填し、上部に育成容器を位置させて原料を融解後、育成容器を下降させて結晶を成長させる垂直ブリッジマン法による酸化物単結晶育成装置において、育成容器を下降させて結晶全体が融点以下の温度に達した位置における育成結晶最下部より下方の炉心管内に筒形の断熱部を配置することを特徴とする酸化物単結晶の育成装置である。   In order to solve the above-mentioned problems of the prior art, the present invention has arranged a growth vessel in a reactor core tube in which the upper part is set to a temperature higher than the melting point and the lower part is set to a temperature lower than the melting point by a heater. In an oxide single crystal growth apparatus using the vertical Bridgman method in which a growth vessel is positioned on the top and the raw material is melted, and then the growth vessel is lowered to grow crystals, the growth vessel is lowered and the entire crystal is melted. An apparatus for growing an oxide single crystal, characterized in that a cylindrical heat insulating portion is disposed in a reactor core tube below a lowermost portion of a grown crystal at a position where the following temperature is reached.

又、上記酸化物単結晶として四ほう酸リチウムを育成することを特徴とする上記育成装置でもある。   Further, the growth apparatus is characterized in that lithium tetraborate is grown as the oxide single crystal.

本発明のように育成容器を下降させて結晶全体が融点以下の温度に達した位置における育成結晶最下部より下方の炉心管内に筒形の断熱部を配置すると、固液界面となる位置での温度勾配を変えずに、降下中及び降下後の育成結晶中の温度勾配のみを小さくすることが可能となる。その結果、育成結晶中の熱応力を極めて小さくすることができ、高品質の育成結晶を得ることが可能になる。   If a cylindrical heat insulating part is disposed in the furnace core tube below the lowest part of the growing crystal at the position where the entire crystal reaches a temperature below the melting point as in the present invention, the position at which the solid-liquid interface is formed Without changing the temperature gradient, it is possible to reduce only the temperature gradient in the grown crystal during and after the descent. As a result, the thermal stress in the grown crystal can be made extremely small, and a high quality grown crystal can be obtained.

又、育成装置においても、ヒーター数を増やすこともなく、安価で複雑化しない育成装置を構成できる。   Also, in the growing apparatus, it is possible to configure a growing apparatus that is inexpensive and not complicated without increasing the number of heaters.

因って、本発明に係わる育成装置を用いることにより、安価で高品質な酸化物単結晶を提供する効果を奏する。   Therefore, by using the growth apparatus according to the present invention, there is an effect of providing an inexpensive and high quality oxide single crystal.

以下に、本発明の実施形態について図面に基づいて説明する。
図1は、本発明における酸化物単結晶の一つである四ほう酸リチウム単結晶の育成に使用する育成装置の育成終了時の状態を示す概略断面図である。
図2は、炉心管の任意の位置における管内温度を示したグラフである。
図3は、炉心管内に配置する断熱部を示した斜視図である。
尚、図1及び図3において、説明を明りょうにするため構造体の一部を図示せず、また図内の寸法も一部誇張して図示している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing a state at the end of growth of a growth apparatus used for growing a lithium tetraborate single crystal which is one of oxide single crystals in the present invention.
FIG. 2 is a graph showing the tube temperature at an arbitrary position of the core tube.
FIG. 3 is a perspective view showing a heat insulating portion arranged in the core tube.
In FIG. 1 and FIG. 3, a part of the structure is not shown for clarity of explanation, and some dimensions in the figure are also exaggerated.

即ち、育成炉11を構成する炉心管12は、筒状に形成され縦方向に配置されている。その炉心管12の外側にはヒーター13が配置され、ヒーター13により、炉心管12内の温度を設定できる。また、炉心管12内は不活性雰囲気又は酸化性雰囲気である。   That is, the core tube 12 constituting the growth furnace 11 is formed in a cylindrical shape and arranged in the vertical direction. A heater 13 is disposed outside the core tube 12, and the temperature inside the core tube 12 can be set by the heater 13. Further, the inside of the furnace core tube 12 is an inert atmosphere or an oxidizing atmosphere.

炉心管12内には、四ほう酸リチウム単結晶を育成する育成容器14が配置されている。この育成容器14はアルミナ等のセラミックスで形成されている。育成容器14底部には、支持器具15が配置されている。支持器具15の下部には育成容器14及び支持器具15を、炉心管12内を上下に移動させる駆動装置19が設けられている。   A growth vessel 14 for growing a lithium tetraborate single crystal is disposed in the core tube 12. The growth container 14 is made of ceramics such as alumina. A support device 15 is disposed at the bottom of the growth container 14. A driving device 19 for moving the growth vessel 14 and the support device 15 up and down in the core tube 12 is provided below the support device 15.

この炉心管12内には、育成容器14が降下し、結晶全体が融点以下の温度に達した位置における育成容器14最下部より下方の炉心管内に筒形の断熱部17を配置している。この断熱部17はセラミックレンガもしくはセラミックファイバで形成され、育成環境下で熱的及び化学的安定性があり、アウターガスのないものが使用されている。又、断熱部17の中央部分に貫通している孔には、支持器具15が通っている。   In this reactor core tube 12, a growth vessel 14 is lowered, and a cylindrical heat insulating portion 17 is arranged in the reactor core tube below the bottom of the growth vessel 14 at a position where the entire crystal has reached a temperature equal to or lower than the melting point. The heat insulating portion 17 is formed of ceramic bricks or ceramic fibers, and has thermal and chemical stability in a growing environment, and has no outer gas. A support device 15 passes through a hole penetrating the central portion of the heat insulating portion 17.

次に本発明の育成装置を使用した単結晶育成法を開示すると、まず育成容器14内に、板状の四ほう酸リチウム種結晶を配置し、その四ほう酸リチウム種結晶の上部に高純度の四ほう酸リチウム原料をに収容した後、蓋18をおく。   Next, a single crystal growth method using the growth apparatus of the present invention will be disclosed. First, a plate-like lithium tetraborate seed crystal is placed in the growth vessel 14, and a high-purity four-crystal is formed above the lithium tetraborate seed crystal. After the lithium borate raw material is contained in the lid, the lid 18 is placed.

ヒーター13により育成に必要な温度勾配に設定した炉心管12内に、駆動装置19を使用して、育成容器14及び支持器具15を上昇させ、育成容器14内の四ほう酸リチウム原料を融解させる。図2に炉心管内の各位置における温度をグラフで示す。曲線αは従来の育成装置における温度分布曲線、曲線βは断熱部17を配置した本実施例における温度分布曲線である。   The driving vessel 19 is used to raise the growth vessel 14 and the support device 15 in the core tube 12 set to a temperature gradient necessary for growth by the heater 13, and the lithium tetraborate raw material in the growth vessel 14 is melted. FIG. 2 is a graph showing the temperature at each position in the core tube. A curve α is a temperature distribution curve in the conventional growing apparatus, and a curve β is a temperature distribution curve in the present embodiment in which the heat insulating portion 17 is arranged.

次に、炉心管12内に挿入し、上昇させた育成容器14内の四ほう酸リチウム種結晶上部が融点以上の温度に到達したら、駆動装置19の上昇を止め、育成容器14を一定時間その位置で保持する。   Next, when the lithium tetraborate seed crystal upper portion in the growth vessel 14 inserted and raised in the reactor core tube 12 reaches a temperature equal to or higher than the melting point, the drive device 19 is stopped and the growth vessel 14 is moved to the position for a certain time. Hold on.

その後、駆動装置19により育成容器14を0.3〜2.0mm/hで降下させ、融点より低い温度位置へ移動させることで、四ほう酸リチウム種結晶上に四ほう酸リチウム単結晶を徐々に結晶化させ、育成結晶上部が融点温度より低い温度に達する管内位置(図1及び図2におけるa地点)で降下を終了させた。尚、図1に示した装置のおける育成容器の位置は育成容器降下終了時点における容器位置である。このときの育成結晶中の温度勾配は図2の炉内温度分布曲線に従って、断熱部17の作用により従来の半分以下の温度勾配にできた。   Thereafter, the growth container 14 is lowered at 0.3 to 2.0 mm / h by the driving device 19 and moved to a temperature position lower than the melting point, whereby a lithium tetraborate single crystal is gradually crystallized on the lithium tetraborate seed crystal. And the descent was terminated at the position in the tube where the upper portion of the grown crystal reached a temperature lower than the melting point temperature (point a in FIGS. 1 and 2). The position of the growth container in the apparatus shown in FIG. 1 is the container position at the end of the growth container descent. The temperature gradient in the grown crystal at this time was made to be a temperature gradient less than half of the conventional temperature gradient by the action of the heat insulating portion 17 in accordance with the furnace temperature distribution curve of FIG.

その後、室温近傍温度まで徐冷した後、育成された結晶を育成容器から取り出す。育成された結晶は、クラックもなく、微小な光散乱体もない高品質な四ほう酸リチウム単結晶である。   Thereafter, after gradually cooling to a temperature close to room temperature, the grown crystal is taken out from the growth container. The grown crystal is a high quality lithium tetraborate single crystal with no cracks and no minute light scatterers.

尚、上記実施例では酸化物単結晶として四ほう酸リチウム単結晶を育成する場合を例示したが、本発明は四ほう酸リチウムの育成に限らず、ニオブ酸リチウムやランガサイトのような熱伝導率の小さい酸化物単結晶を育成する装置において、本発明を実施してもその作用効果は同じであり、それら酸化物単結晶の育成装置として本発明を用いることも可能である。   In the above examples, the case where a lithium tetraborate single crystal is grown as an oxide single crystal is exemplified, but the present invention is not limited to the growth of lithium tetraborate, but has a thermal conductivity such as lithium niobate or langasite. Even if the present invention is implemented in an apparatus for growing small oxide single crystals, the same effect is obtained, and the present invention can also be used as an apparatus for growing these oxide single crystals.

図1は、本発明における酸化物単結晶育成に使用する育成装置を示した概略断面図である。FIG. 1 is a schematic sectional view showing a growth apparatus used for growing an oxide single crystal in the present invention. 図2は、炉心管の各位置における管内温度を示したグラフである。FIG. 2 is a graph showing the tube temperature at each position of the core tube. 図3は、本発明に係る育成装置に設ける断熱部を示した斜視図である。FIG. 3 is a perspective view showing a heat insulating portion provided in the growing apparatus according to the present invention. 図4は、従来技術における酸化物単結晶育成装置を示した概略図である。FIG. 4 is a schematic view showing an oxide single crystal growth apparatus in the prior art.

符号の説明Explanation of symbols

11,育成炉
12,炉心管
13,ヒーター
14,育成容器
15,支持器具
16,酸化物単結晶(四ほう酸リチウム単結晶)
17,断熱部
18,蓋
19,駆動装置
11, growth furnace 12, furnace core tube 13, heater 14, growth vessel 15, support fixture 16, oxide single crystal (lithium tetraborate single crystal)
17, heat insulation part 18, lid 19, drive device

Claims (2)

ヒーターにより上部を融点より高温に、下部を融点より低温に設定された炉心管内に育成容器を配置し、該育成容器内に種結晶と原料を充填し、上部に該育成容器を位置させて原料を融解後、該育成容器を下降させ、育成容器内で、下方から上方へ向けて、徐々に該原料を固化させて結晶を成長させる垂直ブリッジマン法による酸化物単結晶の育成装置において、該育成容器を下降させて該原料全体が融点以下の温度に達した位置における育成結晶最下部より下方の炉心管内に、筒形の断熱部を配置することを特徴とする酸化物単結晶の育成装置。   A growth vessel is placed in a reactor core tube whose upper part is set to a temperature higher than the melting point and lower part is set to a temperature lower than the melting point by a heater. The growth vessel is filled with seed crystals and raw materials. In the apparatus for growing an oxide single crystal by a vertical Bridgman method in which the growth vessel is lowered and the raw material is gradually solidified from below to above in the growth vessel to grow a crystal by gradually solidifying the raw material. An apparatus for growing an oxide single crystal, characterized in that a cylindrical heat insulating portion is disposed in a furnace core tube below a growth crystal lowermost portion at a position where the growth vessel is lowered and the whole raw material reaches a temperature equal to or lower than a melting point. . 該酸化物単結晶が四ほう酸リチウム単結晶であることを特徴とする請求項1記載の育成装置。   The growth apparatus according to claim 1, wherein the oxide single crystal is a lithium tetraborate single crystal.
JP2004024025A 2004-01-30 2004-01-30 Apparatus for growing oxide single crystal Pending JP2005213113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004024025A JP2005213113A (en) 2004-01-30 2004-01-30 Apparatus for growing oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004024025A JP2005213113A (en) 2004-01-30 2004-01-30 Apparatus for growing oxide single crystal

Publications (1)

Publication Number Publication Date
JP2005213113A true JP2005213113A (en) 2005-08-11

Family

ID=34906843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004024025A Pending JP2005213113A (en) 2004-01-30 2004-01-30 Apparatus for growing oxide single crystal

Country Status (1)

Country Link
JP (1) JP2005213113A (en)

Similar Documents

Publication Publication Date Title
JP5526666B2 (en) Sapphire single crystal manufacturing equipment
KR102349701B1 (en) Production apparatus for gallium oxide crystal and process for producing gallium oxide crystal
JP5633732B2 (en) Sapphire single crystal manufacturing method and sapphire single crystal manufacturing apparatus
JP6606638B2 (en) Method and apparatus for growing Fe-Ga based alloy single crystal
JP5803519B2 (en) Method and apparatus for producing SiC single crystal
JP2011524332A (en) System and method for growing single crystal silicon ingots by directional solidification
JP2008105896A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
TWI555886B (en) Equipment for growing sapphire single crystal
CN108531990A (en) Single-crystal manufacturing apparatus
JP2002080215A (en) Method of making polycrystalline semiconductor ingot
KR101842487B1 (en) Glowing equipment and methods for lithium tantalate single crystal by crucible structure
JP5359845B2 (en) Single crystal growth equipment
JP2005213113A (en) Apparatus for growing oxide single crystal
JP4539535B2 (en) Method for producing langate single crystal
JP2005213114A (en) Apparatus for growing oxide single crystal
JP7155968B2 (en) Single crystal growth crucible and single crystal manufacturing method
JP2006151745A (en) Method for producing single crystal and oxide single crystal obtained by using the same
JP5923700B1 (en) Large EFG method growth furnace lid structure
JP2004035281A (en) Method for producing lithium tetraborate single crystal
JP4475242B2 (en) Method for producing langate single crystal
JP4539588B2 (en) Method for producing LTGA single crystal
JP4316183B2 (en) Single crystal growth method
JP2017193469A (en) After-heater and sapphire single crystal production apparatus
JP6992488B2 (en) Crucible for growing single crystals
JP2014156373A (en) Manufacturing apparatus for sapphire single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060926

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302