JP2005210990A - Method for forming biological scaffold - Google Patents

Method for forming biological scaffold Download PDF

Info

Publication number
JP2005210990A
JP2005210990A JP2004023486A JP2004023486A JP2005210990A JP 2005210990 A JP2005210990 A JP 2005210990A JP 2004023486 A JP2004023486 A JP 2004023486A JP 2004023486 A JP2004023486 A JP 2004023486A JP 2005210990 A JP2005210990 A JP 2005210990A
Authority
JP
Japan
Prior art keywords
forming
solution
biological substrate
polymer
specific temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004023486A
Other languages
Japanese (ja)
Inventor
Kungi Rai
君義 頼
Meika Ka
明樺 何
Haigei Kaku
佩芸 郭
Gakushin Sha
學真 謝
Shiyo Sha
子陽 謝
Daimei O
大銘 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chung Yuan Christian University
Original Assignee
Chung Yuan Christian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Yuan Christian University filed Critical Chung Yuan Christian University
Priority to JP2004023486A priority Critical patent/JP2005210990A/en
Publication of JP2005210990A publication Critical patent/JP2005210990A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a new biological scaffold, meeting requirements of rapid production, energy saving and a low price to overcome the defects of a conventional method. <P>SOLUTION: Different macromolecular materials or different kinds of immobilization agents according to the requirement of application are provided to carry out an immobilization step under a low-temperature condition. The method comprises a dissolving step, a temperature-regulating step, a freezing step and the immobilization step. The immobilization step further includes one of a solid-liquid exchanging step, an acid and alkali-neutralizing step, and a gelatinizing step. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は一種の生物基材の形成方法に係り、特に、低温条件下で固定工程を行なう生物基材の形成方法に関する。   The present invention relates to a method for forming a biological substrate, and more particularly to a method for forming a biological substrate in which a fixing step is performed under low temperature conditions.

組織工程は近年勃興発展した領域の一つであり、著名な応用方式の一つは、細胞を生分解性(bio−degradable)の材料内に植え込み、細胞が生長して機能を有する新組織或いは器官のひな型を形成した後に、さらに人体内に植え込む、というもので、組織工程はすでに器官機能の欠陥或いは組織壊死を治療する方法として注目を集めている。組織工程の研究に関しては、大きく三つの部分に分けられる。即ち、細胞(cells)、生物相容性を具えた基材(scaffolds,生物基材と称する)と細胞を刺激して特定行為を表現させる信号(signals)であり、三者の間は相互に影響し、並びに共同で組織の分化と表現を調節する。そのうち、生物基材が組織工程中で果たす役割は以下を含む。
1.細胞或いは初期培養された組織を身体の特定部位に運送し、培養した細胞或いは組織が免疫作用或いは身体中のその他の物理作用により破壊されるのを防止する。
2.新たに生成された組織或いは器官に要求に符合する立体形態を具備させると共に、それらを支持し並びに保護する。
3.細胞或いは組織を刺激して特定の行為を表現させる。例えば、生物基材の表面に信号を発生可能な物質を塗布して必要な効果を達成する。
生物基材製造の方式は一般に相分離法と非相分離法に分けられる。前者は高分子溶液の状態を指し、溶液の熱力学相図中の位置を改変させて、相分離(phase separation)の領域に進入させ、孔を製造する効果を達成し、製造方法は、温度誘導相分離(thermally−induced phase separation)、非溶剤加入と溶液の組成の改変を含む。よく見られる非相分離工程製造方法は、微粒子溶濾(leaching,addition of pore former)、立体印刷(3D printing)、高圧ガス或いは超臨界流体穿孔(gas foaming)と半溶融態高分子顆粒の焼結(sintering)を含む。
The tissue process is one of the areas that have been erected in recent years, and one of the prominent application methods is that a cell is implanted in a bio-degradable material, and the cell grows and functions. The tissue process has already attracted attention as a method for treating defects in organ function or tissue necrosis. The research on organizational processes can be broadly divided into three parts. That is, cells (cells), biocompatible materials (scaffolds), and signals that stimulate the cells to express specific actions (signals). Influence, as well as jointly regulate tissue differentiation and expression. Among these, the role that the biological substrate plays in the tissue process includes the following.
1. Cells or tissue initially cultured are transported to a specific part of the body to prevent the cultured cells or tissue from being destroyed by immune action or other physical actions in the body.
2. Newly created tissues or organs are provided with a solid configuration that meets the requirements, as well as supporting and protecting them.
3. Stimulate cells or tissues to express specific actions. For example, a substance capable of generating a signal is applied to the surface of a biological substrate to achieve a necessary effect.
Biological substrate production methods are generally divided into phase separation methods and non-phase separation methods. The former refers to the state of the polymer solution, and the position of the solution in the thermodynamic phase diagram is modified to enter the phase separation region to achieve the effect of producing pores. Includes thermally induced phase separation, non-solvent incorporation and modification of solution composition. Common non-phase separation process manufacturing methods include fine particle dissolution (addition of pore former), three-dimensional printing (3D printing), high pressure gas or supercritical fluid perforation (gas foaming) and sintering of semi-molten polymer granules. Includes sintering.

一般に、上述の相分離法で生物基材を製造するのに最もよく見られる方法は冷凍乾燥法であり、冷凍乾燥法は二つの工程に分けられる。即ち、冷凍と乾燥であり、まず配合した高分子溶液の温度を下げ、それをもとの均一(homogeneous)より非均一相(heterogeneous)となし、この状況が相分離と称され、高分子溶液を高分子貧相と高分子富相に分け、溶剤を除去して、高分子貧相に孔を形成させ、高分子富相に孔壁を形成させる。即ち、高分子溶液を冷凍(相分離)する時、基材の多孔構造が生成され、ゆえに高分子富相形態が生物基材構造を決定する因子の一つである。前述したように、冷凍乾燥法が組織工程基材製造に広く応用される理由は、低温の状況の下(溶液融点より低い)、システムに対して真空乾燥を行ない、溶剤が被凍結の状況下で、直接気体に変成して除去される。こうしてもとの膜構造が影響を受けない。しかし冷凍乾燥には先天的な条件制限があり、それは以下のようである。
1.溶剤制限: 溶剤は揮発度の高いものを使用するのが好ましく、そうでなければ低温の状況で、溶剤の蒸気圧が常温下に較べて更に低くなり、このために溶剤除去の困難度が大幅に高くなり、また溶剤残留の問題を発生しやすくなる。
2.エネルギー資源の消耗: 冷凍システムと真空ポンプの消費電力量は非常に大きく、往々にして大規模生産のネックとなる。
3.時間の消耗: 低温下で溶剤揮発性は下がるため、比較的長い時間をかけて溶剤を除去しなければならず、高沸点の溶剤システムである場合、数日かかっても溶剤の完全除去を保証できない。
4.機器設備: 特別な冷凍乾燥設備を必要とし、その価格は極めて高い。
In general, the most common method for producing biological substrates by the above-described phase separation method is the freeze drying method, which is divided into two steps. That is, it is freezing and drying. First, the temperature of the blended polymer solution is lowered, and it is made a heterogeneous phase rather than the original homogeneous, and this situation is called phase separation. Is divided into a polymer poor phase and a polymer rich phase, the solvent is removed, pores are formed in the polymer poor phase, and pore walls are formed in the polymer rich phase. That is, when the polymer solution is frozen (phase-separated), a porous structure of the substrate is generated, and therefore the polymer-rich phase form is one of the factors determining the biological substrate structure. As described above, the reason why the freeze-drying method is widely applied to the production of tissue process substrates is that the system is vacuum-dried under low temperature conditions (below the solution melting point) and the solvent is frozen. Then, it is transformed directly into gas and removed. Thus, the original film structure is not affected. However, freeze drying has inherent limitations on conditions, which are as follows.
1. Solvent limitation: It is preferable to use a solvent with high volatility. Otherwise, the vapor pressure of the solvent will be lower than that at room temperature in low temperature conditions, and this will greatly reduce the difficulty of solvent removal. And the problem of solvent residue is likely to occur.
2. Energy resource consumption: The power consumption of refrigeration systems and vacuum pumps is very large, often a bottleneck for large-scale production.
3. Time consumption: Since solvent volatility decreases at low temperatures, the solvent must be removed over a relatively long period of time, and a high boiling solvent system guarantees complete removal of the solvent even in a matter of days Can not.
4). Equipment: Special refrigeration and drying equipment is required and the price is extremely high.

以上を鑑み、新たな生物基材工程を発展させて快速製造、エネルギー節約及び低価格の要求に符合し、製造コストを下げることができ生産能力を高める必要があることが分かる。   In view of the above, it can be seen that it is necessary to develop a new biological substrate process to meet the demands for rapid production, energy saving and low cost, lower the production cost and increase the production capacity.

本発明は伝統的な方法の欠点を克服するため、快速製造、エネルギー節約及び低価格の要求に符合する新たな生物基材の形成方法を提供するものである。   In order to overcome the disadvantages of traditional methods, the present invention provides a new method of forming a biological substrate that meets the requirements of rapid manufacturing, energy saving and low cost.

本発明の目的は、異なる高分子材料或いは応用の必要に応じて異なる種類の固定剤を提供して低温条件下で固定工程を行なうことにある。低温の状況下で高分子貧相を除去するか或いは高分子富相を固定することにより、高分子富相の多孔構造を維持し並びにこれにより生物基材を形成する。   An object of the present invention is to perform a fixing process under low temperature conditions by providing different polymeric materials or different kinds of fixing agents according to the application needs. By removing the polymer poor phase or fixing the polymer rich phase under low temperature conditions, the porous structure of the polymer rich phase is maintained and thereby the biological substrate is formed.

本発明のもう一つの目的は、使用する溶剤の種類を増し、例えば高沸点の溶剤、或いは伝統的な冷凍乾燥法では処理不能な溶剤を使用できるようにすることにある。使用する溶剤の選択が増すことにより、高分子材料の選択も増加し、これにより異なる材質の生物基材を製造できる。   Another object of the present invention is to increase the type of solvent used so that, for example, a solvent having a high boiling point or a solvent that cannot be processed by a conventional freeze-drying method can be used. By increasing the selection of the solvent to be used, the selection of the polymer material also increases, thereby making it possible to produce biological substrates of different materials.

以上の目的に基づき、本発明は一種の生物基材の形成方法を提供する。この方法の工程は簡単であり、特別な冷凍乾燥設備を使用する必要はない。これにより、本発明は経済上の効果と産業上の利用性に符合する。上述の生物基材の形成方法は以下の工程、即ち、溶解工程、温度調整工程、冷凍工程と固定工程を含む。この固定工程は更に以下の工程、即ち、固液交換工程、酸アルカリ中和工程、及びゲル化工程、のいずれかを含む。   Based on the above object, the present invention provides a method for forming a kind of biological substrate. The process steps are simple and do not require the use of special freeze drying equipment. Thus, the present invention is consistent with economic effects and industrial applicability. The above-described method for forming a biological substrate includes the following steps: a dissolution step, a temperature adjustment step, a freezing step, and a fixing step. This fixing step further includes any of the following steps: a solid-liquid exchange step, an acid-alkali neutralization step, and a gelation step.

請求項1の発明は、生物基材の形成方法において、
高分子材料と溶解液を提供し、
該溶解液に該高分子材料を溶解させて特定粘度を具えた溶液を形成し、
特定温度下で冷凍工程を行ない該溶液を固化させて生物基材の孔壁部分を形成できる高分子富相物質と生物基材の孔を形成できる高分子貧相物質を含む固態構造を形成し、
非溶剤を提供すると共に温度調整工程を行ない該非溶剤の温度を冷凍工程の該特定温度となし、
固液交換工程を行ない、該非溶剤を以て高分子貧相物質と交換並びに置換して生物基材を形成することを特徴とする、生物基材の形成方法としている。
請求項2の発明は、請求項1記載の生物基材の形成方法において、冷凍工程がプレ乾燥工程を具え、該プレ乾燥工程で冷凍工程の前記特定温度下で固態構造の表面が具備する高分子貧相物質を気化させることを特徴とする、生物基材の形成方法としている。
請求項3の発明は、請求項1記載の生物基材の形成方法において、非溶剤が前記特定温度で液態を保持できるものとされることを特徴とする、生物基材の形成方法としている。
請求項4の発明は、請求項1記載の生物基材の形成方法において、非溶剤が凍結防止剤を含有し、これにより非溶剤が前記特定温度下で液態を保持できるものとされることを特徴とする、生物基材の形成方法としている。
請求項5の発明は、請求項1記載の生物基材の形成方法において、高分子材料がポリ乳酸(PLA)及びその誘導体とされ、非溶剤がエタノール水溶液とされ、該エタノール水溶液に含まれるエタノール濃度範囲は60wt%から100wt%とされることを特徴とする、生物基材の形成方法としている。
請求項6の発明は、請求項1記載の生物基材の形成方法において、高分子材料が乳酸グリコール酸重合体(PLGA)及びその誘導体とされ、非溶剤がエタノール水溶液とされ、該エタノール水溶液に含まれるエタノール濃度範囲は20wt%から50wt%とされることを特徴とする、生物基材の形成方法としている。
請求項7の発明は、生物基材の形成方法において、
高分子材料と溶解液を提供し、
該溶解液に該高分子材料を溶解させて特定粘度を具えた第1溶液を形成し、
特定温度下で冷凍工程を行ない該第1溶液を固化させて生物基材の孔壁部分を形成できる高分子富相物質と生物基材の孔を形成できる高分子貧相物質を含む固態構造を形成し、 第2溶液を提供すると共に温度調整工程を行ない該第2溶液の温度を冷凍工程の該特定温度となし、
該第2溶液により酸アルカリ中和工程を行ない、高分子貧相を固化させて生物基材を形成することを特徴とする、生物基材の形成方法としている。
請求項8の発明は、請求項7記載の生物基材の形成方法において、冷凍工程がプレ乾燥工程を具え、該プレ乾燥工程で冷凍工程の前記特定温度下で固態構造の表面が具備する高分子貧相物質を気化させることを特徴とする、生物基材の形成方法としている。
請求項9の発明は、請求項7記載の生物基材の形成方法において、第2溶液が前記特定温度で液態を保持できるものとされることを特徴とする、生物基材の形成方法としている。
請求項10の発明は、請求項7記載の生物基材の形成方法において、第2溶液が凍結防止剤を含有し、これにより第2溶液が前記特定温度下で液態を保持できるものとされることを特徴とする、生物基材の形成方法としている。
請求項11の発明は、請求項10記載の生物基材の形成方法において、凍結防止剤がエタノール成分を含有し、そのエタノール濃度範囲は第2溶液の20wt%から70wt%とされることを特徴とする、生物基材の形成方法としている。
請求項12の発明は、請求項7記載の生物基材の形成方法において、第1溶液が酸性溶液とされ、且つ第2溶液がアルカリ性溶液とされたことを特徴とする、生物基材の形成方法としている。
請求項13の発明は、請求項12記載の生物基材の形成方法において、高分子材料がキトサンとされ、且つ第2溶液に含まれるアルカリ性物質の濃度範囲が0.5Nから3Nとされることを特徴とする、生物基材の形成方法としている。
請求項14の発明は、請求項7記載の生物基材の形成方法において、第1溶液がアルカリ性溶液とされ、且つ第2溶液が酸性溶液とされたことを特徴とする、生物基材の形成方法としている。
請求項15の発明は、生物基材の形成方法において、
高分子材料と溶解液を提供し、
該溶解液に該高分子材料を溶解させて特定粘度を具えた溶液を形成し、
特定温度下で冷凍工程を行ない該溶液を固化させて生物基材の孔壁部分を形成できる高分子富相物質と生物基材の孔を形成できる高分子貧相物質を含む固態構造を形成し、
橋かけ剤を提供すると共に温度調整工程を行ない該橋かけ剤の温度を冷凍工程の該特定温度となし、
該橋かけ剤によりゲル化工程を行ない、高分子富相物質をゲル化させ生物基材を形成することを特徴とする、生物基材の形成方法としている。
請求項16の発明は、請求項15記載の生物基材の形成方法において、冷凍工程がプレ乾燥工程を具え、該プレ乾燥工程で冷凍工程の前記特定温度下で固態構造の表面が具備する高分子貧相物質を気化させることを特徴とする、生物基材の形成方法としている。
請求項17の発明は、請求項15記載の生物基材の形成方法において、橋かけ剤が前記特定温度で液態を保持できるものとされることを特徴とする、生物基材の形成方法としている。
請求項18の発明は、請求項15記載の生物基材の形成方法において、橋かけ剤が凍結防止剤を含有し、これにより該橋かけ剤が前記特定温度下で液態を保持できるものとされることを特徴とする、生物基材の形成方法としている。
請求項19の発明は、請求項18記載の生物基材の形成方法において、凍結防止剤がエタノール成分を含有し、そのエタノール濃度範囲は橋かけ剤の20wt%から70wt%とされることを特徴とする、生物基材の形成方法としている。
請求項20の発明は、請求項15記載の生物基材の形成方法において、高分子材料がアルギネート(alginate)とされ、且つ橋かけ剤が塩化ナトリウム溶液とされ、該塩化ナトリウム溶液に含まれる塩化ナトリウムの濃度範囲が1wt%から20wt%とされたことを特徴とする、生物基材の形成方法としている。
The invention of claim 1 is a method of forming a biological substrate,
Providing polymer material and solution,
Dissolving the polymer material in the solution to form a solution having a specific viscosity;
A solid state structure including a polymer rich phase substance capable of forming a pore wall portion of a biological substrate by solidifying the solution by performing a freezing process at a specific temperature and a polymer poor phase substance capable of forming a pore of the biological substrate,
Providing a non-solvent and performing a temperature adjustment step, and setting the temperature of the non-solvent to the specific temperature of the freezing step;
A method for forming a biological base material is characterized in that a solid-liquid exchange step is performed, and the biological base material is formed by exchanging and substituting the non-solvent with a polymer poor phase substance.
According to a second aspect of the present invention, in the method for forming a biological substrate according to the first aspect, the freezing step includes a pre-drying step, and the surface of the solid state structure is provided in the pre-drying step at the specific temperature of the freezing step. It is a method for forming a biological substrate, characterized by vaporizing a molecular poor phase substance.
The invention according to claim 3 is the method for forming a biological substrate according to claim 1, wherein the non-solvent can maintain a liquid state at the specific temperature.
According to a fourth aspect of the present invention, in the method for forming a biological substrate according to the first aspect, the non-solvent contains an antifreezing agent, whereby the non-solvent can maintain a liquid state at the specific temperature. The feature is a method for forming a biological substrate.
The invention according to claim 5 is the method for forming a biological substrate according to claim 1, wherein the polymer material is polylactic acid (PLA) and a derivative thereof, the non-solvent is an ethanol aqueous solution, and the ethanol contained in the ethanol aqueous solution The concentration range is 60 wt% to 100 wt%, which is a method for forming a biological substrate.
The invention of claim 6 is the method for forming a biological substrate according to claim 1, wherein the polymer material is a lactic acid glycolic acid polymer (PLGA) and a derivative thereof, and the non-solvent is an ethanol aqueous solution. The ethanol concentration range included is 20 wt% to 50 wt%, which is a method for forming a biological substrate.
The invention of claim 7 is a method of forming a biological substrate,
Providing polymer material and solution,
Dissolving the polymer material in the solution to form a first solution having a specific viscosity;
A solid state structure including a polymer rich phase material capable of forming a pore wall portion of a biological substrate and a polymer poor phase material capable of forming a pore of the biological substrate by solidifying the first solution by performing a freezing process at a specific temperature. Providing a second solution and performing a temperature adjustment step, and setting the temperature of the second solution to the specific temperature in the freezing step,
A method for forming a biological base material is characterized in that an acid-alkali neutralization step is performed with the second solution to solidify a polymer poor phase to form a biological base material.
The invention according to claim 8 is the method for forming a biological substrate according to claim 7, wherein the freezing step includes a pre-drying step, and the surface of the solid state structure is provided at the specific temperature of the freezing step in the pre-drying step. It is a method for forming a biological substrate, characterized by vaporizing a molecular poor phase substance.
The invention according to claim 9 is the method for forming a biological substrate according to claim 7, wherein the second solution can maintain a liquid state at the specific temperature. .
According to a tenth aspect of the present invention, in the method for forming a biological substrate according to the seventh aspect, the second solution contains an antifreezing agent, whereby the second solution can maintain a liquid state at the specific temperature. This is a method for forming a biological substrate.
The invention of claim 11 is the method for forming a biological substrate according to claim 10, wherein the cryoprotectant contains an ethanol component, and the ethanol concentration range is 20 wt% to 70 wt% of the second solution. And a biological substrate forming method.
The invention of claim 12 is the method of forming a biological substrate according to claim 7, wherein the first solution is an acidic solution and the second solution is an alkaline solution. It's a way.
The invention according to claim 13 is the method for forming a biological substrate according to claim 12, wherein the polymer material is chitosan and the concentration range of the alkaline substance contained in the second solution is 0.5N to 3N. A method for forming a biological substrate, characterized in that
The invention according to claim 14 is the method for forming a biological substrate according to claim 7, wherein the first solution is an alkaline solution and the second solution is an acidic solution. It's a way.
The invention of claim 15 is a method of forming a biological substrate,
Providing polymer material and solution,
Dissolving the polymer material in the solution to form a solution having a specific viscosity;
A solid state structure including a polymer rich phase substance capable of forming a pore wall portion of a biological substrate by solidifying the solution by performing a freezing process at a specific temperature and a polymer poor phase substance capable of forming a pore of the biological substrate,
Providing a cross-linking agent and performing a temperature adjustment step to make the temperature of the cross-linking agent the specific temperature of the freezing step;
A method for forming a biological base material is characterized in that a gelling step is performed with the crosslinking agent to form a biological base material by gelling a polymer-rich phase substance.
According to a sixteenth aspect of the present invention, in the method for forming a biological substrate according to the fifteenth aspect, the freezing step includes a pre-drying step, and the surface of the solid state structure is provided in the pre-drying step at the specific temperature of the freezing step. It is a method for forming a biological substrate, characterized by vaporizing a molecular poor phase substance.
The invention according to claim 17 is the method for forming a biological substrate according to claim 15, characterized in that the crosslinking agent can maintain a liquid state at the specific temperature. .
The invention according to claim 18 is the method for forming a biological substrate according to claim 15, wherein the crosslinking agent contains an antifreezing agent, whereby the crosslinking agent can maintain a liquid state at the specific temperature. In this method, the biological substrate is formed.
The invention according to claim 19 is the method for forming a biological substrate according to claim 18, wherein the cryoprotectant contains an ethanol component, and the ethanol concentration range is 20 wt% to 70 wt% of the crosslinking agent. And a biological substrate forming method.
The invention according to claim 20 is the method for forming a biological substrate according to claim 15, wherein the polymer material is alginate and the crosslinking agent is a sodium chloride solution, and the chloride contained in the sodium chloride solution The biological substrate forming method is characterized in that the sodium concentration range is 1 wt% to 20 wt%.

本発明は生物基材の形成方法を提供し、それは、異なる高分子材料或いは応用の必要に応じて異なる種類の固定剤を提供して低温条件下で固定工程を行なう。低温の状況下で高分子貧相を除去するか或いは高分子富相を固定することにより、冷凍時の高分子富相の多孔構造を維持し、これにより生物基材を形成する。且つ本発明は使用する溶剤の種類に限定がなく、例えば高沸点の溶剤を使用でき、或いは伝統的な冷凍乾燥法で処理不能であった溶剤を使用することができる。使用する溶剤の選択が増すことで、高分子材料の選択も増加し、これにより異なる材質の生物基材を製造できる。   The present invention provides a method for forming a biological substrate, which provides different polymeric materials or different types of fixatives as needed for the application and performs the fixing step under low temperature conditions. By removing the polymer poor phase or fixing the polymer rich phase under low temperature conditions, the porous structure of the polymer rich phase during freezing is maintained, thereby forming a biological substrate. In the present invention, the type of the solvent to be used is not limited. For example, a solvent having a high boiling point can be used, or a solvent that cannot be treated by a conventional freeze-drying method can be used. By increasing the selection of the solvent to be used, the selection of the polymer material also increases, thereby making it possible to produce biological substrates of different materials.

総合すると、本発明の生物基材の形成方法は製造工程が簡単であり、特別な冷凍乾燥設備が不要であり、このため、本発明は経済上の効果と産業上の利用性に符合する。上述の生物基材の形成方法は以下の工程、即ち、溶解工程、温度調整工程、冷凍工程と固定工程を含む。この固定工程は更に以下の工程、即ち、固液交換工程、酸アルカリ中和工程、及びゲル化工程、のいずれかを含む。   In summary, the method for forming a biological substrate of the present invention has a simple manufacturing process and does not require special freeze-drying equipment. Therefore, the present invention is consistent with economic effects and industrial applicability. The above-described method for forming a biological substrate includes the following steps: a dissolution step, a temperature adjustment step, a freezing step, and a fixing step. This fixing step further includes any of the following steps: a solid-liquid exchange step, an acid-alkali neutralization step, and a gelation step.

本発明がここにあって検討する方向は生物基材の形成方法である。徹底的に本発明を了解できるように、以下の記載中に詳細な製造工程或いは組成構造を提出する。しかしながら、本発明の実行は生物基材領域の技術者が習熟する特殊な細節に限定されるものではない。また、周知の組成或いは製造工程は細節中に記載されず、本発明に不必要な制限を形成することを防いでいる。本発明の好ましい実施例は以下に記載されるが、このような詳しい記載のほかにも本発明は広く他の実施例中に実行可能であり、且つ本発明の範囲はそれに限定されず、特許請求の範囲の記載に準じるものとする。   The direction that the present invention considers here is a method of forming a biological substrate. In order to fully understand the present invention, a detailed manufacturing process or composition structure is submitted in the following description. However, the practice of the present invention is not limited to special subsections that are familiar to the technician of the biomatrix area. In addition, well-known compositions or manufacturing processes are not described in the subsections, preventing unnecessary limitations from being formed in the present invention. Preferred embodiments of the present invention are described below, but in addition to such detailed descriptions, the present invention can be widely implemented in other embodiments, and the scope of the present invention is not limited thereto. It shall conform to the description of the scope of claims.

図1は本発明の第1実施例を示し、まず、高分子材料110を提供する。この高分子材料110は、ポリ乳酸(Polylactic acid;PLA)、乳酸グリコール酸重合体(Poly(lactide−co−glycolide);PLGA)、ポリヒドロキシアルカネート(Poly(hydroxyalkanate)s;PHA)、ポリ−3 −ヒロドキシ酪酸(poly(3−hydroxybutyrate);PHB)、ポリカプロラクトン(PCL)及びその誘導体のいずれかとされる。ポリ乳酸(PLA)は、L型ポリ乳酸(PLLA)、R型ポリ乳酸(PDLA)と非晶性ポリ乳酸(PDLLA)を包含し、且つポリ乳酸(PLA)に常用される溶剤は、1,4−ジオキサン(1,4−dioxane)である。乳酸グリコール酸重合体(PLGA)に常用される溶剤は、ジメチルスルホキシド(DMSO)或いはエチルアセテート(ethyl acetate)或いは1,4−ジオキサン(1,4−dioxane)或いはジメチルホルムアミド(Dimethylformamide;DMF)或いはN−メチル−ピロリドン(N−Methyl−Pyrrolidone;NMP)である。ポリヒドロキシアルカネート(PHA)の常用の溶剤は、クロロホルム(chloroform)、アセトニトライル(acetonitrile)、ベンゼン(benzene)、シクロヘキサン(cyclohexane)、1,4−ジオキサン(1,4−dioxane)、ジメチルスルホキシド(DMSO)のいずれかとされる。ポリ−3 −ヒロドキシ酪酸(PHB)に常用される溶剤は、クロロホルム、トリクロロエチレン(trichloroethylene)、222−トリフルオロエタノール(222−trifluoroethanol)、ジメチルホルムアミド(DMF)、エチルアセトアセテート(ethylacetoacetate)とトリオレイン(triolein)のいずれかである。ポリカプロラクトン(polycaprolactone;PCL)の常用の溶剤は、1,4−ジオキサン(1,4−dioxane)、クロロホルム、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)のいずれかである。   FIG. 1 shows a first embodiment of the present invention. First, a polymer material 110 is provided. The polymer material 110 includes polylactic acid (PLA), lactic acid glycolic acid polymer (Poly (lactide-co-glycolide); PLGA), polyhydroxyalkanoates (PHA), poly- 3-Hydroxybutyric acid (poly (3-hydroxybutyrate); PHB), polycaprolactone (PCL), and derivatives thereof. Polylactic acid (PLA) includes L-type polylactic acid (PLLA), R-type polylactic acid (PDLA) and amorphous polylactic acid (PDLLA), and the commonly used solvents for polylactic acid (PLA) are 1, It is 4-dioxane (1,4-dioxane). Solvents commonly used for lactic acid glycolic acid polymer (PLGA) are dimethyl sulfoxide (DMSO), ethyl acetate, 1,4-dioxane, dimethylformamide (DMF) or N -Methyl-pyrrolidone (NMP). Common solvents for polyhydroxyalkanoates (PHA) are chloroform, acetonitrile, benzene, cyclohexane, 1,4-dioxane, dimethyl sulfoxide (DMSO). ) Commonly used solvents for poly-3-hydroxybutyric acid (PHB) are chloroform, trichloroethylene, 222-trifluoroethanol, 222-trifluoroethanol, dimethylformamide (DMF), ethylacetoacetate and triolein ( triolein). A common solvent for polycaprolactone (PCL) is 1,4-dioxane, chloroform, dimethylformamide (DMF), or dimethyl sulfoxide (DMSO).

その後、本実施例では、高分子材料110を混和装置中に輸送して溶解工程135を行ない高分子材料110を上述の溶剤を含む溶解液120中に溶解させ、並びに特定粘度を有する溶液140を形成する。この溶液140の粘度は高分子材料110の添加量の減少に伴い減少して製造される生物基材の孔を増大する。高分子材料110がポリ乳酸(PLA)及びその誘導体とされる時、即ちその重量含量範囲は上述の溶液140の1wt%から15wt%とされ、そのうち、好ましい重量含量範囲は上述の溶液140の3wt%から10wt%とされる。高分子材料110が乳酸グリコール酸重合体(PLGA)及びその誘導体とされる時、その重量含量範囲は上述の溶液140の1wt%から25wt%とされ、そのうち、好ましい重量含量範囲は上述の溶液140の3wt%から10wt%とされる。続いて、特定温度下で冷凍工程145を行ない上述の溶液140を固化させて高分子富相物質と高分子貧相物質を具えた固態構造150を形成する。そのうち、高分子貧相は生物基材の孔部分を形成可能で、高分子貧相は生物基材の孔壁部分を形成可能である。且つ、製造した生物基材の孔は該特定温度を下げることで減少する。次に、非溶剤130を提供し並びに温度調整工程160を行なって非溶剤130の温度を調整して冷凍工程145の特定温度となす。続いて、固液交換工程155を行ない、上述の非溶剤130を以て高分子貧相物質と交換並びに置換し、生物基材165を形成する。   Thereafter, in this embodiment, the polymer material 110 is transported into a mixing apparatus and the dissolution process 135 is performed to dissolve the polymer material 110 in the solution 120 containing the above-mentioned solvent, and the solution 140 having a specific viscosity is prepared. Form. The viscosity of the solution 140 decreases as the addition amount of the polymer material 110 decreases, and increases the pores of the biological substrate to be manufactured. When the polymer material 110 is polylactic acid (PLA) or a derivative thereof, that is, the weight content range thereof is 1 wt% to 15 wt% of the above-described solution 140, and a preferable weight content range is 3 wt% of the above-described solution 140. % To 10 wt%. When the polymer material 110 is a lactic acid glycolic acid polymer (PLGA) or a derivative thereof, the weight content range is 1 wt% to 25 wt% of the above-described solution 140, and the preferred weight content range is the above-described solution 140. 3 wt% to 10 wt%. Subsequently, a freezing step 145 is performed at a specific temperature to solidify the above-described solution 140 to form a solid state structure 150 including a polymer rich phase material and a polymer poor phase material. Among them, the polymer poor phase can form pore portions of the biological substrate, and the polymer poor phase can form pore wall portions of the biological substrate. In addition, the pores of the manufactured biological substrate are reduced by lowering the specific temperature. Next, the non-solvent 130 is provided and the temperature adjustment step 160 is performed to adjust the temperature of the non-solvent 130 to the specific temperature of the freezing step 145. Subsequently, a solid / liquid exchange step 155 is performed, and the above-described non-solvent 130 is used to exchange and replace the polymer poor-phase substance, thereby forming a biological substrate 165.

本実施例中、冷凍工程145の前に更に、脱泡工程を行なって上述の溶液140中に含まれる気泡を除去する。このほか、上述の冷凍工程145は更にプレ乾燥工程を含み、このプレ乾燥工程は上述の特定温度下で固態構造150の表面が有する高分子貧相物質を気化させる。また、温度調整工程160中、上述の非溶剤130は特定温度下でも液態を保持できるか、或いは非溶剤130は更に凍結防止剤を含有し非溶剤130が特定温度下でも液態を保持できるものとされる。上述の高分子材料110がポリ乳酸(PLA)及びその誘導体とされる時、その非溶剤130はエタノール水溶液とされ、そのうち、このエタノール水溶液に含まれるエタノール濃度範囲は60wt%から100wt%であり、好ましいエタノール濃度範囲は75wt%から85wt%である。上述の高分子材料110が乳酸グリコール酸重合体(PLGA)及びその誘導体とされる時、非溶剤130はエタノール水溶液とされ、そのうち、このエタノール水溶液に含まれるエタノール濃度範囲は20wt%から50wt%であり、好ましいエタノール濃度範囲は25wt%から35wt%である。   In this example, before the freezing step 145, a defoaming step is further performed to remove bubbles contained in the solution 140 described above. In addition, the above-described freezing step 145 further includes a pre-drying step, and this pre-drying step vaporizes the polymer poor-phase substance that the surface of the solid-state structure 150 has at the above-described specific temperature. Further, during the temperature adjustment step 160, the non-solvent 130 described above can maintain a liquid state even at a specific temperature, or the non-solvent 130 further contains an antifreezing agent, and the non-solvent 130 can maintain a liquid state even at a specific temperature. Is done. When the above-described polymer material 110 is polylactic acid (PLA) and its derivatives, the non-solvent 130 is an ethanol aqueous solution, and the ethanol concentration range contained in the ethanol aqueous solution is 60 wt% to 100 wt%, A preferred ethanol concentration range is 75 wt% to 85 wt%. When the polymer material 110 is a lactic acid glycolic acid polymer (PLGA) or a derivative thereof, the non-solvent 130 is an ethanol aqueous solution, and the ethanol concentration range contained in the ethanol aqueous solution is 20 wt% to 50 wt%. The preferred ethanol concentration range is 25 wt% to 35 wt%.

図2は本発明の第2実施例を示す。この実施例では、まず、高分子材料210を提供する。そのうち、高分子材料210は更にキトサン及びその誘導体を包含する。その後、高分子材料210を混和装置中に輸送して溶解工程235を行ない高分子材料210を上述の溶剤を含む溶解液220中に溶解させ、並びに特定粘度を有する第1溶液240を形成する。この第1溶液240の粘度は高分子材料210の添加量の減少に伴い減少して製造される生物基材の孔を増大する。高分子材料210がキトサン及びその誘導体とされる時、即ちその重量含量範囲は上述の第1溶液240の0.5wt%から6wt%とされ、そのうち、好ましい重量含量範囲は上述の第1溶液240の1wt%から3wt%とされる。続いて、特定温度下で冷凍工程245を行ない上述の第1溶液240を固化させて高分子富相物質と高分子貧相物質を具えた固態構造250を形成する。そのうち、高分子貧相は生物基材の孔部分を形成可能で、高分子貧相は生物基材の孔壁部分を形成可能である。且つ、製造した生物基材の孔は該特定温度を下げることで減少する。次に、第2溶液230を提供し並びに温度調整工程260を行なって第2溶液230の温度を調整して冷凍工程245の特定温度となす。そのうち、上述の第1溶液240は酸性溶液とされ、且つ第2溶液はアルカリ性溶液とされる。或いは、上述の第1溶液240はアルカリ性溶液とされ、且つ第2溶液230は酸性溶液とされる。上述の高分子材料210がキトサン及びその誘導体とされる時、第1溶液240は酸性溶液とされ、且つ第2溶液230はアルカリ性溶液とされ、そのうち、第2溶液230に含まれるアルカリ性物質の濃度範囲は0.5Nから3Nとされる。続いて、酸アルカリ中和工程255を行ない、上述の第2溶液230を以て高分子富相を固化させ並びにこれにより生物基材265を形成する。   FIG. 2 shows a second embodiment of the present invention. In this embodiment, first, a polymer material 210 is provided. Among them, the polymer material 210 further includes chitosan and its derivatives. Thereafter, the polymer material 210 is transported into the mixing device and the dissolution process 235 is performed to dissolve the polymer material 210 in the solution 220 containing the above-mentioned solvent, and the first solution 240 having a specific viscosity is formed. The viscosity of the first solution 240 decreases as the addition amount of the polymer material 210 decreases, increasing the pores of the biological substrate to be manufactured. When the polymer material 210 is chitosan or a derivative thereof, that is, the weight content range thereof is 0.5 wt% to 6 wt% of the first solution 240 described above, and a preferable weight content range is the first solution 240 described above. 1 wt% to 3 wt%. Subsequently, a freezing step 245 is performed at a specific temperature to solidify the first solution 240 to form a solid state structure 250 including a polymer rich phase material and a polymer poor phase material. Among them, the polymer poor phase can form pore portions of the biological substrate, and the polymer poor phase can form pore wall portions of the biological substrate. In addition, the pores of the manufactured biological substrate are reduced by lowering the specific temperature. Next, the second solution 230 is provided, and the temperature adjustment process 260 is performed to adjust the temperature of the second solution 230 to the specific temperature of the freezing process 245. Among them, the first solution 240 described above is an acidic solution, and the second solution is an alkaline solution. Alternatively, the first solution 240 described above is an alkaline solution, and the second solution 230 is an acidic solution. When the above-described polymer material 210 is chitosan or a derivative thereof, the first solution 240 is an acidic solution and the second solution 230 is an alkaline solution, and the concentration of the alkaline substance contained in the second solution 230 is included. The range is 0.5N to 3N. Subsequently, an acid-alkali neutralization step 255 is performed to solidify the polymer-rich phase with the above-described second solution 230 and thereby form the biological substrate 265.

本実施例中、冷凍工程245の前に更に、脱泡工程を行なって第1溶液240中に含まれる気泡を除去する。このほか、上述の冷凍工程245は更にプレ乾燥工程を含み、このプレ乾燥工程は上述の特定温度下で固態構造250の表面が有する高分子貧相物質を気化させる。また、温度調整工程260中、上述の第2溶液230は特定温度下でも液態を保持できるか、或いは第2溶液230は更に凍結防止剤を含有し第2溶液230が特定温度下でも液態を保持できるものとされる。上述の凍結防止剤は更にエタノール成分を含み、且つエタノール濃度範囲は第2溶液230の20wt%から70wt%である。   In this embodiment, before the freezing step 245, a defoaming step is further performed to remove bubbles contained in the first solution 240. In addition, the above-described freezing step 245 further includes a pre-drying step, and this pre-drying step vaporizes the polymer poor-phase substance that the surface of the solid-state structure 250 has at the above-described specific temperature. In addition, during the temperature adjustment process 260, the second solution 230 described above can maintain a liquid state even at a specific temperature, or the second solution 230 further contains an antifreezing agent and the second solution 230 maintains a liquid state even at a specific temperature. It is supposed to be possible. The antifreezing agent described above further includes an ethanol component, and the ethanol concentration range is 20 wt% to 70 wt% of the second solution 230.

図3は本発明の第3実施例を示す。この実施例では、まず、高分子材料310を提供する。そのうち、高分子材料310はキトサン、アルギネート(alginate)及びその誘導体のいずれかとされる。その後、高分子材料310を混和装置中に輸送して溶解工程335を行ない高分子材料310を上述の溶剤を含む溶解液320中に溶解させ、並びに特定粘度を有する溶液340を形成する。この溶液340の粘度は高分子材料310の添加量の減少に伴い減少して製造される生物基材の孔を増大する。高分子材料310がキトサン及びその誘導体とされる時、即ちその重量含量範囲は上述の溶液340の0.5wt%から6wt%とされ、そのうち、好ましい重量含量範囲は上述の溶液340の1wt%から3wt%とされる。高分子材料310がアルギネート及びその誘導体とされる時、即ちその重量含量範囲は上述の溶液340の0.5wt%から8wt%とされ、そのうち、好ましい重量含量範囲は上述の溶液340の1wt%から4wt%とされる。続いて、特定温度下で冷凍工程345を行ない上述の溶液340を固化させて高分子富相物質と高分子貧相物質を具えた固態構造350を形成する。そのうち、高分子貧相は生物基材の孔部分を形成可能で、高分子貧相は生物基材の孔壁部分を形成可能である。且つ、製造した生物基材の孔は該特定温度を下げることで減少する。次に、橋かけ剤330を提供すると共に温度調整工程360を行なって橋かけ剤330の温度を調整して冷凍工程345の特定温度となす。上述の高分子材料310がキトサン及びその誘導体とされる時、橋かけ剤330は、硫酸溶液、アルデヒド酸溶液、ジアルデヒド酸溶液、ゲニピン(genipin)溶液のいずれかとされる。高分子材料310がアルギネート(alginate)及びその誘導体とされる時、上述の橋かけ剤330は塩化カルシウム溶液とされ、且つ塩化カルシウム溶液に含まれる塩化カルシウムの濃度範囲は1wt%から20wt%とされる。続いて、ゲル化工程355を行ない、上述の橋かけ剤330で高分子富相物質をゲル化し並びに生物基材365を形成する。   FIG. 3 shows a third embodiment of the present invention. In this embodiment, first, a polymer material 310 is provided. Of these, the polymer material 310 is chitosan, alginate, or a derivative thereof. Thereafter, the polymer material 310 is transported into the mixing apparatus and the dissolution process 335 is performed to dissolve the polymer material 310 in the solution 320 containing the above-mentioned solvent, and a solution 340 having a specific viscosity is formed. The viscosity of the solution 340 decreases as the amount of the polymer material 310 added decreases, thereby increasing the pores of the produced biological substrate. When the polymer material 310 is chitosan and its derivatives, that is, its weight content range is 0.5 wt% to 6 wt% of the above-mentioned solution 340, and a preferred weight content range is 1 wt% of the above-mentioned solution 340. 3 wt%. When the polymer material 310 is an alginate and a derivative thereof, that is, its weight content range is 0.5 wt% to 8 wt% of the above-described solution 340, and a preferable weight content range is 1 wt% of the above-mentioned solution 340. 4 wt%. Subsequently, a freezing step 345 is performed at a specific temperature to solidify the above-described solution 340 to form a solid state structure 350 including a polymer rich phase material and a polymer poor phase material. Among them, the polymer poor phase can form pore portions of the biological substrate, and the polymer poor phase can form pore wall portions of the biological substrate. In addition, the pores of the manufactured biological substrate are reduced by lowering the specific temperature. Next, the crosslinking agent 330 is provided and a temperature adjustment step 360 is performed to adjust the temperature of the crosslinking agent 330 to a specific temperature of the refrigeration step 345. When the above-described polymer material 310 is chitosan or a derivative thereof, the crosslinking agent 330 is any one of a sulfuric acid solution, an aldehyde acid solution, a dialdehyde acid solution, and a genipin solution. When the polymer material 310 is an alginate and a derivative thereof, the crosslinking agent 330 described above is a calcium chloride solution, and the concentration range of the calcium chloride contained in the calcium chloride solution is 1 wt% to 20 wt%. The Subsequently, the gelation step 355 is performed to gel the polymer-rich phase substance with the above-described crosslinking agent 330 and to form the biological substrate 365.

本実施例中、冷凍工程345の前に更に、脱泡工程を行なって溶液340中に含まれる気泡を除去する。このほか、上述の冷凍工程345は更にプレ乾燥工程を含み、このプレ乾燥工程は上述の特定温度下で固態構造350の表面が有する高分子貧相物質を気化させる。また、温度調整工程360中、上述の橋かけ剤330は特定温度下でも液態を保持できるか、或いは更に更に凍結防止剤を含有し橋かけ剤330が特定温度下でも液態を保持できるものとされる。上述の凍結防止剤は更にエタノール成分を含み、且つエタノール濃度範囲は橋かけ剤330の20wt%から70wt%である。   In this embodiment, before the freezing step 345, a defoaming step is further performed to remove bubbles contained in the solution 340. In addition, the above-described freezing step 345 further includes a pre-drying step, and this pre-drying step vaporizes the polymer poor-phase substance that the surface of the solid state structure 350 has at the above-described specific temperature. Further, during the temperature adjustment step 360, the above-mentioned crosslinking agent 330 can maintain a liquid state even at a specific temperature, or further contains an antifreezing agent so that the crosslinking agent 330 can maintain a liquid state even at a specific temperature. The The antifreezing agent described above further includes an ethanol component, and the ethanol concentration range is 20 wt% to 70 wt% of the crosslinking agent 330.

以上の実施例は本発明の実施範囲を限定するものではなく、これらに基づきなしうる細部の修飾或いは改変は、いずれも本発明の請求範囲に属するものとする。   The embodiments described above do not limit the scope of the present invention, and any modification or alteration in detail that can be made based on these embodiments shall fall within the scope of the claims of the present invention.

本発明の第1実施例の、固液交換工程を具えた生物基材の形成方法のフローチャートである。It is a flowchart of the formation method of the biological base material provided with the solid-liquid exchange process of 1st Example of this invention. 本発明の第2実施例の、酸アルカリ中和工程を具えた生物基材の形成方法のフローチャートである。It is a flowchart of the formation method of the biological base material which provided the acid-alkali neutralization process of 2nd Example of this invention. 本発明の第3実施例の、ゲル化工程を具えた生物基材の形成方法のフローチャートである。It is a flowchart of the formation method of the biological base material which provided the gelatinization process of 3rd Example of this invention.

符号の説明Explanation of symbols

110 高分子材料 120 溶解液
130 非溶剤 135 溶解工程
140 溶液 145 冷凍工程
150 固態構造 160 温度調整工程
155 固液交換工程 165 生物基材
210 高分子材料 220 溶解液
230 第2溶液 235 溶解工程
240 第1溶液 245 冷凍工程
250 固態構造 260 温度調整工程
255 酸アルカリ中和工程 265 生物基材
310 高分子材料 320 溶解液
330 橋かけ剤 335 溶解工程
340 溶液 345 冷凍工程
350 固態構造 360 温度調整工程
355 ゲル化工程 365 生物基材
110 Polymer material 120 Dissolving solution 130 Non-solvent 135 Dissolving step 140 Solution 145 Freezing step 150 Solid state structure 160 Temperature adjustment step 155 Solid-liquid exchange step 165 Biological substrate 210 Polymer material 220 Dissolving solution 230 Second solution 235 Dissolving step 240 First 1 solution 245 refrigeration process 250 solid state structure 260 temperature adjustment process 255 acid alkali neutralization process 265 biological substrate 310 polymer material 320 solution 330 crosslinking agent 335 dissolution process 340 solution 345 freezing process 350 solid state structure 360 temperature adjustment process 355 gel Conversion process 365 Biological substrate

Claims (20)

生物基材の形成方法において、
高分子材料と溶解液を提供し、
該溶解液に該高分子材料を溶解させて特定粘度を具えた溶液を形成し、
特定温度下で冷凍工程を行ない該溶液を固化させて生物基材の孔壁部分を形成できる高分子富相物質と生物基材の孔を形成できる高分子貧相物質を含む固態構造を形成し、
非溶剤を提供すると共に温度調整工程を行ない該非溶剤の温度を冷凍工程の該特定温度となし、
固液交換工程を行ない、該非溶剤を以て高分子貧相物質と交換並びに置換して生物基材を形成することを特徴とする、生物基材の形成方法。
In the method for forming a biological substrate,
Providing polymer material and solution,
Dissolving the polymer material in the solution to form a solution having a specific viscosity;
A solid state structure including a polymer rich phase substance capable of forming a pore wall portion of a biological substrate by solidifying the solution by performing a freezing process at a specific temperature and a polymer poor phase substance capable of forming a pore of the biological substrate,
Providing a non-solvent and performing a temperature adjustment step, and setting the temperature of the non-solvent to the specific temperature of the freezing step;
A method for forming a biological substrate, comprising performing a solid-liquid exchange step, and exchanging and substituting with a polymer poor-phase substance with the non-solvent to form a biological substrate.
請求項1記載の生物基材の形成方法において、冷凍工程がプレ乾燥工程を具え、該プレ乾燥工程で冷凍工程の前記特定温度下で固態構造の表面が具備する高分子貧相物質を気化させることを特徴とする、生物基材の形成方法。   2. The method for forming a biological substrate according to claim 1, wherein the freezing step comprises a pre-drying step, and the pre-drying step evaporates the polymer poor phase substance which the surface of the solid structure has at the specific temperature of the freezing step. A method for forming a biological substrate, characterized in that 請求項1記載の生物基材の形成方法において、非溶剤が前記特定温度で液態を保持できるものとされることを特徴とする、生物基材の形成方法。   The method for forming a biological substrate according to claim 1, wherein the non-solvent is capable of maintaining a liquid state at the specific temperature. 請求項1記載の生物基材の形成方法において、非溶剤が凍結防止剤を含有し、これにより非溶剤が前記特定温度下で液態を保持できるものとされることを特徴とする、生物基材の形成方法。   The method for forming a biological substrate according to claim 1, wherein the non-solvent contains an antifreezing agent, whereby the non-solvent can maintain a liquid state at the specific temperature. Forming method. 請求項1記載の生物基材の形成方法において、高分子材料がポリ乳酸(PLA)及びその誘導体とされ、非溶剤がエタノール水溶液とされ、該エタノール水溶液に含まれるエタノール濃度範囲は60wt%から100wt%とされることを特徴とする、生物基材の形成方法。   The method for forming a biological substrate according to claim 1, wherein the polymer material is polylactic acid (PLA) and a derivative thereof, the non-solvent is an ethanol aqueous solution, and the ethanol concentration range contained in the ethanol aqueous solution is 60 wt% to 100 wt%. %. A method for forming a biological substrate, characterized in that 請求項1記載の生物基材の形成方法において、高分子材料が乳酸グリコール酸重合体(PLGA)及びその誘導体とされ、非溶剤がエタノール水溶液とされ、該エタノール水溶液に含まれるエタノール濃度範囲は20wt%から50wt%とされることを特徴とする、生物基材の形成方法。   The method for forming a biological substrate according to claim 1, wherein the polymer material is a lactic acid glycolic acid polymer (PLGA) and a derivative thereof, the non-solvent is an ethanol aqueous solution, and the ethanol concentration range contained in the ethanol aqueous solution is 20 wt. % To 50 wt%, A method for forming a biological substrate. 生物基材の形成方法において、
高分子材料と溶解液を提供し、
該溶解液に該高分子材料を溶解させて特定粘度を具えた第1溶液を形成し、
特定温度下で冷凍工程を行ない該第1溶液を固化させて生物基材の孔壁部分を形成できる高分子富相物質と生物基材の孔を形成できる高分子貧相物質を含む固態構造を形成し、 第2溶液を提供すると共に温度調整工程を行ない該第2溶液の温度を冷凍工程の該特定温度となし、
該第2溶液により酸アルカリ中和工程を行ない、高分子貧相を固化させて生物基材を形成することを特徴とする、生物基材の形成方法。
In the method for forming a biological substrate,
Providing polymer material and solution,
Dissolving the polymer material in the solution to form a first solution having a specific viscosity;
A solid state structure including a polymer rich phase material capable of forming a pore wall portion of a biological substrate and a polymer poor phase material capable of forming a pore of the biological substrate by solidifying the first solution by performing a freezing process at a specific temperature. Providing a second solution and performing a temperature adjustment step, and setting the temperature of the second solution to the specific temperature in the freezing step,
A method for forming a biological substrate, comprising performing an acid-alkali neutralization step with the second solution to solidify a polymer poor phase to form a biological substrate.
請求項7記載の生物基材の形成方法において、冷凍工程がプレ乾燥工程を具え、該プレ乾燥工程で冷凍工程の前記特定温度下で固態構造の表面が具備する高分子貧相物質を気化させることを特徴とする、生物基材の形成方法。   8. The method for forming a biological substrate according to claim 7, wherein the freezing step includes a pre-drying step, and the pre-drying step evaporates the polymer poor phase substance which the surface of the solid structure has at the specific temperature of the freezing step. A method for forming a biological substrate, characterized in that 請求項7記載の生物基材の形成方法において、第2溶液が前記特定温度で液態を保持できるものとされることを特徴とする、生物基材の形成方法。   8. The method for forming a biological substrate according to claim 7, wherein the second solution can maintain a liquid state at the specific temperature. 請求項7記載の生物基材の形成方法において、第2溶液が凍結防止剤を含有し、これにより第2溶液が前記特定温度下で液態を保持できるものとされることを特徴とする、生物基材の形成方法。   8. The method for forming a biological substrate according to claim 7, wherein the second solution contains an antifreezing agent, whereby the second solution can maintain a liquid state at the specific temperature. A method for forming a substrate. 請求項10記載の生物基材の形成方法において、凍結防止剤がエタノール成分を含有し、そのエタノール濃度範囲は第2溶液の20wt%から70wt%とされることを特徴とする、生物基材の形成方法。   The method for forming a biological substrate according to claim 10, wherein the cryoprotectant contains an ethanol component, and the ethanol concentration range thereof is 20 wt% to 70 wt% of the second solution. Forming method. 請求項7記載の生物基材の形成方法において、第1溶液が酸性溶液とされ、且つ第2溶液がアルカリ性溶液とされたことを特徴とする、生物基材の形成方法。   8. The method for forming a biological substrate according to claim 7, wherein the first solution is an acidic solution and the second solution is an alkaline solution. 請求項12記載の生物基材の形成方法において、高分子材料がキトサンとされ、且つ第2溶液に含まれるアルカリ性物質の濃度範囲が0.5Nから3Nとされることを特徴とする、生物基材の形成方法。   The biological substrate forming method according to claim 12, wherein the polymer material is chitosan and the concentration range of the alkaline substance contained in the second solution is 0.5N to 3N. Material forming method. 請求項7記載の生物基材の形成方法において、第1溶液がアルカリ性溶液とされ、且つ第2溶液が酸性溶液とされたことを特徴とする、生物基材の形成方法。   8. The method for forming a biological substrate according to claim 7, wherein the first solution is an alkaline solution and the second solution is an acidic solution. 生物基材の形成方法において、
高分子材料と溶解液を提供し、
該溶解液に該高分子材料を溶解させて特定粘度を具えた溶液を形成し、
特定温度下で冷凍工程を行ない該溶液を固化させて生物基材の孔壁部分を形成できる高分子富相物質と生物基材の孔を形成できる高分子貧相物質を含む固態構造を形成し、
橋かけ剤を提供すると共に温度調整工程を行ない該橋かけ剤の温度を冷凍工程の該特定温度となし、
該橋かけ剤によりゲル化工程を行ない、高分子富相物質をゲル化させ生物基材を形成することを特徴とする、生物基材の形成方法。
In the method for forming a biological substrate,
Providing polymer material and solution,
Dissolving the polymer material in the solution to form a solution having a specific viscosity;
A solid state structure including a polymer rich phase substance capable of forming a pore wall portion of a biological substrate by solidifying the solution by performing a freezing process at a specific temperature and a polymer poor phase substance capable of forming a pore of the biological substrate,
Providing a cross-linking agent and performing a temperature adjustment step to make the temperature of the cross-linking agent the specific temperature of the freezing step;
A method for forming a biological substrate, comprising performing a gelation step with the crosslinking agent to form a biological substrate by gelling a polymer-rich phase substance.
請求項15記載の生物基材の形成方法において、冷凍工程がプレ乾燥工程を具え、該プレ乾燥工程で冷凍工程の前記特定温度下で固態構造の表面が具備する高分子貧相物質を気化させることを特徴とする、生物基材の形成方法。   16. The method for forming a biological substrate according to claim 15, wherein the freezing step comprises a pre-drying step, and the pre-drying step vaporizes the polymer poor phase substance that the surface of the solid structure has at the specific temperature of the freezing step. A method for forming a biological substrate, characterized in that 請求項15記載の生物基材の形成方法において、橋かけ剤が前記特定温度で液態を保持できるものとされることを特徴とする、生物基材の形成方法。   16. The method for forming a biological substrate according to claim 15, wherein the crosslinking agent can maintain a liquid state at the specific temperature. 請求項15記載の生物基材の形成方法において、橋かけ剤が凍結防止剤を含有し、これにより該橋かけ剤が前記特定温度下で液態を保持できるものとされることを特徴とする、生物基材の形成方法。   The method for forming a biological substrate according to claim 15, wherein the crosslinking agent contains an antifreezing agent, whereby the crosslinking agent can maintain a liquid state at the specific temperature. A method for forming a biological substrate. 請求項18記載の生物基材の形成方法において、凍結防止剤がエタノール成分を含有し、そのエタノール濃度範囲は橋かけ剤の20wt%から70wt%とされることを特徴とする、生物基材の形成方法。   The method for forming a biological substrate according to claim 18, wherein the cryoprotectant contains an ethanol component, and the ethanol concentration range thereof is 20 wt% to 70 wt% of the crosslinking agent. Forming method. 請求項15記載の生物基材の形成方法において、高分子材料がアルギネート(alginate)とされ、且つ橋かけ剤が塩化ナトリウム溶液とされ、該塩化ナトリウム溶液に含まれる塩化ナトリウムの濃度範囲が1wt%から20wt%とされたことを特徴とする、生物基材の形成方法。
16. The method for forming a biological substrate according to claim 15, wherein the polymer material is alginate and the crosslinking agent is a sodium chloride solution, and the concentration range of sodium chloride contained in the sodium chloride solution is 1 wt%. A method for forming a biological substrate, characterized in that it is 20 wt%.
JP2004023486A 2004-01-30 2004-01-30 Method for forming biological scaffold Pending JP2005210990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004023486A JP2005210990A (en) 2004-01-30 2004-01-30 Method for forming biological scaffold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004023486A JP2005210990A (en) 2004-01-30 2004-01-30 Method for forming biological scaffold

Publications (1)

Publication Number Publication Date
JP2005210990A true JP2005210990A (en) 2005-08-11

Family

ID=34906489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004023486A Pending JP2005210990A (en) 2004-01-30 2004-01-30 Method for forming biological scaffold

Country Status (1)

Country Link
JP (1) JP2005210990A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016147966A (en) * 2015-02-12 2016-08-18 三菱樹脂株式会社 Porous film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016147966A (en) * 2015-02-12 2016-08-18 三菱樹脂株式会社 Porous film

Similar Documents

Publication Publication Date Title
US10064983B2 (en) Modified porous materials and methods of creating interconnected porosity in materials
Pavia et al. Polymeric scaffolds prepared via thermally induced phase separation: Tuning of structure and morphology
EP1651712B1 (en) Porous material and method of production thereof
KR100355563B1 (en) Biodegradable porous polymer scaffolds by using effervescent mixture for tissue engineering and their preparation methods
CN100356989C (en) Method for preparing organic and inorganic nanometer composite organization engineering stent material by using thermal phase separation
CA2801706C (en) Biodegradable polymer microparticle and preparation method thereof
Cardea et al. 3D PLLA/Ibuprofen composite scaffolds obtained by a supercritical fluids assisted process
WO2010101240A1 (en) Biodegradable porous hollow particle, and production method and application thereof
EP2413981B1 (en) Thick foams for biomedical applications and methods of making
US10369725B2 (en) Method for preparing free-standing polymer film with micropores
Salerno et al. Polycaprolactone foams prepared by supercritical CO2 batch foaming of polymer/organic solvent solutions
KR100372751B1 (en) Fabrication Method of Porous Biodegradable Polymer Scaffolds for Tissue Engineering
TW520383B (en) Method of making porous biodegradable polymers
Clyne Thermal processing of tissue engineering scaffolds
KR20140105174A (en) A process for the preparation of polymeric microparticles by a spray method
US6635684B2 (en) Method for preparing hydrophilic porous polymeric materials
JP2005210990A (en) Method for forming biological scaffold
KR20080006965A (en) Porous biodegradable microcarriers for cell culture and delivery and fabrication method thereof
US7452491B2 (en) Method for forming scaffolds
CN100525845C (en) Method for preparing stent material with microporous and double continuous structure
CN114916222B (en) Injection composition for tissue repair and preparation method thereof
TWI233943B (en) Method for forming scaffold
Qian et al. One-step synthesis of protein-encapsulated microspheres in a porous scaffold by freeze-drying double emulsions and tuneable protein release
Mizutani et al. Poly (L-lactic acid) short fibers prepared by solvent evaporation using sodium tripolyphosphate
JP6081852B2 (en) Method for producing polysaccharide porous body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070409

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070412

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070523

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807