JP2005211945A - Method for cooling high temperature steel plate - Google Patents

Method for cooling high temperature steel plate Download PDF

Info

Publication number
JP2005211945A
JP2005211945A JP2004022546A JP2004022546A JP2005211945A JP 2005211945 A JP2005211945 A JP 2005211945A JP 2004022546 A JP2004022546 A JP 2004022546A JP 2004022546 A JP2004022546 A JP 2004022546A JP 2005211945 A JP2005211945 A JP 2005211945A
Authority
JP
Japan
Prior art keywords
cooling
steel plate
temperature
longitudinal direction
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004022546A
Other languages
Japanese (ja)
Other versions
JP4111144B2 (en
Inventor
Satoshi Kamioka
悟史 上岡
Gentaro Takeda
玄太郎 武田
Kenji Ihara
健滋 井原
Nobuya Ikeda
展也 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004022546A priority Critical patent/JP4111144B2/en
Publication of JP2005211945A publication Critical patent/JP2005211945A/en
Application granted granted Critical
Publication of JP4111144B2 publication Critical patent/JP4111144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cooling a high temperature steel plate, which method can be applied to a longitudinally profiled steel plate having various cross sections without changing the flow rate of water to be poured on the steel plate during the pass of the plate. <P>SOLUTION: In the method for cooling the high temperature steel plate, dividing points for the steel plate in the longitudinal direction are preliminarily determined before cooling at the leading end, the trailing end, and the inflection point of the thickness gradient of the plate in the longitudinal direction. Reference positions are provided between the inlet side and the outlet side of a cooling apparatus, and the speed of the pass is changed at a constant accelerating rate or a constant decelerating rate within the period from the arrival of the dividing point at the reference point to the arrival of the next dividing point at the same reference point, and an initial speed of the pass, the accelerating rate, and the decelerating rate are determined such that the dividing point is cooled within the allowable cooling temperature range while passing the cooling apparatus. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、様々な板厚形状を持つ高温のLP鋼板を長手方向に送りながら一定量の冷却水を供給して通過冷却した場合の冷却方法に関するものである。   The present invention relates to a cooling method in a case where high-temperature LP steel plates having various plate thickness shapes are supplied in a longitudinal direction and supplied with a constant amount of cooling water to be cooled by passage.

近年、造船や建築業界で採用されている厚鋼板は、高強度、高靭性などの機械的性質を有すると共に、現場溶接作業を容易にするために優れた溶接性を有することが必要である。このような特性を得るために、炭素当量を低減し、合金元素を添加するなど所定の成分の材料を用いて、所定の温度で圧延をする制御圧延を行った後、所定の温度条件で冷却する制御冷却するといった、TMCP(Thermo Mechanical Control Process)技術が実用化されている。   In recent years, steel plates used in the shipbuilding and construction industries have mechanical properties such as high strength and high toughness, as well as excellent weldability in order to facilitate field welding operations. In order to obtain such characteristics, after performing controlled rolling in which rolling is performed at a predetermined temperature using a material of a predetermined component such as reducing the carbon equivalent and adding an alloy element, cooling is performed at a predetermined temperature condition. TMCP (Thermo Mechanical Control Process) technology, such as controlled cooling, has been put into practical use.

一方、構造物の軽量化や現地溶接工事に要するコストを大幅に削減するために、長手方向に任意の形状で直線的に板厚を変化させたLP鋼板(Longitudinally Profiled Steel Plate)が脚光を浴びている。このような鋼板を採用することにより、鋼構造物の断面力が急変する部位に用いると、必要断面に応じた合理的な断面構成と接合部の等厚化が可能になり、鋼重低減や加工数削減によりコスト削減が期待できる。   On the other hand, LP steel plates (Longitudinally Profiled Steel Plates), which have a linear shape with an arbitrary shape in the longitudinal direction, are attracting attention in order to significantly reduce the weight of structures and the cost of field welding work. ing. By adopting such a steel plate, it is possible to make a rational cross-sectional configuration and equal thickness of the joint according to the required cross-section when used in a region where the cross-sectional force of the steel structure changes suddenly, and steel weight reduction or Cost reduction can be expected by reducing the number of processing.

LP鋼板の形状の代表例を図1に示す。ここでは、図の右側を鋼板先端、左側を鋼板尾端として以後説明する。図1(a)は鋼板先端部から後端部に逐次板厚が厚くなり、長手方向に均等な板厚勾配を持つLP鋼板である。図1(b)は、先端部及び後端部に異なる板厚の平行部を持ち、その間を長手方向にテーパー状に均等な板厚勾配を持ったLP鋼板である。図1(c)は、鋼板先端部及び後端部及び中央部に平行部を持ち、中央の平行部が先端部及び後端部よりも板厚が厚くなっており、平行部の間を長手方向にテーパー状に均等な板厚勾配をもったLP鋼板である。   A typical example of the shape of the LP steel sheet is shown in FIG. Here, the right side of the figure will be described below with the steel plate tip and the left side as the steel plate tail end. FIG. 1 (a) shows an LP steel plate having a uniform thickness gradient in the longitudinal direction, with the plate thickness increasing sequentially from the front end to the rear end of the steel plate. FIG. 1B shows an LP steel plate having parallel portions having different plate thicknesses at the front end portion and the rear end portion, and having a uniform thickness gradient in a taper shape in the longitudinal direction therebetween. FIG. 1 (c) has a parallel portion at the front end portion, the rear end portion, and the central portion of the steel plate, and the central parallel portion is thicker than the front end portion and the rear end portion. It is an LP steel plate having a uniform thickness gradient in a tapered shape in the direction.

図1(d)は鋼板長手方向中央部に平行部を持ち、中央の平行部が先端部及び後端部よりも板厚が厚くなっており、先端及び後端部と中央部の平行部との間を長手方向にテーパー状に均等な板厚勾配をもったLP鋼板である。図1(e)は鋼板先端部及び後端部に平行部を持ち、鋼板中央部では鋼板先端及び後端よりも板厚が厚くなっており、先端及び後端部と中央部の間を長手方向にテーパー状に均等な板厚勾配をもったLP鋼板である。図1(f)は、鋼板中央部では鋼板先端及び後端よりも板厚が厚くなっており、先端及び後端部と中央部の間を長手方向にテーパー状に均等な板厚勾配をもったLP鋼板である。   FIG. 1 (d) has a parallel part at the central part in the longitudinal direction of the steel sheet, the central parallel part is thicker than the front end part and the rear end part, and the front and rear end parts and the parallel part of the central part are LP steel plate having a uniform thickness gradient in a taper shape in the longitudinal direction. FIG. 1 (e) has a parallel portion at the front and rear ends of the steel plate, the plate thickness is thicker at the center of the steel plate than at the front and rear ends of the steel plate, and the length between the front and rear ends and the central portion is longer. It is an LP steel plate having a uniform thickness gradient in a tapered shape in the direction. FIG. 1 (f) shows that the plate thickness is thicker at the center of the steel plate than at the front and rear ends of the steel plate, and has a uniform thickness gradient that is tapered in the longitudinal direction between the front and rear ends. LP steel plate.

図1(g)は、鋼板先端部及び後端部及び中央部に平行部を持ち、平行部の板厚が長手方向の順に厚くなっており、平行部の間を長手方向にテーパー状に均等な板厚勾配をもったLP鋼板である。図1(h)は、鋼板長手方向中央部に平行部を持ち、鋼板先端部は中央の平行部より薄く、鋼板後端部は中央の平行部より板厚が厚くなっており、鋼板先端部及び後端部と中央部の平行部との間を長手方向にテーパー状に均等な板厚勾配をもったLP鋼板である。図1(i)は、鋼板先端部及び後端部及び中央部に平行部を持ち、鋼板中央の平行部の板厚が鋼板先端及び後端の平行部より板厚が薄くなっており、平行部の間を長手方向にテーパー状に均等な板厚勾配をもったLP鋼板である。   FIG. 1 (g) has parallel portions at the front and rear end portions and the central portion of the steel plate, the plate thickness of the parallel portions is increased in the order of the longitudinal direction, and the space between the parallel portions is evenly tapered in the longitudinal direction. This is an LP steel sheet with a large thickness gradient. FIG. 1 (h) has a parallel part in the central part in the longitudinal direction of the steel sheet, the front end of the steel sheet is thinner than the central parallel part, and the rear end of the steel sheet is thicker than the central parallel part. The LP steel sheet has a uniform thickness gradient in a taper shape in the longitudinal direction between the rear end portion and the parallel portion of the central portion. FIG. 1 (i) has parallel portions at the front and rear end portions and the central portion of the steel plate, the plate thickness of the parallel portion at the center of the steel plate is thinner than the parallel portion at the front and rear ends of the steel plate, and is parallel. It is an LP steel plate having a uniform thickness gradient in the longitudinal direction between the portions.

図1(j)は、中央部に平行部を持ち、鋼板中央の平行部の板厚が鋼板先端及び後端の平行部より板厚が薄くなっており、平行部の間を長手方向にテーパー状に均等な板厚勾配をもったLP鋼板である。図1(k)は、鋼板先端部及び後端部に平行部を持ち、鋼板中央の板厚が鋼板先端及び後端の平行部より板厚が薄くなっており、鋼板中央部と先端及び後端部の平行部との間を長手方向にテーパー状に均等な板厚勾配をもったLP鋼板である。図1(l)は、鋼板中央の板厚が鋼板先端及び後端より板厚が薄くなっており、鋼板中央部と先端及び後端部の間を長手方向にテーパー状に均等な板厚勾配をもったLP鋼板である。   FIG. 1 (j) has a parallel portion at the center, the plate thickness of the parallel portion at the center of the steel plate is thinner than the parallel portions at the front and rear ends of the steel plate, and the parallel portion is tapered in the longitudinal direction. It is an LP steel plate having a uniform thickness gradient. In FIG. 1 (k), there are parallel portions at the front and rear ends of the steel plate, and the thickness at the center of the steel plate is thinner than the parallel portions at the front and rear ends of the steel plate. This is an LP steel plate having a uniform thickness gradient in a taper shape in the longitudinal direction between the parallel portions at the ends. In FIG. 1 (l), the plate thickness at the center of the steel plate is thinner than the front and rear ends of the steel plate, and a uniform thickness gradient is formed in a taper shape in the longitudinal direction between the central portion of the steel plate and the front and rear ends. LP steel plate with

このような多種多様な断面形状を持つLP鋼板に対して、高強度化や溶接性、軽量化などのニーズから、制御冷却が施されることが多くなってきた。このとき、材質の機械的特性は、冷却の開始温度、終了温度及び冷却速度に依存するため、これらの温度を精度良く制御することが重要である。   Controlled cooling has been increasingly applied to LP steel sheets having such a wide variety of cross-sectional shapes because of needs such as high strength, weldability, and weight reduction. At this time, since the mechanical properties of the material depend on the start temperature, end temperature, and cooling rate of cooling, it is important to control these temperatures with high accuracy.

これに対して、LP鋼板は長手方向で見ると、様々な断面形状を持つため、板厚の厚い部分と薄い部分では冷却速度や冷却終了温度が異なり、一定の通水条件と一定の通板速度で冷却を行った場合には、鋼板の各部分で材質バラツキが生じるといった問題がある。   On the other hand, LP steel plates have various cross-sectional shapes when viewed in the longitudinal direction. Therefore, the cooling rate and cooling end temperature are different between the thick and thin portions, and the constant water flow conditions and constant flow plates are different. When cooling is performed at a speed, there is a problem that material variation occurs in each part of the steel plate.

これを回避するために、以下のような従来技術が開示されている。
特開平8−232016号公報(特許文献1)に開示されている手法は、合金元素を添加してAr点以上の仕上温度で熱間圧延し、Ar点以上の温度からマルテンサイト変態開始温度直上まで急冷して室温まで徐冷することによりベイナイト組織に変態させ、Ac点以下の温度に焼き戻すことにより板厚みの異なる部位の材質を一定に保つ方法である。
In order to avoid this, the following prior art is disclosed.
JP-8-232016 discloses disclosed in (Patent Document 1) method, with the addition of alloy elements was hot rolled at a finishing temperature of more than 3 points Ar, martensitic transformation starting from Ar 3 point or more temperature This is a method in which the material of the parts having different plate thicknesses is kept constant by transforming into a bainite structure by quenching to just above the temperature and gradually cooling to room temperature, and tempering to a temperature of Ac 1 point or less.

特開平7−96319号公報(特許文献2)に開示されている手法は、山形状又は台形状のテーパ−鋼板に対して、図17に示すように、冷却材が、噴射される複数個のゾーンを有する冷却装置内に搬送される前の段階(1)において、テーパ−鋼板の中央部Mが冷却装置20の入り口に到達するまでは速度Vで搬送する。そして、テーパ−鋼板の先端Tから中央部が冷却装置20内に搬送された段階(2)でゾーンから冷却材を噴射して、先端Tから中央部Mまでを同時一斉に冷却を開始し、速度Vで搬送する。さらに、尾端Bが冷却装置20の入り口に到達した段階(3)で、速度Vで搬送する。そして、先端Tが冷却装置20の出口に到達した段階(4)で、速度Vで搬送し、その中央部Mが冷却装置20の出口に到達した段階(5)でゾーンからの冷却材噴射を停止して冷却を終了し、その後、速度Vでテーパ−鋼板を冷却装置20から抽出し、段階(6)となるような冷却方法である。 As shown in FIG. 17, a technique disclosed in Japanese Patent Application Laid-Open No. 7-96319 (Patent Document 2) has a plurality of coolants injected to a mountain-shaped or trapezoidal tapered steel plate. In the stage (1) before being transported into the cooling device having the zone, the taper is transported at a speed V 0 until the central portion M of the steel plate reaches the entrance of the cooling device 20. And, at the stage (2) when the central portion is transferred from the tip T of the tapered steel plate into the cooling device 20, the coolant is injected from the zone, and the cooling from the tip T to the central portion M is started simultaneously, to convey at the speed V 1. Furthermore, at the stage where the tail B reaches the inlet of the cooling device 20 (3), conveyed at a speed V 2. Then, at the stage where the tip T has reached the outlet of the cooling device 20 (4), and conveyed at speed V 3, the coolant is injected from the zone at that stage the central portion M reaches the outlet of the cooling device 20 (5) the exit to cool down, then taper at a speed V 4 - the steel sheet is extracted from the cooling device 20, which is to become such a cooling process step (6).

特開平10−249430号公報(特許文献3)に開示されている手法においては、図18のように複数バンクの冷却装置12a〜12nと複数の位置検出装置を備え、冷却バンクにはそれぞれ電磁開閉弁13a〜13nがついている冷却装置を用いる。また、冷却ゾーンはS1,S2,S3のゾーンでユニットを構成している。   In the technique disclosed in Japanese Patent Application Laid-Open No. 10-249430 (Patent Document 3), as shown in FIG. 18, a plurality of banks of cooling devices 12a to 12n and a plurality of position detection devices are provided, and each cooling bank is electromagnetically opened and closed. A cooling device with valves 13a to 13n is used. The cooling zone is a unit composed of zones S1, S2 and S3.

次に図19を用いて本手法の冷却方法を説明する。まず、山形状及び台形状のテーパ−鋼板が冷却装置に侵入する前にS1,S2ゾーンより冷却水を通水する。そして、テーパ−鋼板Aの挿入に伴い、中央部Mが入側冷却ゾーンS1における第一バンク12aを超えたか否かが判断された後、図19(a)に示すように中央部Mが第一バンク12aを超えた場合、その都度電磁開閉弁13a〜13cが順次閉じられ、図19(b)、図19(c)に示すように第一バンク12aから順次冷却剤の噴射を停止する。以上のようにして、テーパ−鋼板Aの中央部Mが入側冷却ゾーンS1内にある場合は、第一バンク12aから順次第2、第3のバンク12b,12cの電磁開閉弁13b,13cを閉じて、第2、第3のバンク13b,13cによる冷却を行わない。   Next, the cooling method of this method is demonstrated using FIG. First, cooling water is passed from the S1 and S2 zones before the mountain-shaped and trapezoidal tapered steel plates enter the cooling device. Then, with the insertion of the tapered steel plate A, after it is determined whether or not the central portion M has exceeded the first bank 12a in the inlet side cooling zone S1, the central portion M is the first one as shown in FIG. When one bank 12a is exceeded, the electromagnetic on-off valves 13a to 13c are closed sequentially each time, and the coolant injection is sequentially stopped from the first bank 12a as shown in FIGS. 19 (b) and 19 (c). As described above, when the central portion M of the tapered steel plate A is in the inlet side cooling zone S1, the electromagnetic on-off valves 13b and 13c of the second and third banks 12b and 12c are sequentially installed from the first bank 12a. It is closed and the second and third banks 13b and 13c are not cooled.

次いで、図19(c)に示すようにテーパ−鋼板Aが中間冷却ゾーンS2における各バンク12d〜12gを超える間は、各電磁開閉弁13d〜13gは、開かれて各バンク12d〜12gから冷却剤が噴射されているため、順次先端Tから尾端Bまで冷却を行うことができる。   Next, as shown in FIG. 19 (c), while the tapered steel plate A exceeds the banks 12d to 12g in the intermediate cooling zone S2, the electromagnetic on-off valves 13d to 13g are opened and cooled from the banks 12d to 12g. Since the agent is injected, the cooling from the tip T to the tail B can be performed sequentially.

そして、先端Tが出側冷却ゾーンS3における第iバンク12hを超えたか否かが判断された後、図19(d)に示すように先端Tが第iバンク12hを超えた場合、その都度電磁開閉弁13h〜13jが開かれ、図19(d)、図19(f)に示すように第iバンク12hからバンク12iおよび第nバンク12jの順に冷却材を各別に噴射する。   Then, after it is determined whether or not the tip T has exceeded the i-th bank 12h in the exit side cooling zone S3, as shown in FIG. The on-off valves 13h to 13j are opened, and coolant is separately injected from the i-th bank 12h to the bank 12i and the n-th bank 12j as shown in FIGS. 19 (d) and 19 (f).

以上のようにして、テーパ−鋼板Aの先端Tが出側冷却ゾーンS3内にある場合は、図19(e)のように前記電磁弁13h〜13jを各別に順次開いて、第iバンク12h〜12jから順次冷却剤を噴射し、前記先端T部を除く部分から尾端Bに亘って順次冷却を行う。以上のような手順による冷却方法である。   As described above, when the tip T of the tapered steel plate A is in the outlet side cooling zone S3, the electromagnetic valves 13h to 13j are sequentially opened individually as shown in FIG. The coolant is sequentially injected from ˜12j, and cooling is performed sequentially from the portion excluding the tip T portion to the tail end B. This is a cooling method according to the above procedure.

特開平8−230216号公報Japanese Patent Laid-Open No. 8-230216 特開平7−96319号公報JP-A-7-96319 特開平10−249430号公報JP-A-10-249430

しかし、特開平8−230216号公報に記載されている手法では、NbやNi等高価な元素の添加と熱処理工程を必要とするため製造コストが高くなるといった問題がある。また、製造工程が増えるため、短納期で製造することが困難となる。   However, the method described in Japanese Patent Application Laid-Open No. 8-230216 has a problem that the manufacturing cost increases because of the addition of expensive elements such as Nb and Ni and a heat treatment step. In addition, since the manufacturing process increases, it is difficult to manufacture with a short delivery time.

また、特開平7−96319号公報及び特開平10−249430号公報に記載されている手法では、鋼板通板中に冷却水を噴射する必要があるため、冷却水を噴射直後は冷却水量が目標値に追従せずオーバーシュートしたり、徐々に冷却水量が増加する現象が発生し、温度均一性や冷却能力の変化が生じる。また、冷却水を停止した場合、鋼板上に滞留した冷却水によって上面だけ過冷却されるため、鋼板形状が乱れたり、温度ムラが発生する原因となる。さらに、これらの手法は山形状及び台形状のLP鋼板のみにしか適用できず、図1に示すような様々な形状を持つLP鋼板のすべてには適用できない問題がある。   Further, in the methods described in JP-A-7-96319 and JP-A-10-249430, it is necessary to inject cooling water into the steel plate passage plate, so that the amount of cooling water is the target immediately after the injection of cooling water. Overshooting does not follow the value, or a phenomenon in which the cooling water amount gradually increases occurs, resulting in changes in temperature uniformity and cooling capacity. In addition, when the cooling water is stopped, only the upper surface is supercooled by the cooling water staying on the steel plate, which causes the shape of the steel plate to be disturbed and temperature unevenness to occur. Furthermore, these methods are applicable only to mountain-shaped and trapezoidal LP steel plates, and there is a problem that they cannot be applied to all LP steel plates having various shapes as shown in FIG.

本発明はこのような事情に鑑みてなされたものであり、特別な合金元素を添加することなく、又、通板中に鋼板に通水する流量を変化させること無く、図1に示すような様々な形状を持つLP鋼板に適用可能な高温鋼板の冷却方法を提供することを課題とする。   The present invention has been made in view of such circumstances, as shown in FIG. 1 without adding a special alloy element, and without changing the flow rate of water passing through the steel plate during the passing plate. It aims at providing the cooling method of the high temperature steel plate applicable to LP steel plate which has various shapes.

前記課題を解決するための第1の手段は、長手方向で厚みが変化するLP鋼板を、複数の冷却ゾーンを有する水冷式の冷却装置を通過させることにより通過冷却するに際し、前記LP鋼板の冷却開始前に、前記冷却装置において使用する冷却ゾーンと各冷却ゾーンにおける冷却水の通水量を決定しておき、前記LP鋼板の冷却中は前記使用する冷却ゾーンと前記各冷却ゾーンにおける冷却水の通水量を変えることなく冷却を行う方法であって、予め冷却前に鋼板長手方向を先端及び後端と長手方向の板厚勾配の変曲点に分割点を設定し、一方、前記冷却装置の入側から出側までの間に基準位置を設けて、前記分割点が前記基準位置に到達してから次の前記分割点が前記基準位置に到達するまでの間、一定の加速度又は一定の減速度で、通板速度の加減速を行い、通板初期速度及び前記加速度及び減速度は、前記分割点が、前記冷却装置を通過する間に許容冷却温度範囲内の温度に冷却されるように決定することを特徴とする高温鋼板の冷却方法(請求項1)である。   The first means for solving the above-mentioned problem is to cool the LP steel plate when the LP steel plate whose thickness varies in the longitudinal direction is passed through a water-cooled cooling device having a plurality of cooling zones. Before starting, the cooling zone used in the cooling device and the cooling water flow rate in each cooling zone are determined. During cooling of the LP steel sheet, the cooling water flow in the cooling zone used and each cooling zone is passed. This is a method of cooling without changing the amount of water, in which the longitudinal direction of the steel sheet is set in advance at the leading edge and the rear edge and the inflection point of the thickness gradient in the longitudinal direction before cooling, while the cooling device is turned on. A reference position is provided from the side to the exit side, and a constant acceleration or a constant deceleration is performed after the division point reaches the reference position until the next division point reaches the reference position. And plate speed Acceleration / deceleration is performed, and the initial plate passing speed and the acceleration and deceleration are determined such that the dividing point is cooled to a temperature within an allowable cooling temperature range while passing through the cooling device. This is a method for cooling a high-temperature steel sheet (claim 1).

前記課題を解決するための第2の手段は、前記第1の手段であって、前記通板初期速度及び前記加速度及び減速度は、前記分割点が、前記冷却装置を通過する間に許容冷却温度範囲内の温度に冷却されるように、収束計算により求めることを特徴とするもの(請求項2)である。   The second means for solving the above-mentioned problem is the first means, and the initial plate passing speed, the acceleration and the deceleration are allowed to be cooled while the dividing point passes through the cooling device. It is obtained by convergence calculation so as to be cooled to a temperature within the temperature range (claim 2).

前記課題を解決するための第3の手段は、前記第1の手段又は第2の手段であって、前記基準位置が、前記冷却装置の使用する冷却ゾーン長手方向の中央位置であることを特徴とするもの(請求項3)である。   The third means for solving the problem is the first means or the second means, wherein the reference position is a center position in the longitudinal direction of the cooling zone used by the cooling device. (Claim 3).

前記課題を解決するための第4の手段は、前記1の手段から第3の手段ののいずれかであって、使用する冷却ゾーンの連続長さを、前記基準位置間の長さより短く設定することを特徴とするもの(請求項4)である。   The fourth means for solving the problem is any one of the first means to the third means, wherein the continuous length of the cooling zone to be used is set shorter than the length between the reference positions. (Claim 4).

本発明によれば、特別な合金元素を添加することなく、又、通板中に鋼板に通水する流量を変化させること無く、図1に示すような様々な形状を持つLP鋼板に適用可能な高温鋼板の冷却方法を提供することができる。   According to the present invention, it can be applied to LP steel sheets having various shapes as shown in FIG. 1 without adding a special alloying element and without changing the flow rate of water passing through the steel sheet. A method for cooling a high-temperature steel sheet can be provided.

以下、この発明の実施の形態の例を、図を参照しながら以下に詳細に説明する。図2は、本発明の実施の形態である高温鋼板の冷却方法を適用する冷却装置の例を示す概要図である。   Hereinafter, examples of embodiments of the present invention will be described in detail with reference to the drawings. FIG. 2 is a schematic diagram showing an example of a cooling device to which the method for cooling a high-temperature steel sheet according to the embodiment of the present invention is applied.

図2に示すように圧延機1により圧延された高温の鋼板2を、搬送テーブル3により、予め上下から冷却水を噴射しておいた冷却装置4に搬送し、通過させながら冷却を行う。鋼板2の長手方向温度は冷却装置4の前後に取り付けてある温度計5,6により計測される。また、冷却装置4は長手方向に10個のゾーンにより構成され、それぞれのゾーンには1mピッチで冷却ヘッダ7が取り付けてある。冷却ヘッダ7の前後には水切りロール8を設置しており、鋼板を拘束すると共に、隣り合うゾーンの冷却水が互いの領域に流れ込まないような構造となっている。   As shown in FIG. 2, the high-temperature steel plate 2 rolled by the rolling mill 1 is conveyed by a conveying table 3 to a cooling device 4 in which cooling water has been jetted in advance from above and below, and is cooled while being passed. The longitudinal temperature of the steel plate 2 is measured by thermometers 5 and 6 attached before and after the cooling device 4. The cooling device 4 is composed of 10 zones in the longitudinal direction, and cooling headers 7 are attached to each zone at a pitch of 1 m. Water draining rolls 8 are installed in front of and behind the cooling header 7 to restrain the steel plates and prevent the cooling water in adjacent zones from flowing into each other area.

これによってそれぞれの冷却ヘッダ7の通水をON−OFF制御することにより、冷却に使用するゾーンを、鋼板の冷却に必要なパターンに合わせて自由に選択することができる。以後の図で、冷却ヘッダが黒塗りとなっているところは、冷却水を通水しているゾーン、白塗りとなっていないところは冷却水を通水していないゾーンとする。   Thus, by controlling the water flow of each cooling header 7 on and off, the zone used for cooling can be freely selected according to the pattern required for cooling the steel plate. In the subsequent drawings, the cooling headers are painted black where the cooling water is flowing, and the non-white coatings are the cooling water passing zones.

このような冷却装置4を使用して鋼板2の冷却を行う際には、鋼板2の長手方向の各位置に付いて同じ冷却停止温度まで制御冷却を行うのが普通である。鋼板2の温度を目標の温度まで冷却するためには、伝熱計算の数式モデルを用いて冷却水量を計算する。例えば、日本鉄鋼協会偏「鋼材の強制冷却」等の文献には、これらの数式モデルが紹介されているので、当業者は、これらの数式モデルを適宜選択して使用することができる。   When cooling the steel plate 2 using such a cooling device 4, it is usual to perform control cooling to the same cooling stop temperature at each position in the longitudinal direction of the steel plate 2. In order to cool the temperature of the steel plate 2 to the target temperature, the amount of cooling water is calculated using a mathematical model of heat transfer calculation. For example, these mathematical models are introduced in documents such as the Japan Iron and Steel Institute's “forced cooling of steel materials”, and those skilled in the art can appropriately select and use these mathematical models.

本発明においては、鋼板2を冷却する際の冷却水量を一定に保ち、鋼板2の厚さが変化することに伴う必要冷却水量の変化を、鋼板2の通板速度を変化させることによって変えるようにしている。   In the present invention, the cooling water amount when cooling the steel plate 2 is kept constant, and the change in the required cooling water amount accompanying the change in the thickness of the steel plate 2 is changed by changing the plate passing speed of the steel plate 2. I have to.

例えば、鋼板の先端部(本明細書及び特許請求の範囲において、鋼板の先端部とは冷却装置を通過する際に先に冷却装置に入る側の端部を意味し、後端部とは冷却装置を通過する際に最後に冷却装置に入る側の端部を意味する。)の厚さが後端部の厚さに比べて薄い場合、鋼板厚が厚いほど冷却時間を長くする必要があるため、鋼板の先端部と比較して後端部の通板速度を遅くするような制御を実施することが必要となる。   For example, the front end of a steel plate (in the present specification and claims, the front end of a steel plate means the end on the side that first enters the cooling device when passing through the cooling device, and the rear end refers to cooling When it passes through the device, it means the end on the side that finally enters the cooling device.) When the thickness is thinner than the thickness of the rear end, it is necessary to increase the cooling time as the steel plate thickness increases. For this reason, it is necessary to implement a control that slows the plate passing speed at the rear end compared to the front end of the steel plate.

このような制御を実施するために、本実施の形態においては、鋼板2に分割点を設定している。先端部及び後端部は無条件に分割点とし、その他の分割点としては、長手方向の板厚勾配が変化するポイントを採用する。この分割点のことを以下において接点と称することがある。そして、この分割点について数式モデルにより、目標温度に冷却するための通板速度を求めておく。   In order to implement such control, division points are set in the steel plate 2 in the present embodiment. The front end portion and the rear end portion are unconditionally set as dividing points, and the other dividing points are points at which the longitudinal thickness gradient changes. This dividing point may be referred to as a contact point below. And about the division | segmentation point, the plate | board speed for cooling to target temperature is calculated | required by numerical formula model.

鋼板の長さ方向の分割点(接点)の例を、図3に示すような、鋼板先端部分及び後端部分及び中央部に平行部を持ち、平行部の板厚が後端方向に行くに従って厚くなっており、平行部の間を長手方向にテーパー状に均等な板厚勾配をもったLP鋼板について説明する。なお、図3に示す鋼板は、図の右側が先端部で、左側が後端部である。   As shown in FIG. 3, examples of dividing points (contact points) in the length direction of the steel plate have parallel portions at the front end portion, the rear end portion, and the central portion of the steel plate, and the plate thickness of the parallel portion goes in the rear end direction. An LP steel plate that is thick and has a uniform thickness gradient tapered in the longitudinal direction between the parallel portions will be described. In the steel sheet shown in FIG. 3, the right side of the drawing is the leading end and the left side is the trailing end.

図3に示すような鋼板は、鋼板が図に示すように5分割され、分割された鋼板は6箇所の接点(接点1〜接点6)で繋がっている。この接点間の間が分割の一区間であり、図3の場合、各区間の長さはL1〜L5として示されている。そして、長さがL1で示される区間の板厚はT1であり、長さがL3で示される区間の板厚はT2であり、長さがL5で示される区間の板厚はT3である。長さがL2で示される区間においては、板厚がT1からT2へ直線的に減少しており、長さがL4で示される区間においては、板厚がT2からT3へ直線的に減少している。   The steel plate as shown in FIG. 3 is divided into five as shown in the drawing, and the divided steel plates are connected by six contacts (contacts 1 to 6). Between the contact points is one section, and in the case of FIG. 3, the length of each section is shown as L1 to L5. The thickness of the section indicated by the length L1 is T1, the thickness of the section indicated by the length L3 is T2, and the thickness of the section indicated by the length L5 is T3. In the section indicated by the length L2, the thickness decreases linearly from T1 to T2, and in the section indicated by the length L4, the thickness decreases linearly from T2 to T3. Yes.

この接点は、図4に示すように、鋼板の先端及び後端と長手方向の板厚勾配を取ると、勾配が変化する位置として決定することができる。図4では、図3のテーパ−鋼板の後端部(図3の右側)を原点として板厚みの長手方向板厚勾配を示している。このように、鋼板の接点は、先端部、後端部と、長手方向の板厚勾配が変化する場所として定義される。   As shown in FIG. 4, this contact point can be determined as a position where the gradient changes when a longitudinal thickness gradient with respect to the front and rear ends of the steel plate is taken. 4 shows a longitudinal thickness gradient of the plate thickness with the rear end portion (right side of FIG. 3) of the tapered steel plate of FIG. 3 as the origin. As described above, the contact point of the steel plate is defined as a position where the front end portion, the rear end portion, and the plate thickness gradient in the longitudinal direction change.

次に、図3のような断面形状を持つ鋼板の実際の通板状況を図5で説明する。冷却装置においては10個のゾーンの内、最初の2ゾーンのみ通水しておき、この状態で鋼板を冷却装置に進入させる。この場合、加減速ポイントとして、通水している2つのゾーンの中央位置を選定する。   Next, an actual plate passing state of a steel plate having a cross-sectional shape as shown in FIG. 3 will be described with reference to FIG. In the cooling device, only the first two zones out of the 10 zones are allowed to pass through water, and the steel sheet is allowed to enter the cooling device in this state. In this case, the central position of the two passing zones is selected as the acceleration / deceleration point.

鋼板は長手方向に6点接点を持ち、それぞれの接点間距離L1〜L5は、同じ2mであるものとし、図5の右側を鋼板の先端とする。この場合、LP鋼板の接点間距離と冷却ゾーン長は同じ2mとなる。長手方向では、鋼板先端が薄く、後端に向かうにつれ板厚が厚くなるようなLP鋼板となるため、鋼板の長手方向冷却温度を一定とするためには、鋼板の通板速度を、鋼板後端に向かうにつれ減速する搬送パターンとする必要がある。   The steel plate has six contact points in the longitudinal direction, and the distances L1 to L5 between the contacts are the same 2 m, and the right side of FIG. In this case, the distance between the contacts of the LP steel plate and the cooling zone length are the same 2 m. In the longitudinal direction, the LP steel sheet has a thin steel plate tip and increases in thickness toward the rear end. Therefore, in order to keep the longitudinal cooling temperature of the steel plate constant, the sheet passing speed of the steel plate is It is necessary to make the conveyance pattern decelerate as it goes to the end.

図5(a)から図5(b)のような状態へ移行する場合、即ち接点6が冷却装置内加減速ポイントに侵入するまでは、一定速度Vで通板する。つぎに、図5(b)から図5(c)の状態へ移行する場合、即ち接点5が冷却装置内加減速ポイントに進入するまで、αの減速度で減速を行う。本例では、接点6と接点5の板厚は同じなので、減速度αはゼロとなり、接点5が冷却装置内加減速ポイントに進入した時点での鋼板速度はVとなる。 5 If the transition from (a) to the state as of FIG. 5 (b), i.e. to the contact 6 enters into the cooling device deceleration point, passing the plate at a constant speed V 1. Then, when the transition from FIG. 5 (b) to the state of Fig. 5 (c), i.e. to the contact 5 enters into the cooling device deceleration point, performs deceleration with alpha 1 deceleration. In this embodiment, since the plate thickness of the contact 6 and the contact 5 is the same, the deceleration alpha 1 becomes zero, the steel sheet speed at the time of the contact 5 enters into the cooling device deceleration point becomes V 1.

次に、図5(c)から図5(d)の状態へ移行する場合、即ち接点4が冷却装置内加減速ポイントに進入するまで減速度α2で減速を行う。図5(d)の状態、即ち接点4が冷却装置内加減速ポイントに進入する速度はVとなる。このように、図5(h)の状態となり、最終の接点1が冷却装置内の加減速ポイントに進入するまで同様の処理で、鋼板速度を順次変化させて冷却を行う。 Next, when transitioning from the state shown in FIG. 5C to the state shown in FIG. 5D, that is, until the contact 4 enters the acceleration / deceleration point in the cooling device, the vehicle is decelerated at the deceleration α2. Figure 5 (d) state, i.e. the contact 4 is the speed entering into the cooling device deceleration point becomes V 2. In this way, cooling is performed by sequentially changing the steel plate speed in the same manner until the final contact 1 enters the acceleration / deceleration point in the cooling device, as shown in FIG.

また、図5(h)から図5(i)の状態へ移行する場合、即ち鋼板後端の接点1が冷却装置内加減速ポイントに進入してからは、接点1は一定速度Vで搬送させる。この結果、鋼板の速度パターンは図6のようになり、鋼板接点が冷却装置内加減速ポイントに進入した時点で逐次減速を行うことにより、長手方向に均一な温度分布を持つ鋼板の製造が可能となる。 Also, when the transition from FIG. 5 (h) to the state of FIG. 5 (i), i.e. the contact 1 of the steel sheet rear end from entering into the cooling device deceleration point, the transport contacts 1 at a constant speed V 3 Let As a result, the speed pattern of the steel plate becomes as shown in FIG. 6, and the steel plate having a uniform temperature distribution in the longitudinal direction can be manufactured by performing sequential deceleration when the steel plate contact enters the acceleration / deceleration point in the cooling device. It becomes.

以下、上述の鋼板速度(侵入速度、搬送速度)を求める方法について説明する。これは、前記の鋼板の各接点で、冷却終了後の温度が所定の許容誤差範囲内となるように、数値シミュレーションによって収束計算することにより算出する。   Hereinafter, a method for obtaining the above-described steel plate speed (intrusion speed, conveyance speed) will be described. This is calculated by performing a convergence calculation by numerical simulation so that the temperature after completion of cooling falls within a predetermined allowable error range at each contact point of the steel plate.

数値シミュレーションによって計算する理由は、解析解と異なり鋼材の熱物性値等の温度依存性や冷却装置を出てから温度計に到達するまでの放冷等を考慮しやすいためである。シミュレーションの方法は、前述の日本鉄鋼協会偏「鋼材の強制冷却」の他にも、日本鉄鋼協会圧延理論部会偏「板圧延の理論と実際」にも記載されており、周知のものであるので、その説明を省略する。   The reason for the calculation by numerical simulation is that, unlike the analytical solution, it is easy to consider the temperature dependence of the thermophysical property value of the steel material, the cooling after leaving the cooling device, and the time until it reaches the thermometer. The simulation method is also described in the “Japan Steel Association Rolling Theory and Practice” in addition to the above-mentioned Japan Iron and Steel Institute's “Forced Cooling of Steel” and is well known. The description is omitted.

収束計算手法は、鋼板の各接点で、まず適当な初期通板速度Voldを決めて、接点間の加速度若しくは減速度αを決定し、鋼板が冷却装置入側から温度計設置位置まで搬送される時間だけ伝熱計算を実施する。つぎに冷却開始温度Ts、目標冷却終了温度T、初期通板速度Vold、計算された冷却終了温度Tから The convergence calculation method is as follows. At each contact point of the steel sheet, first determine an appropriate initial sheet passing speed Vold , determine the acceleration or deceleration α i between the contact points, and the steel sheet is transported from the cooling device entry side to the thermometer installation position. The heat transfer calculation is performed for the time that is Next, from the cooling start temperature Ts, the target cooling end temperature T e , the initial plate passing speed V old , and the calculated cooling end temperature T c

Figure 2005211945
Figure 2005211945

なる計算をして、修正通板速度Vnewをもとめる。このような作業を冷却終了温度が許容誤差以内になるまで繰り返し行えばよい。収束のさせ方は上記に記載した手法以外にも様々有るため、処理時間や計算の安定性に応じて適当な手法を選べばよい。 Become calculate with, seek the modification through plate velocity V new. Such an operation may be repeated until the cooling end temperature falls within an allowable error. Since there are various ways of convergence other than the method described above, an appropriate method may be selected according to the processing time and the stability of calculation.

以下、加速度及び減速度の決定方法について説明する。隣り合う接点でのそれぞれの進入速度をV,Vi+1、接点間の距離をLとすると分割点間の減速度αは次のように求められる。 Hereinafter, a method for determining acceleration and deceleration will be described. Assuming that the approach speeds at adjacent contacts are V i and V i + 1 and the distance between the contacts is L i , the deceleration α i between the dividing points is obtained as follows.

Figure 2005211945
Figure 2005211945

よって、鋼板は、鋼板先端進入速度Vで冷却装置に進入し、式(1)から収束計算で求めた各接点の速度から接点間の加速度若しくは減速度を求めることができる。 Therefore, the steel sheet enters the cooling device at the steel sheet tip approach speed V 1 , and the acceleration or deceleration between the contacts can be obtained from the speed of each contact obtained by convergence calculation from Equation (1).

このように、通板速度制御することにより、例えば、図1(b),(c),(d),(e),(g),(h),(i),(j),(k)のように鋼板の一部に長手方向の板厚みが平行部となる部位があるような鋼板の場合は、平行部において加速度若しくは減速度がゼロ(つまり加減速しない)として扱えばよいので、長手方向の板厚勾配がある場合と同一の制御プログラムで様々な形状を持つ鋼板の速度計算が可能となる。   In this way, by controlling the plate feed speed, for example, FIGS. 1B, 1C, 1D, 1E, 1G, 1H, 1I, 1J, and 1K are used. In the case of a steel plate in which there is a portion where the plate thickness in the longitudinal direction becomes a parallel portion in a part of the steel plate as in), the acceleration or deceleration may be treated as zero (that is, not accelerated or decelerated) in the parallel portion. It is possible to calculate the speed of steel plates having various shapes with the same control program as when there is a longitudinal thickness gradient.

鋼板の進入方向は、図1の右側から冷却装置に進入させても、左側から侵入させてもかまわない。ただし、図1(a),(b),(g),(h)等のように板厚みが長手方向で逐次厚くなっている場合は、まず薄部側から冷却装置に進入させることが好ましい。この理由は、本発明においては通過冷却を行うため、厚部側から冷却装置に侵入させると、鋼板後端の進入タイミングが先端と比べて遅れ、そのため鋼板後端の侵入温度が先端温度の侵入温度より低くなり、鋼板尾端温度が所定の冷却開始温度より低くなる危険性があるためである。これに対し、空冷時の冷却速度が遅い厚部が遅れて進入すれば、鋼板先後端で温度偏差が小さくなり、冷却装置挿入前の鋼板長手方向温度分布をより均一にすることができる。   The steel sheet may enter the cooling device from the right side in FIG. 1 or from the left side. However, when the plate thickness is successively increased in the longitudinal direction as in FIGS. 1A, 1B, 1G, 1H, etc., it is preferable to first enter the cooling device from the thin portion side. . This is because, in the present invention, when passing through the cooling device from the thick part side in order to perform the passage cooling, the approach timing of the rear end of the steel sheet is delayed compared to the front end, and therefore the intrusion temperature of the rear end of the steel sheet is intrusion of the front end temperature. This is because there is a risk that the temperature at the tail end of the steel sheet becomes lower than the temperature and the temperature at the tail end of the steel sheet becomes lower than a predetermined cooling start temperature. On the other hand, if a thick part having a slow cooling rate during air cooling enters with a delay, the temperature deviation becomes small at the front and rear ends of the steel plate, and the steel plate longitudinal temperature distribution before insertion of the cooling device can be made more uniform.

また、通水を行う冷却ゾーン長を鋼板の接点間距離の最小値よりも短くすると好ましい。例えば、図3のような断面形状をもち、各接点間距離L1〜L5が2mのLP鋼板を、図7のように10ゾーン全てに通水して、鋼板の接点間距離が冷却通水長よりも短い状態で冷却する場合を考える。加減速ポイントはこれら10ゾーンの中央の点とする。鋼板接点6は図7(a)の時点で冷却装置に進入し、図7(b)〜(e)の状態を経て図7(f)の時点で冷却装置から出る。この間、鋼板接点1〜5はすでに冷却装置に進入しているので、収束計算により求めた各接点の速度の影響がほかの接点におよび冷却制御性が低くなる。   Moreover, it is preferable to make the cooling zone length which performs water flow shorter than the minimum value of the distance between the contacts of a steel plate. For example, an LP steel plate having a cross-sectional shape as shown in FIG. 3 and a distance between contact points L1 to L5 of 2 m is passed through all 10 zones as shown in FIG. Consider the case of cooling in a shorter state. The acceleration / deceleration point is the center point of these 10 zones. The steel plate contact 6 enters the cooling device at the time of FIG. 7 (a), and exits the cooling device at the time of FIG. 7 (f) through the states of FIGS. 7 (b) to (e). During this time, since the steel plate contacts 1 to 5 have already entered the cooling device, the influence of the speed of each contact obtained by the convergence calculation is affected by the other contacts and the cooling controllability is lowered.

冷却ゾーン長は鋼板の接点間距離より短ければ短いほど制御性は向上するが、その分通水量が低下することになり、冷却終了温度を確保するために、通板速度を遅くせざるをえず、鋼板先端及び後端の冷却装置進入タイミングのずれが大きくなり、尾端で所定の冷却開始温度を確保できなくなる可能性がある。そのため、冷却ゾーン長を、各接点間距離の最小値程度の値とすれば、温度制御性もよく、鋼板先後端の温度差についても少なくすることができる。   As the cooling zone length is shorter than the distance between the contact points of the steel plate, the controllability is improved. However, the water flow rate is reduced by that amount, and in order to secure the cooling end temperature, it is necessary to slow down the plate passing speed. Therefore, there is a possibility that the deviation of the cooling device entering timing at the front and rear ends of the steel plate becomes large and a predetermined cooling start temperature cannot be secured at the tail end. Therefore, if the cooling zone length is set to a value about the minimum value of the distance between the contacts, the temperature controllability is good and the temperature difference between the front and rear ends of the steel sheet can be reduced.

このため、冷却装置を複数ゾーンに分割し、それぞれの冷却ゾーンで冷却水の通水をON−OFFできる設備が必要となる。また、先に説明した演算を行った場合、通板速度や加速度及び減速度が搬送テーブルロールの制御範囲にならない場合もある,その場合は冷却装置の長さを変更して、通板速度や加速度及び減速度を搬送テーブルロールの制御範囲となるようにする必要がある。以上のことから、冷却ゾーンはなるべく数を多くし且つ1ゾーン当たりの長さを短くすることによって制御性が向上する。   For this reason, the cooling device is divided into a plurality of zones, and equipment capable of turning on and off the cooling water in each cooling zone is required. In addition, when the calculations described above are performed, the plate passing speed, acceleration, and deceleration may not be within the control range of the transport table roll. In that case, the length of the cooling device is changed to The acceleration and deceleration must be within the control range of the transport table roll. From the above, the controllability is improved by increasing the number of cooling zones as much as possible and shortening the length per zone.

また、冷却装置の加減速ポイントを冷却装置中で通水を行っているゾーンの中央部とすることが好ましい。この理由を図8、図9を用いて説明する。図8は、冷却装置の加減速ポイントを冷却装置の入側にした例である。鋼板には先端から接点1、2、3があり、接点1から冷却装置に進入していく。接点2が加減速ポイントに進入してから、板厚の厚い接点3を冷却するために減速を行う。このとき、接点1と接点2の間は、鋼板の厚みは長手方向で変化せず一様の厚みとなっているため、図のハッチングの領域では、本来一定速度で通板させるべき領域であるにもかかわらず、減速の影響を受けてしまう。この領域は冷却装置の通水しているゾーン長と同じとなる。一方、図9の様に冷却装置の加減速ポイントを冷却装置の通水を行っている冷却ゾーン長の長手方向中央部とすると、減速の影響を受ける領域はハッチングのようになり、接点2の後方のテーパ−部を含んだ領域となる。そのため、本来一定速度で通板させるべき領域である平行部において、減速の影響を受ける領域が狭くなるので、長手方向の温度精度を高くすることができる。   Moreover, it is preferable that the acceleration / deceleration point of the cooling device is a central portion of a zone through which water is passed in the cooling device. The reason for this will be described with reference to FIGS. FIG. 8 is an example in which the acceleration / deceleration point of the cooling device is on the inlet side of the cooling device. The steel sheet has contacts 1, 2, and 3 from the tip, and enters the cooling device from the contact 1. After the contact 2 enters the acceleration / deceleration point, deceleration is performed to cool the thick contact 3. At this time, since the thickness of the steel plate does not change in the longitudinal direction and is uniform between the contact 1 and the contact 2, the hatched region in the figure is a region that should be passed through at a constant speed. Nevertheless, it is affected by deceleration. This region is the same as the zone length through which the cooling device passes. On the other hand, if the acceleration / deceleration point of the cooling device is the central portion in the longitudinal direction of the cooling zone length through which the cooling device passes water as shown in FIG. 9, the region affected by the deceleration is hatched, and the contact 2 The region includes the rear taper portion. For this reason, in the parallel portion, which is an area that should be passed through at a constant speed, the area affected by the deceleration is narrowed, so that the temperature accuracy in the longitudinal direction can be increased.

さらに、水切りロールを設置しないと、上部の冷却水が滞留して他の冷却ゾーンに流入してしまい冷却時間が厳密にコントロールできないばかりでなく、滞留水が局所的な温度ムラを発生させる原因となるため、材質バラツキが発生する原因となる。   Furthermore, if a draining roll is not installed, the cooling water at the top stays and flows into another cooling zone, and the cooling time cannot be strictly controlled. Therefore, it becomes a cause of material variation.

(実施例1)
図10に示すようなLP鋼板の冷却を実施した。図中の右側を鋼板先端とし、冷却装置に進入させた。この鋼板の先端の板厚みは10mm,尾端の板厚みは17.5mmであり、鋼板長手中央部の板厚みが20mmと先後端と比較して厚い。鋼板先端から板厚みが最も厚い部分までの長さは4m、鋼板尾端から板厚みが最も厚い部分までの長さは3mである。このLP鋼板を、本発明の実施の形態において説明した冷却装置(冷却長10m,冷却水量1000L/min.m)を用いて冷却を実施した。冷却条件は、冷却開始温度770℃、冷却終了温度500℃とし、本発明の方法を用いて冷却を実施した。
(Example 1)
The LP steel plate as shown in FIG. 10 was cooled. The right side in the figure was the steel plate tip and entered the cooling device. The plate thickness at the front end of this steel plate is 10 mm, the plate thickness at the tail end is 17.5 mm, and the plate thickness at the longitudinal center of the steel plate is 20 mm, which is thicker than the front and rear ends. The length from the steel plate tip to the thickest part is 4 m, and the length from the steel plate tail to the thickest part is 3 m. This LP steel sheet was cooled using the cooling device (cooling length 10 m, cooling water amount 1000 L / min.m 2 ) described in the embodiment of the present invention. The cooling conditions were a cooling start temperature of 770 ° C. and a cooling end temperature of 500 ° C., and cooling was performed using the method of the present invention.

なお、本実施例を始め他の実施例及び比較例においては、収束計算により通板速度を計算するため、冷却の実施に先立って予めオフラインにおいて、冷却装置の熱伝達率を求めておいた。実施例1と比較例1においては、この熱伝達率を用いて、数値計算により通板速度を決めた。又、比較例2と比較例3においては、この実験から水冷中の冷却時間を算出した。   In addition, in this example and other examples and comparative examples, since the plate passing speed is calculated by convergence calculation, the heat transfer coefficient of the cooling device is obtained in advance offline before the cooling is performed. In Example 1 and Comparative Example 1, the sheet passing speed was determined by numerical calculation using this heat transfer coefficient. In Comparative Examples 2 and 3, the cooling time during water cooling was calculated from this experiment.

この時、鋼板先端の板厚み10mmでの適正冷却時間は2.4sec、鋼板後端の板厚み17.5mmでの適正冷却時間は4.8sec、鋼板M部の板厚み20mmでの適正冷却時間は5.9secとなった。   At this time, the proper cooling time when the plate thickness is 10mm at the front end of the steel plate is 2.4sec, the proper cooling time when the plate thickness is 17.5mm at the rear end of the steel plate is 4.8sec, and the proper cooling time when the plate thickness of the steel plate M is 20mm is 5.9sec It became.

実施例1では、鋼板先端および鋼板後端および板厚みが20mmの位置を鋼板接点として、2分割、3接点で分割を実施し、先に述べた手法で収束計算を実施した。計算では、温度計5から冷却装置4に進入するまでの間と、冷却装置4を出てから温度計6に到達するまでの間は、放射熱伝達率と自然滞留熱伝達率を足し合わせたものとし、冷却装置内では、先に求めた水冷中の熱伝達率とした。温度計5の位置で770℃、温度計6の位置で550℃となるように、各接点の通板速度を収束計算により求めた。   In Example 1, splitting was performed in two splits and three contacts with the steel plate front and rear ends and the position where the plate thickness was 20 mm as the steel plate contact, and the convergence calculation was performed by the method described above. In the calculation, the radiant heat transfer coefficient and the natural stagnation heat transfer coefficient are added between the time from entering the cooling device 4 from the thermometer 5 and the time from reaching the thermometer 6 after leaving the cooling device 4. In the cooling device, the heat transfer coefficient during the water cooling previously obtained was used. The plate passing speed of each contact was obtained by convergence calculation so that the temperature was 770 ° C. at the thermometer 5 position and 550 ° C. at the thermometer 6 position.

このときの冷却条件は、接点間距離の最小値が3mであるため、冷却装置の10ゾーンの内3ゾーンを使用した。このとき、通水を行う冷却ゾーン長としては3mとなる。冷却装置の加減速ポイントは冷却装置入り側から1.5mの位置とした。温度を収束計算から求めた結果、先端の通板速度は80mpm,長手中央部付近の板厚20mmの接点での通板速度は21mpm,鋼板後端の通板速度は39mpmとなった。これから、接点1から接点2までは、減速度0.208m/sで減速し、接点2から接点3までは、加速度0.051m/sで加速を実施した。冷却後の鋼板の長手方向温度分布は図11に示すように長手方向でほぼ均一の温度となり、後に材質を調査したところ全長でスペック内となった。 As the cooling condition at this time, since the minimum value of the distance between the contacts is 3 m, 3 zones out of 10 zones of the cooling device were used. At this time, the cooling zone length for passing water is 3 m. The acceleration / deceleration point of the cooling device was set at a position of 1.5 m from the cooling device entrance side. As a result of calculating the temperature from the convergence calculation, the plate passing speed at the front end was 80 mpm, the plate passing speed at the contact point with a plate thickness of 20 mm near the longitudinal center was 21 mpm, and the plate passing speed at the rear end of the steel plate was 39 mpm. From contact point 1 to contact point 2, the vehicle was decelerated at a deceleration of 0.208 m / s 2 and from contact point 2 to contact point 3 was accelerated at an acceleration of 0.051 m / s 2 . As shown in FIG. 11, the temperature distribution in the longitudinal direction of the steel sheet after cooling was substantially uniform in the longitudinal direction, and when the material was investigated later, the entire length was within the specifications.

(比較例1)
実施例1と同じ鋼板を、実施例1と同じ冷却装置を用いて、一定速度で冷却装置中を通過させた。この場合、冷却ゾーン長は3mとし、鋼板の長手方向中央で、板厚が20mmである位置でにおいて、冷却終了温度500℃が得られるように、数値計算により通板速度を求めたところ、35mpmとなった。そこで、一定速度35mpmで通板させ冷却を実施した。冷却後の鋼板長手方向温度分布は図12に示すように、鋼板の長手方向中央ではほぼ目標の冷却終了温度になったが、鋼板先端に近づくにつれ冷却停止温度は低くなり、板内の温度偏差は230℃となった。のちに材質を調査したところ、鋼板先端で極端に強度オーバーしており、不合格となった。
(Comparative Example 1)
The same steel plate as in Example 1 was passed through the cooling device at a constant speed using the same cooling device as in Example 1. In this case, when the cooling zone length is 3 m and the plate passing speed is obtained by numerical calculation so that the cooling end temperature of 500 ° C. is obtained at the position where the plate thickness is 20 mm in the center in the longitudinal direction of the steel plate, 35 mpm is obtained. It became. Therefore, cooling was performed by passing the plate at a constant speed of 35 mpm. As shown in FIG. 12, the temperature distribution in the longitudinal direction of the steel plate after cooling reached the target cooling end temperature at the center in the longitudinal direction of the steel plate. Was 230 ° C. Later, when the material was investigated, the strength was extremely exceeded at the tip of the steel plate, and it was rejected.

(比較例2)
実施例1と同じ鋼板を、実施例1と同じ冷却装置を用いて、特許文献2に記載される方法で冷却した。冷却ゾーン長は10mとし、鋼板先端が進入してから、同時一斉に冷却水を通水し、長手中央部で板厚みが最も厚い20mmの位置まで、一定速度130mpmで通板させた。次に鋼板後端が冷却装置に進入するまで、199mpmで通板させ,鋼板先端が冷却装置出側に到達してからは62mpmで通板させた。冷却後の鋼板長手方向温度分布は図13に示すように、鋼板先端の同時一斉で冷却水を通水した部位で、所々過冷却が発生して低くなり、板内の温度偏差は120℃となった。のちに材質を調査したところ、鋼板先端で極端に強度オーバーしている部位があり、不合格となった。
(Comparative Example 2)
The same steel plate as in Example 1 was cooled by the method described in Patent Document 2 using the same cooling device as in Example 1. The cooling zone length was 10 m, and the cooling water was passed simultaneously at the same time after the steel plate tip entered, and the plate was passed at a constant speed of 130 mpm to the position of 20 mm where the plate thickness was the thickest at the longitudinal center. Next, the plate was passed at 199 mpm until the rear end of the steel sheet entered the cooling device, and was passed at 62 mpm after the front end of the steel plate reached the outlet side of the cooling device. As shown in FIG. 13, the temperature distribution in the longitudinal direction of the steel plate after cooling is low due to the occurrence of supercooling in some places where the cooling water is passed simultaneously at the tip of the steel plate, and the temperature deviation in the plate is 120 ° C. became. Later, when the material was investigated, there was a part where the strength was extremely exceeded at the tip of the steel plate, and it was rejected.

(比較例3)
実施例1と同じ鋼板を、実施例1と同じ冷却装置を用いて、特許文献3に記載される方法で冷却した。鋼板先端、後端、中央部のそれぞれの位置における適正冷却時間となる条件となる冷却ゾーン長と通板速度を見積もると、図19中のゾーンについては、S1ゾーンは2m、S2ゾーンは2m、S3ゾーンは6mで、通板速度は100mpmとなった。この条件で特許文献3に示される手順で冷却したところ、冷却後の鋼板長手方向温度分布は図14に示すように、鋼板全体に温度のバラツキができた。これは、先に述べたように、鋼板通板中に冷却水を噴射した部位や冷却水を停止した部位で過冷却が発生したためである。のちに材質を調査したところ、極端に強度オーバーしている部位があり、不合格となった。
(Comparative Example 3)
The same steel plate as in Example 1 was cooled by the method described in Patent Document 3 using the same cooling device as in Example 1. When estimating the cooling zone length and the sheet passing speed, which are the conditions for appropriate cooling time at the respective positions of the front end, the rear end, and the central part of the steel plate, the zone in FIG. 19 is 2 m for the S1 zone, 2 m for the S2 zone, The S3 zone was 6 m and the plate feed speed was 100 mpm. When cooled by the procedure shown in Patent Document 3 under this condition, the temperature distribution in the longitudinal direction of the steel plate after cooling was uneven in the entire steel plate as shown in FIG. This is because, as described above, supercooling occurred at the site where the cooling water was injected into the steel plate passage and at the site where the cooling water was stopped. Later, when the material was investigated, it was rejected because there was a part that was extremely strong.

(実施例2)
図15に示すようなLP鋼板の冷却を実施した。図中の右側を鋼板先端として、冷却装置に進入させた。平行部は3ヶ所あり、鋼板先端から逐次厚くなるような形状である。先端の板厚みは10mm、尾端の板厚みは17.5mmであり、鋼板長手中央の平行部板厚みが15mmとなっている。平行部長さは、鋼板先端で2.5m,鋼板長手中央部で2m、鋼板尾端で4mとなっている。また、鋼板先端の平行部と鋼板長手中央の平行部との間と鋼板尾端の平行部と鋼板長手方向中央の平行部との間は、テーパー状になっており、その長さはそれぞれ、2m、3.5mとなっている。
(Example 2)
The LP steel plate as shown in FIG. 15 was cooled. The right side in the figure was entered into the cooling device with the steel plate tip. There are three parallel parts, and the shape gradually increases from the tip of the steel plate. The plate thickness at the tip is 10 mm, the plate thickness at the tail end is 17.5 mm, and the plate thickness of the parallel part at the longitudinal center of the steel plate is 15 mm. The length of the parallel portion is 2.5 m at the front end of the steel plate, 2 m at the longitudinal center of the steel plate, and 4 m at the tail end of the steel plate. Moreover, between the parallel part of the steel plate front end and the parallel part of the steel plate longitudinal center and between the parallel part of the steel plate tail end and the parallel part of the steel plate longitudinal direction center is a taper shape, and the length is respectively It is 2m and 3.5m.

このLP鋼板を、本発明の実施の形態において説明した冷却装置(冷却長10m,冷却水量1000L/min.m)を用いて冷却した。冷却条件は、冷却開始温度770℃、冷却終了温度500℃、冷却ゾーン長は2mとした。なお、通板速度の数値計算は、実施例1と同じく、予めオフラインで求めた熱伝達率をもとに、数値計算を行い、各接点での通板速度を求めた。 The LP steel sheet was cooled using the cooling device (cooling length 10 m, cooling water amount 1000 L / min.m 2 ) described in the embodiment of the present invention. The cooling conditions were a cooling start temperature of 770 ° C., a cooling end temperature of 500 ° C., and a cooling zone length of 2 m. As in Example 1, the numerical calculation of the plate passing speed was performed based on the heat transfer coefficient obtained offline in advance, and the plate passing speed at each contact point was obtained.

この実施例においては、先端が薄く、後端が厚いため図6のように逐次鋼板速度を減速していく制御となる。鋼板分割は図3のような接点として、5分割、6接点で分割を実施し、先に述べた手法で収束計算を実施した。この時の冷却条件は、接点間距離の最小値が2mであるため、冷却装置の10ゾーンの内2ゾーンのみを使用した。このときの通水を行う冷却ゾーン長としては2mとなる。冷却装置の加減速ポイントは冷却装置入り側から1mの位置とした。温度を収束計算から求めた結果、それぞれの接点速度は先端部から、61mpm,61mpm,31mpm,31mpm,28mpm,28mpmとなった。この時、接点間の減速度は鋼板先端からそれぞれ、0m/s,0.19m/s,0m/s,0.0084m/s,0m/sとなる。冷却後の鋼板の長手方向温度分布は、図16に示すように長手方向でほぼ均一の温度となり、後に材質を調査したところ全長でスペック内となった。 In this embodiment, since the leading end is thin and the trailing end is thick, the control is performed to sequentially decelerate the steel plate speed as shown in FIG. The steel sheet was divided into 5 and 6 contacts as the contacts as shown in FIG. 3, and the convergence calculation was performed by the method described above. As the cooling condition at this time, since the minimum value of the distance between the contacts is 2 m, only 2 zones out of 10 zones of the cooling device were used. The cooling zone length for passing water at this time is 2 m. The acceleration / deceleration point of the cooling device was set at a position of 1 m from the cooling device entrance side. As a result of calculating the temperature from the convergence calculation, the respective contact speeds were 61 mpm, 61 mpm, 31 mpm, 31 mpm, 28 mpm, and 28 mpm from the tip. In this case, the deceleration of the contacts are each a steel plate front end, 0m / s 2, 0.19m / s 2, 0m / s 2, a 0.0084m / s 2, 0m / s 2. As shown in FIG. 16, the temperature distribution in the longitudinal direction of the steel plate after cooling was substantially uniform in the longitudinal direction, and when the material was examined later, the entire length was within the specifications.

(比較例4)
実施例2と同じ鋼板を、実施例2と同じ冷却装置を用いて、実施例2と同じく、冷却ゾーン長2mとし、鋼板長手方向中央の板厚が15mmの一定値になっている部分の位置で、冷却終了温度が550℃となるように数値計算で通板速度を求めたところ、32mpmとなった。そこで、32mpmの一定速度で通板させて冷却を実施した。冷却後の鋼板長手方向温度分布は、図16に示すように、鋼板の長手方向中央ではほぼ目標の冷却終了温度になったが、鋼板先端に近づくにつれ冷却停止温度が低くなり、板内の温度偏差は170℃となった。のちに材質を調査したところ、鋼板先端で極端に強度オーバーしており、不合格となった。
(Comparative Example 4)
Using the same steel plate as in Example 2, using the same cooling device as in Example 2, the position of the portion where the cooling zone length is 2 m and the thickness at the center in the longitudinal direction of the steel plate is 15 mm, as in Example 2. Then, when the plate passing speed was calculated by numerical calculation so that the cooling end temperature was 550 ° C., it was 32 mpm. Therefore, cooling was carried out by passing the plate at a constant speed of 32 mpm. As shown in FIG. 16, the temperature distribution in the longitudinal direction of the steel plate after cooling was almost the target cooling end temperature at the longitudinal center of the steel plate. The deviation was 170 ° C. Later, when the material was investigated, the strength was extremely exceeded at the tip of the steel plate, and it was rejected.

本発明が適応可能なLP鋼板の形状の例を説明する図である。It is a figure explaining the example of the shape of the LP steel plate which can apply this invention. 本発明の実施の形態に使用する冷却装置の例を説明する図である。It is a figure explaining the example of the cooling device used for embodiment of this invention. 本発明の実施の形態における鋼板の接点分割を説明する図である。It is a figure explaining the contact division | segmentation of the steel plate in embodiment of this invention. 本発明の実施の形態における鋼板の接点分割位置を決定する方法を説明する図である。It is a figure explaining the method of determining the contact division position of the steel plate in embodiment of this invention. 本発明の実施の形態における鋼板の速度制御方法を説明する図である。It is a figure explaining the speed control method of the steel plate in embodiment of this invention. 本発明の実施の形態における鋼板の速度パターンの例を示す図である。It is a figure which shows the example of the speed pattern of the steel plate in embodiment of this invention. 本発明の実施の形態において、冷却ゾーン長が長い場合に制御性が低くなる理由を説明する図である。In embodiment of this invention, it is a figure explaining the reason which controllability becomes low when cooling zone length is long. 本発明の実施の形態において、鋼板が冷却装置内の加減速ポイントが冷却装置入側にある場合の、温度制御性を説明する図である。In embodiment of this invention, a steel plate is a figure explaining temperature control property in case the acceleration / deceleration point in a cooling device exists in a cooling device entrance side. 本発明の実施の形態において、鋼板が冷却装置内の加減速ポイントが冷却装置の使用する冷却ゾーン長手方向中央部にある場合の、温度制御性を説明する図である。In embodiment of this invention, it is a figure explaining temperature control property in case the acceleration / deceleration point in a cooling device exists in the center part of the cooling zone longitudinal direction which a cooling device uses in embodiment of this invention. 実施例1および比較例1〜3で冷却したLP鋼板の形状を示す図である。It is a figure which shows the shape of the LP steel plate cooled in Example 1 and Comparative Examples 1-3. 実施例1における冷却後の長手方向温度分布を示す図である。It is a figure which shows the longitudinal direction temperature distribution after cooling in Example 1. FIG. 比較例1における冷却後の長手方向温度分布を示す図である。It is a figure which shows the longitudinal direction temperature distribution after the cooling in the comparative example 1. 比較例2における冷却後の長手方向温度分布を示す図である。It is a figure which shows the longitudinal direction temperature distribution after the cooling in the comparative example 2. 比較例3における冷却後の長手方向温度分布を示す図である。It is a figure which shows the longitudinal direction temperature distribution after the cooling in the comparative example 3. 実施例2および比較例4で冷却したLP鋼板の形状を示す図である。It is a figure which shows the shape of the LP steel plate cooled in Example 2 and Comparative Example 4. 実施例2および比較例4における冷却後の長手方向温度分布を示す図である。It is a figure which shows the longitudinal direction temperature distribution after cooling in Example 2 and Comparative Example 4. 特許文献2の冷却制御方法を説明する図である。It is a figure explaining the cooling control method of patent documents 2. FIG. 特許文献3の冷却装置を説明する図である。It is a figure explaining the cooling device of patent documents 3. 特許文献3の冷却制御方法を説明する図である。It is a figure explaining the cooling control method of patent documents 3.

符号の説明Explanation of symbols

1…圧延機、2…鋼板、3…搬送テーブル、4…冷却装置、5…入側温度計、6…出側温度計、7…冷却ヘッダ、8…水切ロール、
DESCRIPTION OF SYMBOLS 1 ... Rolling mill, 2 ... Steel plate, 3 ... Conveying table, 4 ... Cooling device, 5 ... Incoming thermometer, 6 ... Outlet thermometer, 7 ... Cooling header, 8 ... Draining roll,

Claims (4)

長手方向で厚みが変化するLP鋼板を、複数の冷却ゾーンを有する水冷式の冷却装置を通過させることにより通過冷却するに際し、前記LP鋼板の冷却開始前に、前記冷却装置において使用する冷却ゾーンと各冷却ゾーンにおける冷却水の通水量を決定しておき、前記LP鋼板の冷却中は前記使用する冷却ゾーンと前記各冷却ゾーンにおける冷却水の通水量を変えることなく冷却を行う方法であって、予め冷却前に鋼板長手方向を先端及び後端と長手方向の板厚勾配の変曲点に分割点を設定し、一方、前記冷却装置の入側から出側までの間に基準位置を設けて、前記分割点が前記基準位置に到達してから次の前記分割点が前記基準位置に到達するまでの間、一定の加速度又は一定の減速度で、通板速度の加減速を行い、通板初期速度及び前記加速度及び減速度は、前記分割点が、前記冷却装置を通過する間に許容冷却温度範囲内の温度に冷却されるように決定することを特徴とする高温鋼板の冷却方法。 When the LP steel sheet whose thickness changes in the longitudinal direction is passed and cooled by passing through a water-cooled cooling device having a plurality of cooling zones, before the cooling of the LP steel plate, The cooling water flow rate in each cooling zone is determined, and during the cooling of the LP steel plate, cooling is performed without changing the cooling water flow rate in the cooling zone to be used and each cooling zone, Before the cooling, set the dividing point at the inflection point of the longitudinal thickness of the steel sheet in the longitudinal direction and the thickness gradient in the longitudinal direction at the front and rear ends, while providing a reference position between the inlet side and the outlet side of the cooling device. From the time when the dividing point reaches the reference position to the time when the next dividing point reaches the reference position, the plate speed is accelerated or decelerated at a constant acceleration or constant deceleration. Initial speed and above Speed and deceleration, the dividing point, the cooling method of hot steel plate characterized by determining that such is cooled to a temperature within the allowable cooling temperatures range while passing through the cooling device. 前記通板初期速度及び前記加速度及び減速度は、前記分割点が、前記冷却装置を通過する間に許容冷却温度範囲内の温度に冷却されるように、収束計算により求めることを特徴とする請求項1に記載の高温鋼板の冷却方法。 The initial passage speed, the acceleration, and the deceleration are obtained by convergence calculation so that the dividing point is cooled to a temperature within an allowable cooling temperature range while passing through the cooling device. Item 2. The method for cooling a high-temperature steel sheet according to Item 1. 前記基準位置が、前記冷却装置の使用する冷却ゾーン長手方向の中央位置であることを特徴とする請求項1又は請求項2に記載の高温鋼板の冷却方法。 The method for cooling a high-temperature steel sheet according to claim 1 or 2, wherein the reference position is a center position in a longitudinal direction of a cooling zone used by the cooling device. 使用する冷却ゾーンの連続長さを、前記分割点間の長さより短く設定することを特徴とする請求項1から請求項3のうちいずれか1項に記載の高温鋼板の冷却方法。
The method for cooling a high-temperature steel sheet according to any one of claims 1 to 3, wherein a continuous length of a cooling zone to be used is set shorter than a length between the division points.
JP2004022546A 2004-01-30 2004-01-30 Cooling method for high temperature steel sheet Expired - Lifetime JP4111144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004022546A JP4111144B2 (en) 2004-01-30 2004-01-30 Cooling method for high temperature steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004022546A JP4111144B2 (en) 2004-01-30 2004-01-30 Cooling method for high temperature steel sheet

Publications (2)

Publication Number Publication Date
JP2005211945A true JP2005211945A (en) 2005-08-11
JP4111144B2 JP4111144B2 (en) 2008-07-02

Family

ID=34905859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004022546A Expired - Lifetime JP4111144B2 (en) 2004-01-30 2004-01-30 Cooling method for high temperature steel sheet

Country Status (1)

Country Link
JP (1) JP4111144B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182102A (en) * 2014-03-24 2015-10-22 Jfeスチール株式会社 Cooling method and cooling facility for lp steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111996462B (en) * 2020-09-07 2022-02-18 鞍钢股份有限公司 Longitudinal variable-thickness ultrahigh-strength ship board and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182102A (en) * 2014-03-24 2015-10-22 Jfeスチール株式会社 Cooling method and cooling facility for lp steel sheet

Also Published As

Publication number Publication date
JP4111144B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
CN102639262B (en) Hot-rolled steel sheet manufacturing device, and hot-rolled steel sheet manufacturing method
CN106480306B (en) The control method of second segment cooling precision in laminar flow sub-sectional cooling technique
JP5217509B2 (en) Manufacturing method and equipment for thick steel plate
JP6693498B2 (en) Equipment and method for manufacturing thick steel plate
JP5327140B2 (en) Method for cooling hot rolled steel sheet
JP4111144B2 (en) Cooling method for high temperature steel sheet
CN103586294A (en) Laminar cooling method, hot continuous rolling production line and production line laminar cooling system for thick plates
JP5482365B2 (en) Steel sheet cooling method, manufacturing method and manufacturing equipment
JP2015217411A (en) Method of manufacturing thick steel plate
JP6699688B2 (en) Hot rolled steel sheet manufacturing method
JP6515362B1 (en) Steel material cooling device and method
CN114269953A (en) Manufacturing equipment and manufacturing method of thick steel plate
CN107716550B (en) A kind of production method of low-alloy longitudinal thickness-variable steel plate
JP2015174134A (en) Production method of steel plate
JP6447836B2 (en) Hot-rolled steel strip manufacturing method and hot-rolled steel strip manufacturing equipment
JP7452696B2 (en) Manufacturing method and manufacturing equipment for thick steel plates
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JP2010221270A (en) Method of water-cooling rolled stock in hot rolling equipment
JP4432669B2 (en) H-shaped steel cooling method and cooling line equipment
Opitz et al. Power cooling
KR101594123B1 (en) Method for manufacturing hot rolled steel sheets and apparatus for cooling strip
JP4042667B2 (en) Steel plate cooling method
JP6617592B2 (en) Steel plate manufacturing method
JPH05154528A (en) Method for controlling temperature at inlet side in hot-continuous finish-rolling mill
JPS62103323A (en) Direct improvement of surface structure of bar and wire steel products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Ref document number: 4111144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term