JP2005211776A - Method and apparatus for recovering anion surfactant - Google Patents

Method and apparatus for recovering anion surfactant Download PDF

Info

Publication number
JP2005211776A
JP2005211776A JP2004020622A JP2004020622A JP2005211776A JP 2005211776 A JP2005211776 A JP 2005211776A JP 2004020622 A JP2004020622 A JP 2004020622A JP 2004020622 A JP2004020622 A JP 2004020622A JP 2005211776 A JP2005211776 A JP 2005211776A
Authority
JP
Japan
Prior art keywords
anionic surfactant
precipitate
solid
recovering
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004020622A
Other languages
Japanese (ja)
Inventor
Teruichi Murata
照一 村田
Tamotsu Yamamoto
保 山本
Akihiro Oomoto
陽啓 大本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2004020622A priority Critical patent/JP2005211776A/en
Publication of JP2005211776A publication Critical patent/JP2005211776A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Physical Water Treatments (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for recovering an anion surfactant of high purity and high concentration reusable also for the initial purpose of use, from industrial waste water which is arisen from industries where the consumption of the surfactant is large, or industrial waste water, or the like, having a low concentration of surfactant content but a high exhaust quantity which is produced in emulsion polymerization, or the like. <P>SOLUTION: The recyclable anion surfactant of high purity and high concentration can be recovered from anion surfactant-containing waste water by a series of following processes; a separation process of adding a coagulant to the anion surfactant-containing waste water while mixing both, coagulating the anion surfactant in an aqueous solution and separating/recovering the sediment: a concentration process of subjecting the recovered sediment to water dispersion treatment under an acidic environment and increasing the content of the anion surface active agent in the sediment: a refining process of rinsing the concentrated sediment: a recovery process of adding an eluant to the rinsed sediment while mixing and stirring both, eluting the anion surfactant to an eluent phase and recovering the surfactant. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、アニオン界面活性剤含有水溶液からのアニオン界面活性剤の回収方法および回収装置に関する。更に詳しくは、産業排水等のアニオン界面活性剤を含有する水溶液から高濃度、且つ高純度で、界面活性剤の本来の用途に再利用可能なアニオン界面活性剤の回収方法および回収装置に関する。   The present invention relates to a method and an apparatus for recovering an anionic surfactant from an aqueous solution containing an anionic surfactant. More particularly, the present invention relates to a method and an apparatus for recovering an anionic surfactant that can be reused in an original use of a surfactant with a high concentration and high purity from an aqueous solution containing an anionic surfactant such as industrial wastewater.

アニオン界面活性剤含有水溶液から該界面活性剤を除去(分離)する方法は、生活排水の環境への影響から従来より検討され、たとえば生物処理法、酸化分解、あわ分離、凝集分離、抽出法、吸着法、イオン交換法、膜ろ過など、各種方法が知られている(非特許文献1、2等。)。しかし、これらの方法は、分離回収した界面活性剤を再利用することを目的としていないため、界面活性剤の再生法が明記されておらず、そのままでの再利用は到底困難である。また、洗濯機あるいは食器洗い機等の排水液からの界面活性剤の回収装置が提案されている(特許文献1、2等)。しかし、これらは界面活性剤の泡への吸着性を利用したもので、排水量の多い工業排水への応用は装置規模のわりに収量が悪いため実用的ではない。また、同様の回収原理で、製紙プロセスからの界面活性剤の回収法も提案されているが(特許文献3。)、好ましい濃度は400〜700ppmとあり、界面活性剤ミセルを作るような濃度、例えば0.2%以上への泡による濃縮は殆ど困難でもある。更に、回収して再利用するには保管上濃度が薄すぎ保管容積を多く必要としたり、希釈して再利用するには不都合である。また、限外濾過膜装置によりエマルジョンを濾別再利用する排水処理装置も提案されているが(特許文献4。)、排水量が多くしかも多成分を含む工業排水の処理には設備コストや設備メンテナンスの面で実用的ではなく、しかも、限外濾過膜に対する挙動が界面活性剤と類似の水溶性または分酸性物質を含む排水では、不純物が繰返し処理により該界面活性剤と共に濃縮され好ましくない。また、処理により回収された回収物の使用方法も提案されているが(特許文献5。)、当初の目的である離型剤で使用した界面活性剤の用途ではなく、回収した界面活性剤は凝集物として分離・脱水されコンクリートやモルタルの骨材として使用することができると記載されており、回収物の用途に限定があり、界面活性剤の本来の使用目的を始めとする、界面活性特性を利用した目的への再利用可能な回収物にはなっていない。
特開平6−178985 特開平8−24839 特開平5−140886 特開平6−39375 特開2001−137863 油化学(第24巻、第11号(1975)P757) 水処理技術(Vol.6、No.9、1965、P7)
Methods for removing (separating) the surfactant from the aqueous solution containing an anionic surfactant have been studied from the viewpoint of the influence of domestic wastewater on the environment. For example, biological treatment, oxidative decomposition, foam separation, coagulation separation, extraction method, Various methods such as an adsorption method, an ion exchange method, and membrane filtration are known (Non-Patent Documents 1, 2, etc.). However, since these methods are not intended to reuse the separated and recovered surfactant, the method for regenerating the surfactant is not specified, and it is extremely difficult to reuse the surfactant as it is. In addition, a device for recovering a surfactant from wastewater from a washing machine or a dishwasher has been proposed (Patent Documents 1, 2, etc.). However, these are those utilizing the adsorptivity of the surfactant to the foam, and application to industrial wastewater with a large amount of wastewater is impractical because the yield is low instead of the scale of the device. Moreover, although the recovery method of the surfactant from a papermaking process is also proposed by the same collection | recovery principle (patent document 3), there exists a preferable density | concentration with 400-700 ppm, and the density | concentration which makes surfactant micelle, For example, concentration by bubbles to 0.2% or more is almost difficult. Furthermore, the concentration for storage is too low to recover and reuse, and a large storage volume is required, or it is inconvenient to dilute and reuse. In addition, a wastewater treatment device that separates and reuses the emulsion by ultrafiltration membrane device has also been proposed (Patent Document 4). However, in the treatment of industrial wastewater that has a large amount of wastewater and contains many components, facility costs and equipment maintenance are also required. In addition, the wastewater containing water-soluble or acidic substances similar to the surfactant in the behavior of the ultrafiltration membrane is not preferable because impurities are concentrated together with the surfactant by repeated treatment. Moreover, although the usage method of the collect | recovered material collect | recovered by the process is also proposed (patent document 5), it is not the use of the surfactant used with the mold release agent which is the original purpose, It is described that it can be separated and dehydrated as aggregates and used as aggregates for concrete and mortar, and there are limitations on the use of recovered materials, including the original purpose of use of surfactants, surface active properties It is not a reusable collection for the purpose of using.
JP-A-6-178985 JP-A-8-24839 JP 5-140886 JP-A-6-39375 JP 2001-137863 A Oil Chemistry (Vol. 24, No. 11 (1975) P757) Water treatment technology (Vol.6, No.9, 1965, P7)

界面活性剤含有水溶液の排水は、生活排水や産業排水に多く見られ、環境問題の1つになっている。特に、多量の排水を出す産業界は、対策として排水処理を施すことで自然界への負荷を軽減する方策を実施している。例えば、界面活性剤を含む工業排水は、一部は凝集沈殿剤により界面活性剤を凝集分離し、また凝集沈殿工程で分離できなかった残りの界面活性剤は、活性汚泥処理により排水中の界面活性剤濃度を下げる等の浄化処理を行って自然界へ排出される。しかし、一方では、排水処理時に発生した凝集沈殿剤による凝集物や活性汚泥処理で分離した汚泥も、自然界への一度に多量の排出は負荷が大きくて環境問題になり、そのため有効利用として耕作用地の土壌改良材としての活用も一部には検討されているが、大部分は利用するには品質上の課題も有って焼却処分が実用的な処理法となっている。しかしながら、焼却処分せずに再利用特に当初の目的に再利用が可能であれば、現在の産業活動を維持した状態で新規な界面活性剤の補充が減らせる等、環境に優しい経済活動が可能となる。そのためには再利用できる、不純物の少ない界面活性剤の回収方法の技術確立が必要であり、新たに回収のための設備開発も必要となる。   Surfactant-containing aqueous wastewater is often found in domestic wastewater and industrial wastewater, and is one of the environmental problems. In particular, the industry that produces a large amount of wastewater is implementing measures to reduce the burden on the natural world through wastewater treatment as a countermeasure. For example, industrial wastewater containing surfactants partially coagulates and separates surfactants with coagulating sedimentation agents, and the remaining surfactants that could not be separated in the coagulation sedimentation process are treated with activated sludge treatment. It is discharged into the natural world through purification processes such as reducing the concentration of the activator. However, on the other hand, agglomerates due to the coagulating sediments generated during wastewater treatment and sludge separated by activated sludge treatment are also an environmental problem because a large amount of discharge to the natural environment at once is a heavy load, and as a result, it is an effective land for cultivation. The use of soil as a soil improvement material has been studied in part, but incineration disposal has become a practical treatment method because most of them have quality problems. However, if it can be reused without incineration, especially if it can be reused for the original purpose, eco-friendly economic activities are possible, such as reducing the supplement of new surfactants while maintaining the current industrial activities. It becomes. For this purpose, it is necessary to establish a technique for recovering surfactants with low impurities that can be reused, and it is also necessary to newly develop equipment for recovery.

そこで、本発明は、界面活性剤の使用が多い産業から排出される産業排水において、例えば、乳化重合等で発生した界面活性剤含有濃度が薄く量の多い工業排水から、当初の利用用途にも再利用可能な純度を満足し、且つ高濃度のアニオン界面活性剤を回収する方法および回収装置の提供を目的とする。   Therefore, the present invention can be applied to industrial wastewater discharged from industries where surfactants are frequently used, for example, from industrial wastewater containing a small amount of surfactant-containing concentration generated by emulsion polymerization, etc. An object of the present invention is to provide a method and an apparatus for recovering a high concentration of anionic surfactant that satisfies reusable purity.

本発明者らは、(1)界面活性剤濃度の薄い水溶液から目的のアニオン界面活性剤成分を選択的に吸着させ沈殿物として分離する工程、次に、(2)分離した沈殿物中のアニオン界面活性剤の含有率を更に高め濃縮する工程、そして、(3)その沈殿物には不要な成分を含んでいるため水洗して精製する工程、更に、(4)精製して分離した沈殿物より目的とするアニオン界面活性剤を溶出回収する溶出工程、からなる一連の方法、およびそのための装置を組み合わせることで、アニオン界面活性剤を含有する水溶液から、高濃度、且つ高純度で、再利用可能なアニオン界面活性剤の回収方法および回収装置を見出し、上記の目的を達成した。   The inventors have (1) a step of selectively adsorbing a target anionic surfactant component from an aqueous solution having a low surfactant concentration to separate it as a precipitate, and then (2) an anion in the separated precipitate. A step of further increasing the concentration of the surfactant and concentrating; and (3) a step of washing and purifying because the precipitate contains unnecessary components, and (4) a precipitate separated by purification. Combined with a series of methods consisting of an elution step for eluting and recovering the desired anionic surfactant, and an apparatus therefor, it can be reused from an aqueous solution containing an anionic surfactant in high concentration and high purity. A recovery method and a recovery apparatus for a possible anionic surfactant have been found, and the above object has been achieved.

即ち本発明は、アニオン界面活性剤を含有する水溶液からアニオン界面活性剤を回収する方法であって、(1)前記水溶液に凝集沈殿剤を添加混合して水溶液中のアニオン界面活性剤を凝集沈殿させた後、沈殿物を分離回収する分離工程と、(2)前記分離回収した沈殿物を酸性下で水分散処理して沈殿物中のアニオン界面活性剤の含有率を高める濃縮工程と、(3)前記濃縮した沈殿物を水洗する精製工程と、(4)前記水洗した沈殿物に、溶離液を加えて混合攪拌し、溶離液相にアニオン界面活性剤を溶出させて回収する回収工程と、からなることを特徴とするアニオン界面活性剤の回収方法(本発明1)。   That is, the present invention is a method of recovering an anionic surfactant from an aqueous solution containing an anionic surfactant, and (1) adding and mixing an aggregation precipitant to the aqueous solution to coagulate and precipitate the anionic surfactant in the aqueous solution. (2) a concentration step for increasing the content of the anionic surfactant in the precipitate by subjecting the precipitate thus separated and recovered to water dispersion under acidic conditions; 3) a purification step of washing the concentrated precipitate with water, and (4) a recovery step of adding an eluent to the water-washed precipitate and mixing and stirring to elute and recover the anionic surfactant in the eluent phase. A method for recovering an anionic surfactant characterized by comprising (Invention 1).

前記本発明1において、前記酸性下の水分散処理に際し、塩酸でpH処理を行うアニオン界面活性剤の回収方法(本発明2)。   The method for recovering an anionic surfactant according to the first aspect of the present invention, wherein a pH treatment with hydrochloric acid is performed during the acidic water dispersion treatment (the second aspect of the present invention).

前記本発明1、2において、前記凝集沈殿剤がアルミニウム系凝集剤であるアニオン界面活性剤の回収方法(本発明3)。   In the first and second aspects of the present invention, the method for recovering an anionic surfactant in which the coagulating precipitant is an aluminum-based coagulant (Invention 3).

前記本発明1〜3において、前記精製工程が、前記濃縮工程でアニオン界面活性剤の含有率を高めて濃縮した後、固液分離した沈殿物を、洗浄後の洗浄水の導電率が100mS/m以下になるまで脱イオン水で洗浄するアニオン界面活性剤の回収方法(本発明4)。   In the first to third aspects of the invention, after the purification step is concentrated by increasing the content of the anionic surfactant in the concentration step, the precipitate separated by solid-liquid separation has a conductivity of washing water after washing of 100 mS / A method for recovering an anionic surfactant, which is washed with deionized water until m or less (Invention 4).

前記本発明1〜4において、前記回収工程の溶離液としてアルカリ性水溶液を用いるアニオン界面活性剤の回収方法(本発明5)。   In the present inventions 1 to 4, a method for recovering an anionic surfactant using an alkaline aqueous solution as an eluent in the recovery step (invention 5).

前記本発明1〜5において、前記回収工程でアニオン界面活性剤を溶離液相に溶出し、固液分離して回収した後の沈殿物に溶離液を加えて混合攪拌し、溶離液相にアニオン界面活性剤を溶出させて回収する再回収工程を設けてなるアニオン界面活性剤の回収方法(本発明6)。   In the present inventions 1 to 5, the anionic surfactant is eluted in the elution liquid phase in the recovery step, the eluent is added to the precipitate after solid-liquid separation and recovery, and the mixture is stirred and mixed. A method for recovering an anionic surfactant comprising a re-recovery step for eluting and recovering a surfactant (present invention 6).

前記本発明6において、前記再回収工程において沈殿物中からアニオン界面活性剤を溶出させて回収したアニオン界面活性剤を含有する分離液を、前記回収工程に環流し、精製工程で水洗後の殿物からアニオン界面活性剤を溶出させる溶離液として用いるアニオン界面活性剤の回収方法(本発明7)。   In the present invention 6, the separation liquid containing the anionic surfactant recovered by eluting the anionic surfactant from the precipitate in the re-recovery step is circulated to the recovery step and washed with water in the purification step. A method for recovering an anionic surfactant used as an eluent for eluting an anionic surfactant from a product (present invention 7).

アニオン界面活性剤を含有する水溶液に凝集沈殿剤を添加混合して前記水溶液中のアニオン界面活性剤を凝集沈殿させる凝集反応槽と、前記凝集反応槽で調製された沈殿物を分離する固液分離槽と、前記固液分離槽により分離回収した沈殿物に酸を添加混合し、酸性下で前記沈殿物を水分散処理して沈殿物中のアニオン界面活性剤の含有率を高める酸処理槽と、前記水分散処理液を固液分離する第1の固液分離手段と、前記第1の固液分離手段により分離した沈殿物を水洗する精製槽と、前記精製槽で水洗した沈殿物と洗浄水とを分離する第2の固液分離手段と、前記第2の固液分離手段で分離した沈殿物に、溶離液を加えて混合攪拌してスラッジ分散液とするとともに該スラッジ分散液の溶離液相にアニオン界面活性剤を溶出させる溶出槽と、前記溶出槽にて溶出したアニオン界面活性剤を含有するスラッジ分散液を固液分離してアニオン界面活性剤水溶液を回収する第3の固液分離手段と、を備えることを特徴とする、アニオン界面活性剤含有水溶液からのアニオン界面活性剤の回収装置(本発明8)。   An agglomeration reaction tank for aggregating and precipitating an anionic surfactant in the aqueous solution by adding and mixing an agglomeration precipitating agent to an aqueous solution containing an anionic surfactant, and solid-liquid separation for separating the precipitate prepared in the agglomeration reaction tank An acid treatment tank for adding an acid to the precipitate separated and recovered by the solid-liquid separation tank and increasing the content of the anionic surfactant in the precipitate by subjecting the precipitate to water dispersion treatment under acidity; , A first solid-liquid separation means for solid-liquid separation of the water dispersion treatment liquid, a purification tank for washing the precipitate separated by the first solid-liquid separation means, and a precipitate washed with water in the purification tank A second solid-liquid separation means for separating water, and an eluent added to the precipitate separated by the second solid-liquid separation means, mixed and stirred to obtain a sludge dispersion, and elution of the sludge dispersion Elution tank for eluting an anionic surfactant in the liquid phase And a third solid-liquid separation means for recovering an aqueous solution of the anionic surfactant by solid-liquid separation of the sludge dispersion containing the anionic surfactant eluted in the elution tank. An apparatus for recovering an anionic surfactant from an aqueous solution containing a surfactant (Invention 8).

前記本発明8において、前記溶出槽でアニオン界面活性剤を溶離液相に溶出し、固液分離して回収した後の沈殿物に溶離液を加えて混合攪拌してスラッジ分散液とするとともに溶離液相にアニオン界面活性剤を溶出させる再溶出槽と、前記再溶出槽にて溶出したアニオン界面活性剤を含有するスラッジ分散液を固液分離してアニオン界面活性剤含有水量液を回収する第4の固液分離手段とを備えるアニオン界面活性剤の回収装置(本発明9)。
なお、前記再溶出槽にて溶出したアニオン界面活性剤を含有するスラッジ分散液を、再び前記第3の固液分離手段に移送するようにして、該第3の固液分離手段を前記第4の固液分離手段として用いることもできる。
In the present invention 8, the anionic surfactant is eluted in the elution liquid phase in the elution tank, and the eluent is added to the precipitate after solid-liquid separation and recovery, followed by mixing and stirring to obtain a sludge dispersion and elution A re-elution tank for eluting the anionic surfactant in the liquid phase and a sludge dispersion containing the anionic surfactant eluted in the re-elution tank are separated into solid and liquid to recover an anionic surfactant-containing water volume. And an apparatus for recovering an anionic surfactant comprising the solid-liquid separation means (invention 9).
The sludge dispersion liquid containing the anionic surfactant eluted in the re-elution tank is transferred again to the third solid-liquid separation means, so that the third solid-liquid separation means is changed to the fourth solid-liquid separation means. It can also be used as a solid-liquid separation means.

前記本発明9において、前記再溶出槽において沈殿物中からアニオン界面活性剤を溶出させ、固液分離して回収したアニオン界面活性剤水溶液を、前記溶出槽に環流し、溶離液として用いるようにしたアニオン界面活性剤の回収装置(本発明10)。   In the present invention 9, in the re-elution tank, an anionic surfactant is eluted from the precipitate, and the anionic surfactant aqueous solution recovered by solid-liquid separation is circulated to the elution tank and used as an eluent. An anionic surfactant recovery device (Invention 10).

前記本発明8又は9において、前記固液分離手段として遠心分離機を用いてなるアニオン界面活性剤の回収装置(本発明11)。
なお、前記本発明9における前記第4の固液分離手段として遠心分離機を用いることもできる。
In the present invention 8 or 9, the anionic surfactant recovery device using the centrifuge as the solid-liquid separation means (present invention 11).
A centrifuge can also be used as the fourth solid-liquid separation means in the ninth aspect of the present invention.

本発明の回収方法及び回収装置によれば、使用済みのアニオン界面活性剤含有水溶液から、実用性を満足した純度を有し且つ高濃度の界面活性剤を回収することができ、回収したアニオン界面活性剤を当初の利用分野へリサイクル使用も可能となる。そのため、界面活性剤の消耗量を減少させることができるため排水処理の負荷低減が図れ、事業活動における原材料費や排水処理費等のコストダウンが期待できる。   According to the recovery method and the recovery apparatus of the present invention, a high-concentration surfactant having a practically satisfactory purity can be recovered from a used anionic surfactant-containing aqueous solution, and the recovered anion interface can be recovered. The activator can be recycled for use in the original application field. Therefore, since the amount of surfactant consumed can be reduced, the load of wastewater treatment can be reduced, and costs such as raw material costs and wastewater treatment costs in business activities can be expected.

また、本発明においては、分離工程において凝集沈殿剤により凝集沈殿させたアニオン界面活性剤を含む沈殿物を酸性下で水分散処理する。この酸処理により沈殿物中の過剰な凝集沈殿剤が溶出し、アニオン界面活性剤の含有率が高まり、その後のアニオン界面活性剤の回収操作が容易となり、回収率も向上する。   In the present invention, the precipitate containing the anionic surfactant coagulated and precipitated with the coagulating precipitant in the separation step is subjected to an aqueous dispersion treatment under acidic conditions. By this acid treatment, excess aggregated precipitant in the precipitate is eluted, the content of the anionic surfactant is increased, the subsequent anionic surfactant recovery operation is facilitated, and the recovery rate is also improved.

本発明2によれば、前記酸性下の水分散処理に際し、塩酸でpH処理を行うと、アニオン界面活性剤の収率が向上し、また沈殿物の分離性もよくなる。   According to the second aspect of the present invention, when the pH treatment is performed with hydrochloric acid during the acidic water dispersion treatment, the yield of the anionic surfactant is improved and the separation property of the precipitate is improved.

本発明3によれば、前記凝集沈殿剤としてアルミニウム系凝集剤を用いることで、回収したアニオン界面活性剤を、例えば乳化重合の乳化剤として使用する場合のように、鉄分含量に制限が有るような用途にも使用することができる。   According to the third aspect of the present invention, the aluminum content is limited as in the case of using the recovered anionic surfactant as an emulsifier for emulsion polymerization, for example, by using an aluminum-based flocculant as the flocculant precipitant. It can also be used for applications.

本発明4によれば、前記精製工程において、前記濃縮工程でアニオン界面活性剤の含有率を高めて濃縮した後、固液分離した沈殿物を、洗浄後の洗浄水の導電率が100mS/m以下になるまで脱イオン水で洗浄することで、不純物が少なく高純度のアニオン界面活性剤を回収することができる。   According to the present invention 4, in the purification step, the concentration of the anionic surfactant in the concentration step is increased and concentrated, and then the solid-liquid separated precipitate has a conductivity of 100 mS / m after washing. By washing with deionized water until it becomes below, it is possible to recover a high purity anionic surfactant with few impurities.

本発明5によれば、前記回収工程の溶離液として比較的安価なアルカリ性水溶液を用いることで、処理費用を抑えることができる。   According to the fifth aspect of the present invention, the processing cost can be suppressed by using a relatively inexpensive alkaline aqueous solution as the eluent in the recovery step.

前記回収工程において、アニオン界面活性剤を溶離液相へ溶出して固液分離した後の沈殿物(スラッジ)には、まだ再利用可能なアニオン界面活性剤が含有されている。そこで、本発明6及び本発明9のように、前記回収工程でアニオン界面活性剤を溶離液相に溶出し、固液分離して回収した後の沈殿物(スラッジ)に溶離液を加えて混合攪拌し、溶離液相にアニオン界面活性剤を溶出させて界面活性剤を回収する再回収工程を設けることで、最初の回収工程に比べて回収されるアニオン界面活性剤の濃度は薄くなるものの、アニオン界面活性剤を、添加した溶離液相に溶出分離して回収することができ、アニオン界面活性剤の回収率を向上させることができる。   In the recovery step, the anionic surfactant that can be reused is still contained in the precipitate (sludge) after elution of the anionic surfactant into the eluent phase and solid-liquid separation. Therefore, as in the present invention 6 and the present invention 9, the anionic surfactant is eluted in the eluent phase in the recovery step, and the eluent is added to the precipitate (sludge) collected by solid-liquid separation and mixed. Although the concentration of the recovered anionic surfactant is reduced compared to the first recovery step by providing a re-recovery step of stirring and eluting the anionic surfactant into the eluent phase to recover the surfactant, The anionic surfactant can be recovered by elution separation in the added eluent phase, and the recovery rate of the anionic surfactant can be improved.

更に、本発明7及び本発明10のように、前記再回収工程において沈殿物中からアニオン界面活性剤を溶出させて回収したアニオン界面活性剤を含有する溶離液(分離液)を、前記回収工程に環流し、精製工程で得られる沈殿物からアニオン界面活性剤を溶出させる溶離液として用いることで、回収工程にて回収されるアニオン界面活性剤の濃度を高めることができる。   Further, as in the present invention 7 and the present invention 10, an eluent (separate) containing an anionic surfactant recovered by eluting the anionic surfactant from the precipitate in the re-recovery step is recovered in the recovery step. The concentration of the anionic surfactant recovered in the recovery step can be increased by using it as an eluent for elution of the anionic surfactant from the precipitate obtained in the purification step.

また、粘着性のある凝集沈殿物の固液分離は濾材濾過では目詰まりが顕著となって濾材交換が頻繁になって分離作業が煩雑になるが、本発明11の回収装置においては、酸処理後、洗浄後及びアニオン界面活性剤溶出後の沈殿物を固液分離する手段として遠心分離機を用いることで、連続して固液分離ができるため回収装置を自動化しやすく、設備導入に当ってもコンパクトな設備にすることができる利点がある。   In addition, solid-liquid separation of cohesive aggregated precipitates is clogged with filter medium filtration, and filter medium replacement becomes frequent and the separation work becomes complicated. In the recovery apparatus of the present invention 11, acid treatment is performed. After that, by using a centrifuge as a means for solid-liquid separation of the precipitate after washing and elution of the anionic surfactant, the solid-liquid separation can be performed continuously, making it easy to automate the recovery device and introducing the equipment. There is also an advantage that can be made compact equipment.

以下、本発明について詳細に説明する。本発明を適用することができるアニオン界面活性剤を含有する水溶液(原水)としては、アニオン界面活性剤の合成およびその応用産業あるいは共同の集積排水処理設備からの排水等が挙げられる。本発明により前記排水等から回収できるアニオン界面活性剤としては、例えば、分子中にアニオン性の親水基として、カルボキシル基、硫酸基、スルホン酸基又はリン酸基の1種または2種以上を含有し、また、親油基として、飽和脂肪族や不飽和脂肪族の炭素数6〜24を有する高級アルキル基の他、前記アルキル基の水素原子の一部もしくは全部がフッ素原子と置換したフルオロカーボン、あるいは芳香族炭化水素が結合したアルキルアリル基やホルマリン縮合を経て得られるナフタレン基等を含有するものが挙げられるが、これらに限定されるものではない。もちろん、前記界面活性剤の分子中には、前記のような親水基や親油基以外に、アミド基、カルボン酸エステル、エーテル結合、水酸基、アミノ基等を含有していても、本発明によるそれら界面活性剤の回収を阻害するものではない。これらのアニオン界面活性剤のうちでも、本発明を好適に適用しうるものとしては、ドデカン酸ナトリウム、テトラデカン酸ナトリウム、ヘキサデカン酸ナトリウム、オクタデカン酸ナトリウム等の高級アルキルカルボン酸塩(特にナトリウム塩);ドデシル硫酸ナトリウム、テトラデシル硫酸ナトリウム、ヘキデシル硫酸ナトリウム、オクタデシル硫酸ナトリウム等の高級アルコールの硫酸エステル塩(特にナトリウム塩);ドデシルベンゼンスルホン酸ナトリウム、テトラデシルベンゼンスルホン酸ナトリウム、ヘキサデシルベンゼンスルホン酸ナトリウム、オクタデシルベンゼンスルホン酸ナトリウム等の高級アルキルベンゼンスルホン酸塩(特にナトリウム塩)等が挙げられる。これらの内でも、活性汚泥法による分離回収が困難である前記高級アルキルベンゼンスルホン酸塩に対しても本発明は有効である。なお、アニオン界面活性剤を回収する前記排水等の原水中に、これらのアニオン界面活性剤が2種以上含まれていてもよい。   Hereinafter, the present invention will be described in detail. Examples of the aqueous solution (raw water) containing an anionic surfactant to which the present invention can be applied include synthesis of an anionic surfactant and waste water from an application industry or a joint integrated waste water treatment facility. Examples of the anionic surfactant that can be recovered from the waste water according to the present invention include, for example, one or more of a carboxyl group, a sulfate group, a sulfonate group, or a phosphate group as an anionic hydrophilic group in the molecule. In addition to the saturated aliphatic or unsaturated aliphatic higher alkyl group having 6 to 24 carbon atoms as the lipophilic group, a fluorocarbon in which part or all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms, Or the thing containing the naphthalene group etc. which are obtained through the alkylallyl group which aromatic hydrocarbon couple | bonded, formalin condensation, etc. are mentioned, However, It is not limited to these. Of course, even if the surfactant molecule contains an amide group, a carboxylic acid ester, an ether bond, a hydroxyl group, an amino group, etc. in addition to the hydrophilic group or lipophilic group as described above, It does not inhibit the recovery of these surfactants. Among these anionic surfactants, those to which the present invention can be suitably applied include higher alkyl carboxylates (particularly sodium salts) such as sodium dodecanoate, sodium tetradecanoate, sodium hexadecanoate, and sodium octadecanoate; Sulfate esters of higher alcohols (especially sodium salts) such as sodium dodecyl sulfate, sodium tetradecyl sulfate, sodium hexdecyl sulfate, sodium octadecyl sulfate; sodium dodecylbenzenesulfonate, sodium tetradecylbenzenesulfonate, sodium hexadecylbenzenesulfonate, octadecyl Higher alkyl benzene sulfonates (particularly sodium salts) such as sodium benzene sulfonate. Among these, the present invention is also effective for the higher alkylbenzene sulfonates that are difficult to separate and collect by the activated sludge method. In addition, 2 or more types of these anionic surfactants may be contained in raw | natural waters, such as the said waste_water | drain, which collect | recovers anionic surfactants.

前記排水等のアニオン界面活性剤を含有する水溶液は、そのアニオン界面活性剤の用途や排水事情等から、該水溶液中のアニオン界面活性剤の濃度は3%以下、通常は2〜0.001%である場合が多く、また、その水溶液には不純物が混入していたり、アニオン界面活性剤の濃度が薄すぎたりして、そのままでは再利用できない。そこで前記水溶液から目的とするアニオン界面活性剤を回収するには、不純物の除去やアニオン界面活性剤成分の分離操作が必要となる。特に、不純物として前記水溶液中に油分を含む場合は、前記水溶液からのアニオン界面活性剤の回収に際して、後述する分離工程において凝集沈殿操作を行う前に、予め油分離装置等を用いて前記水溶液中の油分を除去しておくことが重要である。   The aqueous solution containing an anionic surfactant such as waste water has a concentration of an anionic surfactant in the aqueous solution of 3% or less, usually 2 to 0.001%, due to the use of the anionic surfactant or the circumstances of drainage. In many cases, impurities are mixed in the aqueous solution, or the concentration of the anionic surfactant is too thin, so that it cannot be reused as it is. Therefore, in order to recover the target anionic surfactant from the aqueous solution, it is necessary to remove impurities and separate the anionic surfactant component. In particular, when an oil component is contained in the aqueous solution as an impurity, when the anionic surfactant is recovered from the aqueous solution, before the aggregation precipitation operation is performed in the separation step described later, the oil solution is previously used in the aqueous solution. It is important to remove the oil.

図1は、本発明に係るアニオン界面活性剤の回収方法の工程説明図である。図1に示すように、本発明に係るアニオン界面活性剤の回収方法は、(1)アニオン界面活性剤を含有する水溶液に凝集沈殿剤を添加混合して水溶液中のアニオン界面活性剤を凝集沈殿させた後、沈殿物を分離回収する分離工程、(2)前記分離回収した沈殿物を酸性下で水分散処理して沈殿物中のアニオン界面活性剤の含有率を高め濃縮する濃縮工程、(3)前記濃縮した沈殿物を水洗する精製工程及び(4)前記水洗した沈殿物に、溶離液を加えて混合攪拌し、溶離液相にアニオン界面活性剤を溶出させて界面活性剤を回収する回収工程とからなる。また、(5)前記回収工程でアニオン界面活性剤を溶離液相に溶出し、固液分離して回収した後の沈殿物(スラッジ)に溶離液を加えて混合攪拌し、溶離液相にアニオン界面活性剤を溶出させて回収する再回収工程、を設けることもできる。更に、前記再回収工程において沈殿物(スラッジ)中からアニオン界面活性剤を溶出させて回収したアニオン界面活性剤を含有する溶離液(分離液)を、前記回収工程に環流し、精製工程で水洗後の沈殿物からアニオン界面活性剤を溶出させる際の溶離液として用いることもできる。以下、前記各工程について、更に詳細に説明する。   FIG. 1 is a process explanatory diagram of a method for recovering an anionic surfactant according to the present invention. As shown in FIG. 1, the method for recovering an anionic surfactant according to the present invention includes (1) adding and mixing an aggregating precipitant to an aqueous solution containing the anionic surfactant to coagulate and precipitate the anionic surfactant in the aqueous solution. (2) a concentration step for increasing the concentration of the anionic surfactant in the precipitate to concentrate it by subjecting the precipitate thus separated and recovered to water dispersion under acidic conditions; 3) Purification step of washing the concentrated precipitate with water, and (4) Adding an eluent to the washed precipitate, mixing and stirring, and eluting the anionic surfactant into the eluent phase to recover the surfactant. It consists of a recovery process. In addition, (5) the anionic surfactant is eluted in the eluent phase in the recovery step, the eluent is added to the precipitate (sludge) after solid-liquid separation and recovery, and the mixture is stirred, and the anion surfactant is added to the eluent phase. A re-recovery step of eluting and recovering the surfactant can also be provided. Further, the eluent (separate) containing the anionic surfactant recovered by eluting the anionic surfactant from the precipitate (sludge) in the re-recovery step is circulated to the recovery step and washed with water in the purification step. It can also be used as an eluent when eluting the anionic surfactant from the subsequent precipitate. Hereafter, each said process is demonstrated in detail.

[分離工程]
アニオン界面活性剤を含有する水溶液から効率的にアニオン界面活性剤を回収するには、アニオン界面活性剤を選択的に分離する必要が有る。その方法として、分離工程において、無機系の凝集沈殿剤を前記水溶液に添加処理して凝集沈殿させ、前記凝集沈殿剤にアニオン界面活性剤を吸着させて前記水溶液から分離するのが好ましい。この場合に使用する凝集沈殿剤としては、一般に市販されているアルミニウム系や鉄系の凝集沈殿剤が適用できるが、回収したアニオン界面活性剤を再利用する際に鉄分含量に制限が有るような場合、例えば回収したアニオン界面活性剤を乳化重合の乳化剤として使用する場合等には、アルミニウム系の凝集沈殿剤を用いることが好ましい。前記凝集沈殿剤の添加量は、原水の水溶液中のアニオン界面活性剤重量の1/100〜100倍量が好ましく、更に好ましくは1/10〜10倍量である。1/100未満であるとアニオン界面活性剤の回収量の絶対量が少なくなる結果、原水からの回収、即ち分離工程における回収率が低くなり好ましくない。また、100倍を超えると後の精製工程における酸処理時の酸の使用量が増えるだけでなく、沈殿物中のアニオン界面活性剤の含有率が低くなる結果、後の回収工程における回収液中のアニオン界面活性剤の濃度や回収率の低下につながり好ましくない。
[Separation process]
In order to efficiently recover the anionic surfactant from the aqueous solution containing the anionic surfactant, it is necessary to selectively separate the anionic surfactant. As the method, it is preferable that in the separation step, an inorganic coagulating precipitant is added to the aqueous solution to coagulate and precipitate, and the anionic surfactant is adsorbed on the coagulating precipitant and separated from the aqueous solution. As the coagulating precipitant used in this case, commercially available aluminum-based and iron-based coagulating precipitants can be applied, but there is a limit to the iron content when reusing the recovered anionic surfactant. In this case, for example, when the recovered anionic surfactant is used as an emulsifier for emulsion polymerization, it is preferable to use an aluminum-based coagulating precipitant. The addition amount of the coagulating precipitant is preferably 1/100 to 100 times, more preferably 1/10 to 10 times the weight of the anionic surfactant in the raw water solution. If it is less than 1/100, the absolute amount of the recovered amount of the anionic surfactant is decreased. As a result, recovery from the raw water, that is, the recovery rate in the separation step is lowered, which is not preferable. In addition, if it exceeds 100 times, not only the amount of acid used in the acid treatment in the subsequent purification step increases, but also the content of the anionic surfactant in the precipitate is lowered, so that in the recovered liquid in the subsequent recovery step This leads to a decrease in the concentration and recovery rate of the anionic surfactant.

前記無機系の凝集沈殿剤により凝集したアニオン界面活性剤を含む凝集沈殿物は、そのままでは含水率が極めて高いため、後述する回収工程でのアニオン界面活性剤溶出操作で得られる回収濃度は排水時よりは高められるものの限界がある。しかし、前記凝集沈殿物の含水率を下げる目的で凝集沈殿物に対して強制的に脱水操作を行うとすると、沈殿粒子径が小さく沈殿フロック強度が弱いため、濾材濾過では濾過性が悪く、また遠心分離では一般に分離に多大な時間や遠心加速度を要する。そこで、本発明の分離工程においては、水処理剤として一般に使用されている水溶性のアニオン性高分子の添加・混合を行って分離することが、沈殿物のフロック強度が上がって短時間で分離しやすくなるため好ましい。ここで使用するアニオン性高分子としては、アクリルアミド単独重合体や共重合体から誘導される誘導体及びポリアクリル酸ナトリウムの単独重合体や共重合体あるいはアルギン酸ナトリウムに代表されるカルボキシル基を有する高分子;ビニルスルホン酸、スチレンスルホン酸あるいはそれらの塩をはじめとするスルホン酸基含有単量体や共重合体;さらにはポリアクリルアミドのスルホメチル化反応物等に見られるスルホン酸基含有高分子等が一般に知られているが、これらに限定されるものではない。   The aggregated precipitate containing the anionic surfactant aggregated by the inorganic aggregated precipitant has a very high moisture content as it is, so the recovery concentration obtained by the elution operation of the anionic surfactant in the recovery step described later is the drainage concentration. There are limits to what can be enhanced. However, if the dehydration operation is forcibly performed on the aggregated precipitate for the purpose of reducing the water content of the aggregated precipitate, the filterability is poor in filter medium filtration because the precipitate particle size is small and the precipitation floc strength is weak. Centrifugation generally requires a great deal of time and centrifugal acceleration for separation. Therefore, in the separation process of the present invention, it is possible to separate by adding and mixing a water-soluble anionic polymer generally used as a water treatment agent in order to increase the floc strength of the precipitate and to perform the separation in a short time. Since it becomes easy to do, it is preferable. Examples of the anionic polymer used herein include derivatives derived from acrylamide homopolymers and copolymers, and polymers having a carboxyl group typified by sodium polyacrylate homopolymers and copolymers or sodium alginate. Sulfonic acid group-containing monomers and copolymers including vinyl sulfonic acid, styrene sulfonic acid or salts thereof; and sulfonic acid group-containing polymers found in polyacrylamide sulfomethylation products, etc. Although known, it is not limited to these.

上記のようにして凝集沈殿させたアニオン界面活性剤濃度の高い凝集沈殿物を分離回収するには、一般の固液分離装置が適用できる。例えば、濾過機ではケーキ厚みを薄くして回収したり加圧式の場合は圧力差を大きくする等、条件設定に工夫が必要であるものの適用可能であり、遠心分離タイプでは適正遠心効果さえ設定できれば比較的分離が容易である。設置面積や機器の作業性およびメンテナンスの面からは遠心分離タイプが好ましい分離装置である。もちろん、これらの分離装置を組み合せて使用してもよい。   In order to separate and collect the aggregated precipitate having a high concentration of anionic surfactant that has been aggregated and precipitated as described above, a general solid-liquid separation apparatus can be applied. For example, it is possible to apply a device that requires some ingenuity in setting conditions, such as collecting cake by reducing the thickness of the cake in a filter, or increasing the pressure difference in the case of a pressure type. It is relatively easy to separate. From the viewpoint of installation area, workability of equipment, and maintenance, a centrifugal separation type is a preferable separation device. Of course, these separation devices may be used in combination.

[濃縮工程]
前記分離工程においてアルミニウム系あるいは鉄系の沈殿凝集剤を用いて分離回収した、アニオン界面活性剤を含有する沈殿物中のアニオン界面活性剤の濃度を更に高めるために酸処理する。また、この酸処理をすることで、過剰な凝集沈殿剤が溶出除去され、凝集沈殿物の分離性が改良される結果、固液分離した沈殿物中のアニオン界面活性剤の含有率が高くなって濃縮される効果が有り、分離装置の小型化が可能となり設備導入条件が有利になる。
[Concentration process]
In order to further increase the concentration of the anionic surfactant in the precipitate containing the anionic surfactant separated and recovered using the aluminum or iron-based precipitation flocculant in the separation step, acid treatment is performed. In addition, by this acid treatment, excess aggregated precipitant is eluted and removed, and the separability of the aggregated precipitate is improved. As a result, the content of the anionic surfactant in the solid-liquid separated precipitate is increased. As a result, the separation apparatus can be downsized and the equipment introduction conditions are advantageous.

前記濃縮工程における酸処理に使用する酸としては、一般に無機の強酸が効果が大きいため好ましく、中でも塩酸が収率や沈殿物の分離性から好ましい。酸性にするpHは2〜5に調整するのが特に好ましく、更に好ましくは2.5〜4.5、より好ましくは2.8〜4.0である。pHが2未満であると、沈殿している凝集剤の再溶解が顕著となって回収する沈殿物が減少するとともに、アニオン界面活性剤の溶出が大きくなって回収率が低下する欠点があり、pHが5を超えると沈殿物中の凝集剤の割合が増えるため、酸処理後の固液分離装置の処理規模が大きくなるばかりでなく、後述する回収工程において、分離した沈殿物からアニオン界面活性剤を溶出させる際の沈殿物処理量の増加やアルカリpH調整用の処理剤の量が増えるため非効率的で好ましくない。このようにして濃縮工程で酸処理を行った後、固液分離処理を行い、分離された固形物(沈殿物)を後工程である精製工程へ移送する。   As an acid used for the acid treatment in the concentration step, an inorganic strong acid is generally preferable because of its large effect, and hydrochloric acid is preferable from the viewpoint of yield and separability of precipitates. The acidic pH is particularly preferably adjusted to 2 to 5, more preferably 2.5 to 4.5, and even more preferably 2.8 to 4.0. When the pH is less than 2, there is a drawback that the reconstitution of the precipitated flocculant becomes remarkable and the collected precipitate is reduced, and the elution of the anionic surfactant is increased and the recovery rate is lowered. When the pH exceeds 5, the ratio of the flocculant in the precipitate increases, so that not only the treatment scale of the solid-liquid separation apparatus after acid treatment increases, but also the anionic surface activity from the separated precipitate in the recovery step described later. This is inefficient and unpreferable because it increases the amount of precipitate treated when the agent is eluted and the amount of the alkali pH adjusting agent increases. Thus, after performing an acid treatment by a concentration process, a solid-liquid separation process is performed, and the isolate | separated solid substance (precipitate) is transferred to the refinement | purification process which is a post process.

[精製工程]
前記濃縮工程において酸処理したアニオン界面活性剤を含有する沈殿物は、精製工程において、不純物を除くための水洗を行って精製する。この水洗に使用する水は、純水あるいはイオン交換処理を施した脱イオン水が好ましい。水洗は、沈殿物を水に攪拌・分散させ、再度、固液分離処理を行う。この場合の固液分離手段としては、遠心分離機を用いることができる。水洗の目安としては、洗浄後の洗浄液、即ち分離液の導電率が100mS/m以下、好ましくは50mS/m以下、より好ましくは30mS/m以下になる迄行う。分離液の導電率が100mS/mを超えているということは、溶出しているアニオン界面活性剤以外のイオン性物質をも多く含むばかりでなく、非イオン性水溶性物質もそれに連れ含まれていることを意味し、従って、沈殿物中にそれらの不純物がそれだけ多く残存してことになる。これら沈殿物中の不純物は、回収される界面活性剤の再利用にとって不都合となる。前記分離液の導電率が前記の値になるまで水洗して沈殿物から不純物を出来るだけ除去することで、純度の高いアニオン界面活性剤の回収が可能となる。
[Purification process]
The precipitate containing the anionic surfactant acid-treated in the concentration step is purified by washing with water to remove impurities in the purification step. The water used for this washing is preferably pure water or deionized water subjected to ion exchange treatment. In washing with water, the precipitate is stirred and dispersed in water, and solid-liquid separation is performed again. In this case, a centrifuge can be used as the solid-liquid separation means. As a measure of washing with water, the washing liquid after washing, that is, the separation liquid is conducted until the conductivity becomes 100 mS / m or less, preferably 50 mS / m or less, more preferably 30 mS / m or less. The fact that the conductivity of the separation liquid exceeds 100 mS / m means that not only a large amount of ionic substances other than the eluted anionic surfactant but also non-ionic water-soluble substances are included. Therefore, so much of these impurities remain in the precipitate. Impurities in these precipitates are inconvenient for recycling the recovered surfactant. By washing with water until the conductivity of the separation liquid reaches the above value and removing impurities from the precipitate as much as possible, it is possible to recover the highly pure anionic surfactant.

[回収工程]
次に、精製を終え固液分離して回収した沈殿物は、アルカリ性水溶液や低級アルコール又はアセトン等の低沸点の有機溶剤を溶離液として混合攪拌し、溶離液中に沈殿物中のスラッジを分散させる一方、前記沈殿物中のアニオン界面活性剤を溶離液相に溶出させて沈殿物(スラッジ)と分離して回収する。添加する溶離液の量は、回収した沈殿物の含水率や回収工程で使用する装置の攪拌・混合能力や溶離液分離能力などにもよるが、沈殿物重量の0.5〜20倍量が好ましく、更に好ましくは0.8〜3倍量である。0.5倍量未満であると沈殿物分散液の流動性が低下するため攪拌・混合性が悪く、またpH調整も困難となり好ましくない。また、20倍量を超えると溶離液分離量が多くなるため分離処理能力の大きな装置が必要となり、また回収液中のアニオン界面活性剤の濃度が低下したり、更には回収液を貯蔵する容器も大きいものが必要となるので好ましくない。
[Recovery process]
Next, the precipitate recovered after solid-liquid separation after purification is mixed and stirred using an alkaline aqueous solution, a lower-boiling organic solvent such as lower alcohol or acetone as the eluent, and sludge in the precipitate is dispersed in the eluent. On the other hand, the anionic surfactant in the precipitate is eluted in the eluent phase and separated from the precipitate (sludge) and recovered. The amount of the eluent to be added depends on the water content of the collected precipitate, the stirring / mixing ability of the apparatus used in the collection step, the eluent separation ability, etc., but it is 0.5 to 20 times the weight of the precipitate. The amount is more preferably 0.8 to 3 times. If the amount is less than 0.5 times, the flowability of the precipitate dispersion is lowered, so that stirring and mixing properties are poor, and pH adjustment is difficult, which is not preferable. In addition, if the amount exceeds 20 times, the amount of separation of the eluent increases, so that a device having a large separation treatment capacity is required, the concentration of the anionic surfactant in the recovered liquid is reduced, and the container for storing the recovered liquid Is also not preferable because a larger one is required.

前記溶離液としては、処理費用が少なくて済むアルカリ性水溶液が好ましい。溶離系のアルカリ性は、水酸化ナトリウムや水酸化カリウムに代表されるアルカリ金属水酸化物、あるいは炭酸ナトリウム、四ホウ酸ナトリウム、リン酸三ナトリウム、ケイ酸ナトリウムに代表されるアルカリ金属のホウ酸塩、リン酸塩またはケイ酸塩、あるいは生石灰や消石灰等により調整することができるが、好ましくは水酸化ナトリウムである。溶離系の好ましいpHは8〜13であり、さらに好ましくは9〜12である。pHが8未満であると沈殿物からのアニオン界面活性剤の溶出量が少なく回収が非効率的となり、13を超えると溶離液中に溶出分離してきたアニオン界面活性剤が変質したり、凝集剤として使用したアルミニウムがアルミン酸塩となって液相に混入し不純物となるため好ましくない。   The eluent is preferably an alkaline aqueous solution that requires less processing costs. The alkalinity of the elution system is an alkali metal hydroxide represented by sodium hydroxide or potassium hydroxide, or an alkali metal borate represented by sodium carbonate, sodium tetraborate, trisodium phosphate or sodium silicate. , Phosphate or silicate, quick lime or slaked lime can be used, but sodium hydroxide is preferred. The preferred pH of the elution system is 8-13, more preferably 9-12. If the pH is less than 8, the elution amount of the anionic surfactant from the precipitate is small and the recovery becomes inefficient, and if it exceeds 13, the anionic surfactant that has been eluted and separated in the eluent is altered, or the flocculant The aluminum used as an aluminate is not preferable because it becomes an aluminate and is mixed into the liquid phase and becomes an impurity.

回収工程において、沈殿物から溶離液相にアニオン界面活性剤を溶出させる際の温度としては10℃以上が好ましい。特に、溶離液としてアルカリ性水溶液を用いる場合は、20〜90℃が好ましく、より好ましくは30〜80℃である。10℃未満であると、アルカリ性水溶液を用いる場合はアニオン界面活性剤の溶解度から高濃度の溶液として回収できず、また、溶出操作の攪拌において処理相全体の形状がホイップクリーム状となって大きな攪拌動力が必要になるばかりでなくpH調整が困難であり、その後の固液分離操作においても困難さを伴う欠点がある。一方、温度の上限は大気圧下では沸点でも特に支障無いが、高温になるとアニオン界面活性剤を含有する水溶液の着色が次第に進むため、90℃以下が好ましい。更に好ましくは80℃以下である。   In the recovery step, the temperature at which the anionic surfactant is eluted from the precipitate into the eluent phase is preferably 10 ° C. or higher. In particular, when an alkaline aqueous solution is used as the eluent, the temperature is preferably 20 to 90 ° C, more preferably 30 to 80 ° C. When the alkaline aqueous solution is used at a temperature lower than 10 ° C., it cannot be recovered as a high-concentration solution due to the solubility of the anionic surfactant, and the shape of the whole treatment phase becomes a whipped cream in stirring during the elution operation, resulting in large stirring. Not only does it require power, it is difficult to adjust the pH, and there are drawbacks associated with difficulties in the subsequent solid-liquid separation operation. On the other hand, the upper limit of the temperature is not particularly troubled even at the boiling point under atmospheric pressure, but it is preferably 90 ° C. or lower because coloring of the aqueous solution containing the anionic surfactant gradually proceeds at a high temperature. More preferably, it is 80 degrees C or less.

このようにして溶出したアニオン界面活性剤を含有する溶離液(分離液)は、そのまま目的の用途に再利用することができる。   The eluent (separate) containing the anionic surfactant thus eluted can be reused as it is for the intended use.

[再回収工程]
前記のようにして、アニオン界面活性剤を溶離系へ溶出して固液分離した後の沈殿物(スラッジ)には、まだ再利用可能なアニオン界面活性剤が含有されている。そこで、再回収工程では、前記アニオン界面活性剤を回収した後の沈殿物(スラッジ)に、再度、前記と同様の溶離液を加えて混合攪拌することで、最初の回収工程に比べて回収されるアニオン界面活性剤の濃度は薄くなるものの、スラッジ中に残存するアニオン界面活性剤を、添加した溶離液相に溶出分離して回収し、アニオン界面活性剤の回収率を向上させることができる。更には、再溶出して分離した沈殿物(スラッジ)からの再々溶出といった繰返し操作も可能である。このようにして再溶出したアニオン界面活性剤含有水溶液は、そのまま目的の用途に再利用できる。
[Re-collection process]
As described above, the precipitate (sludge) after elution of the anionic surfactant into the elution system and solid-liquid separation still contains a reusable anionic surfactant. Therefore, in the re-recovery step, the same eluent as above is added to the precipitate (sludge) after the anionic surfactant is recovered, and mixed and stirred, so that it is recovered compared to the first recovery step. Although the concentration of the anionic surfactant is reduced, the anionic surfactant remaining in the sludge is recovered by elution and separation in the added eluent phase, thereby improving the recovery rate of the anionic surfactant. Furthermore, repeated operations such as re-elution from the precipitate (sludge) separated by re-elution are also possible. The anionic surfactant-containing aqueous solution re-eluted in this manner can be reused as it is for the intended use.

更に、前記のようにしてアニオン界面活性剤を再回収した遊離液(アニオン界面活性剤含有水溶液)を、原水から回収するアニオン界面活性剤の濃度を上げるため、前記回収工程に環流し、精製工程にて水洗、固液分離して回収した沈殿物から前記回収工程においてアニオン界面活性剤を回収する際の溶離液として用いることもできる。   Furthermore, in order to increase the concentration of the anionic surfactant recovered from the raw water, the free liquid (anionic surfactant-containing aqueous solution) obtained by re-recovering the anionic surfactant as described above is recirculated to the recovery step and purified. It can also be used as an eluent when the anionic surfactant is recovered in the recovery step from the precipitate recovered by washing with water and solid-liquid separation.

また、上記のようなアニオン界面活性剤の回収方法を実施するための本発明に係るアニオン界面活性剤の回収装置は、原水である産業排水等のアニオン界面活性剤を含有する水溶液に凝集沈殿剤を添加混合して前記水溶液中のアニオン界面活性剤を凝集沈殿させる凝集反応槽と、前記凝集反応槽で調製されたフロックを沈降させて沈殿物を分離する固液分離槽と、前記固液分離槽により分離回収した沈殿物に酸を添加混合し、酸性下で前記沈殿物を水分散処理して沈殿物中のアニオン界面活性剤の含有率を高める酸処理槽と、前記水分散処理液を固液分離する第1の固液分離手段と、前記第1の固液分離手段により分離した沈殿物を水洗する精製槽と、前記精製槽で水洗した沈殿物と洗浄水とを分離する第2の固液分離手段と、前記第2の固液分離手段で分離した沈殿物に、溶離液を加えて混合攪拌してスラッジ分散液とするとともに該スラッジ分散液(溶出系)の溶離液相にアニオン界面活性剤を溶出させる溶出槽と、前記溶出槽にて溶出したアニオン界面活性剤を含有するスラッジ分散液を固液分離してアニオン界面活性剤水溶液を回収する第3の固液分離手段と、を備える。   The apparatus for recovering an anionic surfactant according to the present invention for carrying out the method for recovering an anionic surfactant as described above is a coagulating precipitant in an aqueous solution containing an anionic surfactant such as industrial waste water as raw water. An agglomeration reaction tank for aggregating and precipitating the anionic surfactant in the aqueous solution by adding and mixing, a solid-liquid separation tank for separating flocs prepared in the agglomeration reaction tank and separating the precipitate, and the solid-liquid separation An acid is added to and mixed with the precipitate separated and recovered by the tank, and the precipitate is water-dispersed under acidity to increase the content of the anionic surfactant in the precipitate, and the water-dispersed liquid is A first solid-liquid separation means for solid-liquid separation; a purification tank for washing the precipitate separated by the first solid-liquid separation means; a second for separating the precipitate washed with water and the washing water in the purification tank; Solid-liquid separation means and the second solid-liquid separation means. An eluent is added to the precipitate separated by the separation means, mixed and stirred to obtain a sludge dispersion, and an anionic surfactant is eluted in the eluent phase of the sludge dispersion (elution system), and the elution And a third solid-liquid separation means for recovering the anionic surfactant aqueous solution by solid-liquid separation of the sludge dispersion containing the anionic surfactant eluted in the tank.

前記本発明の回収装置の実施の形態について、産業排水等のアニオン界面活性剤を含有する水溶液からのアニオン界面活性剤回収の代表的フロー図である図2により説明する。図2において、符号1で示すものは原水となるアニオン界面活性剤含有水溶液、符号5で示すものは凝集反応槽であり、この凝集反応槽5において、原水1と酸性のアルミニウム系凝集剤3を混合し、更に水酸化ナトリウム水溶液2を添加混合して原水(アニオン界面活性剤含有水溶液)1のpHをほぼ中性にした後、ポリアクリルアミド系共重合体であるアニオン性ポリマー4を添加混合させてフロックを形成させる。この凝集反応槽5においては、前記した各薬剤の添加設備毎に槽を区分けしてもよい。符号7で示すものは、凝集反応槽5で調製された原水中のフロックを沈殿相として沈殿分離するための固液分離槽である。符号8は固液分離槽7で沈殿相として分離した沈殿物22と無機酸(例えば塩酸)9を添加混合して酸性に調整する酸処理槽である。符号12Aで示すものは、前記酸処理槽8で酸処理した後、固液分離を強制的に行う第1の固液分離手段としての遠心分離機(デカンター型)である。符号14で示すものは、前記酸処理後、遠心分離機12Aにより分離して回収した沈殿物25を脱イオン水13で洗浄する精製槽である。また、符号18で示すものは、精製槽14で水洗、精製し、第2の固液分離手段としての遠心分離機12Bにより分離した精製沈殿物28にアルカリ性水溶液等の溶離液を混合攪拌して、沈殿物28から目的とするアニオン界面活性剤を溶出させる溶出槽である。そして、符号20で示すものは、溶出槽18で溶出したアルカリ界面活性剤を含有するスラッジ分散液より第3の固液分離手段である遠心分離機12Cにより分離した分離液(アニオン界面活性剤水溶液)32を受け入れる容器であり、符号19で示すものは、前記アニオン界面活性剤の回収に際して発生する分離した沈殿物(スラッジ)31を受け入れる容器である。   The embodiment of the recovery device of the present invention will be described with reference to FIG. 2, which is a typical flow chart of recovering an anionic surfactant from an aqueous solution containing an anionic surfactant such as industrial wastewater. In FIG. 2, the reference numeral 1 indicates an anionic surfactant-containing aqueous solution to be raw water, and the reference numeral 5 indicates an agglomeration reaction tank. In this aggregation reaction tank 5, the raw water 1 and the acidic aluminum-based flocculant 3 are mixed. After mixing, the aqueous sodium hydroxide solution 2 is added and mixed to make the pH of the raw water (anionic surfactant-containing aqueous solution) 1 almost neutral, and then the anionic polymer 4 which is a polyacrylamide copolymer is added and mixed. To form a flock. In this agglomeration reaction tank 5, the tanks may be divided for each of the above-described drug addition facilities. What is shown by the code | symbol 7 is a solid-liquid separation tank for carrying out precipitation separation by using the floc in the raw water prepared by the aggregation reaction tank 5 as a precipitation phase. Reference numeral 8 denotes an acid treatment tank in which the precipitate 22 separated as a precipitation phase in the solid-liquid separation tank 7 and an inorganic acid (for example, hydrochloric acid) 9 are added and mixed to adjust the acidity. What is indicated by reference numeral 12A is a centrifuge (decanter type) as a first solid-liquid separation means for forcibly performing solid-liquid separation after acid treatment in the acid treatment tank 8. What is shown by the code | symbol 14 is the refinement | purification tank which wash | cleans the deposit 25 isolate | separated with the centrifuge 12A and collect | recovered with the deionized water 13 after the said acid treatment. Further, what is denoted by reference numeral 18 is a mixture obtained by washing and purifying with a purification tank 14 and purifying and mixing and stirring an eluent such as an alkaline aqueous solution into a purified precipitate 28 separated by a centrifugal separator 12B as a second solid-liquid separation means. , An elution tank for eluting the target anionic surfactant from the precipitate 28. And what is shown by the code | symbol 20 is the separation liquid (anionic surfactant aqueous solution) isolate | separated by the centrifuge 12C which is a 3rd solid-liquid separation means from the sludge dispersion liquid containing the alkaline surfactant eluted in the elution tank 18. ) And a container for receiving the separated precipitate (sludge) 31 generated during the recovery of the anionic surfactant.

以下、本発明に係るアニオン界面活性剤の回収方法及び回収装置の実施例を図面に基づき説明する。なお、実施例における測定値は、以下の方法で測定した。   Embodiments of an anionic surfactant recovery method and recovery apparatus according to the present invention will be described below with reference to the drawings. In addition, the measured value in an Example was measured with the following method.

アニオン界面活性剤濃度 : Epton法により求めた。尚、沈殿物中のアニオン界面活性剤濃度測定は、前処理としてスラッジに硫酸を添加してpH1に調整し、液温40℃でろ紙No.5C(東洋濾紙株式会社製)を通して濾過し、ろ液中のアニオン界面活性剤濃度を測定して求めた。
石油エーテル可溶分 : JIS K 3362 に準拠して測定した。
エタノール可溶分 : JIS K 3362 に準拠して測定した。
pH : ガラス電極式水素イオン濃度指示計 型式HM‐21 (東亜ディーケーケー株式会社)を用いて測定した。
導電率 : 導電率メーター ES‐51(株式会社堀場製作所製)を用いて測定した。
Anionic surfactant concentration: Determined by Epton method. The anionic surfactant concentration in the precipitate was measured by adding sulfuric acid to sludge as a pretreatment to adjust the pH to 1, and filtering through filter paper No. 5C (manufactured by Toyo Roshi Kaisha, Ltd.) at a liquid temperature of 40 ° C. The concentration of the anionic surfactant in the liquid was measured and determined.
Petroleum ether soluble content: Measured according to JIS K 3362.
Ethanol soluble matter: Measured according to JIS K 3362.
pH: Measured using a glass electrode type hydrogen ion concentration indicator Model HM-21 (Toa DKK Corporation).
Conductivity: Measured using a conductivity meter ES-51 (manufactured by Horiba, Ltd.).

モノマーであるアクリロニトリル、塩化ビニルおよびスチレンスルホン酸ナトリウムを主原料とし、過硫酸アンモニウム、硫酸第一鉄、二酸化イオウ及び亜硫酸水素ナトリウムからなるレドックス触媒を用い、ドデシル硫酸ナトリウムを乳化剤として乳化重合して得られたラテックスより、塩化ナトリウムで塩析を行って重合体を分離回収し、更にその重合体を水洗した。ラテックスを塩析処理して重合体を分離した排液および塩析後分離回収した重合体の水洗排液を一括してまとめ、pHを10に予備調整し、アニオン界面活性剤含有水溶液である原水とした。因みに、この原水にはドデシル硫酸ナトリウム750ppmが含まれていた。   It is obtained by emulsion polymerization using monomers acrylonitrile, vinyl chloride and sodium styrenesulfonate as main raw materials, using a redox catalyst consisting of ammonium persulfate, ferrous sulfate, sulfur dioxide and sodium hydrogen sulfite and using sodium dodecyl sulfate as an emulsifier. The latex was salted out with sodium chloride to separate and recover the polymer, and the polymer was washed with water. The waste water from which the latex was salted out to separate the polymer and the water drained from the polymer that was separated and recovered after salting were collected together, the pH was preliminarily adjusted to 10, and the raw water as an aqueous solution containing an anionic surfactant It was. Incidentally, this raw water contained 750 ppm of sodium dodecyl sulfate.

この原水から、図1に示す回収フローに基づき、ドデシル硫酸ナトリウムを回収した。まず、攪拌機6Aを備えた凝集反応槽5で原水1に塩化アルミニウム系凝集剤3(商品名;PAC、浅田化学工業(株)製)をアルミニウム換算で原水に対し130ppmとなるように添加混合し、更に水酸化ナトリウム2を添加混合してpHを7に調整した後、アクリルアミド系ポリマーからなるアニオン性ポリマー4(商品名;クリフロックPA−331、栗田工業(株)製)を原水に対して2ppmとなるように添加混合してフロックを形成させた。この処理水21を固液分離槽7に送液し、上澄液23と沈降した沈殿物22に分離した。上澄液23はストック容器11に回収し、沈殿物9,600Lを、攪拌機6B及びpH計10Aを備えた酸処理槽8へ移した。因みに、この沈殿物22をサンプリングしてドデシル硫酸ナトリウム濃度を測定したところ8,000ppmであった。酸処理槽8にて、沈殿物22に塩酸9を加えてpH3.4に調整・分散した分散液24を、1,500L/Hrでデカンター型遠心分離機12A(Z1LLCE‐V‐BS2型、タナベウィルテック株式会社製)を用いて4,400rpm(遠心効果2,500)で固液分離を行った。得られた分離沈殿物25は、ドデシル硫酸ナトリウム濃度10%で収量は760kgであった。酸処理分離液26は容器35に回収し、分離沈殿物25の全量を、攪拌機6Cを備えた精製槽14に移し、脱イオン水13を加えて攪拌・水洗を行い、その沈殿物分散液27を、前記12Aと同タイプのデカンター型遠心分離機12Bで前記と同条件の遠心効果2500で固形分を分離した。分離液29はストック容器11に回収し、水洗沈殿物28aは、精製槽14に戻し、分離液29の導電率が20mS/m以下になるまで、再度、脱イオン水を加えて前記と同様の攪拌・水洗操作を繰返した。分離液29の導電率が20mS/mに下がったところで、回収した水洗沈殿物28aを精製沈殿物28として攪拌機6D、pH計10B及び加温器17Aを備えた溶出槽18に移した。この時の精製沈殿物28は、ドデシル硫酸ナトリウム濃度24%、収量310kgであった。溶出槽18に脱イオン水13を加え、更に水酸化ナトリウム2を加えてpH10に調整し620Lとした後、加温器17Aにより45℃に加温して攪拌・分散を行った。次いで、この分散液30を前記と同タイプのデカンター型遠心分離12Cで前記と同条件の遠心効果2500で固形分を分離し、分離沈殿物(スラッジ)31は分離沈殿物受け入れ容器19に回収し、分離液32は分離液受け入れ容器(タンク)20に回収した。回収された分離液32(アニオン界面活性剤含有水溶液)の量は390Lであった。回収した分離液に硫酸15を添加してpH7に調整した後のドデシル硫酸ナトリウムの濃度を測定したところ13%であった。したがって、原水1におけるアニオン界面活性剤濃度に比べて、約170倍に濃縮された状態でアニオン界面活性剤を回収できた。また、回収されたドデシル硫酸ナトリウムを含有する分離液は、石油エーテル可溶分0.25%、アルコール不溶分0.40%であり、キャピラリー電機泳動で測定して求めた塩素イオンは100ppm以下、また硫酸イオンの含有量は400ppmであった。なお、本キャピラリー電機泳動による測定法では定量下限はそれぞれの100ppmである。更に、乾式灰化−ICP発光分析によれば、アルミニウム含有量は120ppm、鉄含有量は0.3ppmであった。なお、乾式灰化−ICP発光分析によるこの時の定量下限はそれぞれの0.1ppmである。   From this raw water, sodium dodecyl sulfate was recovered based on the recovery flow shown in FIG. First, in a flocculation reaction tank 5 equipped with a stirrer 6A, an aluminum chloride-based flocculant 3 (trade name; PAC, manufactured by Asada Chemical Industry Co., Ltd.) is added to raw water 1 and mixed so as to be 130 ppm relative to the raw water in terms of aluminum. Further, sodium hydroxide 2 was added and mixed to adjust the pH to 7, and then an anionic polymer 4 composed of an acrylamide polymer (trade name; Cliff Rock PA-331, manufactured by Kurita Kogyo Co., Ltd.) was added to the raw water. Flock was formed by adding and mixing to 2 ppm. This treated water 21 was sent to the solid-liquid separation tank 7 and separated into a supernatant 23 and a sedimented sediment 22. The supernatant liquid 23 was collected in the stock container 11 and the precipitate 9,600 L was transferred to the acid treatment tank 8 equipped with the stirrer 6B and the pH meter 10A. Incidentally, when this precipitate 22 was sampled and the sodium dodecyl sulfate concentration was measured, it was 8,000 ppm. In the acid treatment tank 8, the dispersion liquid 24 adjusted to pH 3.4 by adding hydrochloric acid 9 to the precipitate 22 was dispersed and the decanter-type centrifuge 12A (Z1LLCE-V-BS2 type, Tanabe) at 1,500 L / Hr. Solid-liquid separation was performed at 4,400 rpm (centrifugal effect 2,500) using Wiltec Co., Ltd. The obtained separated precipitate 25 had a sodium dodecyl sulfate concentration of 10% and a yield of 760 kg. The acid-treated separation liquid 26 is recovered in a container 35, and the entire amount of the separated precipitate 25 is transferred to a purification tank 14 equipped with a stirrer 6C, and deionized water 13 is added to the mixture and stirred and washed with water. The solid content was separated with a decanter centrifuge 12B of the same type as that of 12A with a centrifugal effect 2500 under the same conditions as described above. The separation liquid 29 is recovered in the stock container 11, and the water-washed precipitate 28a is returned to the purification tank 14, and deionized water is added again until the conductivity of the separation liquid 29 becomes 20 mS / m or less. Stirring and washing operations were repeated. When the conductivity of the separation liquid 29 decreased to 20 mS / m, the recovered water-washed precipitate 28a was transferred as a purified precipitate 28 to an elution tank 18 equipped with a stirrer 6D, a pH meter 10B, and a heater 17A. The purified precipitate 28 at this time had a sodium dodecyl sulfate concentration of 24% and a yield of 310 kg. Deionized water 13 was added to the elution tank 18, sodium hydroxide 2 was further added to adjust the pH to 10 to 620 L, and the mixture was heated to 45 ° C. with a heater 17A and stirred and dispersed. Next, the dispersion 30 is separated into solids by a decanter centrifuge 12C of the same type as described above and the centrifugal effect 2500 under the same conditions as described above, and the separated sediment (sludge) 31 is recovered in the separated sediment receiving container 19. The separation liquid 32 was recovered in a separation liquid receiving container (tank) 20. The amount of the collected separation liquid 32 (anionic surfactant-containing aqueous solution) was 390 L. The concentration of sodium dodecyl sulfate after the sulfuric acid 15 was adjusted to pH 7 by adding sulfuric acid 15 to the recovered separated liquid was 13%. Therefore, the anionic surfactant was recovered in a state of being concentrated about 170 times the concentration of the anionic surfactant in the raw water 1. The recovered liquid containing sodium dodecyl sulfate has a petroleum ether soluble content of 0.25% and an alcohol insoluble content of 0.40%, and the chloride ion determined by capillary electrophoresis is 100 ppm or less. The sulfate ion content was 400 ppm. In the measurement method by capillary electrophoresis, the lower limit of quantification is 100 ppm for each. Furthermore, according to dry ashing-ICP emission analysis, the aluminum content was 120 ppm and the iron content was 0.3 ppm. The lower limit of quantification at this time by dry ashing-ICP emission analysis is 0.1 ppm for each.

前記のようにして回収したドデシル硫酸ナトリウム含有の分離液を使用して、アクリロニトリル、塩化ビニルおよびスチレンスルホン酸ナトリウムからなるモノマー混合物の乳化重合を行って共重合したところ、元来のドデシル硫酸ナトリウムによる乳化重合で得られた共重合体と、共重合体ラテックスの外観、共重合組成比、重合度の指標の1つを示すηsp、共重合体樹脂白度、共重合体のアセトン溶解性並びに溶液粘度等の品質に実質的な差は認められず、再利用の可能性が確認できた。   Using the sodium dodecyl sulfate-containing separation liquid recovered as described above, emulsion polymerization of a monomer mixture consisting of acrylonitrile, vinyl chloride and sodium styrenesulfonate was carried out for copolymerization. Copolymer obtained by emulsion polymerization, appearance of copolymer latex, copolymer composition ratio, ηsp indicating one of the indicators of polymerization degree, copolymer resin whiteness, acetone solubility of copolymer and solution There was no substantial difference in quality such as viscosity, and the possibility of reuse was confirmed.

図3に示すアニオン界面活性剤回収方法のフローに基づき、アニオン界面活性剤の回収を行った。図3に示すフローでは、図2に示した実施例1のフローにおいて、溶出槽18の分散液30を遠心分離機12Cで分離した沈殿物31の受け入れ先として、分離沈殿物受入れ容器19の他に、攪拌機6E、pH計10C及び加温器17Bを備えた再溶出槽33を設けている。更に、前記再溶出槽33にて溶出したアニオン界面活性剤を含有するスラッジ分散液34を固液分離してアニオン界面活性剤を回収する第4の固液分離手段として、前記第3の固液分離手段であるデカンター型遠心分離機12Cを用いるように構成している。   Based on the flow of the anionic surfactant recovery method shown in FIG. 3, the anionic surfactant was recovered. In the flow shown in FIG. 3, in the flow of Example 1 shown in FIG. 2, in addition to the separated sediment receiving container 19, the dispersion liquid 30 in the elution tank 18 is received as the precipitate 31 separated by the centrifuge 12 </ b> C. In addition, a re-elution tank 33 equipped with a stirrer 6E, a pH meter 10C and a heater 17B is provided. Further, as the fourth solid-liquid separation means for recovering the anionic surfactant by solid-liquid separation of the sludge dispersion 34 containing the anionic surfactant eluted in the re-elution tank 33, the third solid-liquid separation means is used. A decanter type centrifuge 12C, which is a separation means, is used.

各プロセスを実施例1同様の条件で行い、凝集反応槽5で原水1に塩化アルミニウム系凝集剤3、水酸化ナトリウム2およびアクリルアミド誘導体からなるアニオン性ポリマー4を添加混合してフロックを形成させて処理し、固液分離槽7で凝集沈殿させ、沈降した沈殿物22を酸処理槽8で酸処理後、精製槽14で精製し、溶出槽18で調製された分散液30を遠心分離機12Cにより遠心分離して得られた280kgの沈殿物31を図3に示す再溶出槽33に入れ、脱イオン水13を加えて480Lとし、加温器17Bにより50℃に加温し攪拌・分散を行った。この分散液34をデカンター型遠心分離12Cへ送り、前記と同様の遠心効果2500で固形分を分離し、分離液16を260L得た。この分離液16中のドデシル硫酸ナトリウムの濃度を測定したところ6.7%であった。   Each process is performed under the same conditions as in Example 1, and an anionic polymer 4 composed of an aluminum chloride-based flocculant 3, sodium hydroxide 2 and an acrylamide derivative is added to and mixed with raw water 1 in a flocculation reaction tank 5 to form a floc. After the treatment, the precipitate 22 is agglomerated and precipitated in the solid-liquid separation tank 7, and the precipitated precipitate 22 is acid-treated in the acid treatment tank 8, and then purified in the purification tank 14, and the dispersion 30 prepared in the elution tank 18 is centrifuged 12C. 280 kg of the precipitate 31 obtained by centrifugal separation is put into a re-elution tank 33 shown in FIG. 3, and deionized water 13 is added to make 480 L, and the mixture is heated to 50 ° C. with a heater 17B, and stirred and dispersed. went. This dispersion liquid 34 was sent to the decanter type centrifugal separator 12C, and the solid content was separated by the same centrifugal effect 2500 as described above to obtain 260 L of the separated liquid 16. The concentration of sodium dodecyl sulfate in the separated liquid 16 was measured and found to be 6.7%.

次に、各プロセスを実施例1同様の条件で行い、凝集反応槽5にて、原水1に塩化アルミニウム系凝集剤3、水酸化ナトリウム2およびアクリルアミド誘導体からなるアニオン性ポリマー4を添加混合してフロックを形成させて処理し、固液分離槽7で凝集沈殿させ、沈降した沈殿物22を酸処理槽8で酸処理後、精製槽14で精製して沈殿物28を300kgを得、これに溶出槽18で前記分離液16を全量加え、更に脱イオン水13を加えて水酸化ナトリウム2でpH10に調整し、沈殿物の分散液620Lを作成した。この沈殿物分散液37をデカンター型遠心分離12Cに送り、遠心効果2500で固液分離し、分離液36を380L得た。この分離液36を硫酸15でpH7に調整後、ドデシル硫酸ナトリウムの濃度を測定したところ18%であった。これは、原水1中のドデシル硫酸ナトリウム濃度の約240倍に濃縮されていることになり、再溶出処理で得られた分離液を利用することで、更に高濃度のドデシル硫酸ナトリウム水溶液が回収された。   Next, each process is performed under the same conditions as in Example 1. In an agglomeration reaction tank 5, an anionic polymer 4 composed of an aluminum chloride-based flocculant 3, sodium hydroxide 2 and an acrylamide derivative is added to and mixed with raw water 1. The flocs are formed and processed, and are agglomerated and precipitated in the solid-liquid separation tank 7. The precipitated precipitate 22 is acid-treated in the acid treatment tank 8 and then purified in the purification tank 14 to obtain 300 kg of the precipitate 28. In the elution tank 18, the entire amount of the separation liquid 16 was added, deionized water 13 was further added, and the pH was adjusted to 10 with sodium hydroxide 2 to prepare a precipitate dispersion 620L. This precipitate dispersion liquid 37 was sent to the decanter-type centrifuge 12C and subjected to solid-liquid separation with a centrifugal effect 2500 to obtain 380 L of the separated liquid 36. After adjusting this separated liquid 36 to pH 7 with sulfuric acid 15, the concentration of sodium dodecyl sulfate was measured and found to be 18%. This means that the concentration of sodium dodecyl sulfate in raw water 1 is approximately 240 times the concentration, and by using the separation liquid obtained by the re-elution treatment, a higher concentration sodium dodecyl sulfate aqueous solution is recovered. It was.

本発明により、排水中のアニオン界面活性剤を、実用性に満足できる純度を有した高濃度のアニオン界面活性剤含有水溶液として回収することが可能となる結果、回収したアニオン界面活性剤を、当初目的に利用していた分野への再利用だけでなく、他の用途への利用も可能となる。また、回収したアニオン界面活性剤の再利用が期待できる結果、アニオン界面活性剤の新規追加量が減少できるとともに、産業排水中のアニオン界面活性剤量を減少させることが可能となることから、これまで生物学的処理が困難なため使用を控えていた分岐型アルキル基含有アニオン界面活性剤の利用も可能になる。更には、アニオン界面活性剤に関わる産業廃棄物の減少が図れる結果、産業排水処理設備や排水の生物学的処理あるいは化学的処理の負荷の減少が期待でき、関連設備の小型化が可能となる。   According to the present invention, it becomes possible to recover the anionic surfactant in the waste water as a highly concentrated anionic surfactant-containing aqueous solution having a purity satisfying practicality. It can be used not only for reuse in the field used for the purpose but also for other purposes. In addition, as a result of the expected reuse of the recovered anionic surfactant, the amount of newly added anionic surfactant can be reduced and the amount of anionic surfactant in industrial wastewater can be reduced. It is also possible to use a branched alkyl group-containing anionic surfactant which has been refrained from use due to the difficulty of biological treatment. Furthermore, as a result of the reduction of industrial waste related to anionic surfactants, it can be expected to reduce the burden of biological treatment or chemical treatment of industrial wastewater treatment facilities and wastewater, and miniaturization of related facilities becomes possible. .

本発明に係るアニオン界面活性剤の回収方法の工程説明図である。It is process explanatory drawing of the collection | recovery method of the anionic surfactant which concerns on this invention. 本発明の実施例1のアニオン界面活性剤回収方法のフロー図である。It is a flowchart of the anionic surfactant collection method of Example 1 of this invention. 本発明の実施例2のアニオン界面活性剤回収方法のフロー図である。It is a flowchart of the anionic surfactant collection method of Example 2 of this invention.

符号の説明Explanation of symbols

1 原水(アニオン界面活性剤含有水溶液)
2 水酸化ナトリウム
3 アルミニウム系凝集剤
4 アニオン性ポリマー
5 凝集反応槽
6A〜6E 攪拌機
7 固液分離槽
8 酸処理槽
9 無機酸(塩酸)
10A〜10C pH計
11 ストック容器
12A〜12C デカンター型遠心分離機
13 脱イオン水
14 精製槽
15 硫酸
16 (再溶出槽分散液由来)分離液
17A、B 加温器
18 溶出槽
19 (溶出槽分散液由来)分離沈殿物受入れ容器
20 (溶出槽分散液由来)分離液受入れ容器
21 (凝集反応処理)処理水
22 沈殿物
23 上澄液
24 (酸処理槽由来)分散液
25 (酸処理槽分散液由来)分離沈殿物
26 (酸処理槽分散液由来)分離液
27 (精製槽由来)沈殿物分散液
28 (精製槽分散液由来)精製沈殿物
28a (精製槽分散液由来)水洗沈殿物
29 (精製槽分散液由来)分離液
30 (溶出槽由来)分散液
31 (溶出槽分散液由来)分離沈殿物(スラッジ)
32 (溶出槽分散液由来)分離液
33 再溶出槽
34 (再溶出槽由来)分散液
35 酸処理分離液容器
36 分離液16を溶離液の一部として用いた溶出槽分散液由来の分離液
37 分離液16を溶離液の一部として用いた溶出槽分散液
1 Raw water (anionic surfactant-containing aqueous solution)
2 Sodium hydroxide 3 Aluminum-based flocculant 4 Anionic polymer 5 Aggregation reaction tank 6A-6E Stirrer 7 Solid-liquid separation tank 8 Acid treatment tank 9 Inorganic acid (hydrochloric acid)
10A to 10C pH meter 11 Stock container 12A to 12C Decanter centrifuge 13 Deionized water 14 Purification tank 15 Sulfuric acid 16 (derived from re-elution tank dispersion) Separation liquid 17A, B Heater 18 Elution tank 19 (Elution tank dispersion) Liquid-derived) Separated sediment receiving container 20 (Derived from elution tank dispersion) Separated liquid receiving container 21 (Aggregation reaction treatment) Treated water 22 Precipitate 23 Supernatant liquid 24 (Derived from acid treatment tank) Dispersion liquid 25 (Acid treatment tank dispersed) Liquid-derived) Separated precipitate 26 (Derived from acid treatment tank dispersion) Separated liquid 27 (Derived from purification tank) Precipitate dispersion 28 (Derived from purified tank dispersion) Purified precipitate 28a (Derived from purified tank dispersion) Washed precipitate 29 (Derived from refinery tank dispersion) Separation liquid 30 (Derived from elution tank) Dispersion liquid 31 (Derived from elution tank dispersion) Separated precipitate (sludge)
32 (Elution tank derived) Separation liquid 33 Re-elution tank 34 (Re-elution tank derived) Dispersion liquid 35 Acid-treated separation liquid container 36 Separation liquid derived from the elution tank dispersion using the separation liquid 16 as a part of the elution liquid 37 Elution tank dispersion using separation liquid 16 as part of eluent

Claims (11)

アニオン界面活性剤を含有する水溶液からアニオン界面活性剤を回収する方法であって、
(1)前記水溶液に凝集沈殿剤を添加混合して水溶液中のアニオン界面活性剤を凝集沈殿させた後、沈殿物を分離回収する分離工程と、
(2)前記分離回収した沈殿物を酸性下で水分散処理して沈殿物中のアニオン界面活性剤の含有率を高め濃縮する濃縮工程と、
(3)前記濃縮した沈殿物を水洗する精製工程と、
(4)前記水洗した沈殿物に、溶離液を加えて混合攪拌し、溶離液相にアニオン界面活性剤を溶出させて回収する回収工程と、
からなることを特徴とするアニオン界面活性剤の回収方法。
A method of recovering an anionic surfactant from an aqueous solution containing an anionic surfactant,
(1) A separation step of adding and mixing a coagulating precipitant to the aqueous solution to coagulate and precipitate the anionic surfactant in the aqueous solution, and separating and recovering the precipitate;
(2) a concentration step in which the separated and collected precipitate is subjected to an aqueous dispersion treatment in an acidic manner to increase the concentration of the anionic surfactant in the precipitate and to concentrate,
(3) a purification step of washing the concentrated precipitate with water;
(4) a recovery step of adding an eluent to the washed precipitate, mixing and stirring, and eluting and recovering the anionic surfactant in the eluent phase;
A method for recovering an anionic surfactant, comprising:
前記酸性下の水分散処理に際し、塩酸でpH処理を行うことを特徴とする請求項1記載のアニオン界面活性剤の回収方法。   2. The method for recovering an anionic surfactant according to claim 1, wherein pH treatment with hydrochloric acid is performed in the acidic water dispersion treatment. 前記凝集沈殿剤がアルミニウム系凝集剤である請求項1または請求項2記載のアニオン界面活性剤の回収方法。   The method for recovering an anionic surfactant according to claim 1 or 2, wherein the coagulating precipitant is an aluminum coagulant. 前記精製工程が、前記濃縮工程でアニオン界面活性剤の含有率を高めて濃縮した後、固液分離した沈殿物を、洗浄後の洗浄水の導電率が100mS/m以下になるまで脱イオン水で洗浄することを特徴とする請求項1〜3のいずれかに記載のアニオン界面活性剤の回収方法。   After the purification step is concentrated by increasing the content of the anionic surfactant in the concentration step, the solid-liquid separated precipitate is deionized water until the conductivity of the wash water after washing becomes 100 mS / m or less. The method for recovering an anionic surfactant according to any one of claims 1 to 3, wherein the anionic surfactant is washed with water. 前記回収工程の溶離液としてアルカリ性水溶液を用いることを特徴とする請求項1〜4のいずれかに記載のアニオン界面活性剤の回収方法。   The method for recovering an anionic surfactant according to any one of claims 1 to 4, wherein an alkaline aqueous solution is used as an eluent in the recovery step. 前記回収工程でアニオン界面活性剤を溶離液相に溶出し、固液分離して回収した後の沈殿物に溶離液を加えて混合攪拌し、溶離液相にアニオン界面活性剤を溶出させて回収する再回収工程を設けてなる請求項1〜5のいずれかに記載のアニオン界面活性剤の回収方法。   In the recovery step, the anionic surfactant is eluted in the eluent phase, and after solid-liquid separation and recovery, the eluent is added to the precipitate, mixed and stirred, and the anionic surfactant is eluted in the eluent phase and recovered. The method for recovering an anionic surfactant according to any one of claims 1 to 5, further comprising a re-recovery step. 前記再回収工程において沈殿物中からアニオン界面活性剤を溶出させて回収したアニオン界面活性剤を含有する分離液を、前記回収工程に環流し、精製工程で水洗後の沈殿物からアニオン界面活性剤を溶出させる溶離液として用いることを特徴とする請求項6記載のアニオン界面活性剤の回収方法。   The separation liquid containing the anionic surfactant recovered by eluting the anionic surfactant from the precipitate in the re-recovery step is circulated to the recovery step, and the anionic surfactant is removed from the precipitate after washing in the purification step. The method for recovering an anionic surfactant according to claim 6, wherein the anionic surfactant is used as an eluent for eluting. アニオン界面活性剤を含有する水溶液に凝集沈殿剤を添加混合して前記水溶液中のアニオン界面活性剤を凝集沈殿させる凝集反応槽と、
前記凝集反応槽で調製された沈殿物を分離する固液分離槽と、
前記固液分離槽により分離回収した沈殿物に酸を添加混合し、酸性下で前記沈殿物を水分散処理して沈殿物中のアニオン界面活性剤の含有率を高める酸処理槽と、
前記水分散処理液を固液分離する第1の固液分離手段と、
前記第1の固液分離手段により分離した沈殿物を水洗する精製槽と、
前記精製槽で水洗した沈殿物と洗浄水とを分離する第2の固液分離手段と、
前記第2の固液分離手段で分離した沈殿物に、溶離液を加えて混合攪拌してスラッジ分散液とするとともに該スラッジ分散液の溶離液相にアニオン界面活性剤を溶出させる溶出槽と、
前記溶出槽にて溶出したアニオン界面活性剤を含有するスラッジ分散液を固液分離してアニオン界面活性剤水溶液を回収する第3の固液分離手段と、
を備えることを特徴とする、アニオン界面活性剤含有水溶液からのアニオン界面活性剤の回収装置。
An agglomeration reaction tank for aggregating and precipitating the anionic surfactant in the aqueous solution by adding and aggregating the aggregating precipitation agent to the aqueous solution containing the anionic surfactant;
A solid-liquid separation tank for separating the precipitate prepared in the aggregation reaction tank;
An acid treatment tank for adding an acid to the precipitate separated and recovered by the solid-liquid separation tank and increasing the content of the anionic surfactant in the precipitate by subjecting the precipitate to water dispersion treatment under acidity;
First solid-liquid separation means for solid-liquid separation of the aqueous dispersion treatment liquid;
A purification tank for washing the precipitate separated by the first solid-liquid separation means,
A second solid-liquid separation means for separating the precipitate washed with water in the purification tank and the washing water;
An elution tank for adding an eluent to the precipitate separated by the second solid-liquid separation means, mixing and stirring to form a sludge dispersion, and eluting an anionic surfactant in the eluent phase of the sludge dispersion;
A third solid-liquid separation means for solid-liquid separation of the sludge dispersion containing the anionic surfactant eluted in the elution tank and recovering the aqueous anionic surfactant solution;
An apparatus for recovering an anionic surfactant from an aqueous solution containing an anionic surfactant, comprising:
前記溶出槽でアニオン界面活性剤を溶離液相に溶出し、固液分離して回収した後の沈殿物に溶離液を加えて混合攪拌してスラッジ分散液とするとともに溶離液相にアニオン界面活性剤を溶出させる再溶出槽と、前記再溶出槽にて溶出したアニオン界面活性剤を含有するスラッジ分散液を固液分離してアニオン界面活性剤を回収する第4の固液分離手段とを備える請求項8に記載のアニオン界面活性剤の回収装置。   In the elution tank, the anionic surfactant is eluted in the eluent phase, and after adding the eluent to the precipitate after solid-liquid separation and recovery, the mixture is stirred to form a sludge dispersion and an anionic surfactant in the eluent phase. A re-elution tank for eluting the agent, and a fourth solid-liquid separation means for recovering the anionic surfactant by solid-liquid separation of the sludge dispersion containing the anionic surfactant eluted in the re-elution tank. The anionic surfactant recovery device according to claim 8. 前記再溶出槽において沈殿物中からアニオン界面活性剤を溶出させ固液分離して回収したアニオン界面活性剤水溶液を、前記溶出槽に環流し、溶離液として用いるようにした請求項9記載のアニオン界面活性剤の回収装置。   The anion according to claim 9, wherein the anion surfactant aqueous solution recovered by solid-liquid separation by eluting the anionic surfactant from the precipitate in the re-elution tank is recirculated to the elution tank and used as an eluent. Surfactant recovery device. 前記第1〜第3の固液分離手段として遠心分離機を用いてなる請求項8又は9に記載のアニオン界面活性剤の回収装置。
The anionic surfactant recovery apparatus according to claim 8 or 9, wherein a centrifuge is used as the first to third solid-liquid separation means.
JP2004020622A 2004-01-29 2004-01-29 Method and apparatus for recovering anion surfactant Pending JP2005211776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004020622A JP2005211776A (en) 2004-01-29 2004-01-29 Method and apparatus for recovering anion surfactant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020622A JP2005211776A (en) 2004-01-29 2004-01-29 Method and apparatus for recovering anion surfactant

Publications (1)

Publication Number Publication Date
JP2005211776A true JP2005211776A (en) 2005-08-11

Family

ID=34904486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020622A Pending JP2005211776A (en) 2004-01-29 2004-01-29 Method and apparatus for recovering anion surfactant

Country Status (1)

Country Link
JP (1) JP2005211776A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107902828A (en) * 2017-11-21 2018-04-13 四川理工学院 The recovery method of Coal Gas Washing Cycling Water nonionic surfactant
CN115612572A (en) * 2022-07-14 2023-01-17 南京华狮新材料有限公司 Application of amino acid surfactant in production of separated water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107902828A (en) * 2017-11-21 2018-04-13 四川理工学院 The recovery method of Coal Gas Washing Cycling Water nonionic surfactant
CN115612572A (en) * 2022-07-14 2023-01-17 南京华狮新材料有限公司 Application of amino acid surfactant in production of separated water

Similar Documents

Publication Publication Date Title
JP4183741B1 (en) Adsorption / coagulation wastewater treatment agent
JP4791936B2 (en) Dyeing wastewater treatment method
US4334999A (en) Process for the extraction of metal ions
JP2000084568A (en) Treatment of resin-containing waste water
CN109987742A (en) Nickel hydrometallurgy process without drainage of waste water containing heavy metal, oil and high concentration salt-mixture
WO2013128711A1 (en) Flocculant, flocculation method, and water treatment apparatus
WO2005021639A1 (en) Treatment of aqueous compositions containing contaminants
JP2005211776A (en) Method and apparatus for recovering anion surfactant
JP2008264764A (en) Method for treating oil-containing waste water
JP3496773B2 (en) Advanced treatment method and apparatus for organic wastewater
JP2019198806A (en) Water treatment method, and water treatment device
JP3262015B2 (en) Water treatment method
WO2007131278A1 (en) Process for treatment of water to reduce fluoride levels
KR101689960B1 (en) Process of preparation for recycling coagulant based on aluminium in waste purification sludge
JP6162375B2 (en) Method for recovering phosphoric acid from waste
JP4347096B2 (en) Fluorine removal apparatus and method for removing fluorine in waste water
JP2007152344A (en) Powder muddy water treatment agent, muddy water dehydrating method, and muddy water volume-reduction device
JP3939970B2 (en) Coal storage wastewater treatment method
JP2003112004A (en) Flocculation method
US10662103B2 (en) Treatment of sludges and flocculants using insoluble mineral colloidal suspensions
JP4016564B2 (en) Treatment method for fluorine-containing wastewater
JP2021171689A (en) Water treatment method, and water treatment device
JP4336882B2 (en) Mining wastewater treatment method using strong alkaline water.
JP2022061315A (en) Waste water treatment method and wastewater treatment apparatus
SU941310A1 (en) Process for treating effluents formed in cleaning metal surfaces from suspended substances