JP2005210146A - Minute difference detecting circuit between two circuit elements, position detecting device employing same, and discrimination detecting device for detecting fault or presence/absence of magnetic body or conductor - Google Patents

Minute difference detecting circuit between two circuit elements, position detecting device employing same, and discrimination detecting device for detecting fault or presence/absence of magnetic body or conductor Download PDF

Info

Publication number
JP2005210146A
JP2005210146A JP2004001567A JP2004001567A JP2005210146A JP 2005210146 A JP2005210146 A JP 2005210146A JP 2004001567 A JP2004001567 A JP 2004001567A JP 2004001567 A JP2004001567 A JP 2004001567A JP 2005210146 A JP2005210146 A JP 2005210146A
Authority
JP
Japan
Prior art keywords
circuit
difference
coils
voltage
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004001567A
Other languages
Japanese (ja)
Inventor
Yoshikazu Ichiyama
義和 市山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURA GIJUTSU KENKYUSHO KK
Kura Gijutsu Kenkyusho KK
Original Assignee
KURA GIJUTSU KENKYUSHO KK
Kura Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURA GIJUTSU KENKYUSHO KK, Kura Gijutsu Kenkyusho KK filed Critical KURA GIJUTSU KENKYUSHO KK
Priority to JP2004001567A priority Critical patent/JP2005210146A/en
Publication of JP2005210146A publication Critical patent/JP2005210146A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Electronic Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To propose a minute difference detecting circuit between two circuit elements capable of detecting the minute inductance difference between two coils or the minute capacity difference between two capacitors, and propose a position detecting device and a discrimination detecting device of the fault or the presence/absence of a conductor. <P>SOLUTION: Power is applied like a step to an RLC circuit comprising the two coils or two capacitors, the detection potential difference corresponding to the difference between the two circuit elements is integrated, a driving voltage to the RLC circuit is switched every time the driving voltage exceeds a predetermined voltage, a pulse sequence inversely proportional to the difference between circuit elements is generated, and the difference between the two circuit elements is identified by knowing a frequency. Since the smaller the difference between the two circuit elements is, the more an discrimination resolution can be improved; the device is applicable to a proximity sensor, a magnetic flaw detection device, and a metallic foreign matter inspection device etc. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,コイル,コンデンサ等の比較検出回路に拘わり,特にコイルの微小インダクタンス差,或いはコンデンサの微小静電容量差を十分な分解能で識別検出する回路,更にコイルの微小インダクタンス差の検出回路を有する位置検出装置に拘わる。   The present invention relates to a comparison detection circuit such as a coil and a capacitor, and in particular, a circuit for identifying and detecting a minute inductance difference of a coil or a minute capacitance difference of a capacitor with sufficient resolution, and a detection circuit for a minute inductance difference of a coil. It relates to the position detection device which has.

コイル,コンデンサ等の精密な測定はインピーダンスブリッジを用いて基準となる抵抗,コイル,コンデンサ等とそれぞれ比較測定する(例えば特開平5−296866)。しかし,それらの測定手段に於いて,基準素子と被検査素子の値の差と出力電圧は線形に比例するので両者の差が微小である時には出力もまた微小で識別が困難になる場合もあった。またそれらはアナログ信号でのレベル差検定であり,ディジタル化するには高精度のAD変換器を要して低コスト化は困難であった。   Precise measurement of a coil, a capacitor, etc. is performed by comparison with a resistance, coil, capacitor, etc. as a reference using an impedance bridge (for example, Japanese Patent Laid-Open No. 5-296866). However, in these measuring means, the difference between the value of the reference element and the element to be inspected and the output voltage are linearly proportional, so when the difference between the two is small, the output is also small and it may be difficult to identify. It was. Further, these are level difference tests using analog signals, and high-precision AD converters are required for digitization, and cost reduction is difficult.

実際の応用面ではこれらコイル,コンデンサ等の各定数の微小な変化検知を要請されることは多々存在する。例えば,渦電流式の近接センサでは可能な限り遠距離から対象の接近を検知しようとすると,インダクタンスの微小な変化検知が重要である。また,制御系において,制御対象の変化をそれぞれ二つのコイル或いは二つのコンデンサ等で検知平衡させている例では平衡位置からの微小な変化を十分な分解能で知ることが重要となる。さらに金属体の傷欠陥の探知,或いは食品及び衣料品等での金属異物検知等は何れもコイルの微小インダクタンス変化を探知しており,それらの装置に於いて,二つの検出コイルを相互に参照コイルとして差動的に用いれば二つのコイルの微小インダクタンス差を高分解能で検知することが重要となる。   In actual application, there are many demands for detecting minute changes in the constants of these coils and capacitors. For example, in an eddy current type proximity sensor, detection of minute changes in inductance is important in order to detect the approach of an object from as far as possible. Further, in an example in which the control system detects and balances changes to be controlled by two coils or two capacitors, it is important to know a minute change from the equilibrium position with sufficient resolution. Furthermore, detection of flaws in metal objects or detection of metallic foreign objects in foods and clothing, etc. all detect changes in the small inductance of the coil, and in these devices, the two detection coils are referred to each other. When differentially used as a coil, it is important to detect a small inductance difference between the two coils with high resolution.

特開平5−296866「圧力センサ」Japanese Patent Application Laid-Open No. 5-296866 “Pressure Sensor”

そこで本発明の目的は,二つのコイルの微小インダクタンス差,或いは二つのコンデンサの微小容量差を低コストで検出出来る二つの回路素子の微小差検出回路を提案し,それにより位置検出装置,導体の欠陥或いは有無の識別検査装置等の実現を可能にすることである。   Accordingly, an object of the present invention is to propose a minute difference detection circuit of two circuit elements that can detect a minute inductance difference between two coils or a minute capacitance difference between two capacitors at a low cost. It is possible to realize a defect or presence / absence identification inspection apparatus.

本発明による二つの回路素子の微小差検出回路の基本概念は,比較対象の二つのコイル或いは二つのコンデンサを含みステップ状通電に対応して比較対象の二つのコイル或いは二つのコンデンサ間の定数差に対応する検出電位差を出力するRLC回路と,検出電位差と比例関係にある信号を入力として高レベル及び低レベルの閾値を持ってヒステリシス特性を示す電圧比較器と,第一及び第二の異なる駆動電圧を有してRLC回路を駆動する通電制御部と,識別制御部とより構成され,ヒステリシス特性を有する電圧比較器はこの検出電位差と比例関係にある信号が高レベル及び低レベルの閾値に達すると出力レベルを切り替え,通電制御部は電圧比較器入力が高レベル閾値に到達後は電圧比較器入力が減少し,低レベル閾値に到達後は電圧比較器入力が増加するようRLC回路に加える駆動電圧を切り替え,さらに所定の時間内に前記駆動電圧が変化しない場合には強制的に駆動電圧を切り替え,前記所定時間を最大の半周期として発振周期を前記比較対象の二つのコイル或いは二つのコンデンサ間の定数差に反比例させる自励発振回路を構成し,識別制御部はパルス列の周期から比較対象の二つのコイル或いは二つのコンデンサ間の定数差を識別する事を特徴とする。   The basic concept of the small difference detection circuit of two circuit elements according to the present invention is that a constant difference between two coils or two capacitors to be compared corresponding to stepped energization including two coils or two capacitors to be compared. An RLC circuit that outputs a detection potential difference corresponding to the voltage, a voltage comparator that exhibits a hysteresis characteristic with high and low level thresholds by inputting a signal proportional to the detection potential difference, and first and second different drives The voltage comparator, which is composed of an energization control unit that drives the RLC circuit with voltage and an identification control unit, has a hysteresis characteristic, and the signal proportional to the detected potential difference reaches the high level and low level thresholds. Then, the output level is switched, and the energization control unit reduces the voltage comparator input after the voltage comparator input reaches the high level threshold, and the voltage after the voltage comparator input reaches the low level threshold. The driving voltage applied to the RLC circuit is switched so that the comparator input increases, and if the driving voltage does not change within a predetermined time, the driving voltage is forcibly switched, and the oscillation time is set with the predetermined time as the maximum half cycle. The self-excited oscillation circuit is configured to be inversely proportional to the constant difference between the two comparison target coils or the two capacitors, and the identification control unit calculates the constant difference between the two comparison target coils or the two capacitors from the period of the pulse train. It is characterized by identifying.

請求項2に規定する本発明は請求項1の検出電位差を積分し,二つの回路素子の定数差に比例する電圧を得てヒステリシス特性を有する電圧比較器に入力する構成で回路定数設定が容易でノイズに強い特徴がある。   The present invention as defined in claim 2 integrates the detection potential difference of claim 1, obtains a voltage proportional to the constant difference between the two circuit elements, and inputs the voltage to a voltage comparator having hysteresis characteristics, so that the circuit constant can be easily set. And it has a strong characteristic against noise.

請求項3に規定する本発明は請求項2の積分回路と電圧比較器の間に更に積分回路を有する構成として,二つのコイル或いは二つのコンデンサの差に対応する周期を有するパルス列を発生させ,微小間隔パルス計数する事で周期を知り二つのコイル或いは二つのコンデンサの定数差のディジタルデータを得る。   The present invention as defined in claim 3 is a configuration further comprising an integration circuit between the integration circuit of claim 2 and the voltage comparator, and generates a pulse train having a period corresponding to the difference between two coils or two capacitors, By counting minute intervals, the period is known and digital data of constant difference between two coils or two capacitors is obtained.

第一積分回路出力と基準電位との差を第二積分回路への入力とするが,その基準電位は第一積分回路の平均電圧出力,或いは通電駆動電圧の切り替え直前の第一積分回路出力を基準電位とし,通電駆動電圧の切り替え毎に第一積分回路出力は所定の電位に強制リセットするとし,その電位を基準電位とする。   The difference between the output of the first integration circuit and the reference potential is used as an input to the second integration circuit. The reference potential is the average voltage output of the first integration circuit or the output of the first integration circuit immediately before switching the energization drive voltage. The reference potential is set, and the output of the first integration circuit is forcibly reset to a predetermined potential each time the energization drive voltage is switched, and the potential is set as the reference potential.

請求項1,2,3に規定する本発明は,二つのコイル或いは二つのコンデンサの定数差が小であるほどパルス周期が長くなるので識別分解能を向上できる特徴がある。   The present invention as defined in claims 1, 2 and 3 is characterized in that the identification period can be improved because the pulse period becomes longer as the constant difference between the two coils or the two capacitors becomes smaller.

請求項4は請求項1,2,3に規定する本発明に於いて,パルス周期を識別する手段を規定し,パルス列を直接或いはカウントダウンした後に微小間隔パルス計数で比較対象の二つのコイル或いは二つのコンデンサ間の定数差を識別する事を特徴とする。   A fourth aspect of the present invention provides a means for identifying a pulse period in the present invention as defined in the first, second, and third aspects, wherein two coils or two to be compared are compared by a minute interval pulse count directly or after counting down a pulse train. It is characterized by identifying a constant difference between two capacitors.

請求項5は請求項1,2,3に規定する本発明に於いて,二つの回路素子の大小関係を知る方法を示している。すなわち,識別されたパルス周期は比較対象の二つのコイル或いは二つのコンデンサの定数差の絶対値を示すに過ぎないので電圧比較器出力変化の方向とRLC回路への通電方向とから二つの回路素子の大小関係を特定する。   A fifth aspect of the present invention provides a method for determining the magnitude relationship between two circuit elements in the present invention as defined in the first, second and third aspects. That is, since the identified pulse period only indicates the absolute value of the constant difference between the two coils or two capacitors to be compared, the two circuit elements are determined from the direction of change in the voltage comparator output and the direction of energization to the RLC circuit. Identify the magnitude relationship.

請求項6,7は請求項1,2,3の本発明に於いて二つのコイルを対象とする場合のRLC回路の例を示している。即ち,請求項6は二つのコイルと抵抗を含むブリッジ回路を示し,請求項7は二つのコイルの直列回路を基本に更に抵抗を直列に挿入或いはコイルと並列に接続して二つのコイル間の中点相当部電位と中点相当部電位の時間平均電位との電位差を検出電位差とする回路を示す。   Claims 6 and 7 show examples of the RLC circuit when two coils are used in the present invention of claims 1, 2 and 3. That is, claim 6 shows a bridge circuit including two coils and a resistor, and claim 7 is based on a series circuit of two coils, and a resistor is further inserted in series or connected in parallel with the coil. 3 shows a circuit in which the potential difference between the midpoint equivalent portion potential and the time-average potential of the midpoint equivalent portion potential is a detected potential difference.

請求項8,9は請求項1,2,3の本発明に於いて二つのコンデンサを対象とする場合に使用可能なRLC回路の例を示している。即ち,請求項8は二つのコンデンサと抵抗を含むブリッジ回路を示し,請求項9は二つのコンデンサと抵抗との直列回路として二つのコンデンサ間の中点相当部電位と中点相当部電位の時間平均電位との電位差を検出電位差とする回路を示する。   Claims 8 and 9 show examples of RLC circuits that can be used when two capacitors are used in the present invention of Claims 1, 2 and 3. That is, claim 8 shows a bridge circuit including two capacitors and a resistor, and claim 9 is a series circuit of two capacitors and a resistor, and the time corresponding to the midpoint equivalent potential and the midpoint equivalent potential between the two capacitors. A circuit in which a potential difference from an average potential is a detection potential difference is shown.

請求項10の本発明は,磁性体或いは導体より成る可動体の位置により少なくとも一方の定数が変化する二つのコイルと,前記二つのコイルを比較対象とする二つの回路素子の微小差検出回路を有して構成され,前記二つのコイル間の定数差を識別して可動体の位置を検出する事を特徴とする位置検出装置である。   According to a tenth aspect of the present invention, there is provided a minute difference detection circuit comprising two coils whose constants are changed at least according to the position of a movable body made of a magnetic body or a conductor, and two circuit elements to be compared with the two coils. The position detecting device is configured to detect the position of the movable body by identifying a constant difference between the two coils.

請求項11の本発明は請求項10の位置検出装置において,二つのコイルを含むRLC回路の平衡位置をずらし,磁性体及び導体近接により変化するインダクタンスの増減方向に対する検出感度を変え,変化量の小さい導体近接の場合の感度を補償して高感度の位置検出装置を実現する。   According to the eleventh aspect of the present invention, in the position detection device according to the tenth aspect, the equilibrium position of the RLC circuit including two coils is shifted, the detection sensitivity with respect to the direction of increase / decrease of the inductance that changes due to the proximity of the magnetic body and the conductor is changed, A high-sensitivity position detection device is realized by compensating for sensitivity in the case of proximity to a small conductor.

請求項12の本発明は,二つのコイルを有してそれぞれ他方のコイルを参照して両者のインダクタンス差から磁性体或いは導体の欠陥或いは有無を識別検知することを特徴とする検査装置を示している。   The present invention of claim 12 shows an inspection apparatus characterized by having two coils and identifying and detecting a defect or the presence or absence of a magnetic substance or a conductor from an inductance difference between the two coils with reference to the other coil. Yes.

以上に説明した本発明による二つの回路素子の微小定数差検出回路は,二つのコイル或いは二つのコンデンサを含むRLC回路にステップ状に通電し,二つのコイルのインダクタンス差或いは二つの静電容量差に対応する電位差,或いはそれを積分した値を所定の電圧と比較してそれら二つの回路素子の定数差に逆比例する周期を有するパルス列を生成し,周期を微小間隔パルス計数で識別する。したがってそれらの定数差が小さいほどパルス列の周期は長くなり,識別は容易となる。少なくとも一方のコイルのインダクタンスが可動体位置により変化する二つのコイルと二つの回路素子の微小定数差検出回路とで位置検出装置を構成すると,可動体の位置を遠方から検出できる。   The small constant difference detection circuit for two circuit elements according to the present invention described above energizes the RLC circuit including two coils or two capacitors in a stepped manner, and the inductance difference between the two coils or the two capacitance differences. A pulse difference having a period inversely proportional to the constant difference between the two circuit elements is generated by comparing a potential difference corresponding to, or an integrated value thereof with a predetermined voltage, and the period is identified by a minute interval pulse count. Therefore, the smaller the difference between these constants, the longer the pulse train period and the easier the identification. If the position detection device is constituted by two coils whose inductance of at least one coil varies depending on the position of the movable body and a small constant difference detection circuit of two circuit elements, the position of the movable body can be detected from a distance.

以下に本発明による二つの回路素子の微小差検出回路及びそれを用いた装置について,実施例及び原理作用等を図面を参照しながら説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention, a minute difference detection circuit for two circuit elements, and an apparatus using the same will be described below with reference to the drawings.

図1は,本発明の第一の実施例を示し,二つの回路素子の微小差検出回路の具体例として二つのコイルのインダクタンス差を識別検出する回路を示す。同図に於いて,コイル11と抵抗13は直列接続され,コイル12と抵抗14は直列接続されてRLC回路を構成している。抵抗13,14は同じ値を有し,コイル11,12のインダクタンス差は抵抗13とコイル11との接続点及び抵抗14とコイル12との接続点間の検出電位差として現れ,これを第一積分回路15に入力し,第一積分回路15は前記検出電位差を積分して第一積分コンデンサ16に出力する。第一積分回路15は電圧電流変換回路と第一積分コンデンサ16とで構成している。ヒステリシス特性を有する電圧比較器17は第一積分コンデンサ16に現れる第一積分電圧を入力して所定の電圧と比較してその出力を変え,フリップフロップ18に入力する。フリップフロップ18は電圧比較器17の出力が変化するエッジでその出力を反転させ,その相補的な出力1c,1dに前記コイル11,12と抵抗13,14とで構成されるRLC回路が接続されている。   FIG. 1 shows a first embodiment of the present invention, and shows a circuit for identifying and detecting an inductance difference between two coils as a specific example of a minute difference detection circuit for two circuit elements. In the figure, a coil 11 and a resistor 13 are connected in series, and a coil 12 and a resistor 14 are connected in series to constitute an RLC circuit. The resistors 13 and 14 have the same value, and the inductance difference between the coils 11 and 12 appears as a detected potential difference between the connection point between the resistor 13 and the coil 11 and between the connection point between the resistor 14 and the coil 12. The first integration circuit 15 integrates the detected potential difference and outputs it to the first integration capacitor 16. The first integration circuit 15 includes a voltage-current conversion circuit and a first integration capacitor 16. The voltage comparator 17 having hysteresis characteristics inputs the first integrated voltage appearing on the first integrating capacitor 16, compares it with a predetermined voltage, changes its output, and inputs it to the flip-flop 18. The flip-flop 18 inverts its output at the edge where the output of the voltage comparator 17 changes, and an RLC circuit composed of the coils 11 and 12 and the resistors 13 and 14 is connected to its complementary outputs 1c and 1d. ing.

図1に示している第一の実施例の動作は図2をも用いて更に説明をする。図2(a)はフリップフロップ18の出力1dの波形を示し,図2(b)は第一積分コンデンサ16に現れる第一積分電圧の波形を示す。   The operation of the first embodiment shown in FIG. 1 will be further described with reference to FIG. 2A shows the waveform of the output 1d of the flip-flop 18, and FIG. 2B shows the waveform of the first integration voltage appearing in the first integration capacitor 16. FIG.

図1において,RLC回路にステップ状に通電すると,コイル11,12のインダクタンスによりコイル11と抵抗13の直列回路及びコイル12と抵抗14の直列回路に直ちに電流は流れないが,徐々に電流は増大して一定値に至る過度現象は良く知られた事実である。抵抗13,抵抗14を流れる電流をそれぞれI1,I2とするとコイル11,12間の検出電位差ΔVはコイル11及びコイル12での電圧降下の差となるのでそれぞれのインダクタンスをL1,L2で表すと,ΔVはL1*I1’−L2*I2’で表される。ここでI1’は電流I1を時間微分したことを示す。   In FIG. 1, when the RLC circuit is energized stepwise, current does not immediately flow through the series circuit of the coil 11 and the resistor 13 and the series circuit of the coil 12 and the resistor 14 due to the inductance of the coils 11 and 12, but the current gradually increases. It is a well-known fact that the transient phenomenon reaches a certain value. Assuming that the currents flowing through the resistors 13 and 14 are I1 and I2, respectively, the detected potential difference ΔV between the coils 11 and 12 is the difference in voltage drop between the coils 11 and 12, so that the respective inductances are represented by L1 and L2. ΔV is represented by L1 * I1′−L2 * I2 ′. Here, I1 'indicates that the current I1 is time-differentiated.

抵抗13,14は同じとしてRで表し,加えられた電圧をEとすると,I1=(E/R)(1−exp(−Rt/L1)),I2=(E/R)(1−exp(−Rt/L2))と表される。Eは加えられた電圧,tは時間,expは指数関数をそれぞれ示している。
第一積分回路15により検出電位差ΔVの積分値が第一積分電圧として第一積分コンデンサ16に現れる。電圧電流変換回路による変換ゲインをGとすると,第一積分コンデンサ16に流入する電流はGΔV,すなわちG(L1*I1’−L2*I2’)となるが,第一積分コンデンサ16に流入する電流は実質的に積分されて電荷Qとなり,電荷QはQ=G(L1*I1−L2*I2)=G(E/R)(L1−L2−L1*exp(−Rt/L1)+L2*exp(−Rt/L2))となる。これは時間と共にG(E/R)(L1−L2)に漸近する。したがって,第一積分コンデンサ16の静電容量をCとすると,その端子に現れる第一積分電圧はコイル11,12のインダクタンス差に比例した電圧G(E/R)(L1−L2)/Cに漸近する事になる。
The resistors 13 and 14 are represented by R as the same, and when the applied voltage is E, I1 = (E / R) (1-exp (−Rt / L1)), I2 = (E / R) (1-exp (−Rt / L2)). E represents an applied voltage, t represents time, and exp represents an exponential function.
The integrated value of the detected potential difference ΔV appears on the first integrating capacitor 16 as the first integrated voltage by the first integrating circuit 15. If the conversion gain by the voltage-current conversion circuit is G, the current flowing into the first integrating capacitor 16 is GΔV, that is, G (L1 * I1′−L2 * I2 ′), but the current flowing into the first integrating capacitor 16 Is substantially integrated to become charge Q, and charge Q is Q = G (L1 * I1-L2 * I2) = G (E / R) (L1-L2-L1 * exp (-Rt / L1) + L2 * exp (-Rt / L2)). This asymptotically approaches G (E / R) (L1-L2) with time. Therefore, if the capacitance of the first integrating capacitor 16 is C, the first integrated voltage appearing at the terminal is a voltage G (E / R) (L1-L2) / C proportional to the inductance difference between the coils 11 and 12. It will be asymptotic.

コイル11のインダクタンスがコイル12のインダクタンスより小の場合,出力1dから出力1cにRLC回路を経て通電する場合に第一積分コンデンサ16の電圧は番号21で示すように増加し,第一の所定電圧23に至って電圧比較器17は図2(c)に番号27に示すように出力レベルを変え,フリップフロップ18は出力27が変化するエッジでその出力1c,1dを反転させ,RLC回路への通電は出力1cから出力1dへと通電方向が反転する。コイル11,12間の検出電位差は極性が変わるので第一積分回路15は第一積分コンデンサ16の電荷を放電させ,第一積分電圧は番号22で示されるように変化する。電圧22が第二の所定電圧24に至ると電圧比較器17は図2(c)に番号27に示すように出力レベルを変え,フリップフロップ18は出力27が変化するエッジでその出力1c,1dを反転させるのでRLC回路への通電は出力1dから出力1cへと通電方向が反転し,これを繰り返す。   When the inductance of the coil 11 is smaller than the inductance of the coil 12, when the output 1d to the output 1c are energized through the RLC circuit, the voltage of the first integrating capacitor 16 increases as indicated by reference numeral 21, and the first predetermined voltage 23, the voltage comparator 17 changes the output level as indicated by reference numeral 27 in FIG. 2C, and the flip-flop 18 inverts the outputs 1c and 1d at the edge where the output 27 changes, and supplies power to the RLC circuit. Is reversed from the output 1c to the output 1d. Since the polarity of the detected potential difference between the coils 11 and 12 changes, the first integrating circuit 15 discharges the electric charge of the first integrating capacitor 16, and the first integrated voltage changes as indicated by numeral 22. When the voltage 22 reaches the second predetermined voltage 24, the voltage comparator 17 changes the output level as indicated by numeral 27 in FIG. 2C, and the flip-flop 18 outputs its output 1c, 1d at the edge where the output 27 changes. Is reversed, the energization direction of the RLC circuit is reversed from the output 1d to the output 1c, and this is repeated.

ヒステリシス特性を有する電圧比較器17は内部に作る参照電位より一定量高い電位を第一の所定電圧とし,参照電位より一定量低い電位を第二の所定電圧としてヒステリシスを有している。上記に説明したように第一積分コンデンサ16の電圧は第一の所定電圧23に達すると減少に転じ,第二の所定電圧24に達すると増加に転じるよう制御されるので常に第一及び第二の所定電圧23,24の間の電圧を有する。   The voltage comparator 17 having hysteresis characteristics has a hysteresis with a potential that is a certain amount higher than a reference potential created therein as a first predetermined voltage and a potential that is a certain amount lower than the reference potential as a second predetermined voltage. As described above, the voltage of the first integrating capacitor 16 is controlled to decrease when reaching the first predetermined voltage 23, and to increase when reaching the second predetermined voltage 24. And a predetermined voltage 23, 24.

図3は第一積分コンデンサ16に現れる電圧21,22,電圧比較器17の第一及び第二の所定電圧23,24等を拡大して示す。点線31はコイル11,12のインダクタンス差が更に大となった場合の第一積分コンデンサ16の電圧波形を示し,コイル11,12間のインダクタンス差が大になると,立ち上がり,立ち下がりも急峻になり,変化の周期は短くなる事を示している。図から判明するようにコイル11,12のインダクタンス差が大になると,当然にフリップフロップ18の出力1c,1dのパルス列の周期も短くなる。これら第一積分コンデンサ16の電圧及びフリップフロップ18の出力1c,1dの変動周期はコイル11,12のインダクタンス差ΔLに反比例するので図4に曲線41で図示するように変化する。   FIG. 3 shows the first and second predetermined voltages 23 and 24 of the voltage 21, 22 and voltage comparator 17 appearing on the first integrating capacitor 16 in an enlarged manner. A dotted line 31 shows a voltage waveform of the first integrating capacitor 16 when the inductance difference between the coils 11 and 12 becomes larger. When the inductance difference between the coils 11 and 12 becomes larger, the rise and fall become steep. This shows that the period of change is shortened. As can be seen from the figure, when the inductance difference between the coils 11 and 12 is increased, the period of the pulse train of the outputs 1c and 1d of the flip-flop 18 is naturally shortened. Since the voltage of the first integrating capacitor 16 and the fluctuation period of the outputs 1c and 1d of the flip-flop 18 are inversely proportional to the inductance difference ΔL of the coils 11 and 12, they change as shown by the curve 41 in FIG.

フリップフロップ18の出力1dはカウンタ19に入力されて図2(e)の番号2a,図2(f)の番号2bに順次示すようにカウントダウンした後にマイクロコンピュータ1aに入力し(番号1eで示す),内蔵するカウンタを用いて微小間隔パルス2cの計数により出力1dの周期を計測し,コイル11,12のインダクタンス差を識別する。   The output 1d of the flip-flop 18 is input to the counter 19 and counted down as indicated by the number 2a in FIG. 2 (e) and the number 2b in FIG. 2 (f), and then input to the microcomputer 1a (indicated by the number 1e). The period of the output 1d is measured by counting the minute interval pulse 2c using a built-in counter, and the inductance difference between the coils 11 and 12 is identified.

コイル11,12間のインダクタンス差が想定より小である場合には例えば図2(b)に示したように番号26で示した第一の所定電圧に番号25で示す第一積分電圧が到達しなかった場合には電圧比較器17はその出力1bを反転させず,従ってフリップフロップ18の出力も変わらないことになる。番号25で示す第一積分電圧が第一の所定電圧(この場合は26として示す)に所定の時間内に達しないとマイクロコンピュータ1aはパルス28を出力して(図1の出力1f)そのエッジでフリップフロップ18の状態を変えさせる。図2(a)に於ける番号29はパルス28によりフリップフロップ18の出力1dの状態が変わった事を示す。   When the inductance difference between the coils 11 and 12 is smaller than expected, for example, as shown in FIG. 2B, the first integrated voltage indicated by number 25 reaches the first predetermined voltage indicated by number 26. If not, the voltage comparator 17 does not invert the output 1b, and therefore the output of the flip-flop 18 does not change. If the first integrated voltage indicated by reference numeral 25 does not reach the first predetermined voltage (in this case indicated as 26) within a predetermined time, the microcomputer 1a outputs a pulse 28 (output 1f in FIG. 1) and its edge To change the state of the flip-flop 18. Reference numeral 29 in FIG. 2A indicates that the state of the output 1 d of the flip-flop 18 has been changed by the pulse 28.

フリップフロップ18の出力1dのパルス周期を微小間隔パルス2cの計数により得たディジタル値はコイル11,12のインダクタンス差に対応するが,これは絶対値であって,何れのコイルのインダクタンスが大であるかは判明しない。コイル11,12の大小関係は電圧比較器17出力1bの変化する方向とRLC回路への通電方向,即ち出力1dのレベルとで判断する。電圧比較器17は第一積分コンデンサ16の電圧が第一の所定電圧23に至ると出力を低レベルに,電圧が第二の所定電圧24に至ると出力を高レベルに転じるので電圧比較器17の出力1bが低レベルから高レベルに,高レベルから低レベルに至る時の出力1dのレベルで判断できる。即ち,図2の左半分では図2(c)に示す出力27(1b)の立ち上がり端では出力1dは高レベルであるのでコイル12のインダクタンスが大,右半分では出力27(1b)の立ち上がり端で出力1dは低レベルであるのでコイル11のインダクタンス大と判断できる。   The digital value obtained by counting the pulse period of the output 1d of the flip-flop 18 by counting the minute interval pulse 2c corresponds to the inductance difference between the coils 11 and 12, but this is an absolute value, and the inductance of any of the coils is large. I don't know if it exists. The magnitude relationship between the coils 11 and 12 is determined by the direction in which the voltage comparator 17 output 1b changes and the energization direction to the RLC circuit, that is, the level of the output 1d. When the voltage of the first integrating capacitor 16 reaches the first predetermined voltage 23, the voltage comparator 17 turns the output to a low level, and when the voltage reaches the second predetermined voltage 24, the output turns to a high level. The output 1b can be determined by the level of the output 1d when the output 1b changes from low level to high level and from high level to low level. That is, in the left half of FIG. 2, the output 1d is high at the rising edge of the output 27 (1b) shown in FIG. 2C, so the inductance of the coil 12 is large, and in the right half, the rising edge of the output 27 (1b). Since the output 1d is at a low level, it can be determined that the inductance of the coil 11 is large.

図4には出力1dのパルス周期Tとコイル11,12のインダクタンス差ΔLの関係41を示したが,計測可能なパルス周期Tはマイクロコンピュータ1aがパルス28を出力するまでとして設定する所定の時間で上限が設定され,また微小間隔パルス2cの時間間隔で下限が設定される。その領域は番号42で図示している。   FIG. 4 shows the relationship 41 between the pulse period T of the output 1d and the inductance difference ΔL between the coils 11 and 12, but the measurable pulse period T is a predetermined time set as the microcomputer 1a outputs the pulse 28. The upper limit is set by and the lower limit is set by the time interval of the minute interval pulse 2c. That region is illustrated by the number 42.

図1に於いて,通電制御部は主としてフリップフロップ18で構成し,識別制御部はカウンタ19及びマイクロコンピュータ1aで構成している。これは一例であって,フリップフロップ18に続けて高電圧駆動の可能な出力増幅回路を設けても,カウンタ19の機能をマイクロコンピュータ1aに内蔵することも可能である。さらにマイクロコンピュータ1aに期待する処理を論理回路のみで構成することも可能である。   In FIG. 1, the energization control unit is mainly composed of a flip-flop 18, and the identification control unit is composed of a counter 19 and a microcomputer 1a. This is merely an example, and the function of the counter 19 can be incorporated in the microcomputer 1a even if an output amplifier circuit capable of high voltage driving is provided following the flip-flop 18. Furthermore, the processing expected from the microcomputer 1a can be configured only by a logic circuit.

図1に示した回路に於いて,通電制御部は電圧比較器17の出力変化エッジでフリップフロップ18の出力を反転させてRLC回路を駆動した。これはコイル11,12の大小関係が定まらない一般の場合を想定した回路であり,電圧比較器17入力が高レベル閾値である第一の所定電圧に到達後は電圧比較器17入力を減少させる方向に,電圧比較器17入力が低レベル閾値である第仁の所定電圧に到達後は電圧比較器17入力を増加させる方向にRLC回路を通電駆動させる。比較対象とするコイル11,12は使用範囲内で大小関係が定まっているのであればフリップフロップ18を取り除き,電圧比較器17の出力を増幅してRLC回路を駆動させる事も可能である。コイル11,12に加えて抵抗13,14も含めて故意にブリッジ回路のバランスを崩し,検出電位差の積分電圧が駆動電圧の立ち上がり,立ち下がり端で常に増減方向が一定とする条件とした場合も同様である。   In the circuit shown in FIG. 1, the energization control unit drives the RLC circuit by inverting the output of the flip-flop 18 at the output change edge of the voltage comparator 17. This is a circuit that assumes a general case where the magnitude relationship between the coils 11 and 12 is not determined, and the input of the voltage comparator 17 is decreased after the input of the voltage comparator 17 reaches the first predetermined voltage that is a high level threshold. In the direction, after the input of the voltage comparator 17 reaches the second predetermined voltage which is a low level threshold value, the RLC circuit is energized and driven in the direction of increasing the input of the voltage comparator 17. It is also possible to drive the RLC circuit by removing the flip-flop 18 and amplifying the output of the voltage comparator 17 if the magnitudes of the coils 11 and 12 to be compared are determined within the range of use. The bridge circuit including the resistors 11 and 12 in addition to the coils 11 and 12 is intentionally lost in balance, and the integrated voltage of the detected potential difference is a condition in which the increasing / decreasing direction is always constant at the rising and falling edges of the driving voltage. It is the same.

上記実施例はマイクロコンピュータ1aから所定の時間毎にトリガーを出力する自励発振回路であり,その発振周期を最大として二つのコイル11,12のインダクタンス差に反比例して発振周期が変わるよう変調した例である。アナログ回路を最小にする為に上記構成としたが,別に発振回路を有した構成としても良い。   The above-described embodiment is a self-excited oscillation circuit that outputs a trigger from the microcomputer 1a every predetermined time. The oscillation period is maximized and modulated such that the oscillation period changes in inverse proportion to the inductance difference between the two coils 11 and 12. It is an example. Although the above configuration is used to minimize the analog circuit, a configuration having an oscillation circuit may be used.

図5は,本発明の第二の実施例を示し,二つの回路素子の微小差検出回路の具体例として二つのコンデンサの静電容量差を検出識別する回路を示す。同図に於いて,二つのコンデンサ51,52はそれぞれ同じ定数の抵抗13,14と直列接続され,さらにそれぞれの回路は並列接続されてRLC回路を構成する。第一積分回路15はRLC回路の抵抗13とコンデンサ51の接続点及び抵抗14とコンデンサ52の接続点それぞれの電位を入力としてそれら接続点間の検出電位差を積分して第一積分コンデンサ16に表す。その他の回路構成は図1に示したと同じであるので説明は省略する。   FIG. 5 shows a second embodiment of the present invention, and shows a circuit for detecting and identifying the capacitance difference between two capacitors as a specific example of the minute difference detection circuit for two circuit elements. In the figure, two capacitors 51 and 52 are respectively connected in series with resistors 13 and 14 having the same constant, and the respective circuits are connected in parallel to constitute an RLC circuit. The first integrating circuit 15 receives the potentials of the connection points of the resistor 13 and the capacitor 51 and the connection points of the resistor 14 and the capacitor 52 of the RLC circuit as inputs and integrates the detected potential difference between these connection points to represent the first integration capacitor 16. . The other circuit configuration is the same as that shown in FIG.

図5に於けるコンデンサ51,52にそれぞれ抵抗11,13を介してステップ状通電を行うとコンデンサ51,52には過度的な電圧が現れ,それぞれ印加電圧に漸近して等しくなるが,それらの差である検出電位差を積分すると積分値はER(C1−C2)に比例する値に漸近する。ここでEは印加電圧,Rは抵抗13,14の抵抗値,C1,C2はコンデンサ51,52の静電容量をそれぞれ示す。フリップフロップ18の出力1c,1dにはコンデンサ51,52の静電容量差と反比例する周期を有するパルス列が得られ,マイクロコンピュータ1a内のカウンタにより微小間隔パルス計数でその静電容量差は識別されるが,その動作原理は図1に示した第一の実施例で示したインダクタンス差の場合と同じであるので説明は省略する。   When stepped energization is performed on the capacitors 51 and 52 in FIG. 5 through the resistors 11 and 13, respectively, excessive voltages appear in the capacitors 51 and 52, and asymptotically become equal to the applied voltage, respectively. When the detected potential difference, which is a difference, is integrated, the integrated value gradually approaches a value proportional to ER (C1-C2). Here, E is the applied voltage, R is the resistance value of the resistors 13 and 14, and C1 and C2 are the capacitances of the capacitors 51 and 52, respectively. A pulse train having a period inversely proportional to the capacitance difference between the capacitors 51 and 52 is obtained at the outputs 1c and 1d of the flip-flop 18, and the capacitance difference is identified by the counter in the microcomputer 1a with a minute interval pulse count. However, the operation principle is the same as that in the case of the inductance difference shown in the first embodiment shown in FIG.

図6は,本発明の第三の実施例を示し,二つの回路素子の微小差検出回路の具体例として二つのコイルのインダクタンス差を識別検出する回路を示す。図1の第一の実施例とは目的,機能は同じであるが,RLC回路及びRLC回路への通電手段が異なっている。即ち,図6に於いて,コイル61,62は直列接続され,抵抗13,14が直列に挿入接続されて上下対称に構成されている。コイル61,62間の接続点を中点として参照電位は参照電位生成回路63により構成され,前記中点電位と参照電位生成回路63出力との差を第一積分回路15が積分する構成となっている。同図において,参照電位生成回路63は抵抗とコンデンサとで低域通過フィルタを構成し,中点電位の時間平均を参照電位としている。   FIG. 6 shows a third embodiment of the present invention, and shows a circuit for discriminating and detecting an inductance difference between two coils as a specific example of a minute difference detection circuit of two circuit elements. Although the purpose and function are the same as those of the first embodiment of FIG. 1, the RLC circuit and the means for energizing the RLC circuit are different. That is, in FIG. 6, the coils 61 and 62 are connected in series, and the resistors 13 and 14 are inserted and connected in series to form a vertically symmetrical structure. The reference potential is configured by a reference potential generation circuit 63 with the connection point between the coils 61 and 62 as a midpoint, and the first integration circuit 15 integrates the difference between the midpoint potential and the output of the reference potential generation circuit 63. ing. In the figure, a reference potential generation circuit 63 forms a low-pass filter with a resistor and a capacitor, and the time average of the midpoint potential is used as the reference potential.

また,RLC回路への通電はフリップフロップ18の相補的な出力で駆動するのではなく,フリップフロップ18の出力1dから通電制御回路64を介してRLC回路を駆動する。この通電制御回路64は第一及び第二の駆動電圧を有してRLC回路を駆動するが,第一,第二の駆動電圧はそれぞれ正負の電圧であっても,二種類の正の電圧であっても,一方が接地電位であっても良い。ステップ的に立ち上がる通電電圧に対応する検出電位差と,ステップ的に立ち下がる通電電圧に対応する検出電位差は原理的には逆極性でこれらをそのまま積分すると,一方は積分加算であり,他方は積分減算となることを利用している。積分回路15の出力に現れる波形は図2(b)に示したと同じである。   The energization of the RLC circuit is not driven by the complementary output of the flip-flop 18, but the RLC circuit is driven from the output 1 d of the flip-flop 18 via the energization control circuit 64. The energization control circuit 64 has first and second drive voltages to drive the RLC circuit. The first and second drive voltages are two types of positive voltages, even if they are positive and negative voltages, respectively. One of them may be ground potential. The detection potential difference corresponding to the energizing voltage that rises stepwise and the detection potential difference corresponding to the energizing voltage that falls stepwise are theoretically reversed in polarity, and when they are integrated as they are, one is integral addition and the other is integral subtraction It is used to become. The waveform appearing at the output of the integrating circuit 15 is the same as that shown in FIG.

したがって,図6に示した第三の実施例は図1に示した第一の実施例とRLC回路は異なり,通電駆動方法は異なるが,動作原理は同じであるのでそれらの詳しい説明は省略する。コイル61,62を直列として流れる電流値は同じであるので第一の実施例に比し,コイル61,62の直流抵抗がほぼ完全にキャンセルされる。それら直流抵抗が温度により変化しやすい事を考慮すると温度の影響をより排除できる実施例である。   Accordingly, the third embodiment shown in FIG. 6 is different from the first embodiment shown in FIG. 1 in the RLC circuit, and the energization driving method is different, but the operation principle is the same, so detailed description thereof is omitted. . Since the current values flowing through the coils 61 and 62 in series are the same, the DC resistance of the coils 61 and 62 is almost completely canceled as compared with the first embodiment. In consideration of the fact that these DC resistances are likely to change with temperature, this is an embodiment in which the influence of temperature can be further eliminated.

図7は,本発明の第四の実施例を示し,二つの回路素子の微小差検出回路の具体例として二つのコンデンサの静電容量差を識別検出する回路を示す。図5の第二の実施例とは目的,機能は同じであるが,RLC回路のみが異なっている。即ち,図7に於いて,コンデンサ71,72は直列接続され,抵抗13,14が直列に挿入接続されて上下対象に構成されている。コンデンサ71,72間の接続点を中点として参照電位は参照電位生成回路63により構成され,前記中点電位と参照電位生成回路63出力との差を第一積分回路15が積分する構成となっている。同図において,参照電位生成回路63は抵抗とコンデンサとで低域通過フィルタを構成したシンプルな回路を採用している。   FIG. 7 shows a fourth embodiment of the present invention, and shows a circuit for discriminating and detecting a capacitance difference between two capacitors as a specific example of a minute difference detection circuit of two circuit elements. Although the purpose and function are the same as the second embodiment of FIG. 5, only the RLC circuit is different. That is, in FIG. 7, capacitors 71 and 72 are connected in series, and resistors 13 and 14 are inserted and connected in series to constitute a vertical object. The reference potential is constituted by a reference potential generation circuit 63 with the connection point between the capacitors 71 and 72 as a midpoint, and the first integration circuit 15 integrates the difference between the midpoint potential and the output of the reference potential generation circuit 63. ing. In the figure, the reference potential generating circuit 63 employs a simple circuit in which a low-pass filter is constituted by a resistor and a capacitor.

図7に示した第四の実施例は図5に示した第二の実施例とRLC回路以外は同一であるので動作原理等の説明は省略する。   Since the fourth embodiment shown in FIG. 7 is the same as the second embodiment shown in FIG. 5 except for the RLC circuit, description of the operating principle and the like is omitted.

図8は,本発明の第五の実施例を示し,二つの回路素子の微小差検出回路の具体例として二つのコイルのインダクタンス差を識別検出する回路を示す。図1の第一の実施例とは目的,機能は同じであるが,第一積分回路15と電圧比較器17の間に第二積分回路82が挿入されている点が異なっている。即ち同図に於いて,第一積分回路15の出力と基準電位との差を第二積分回路82は積分して第二積分コンデンサ83に蓄え,電圧比較器17は第二積分コンデンサ83の電圧を所定の電圧と比較してその出力1bを変える。図8で基準電位は第一積分回路15の出力の時間平均として基準電位生成回路81により生成している。図8の実施例に於ける基準電位生成回路81は抵抗とコンデンサによるシンプルな低域通過フィルタとして構成されている。   FIG. 8 shows a fifth embodiment of the present invention, and shows a circuit for discriminating and detecting an inductance difference between two coils as a specific example of a minute difference detection circuit of two circuit elements. The purpose and function are the same as those of the first embodiment of FIG. 1 except that a second integration circuit 82 is inserted between the first integration circuit 15 and the voltage comparator 17. That is, in the figure, the difference between the output of the first integrating circuit 15 and the reference potential is integrated by the second integrating circuit 82 and stored in the second integrating capacitor 83, and the voltage comparator 17 stores the voltage of the second integrating capacitor 83. Is compared with a predetermined voltage to change its output 1b. In FIG. 8, the reference potential is generated by the reference potential generation circuit 81 as the time average of the output of the first integration circuit 15. The reference potential generation circuit 81 in the embodiment of FIG. 8 is configured as a simple low-pass filter using a resistor and a capacitor.

第一の実施例で説明したように第一積分コンデンサ16には二つのコイル11,12のインダクタンス差に比例した電圧が現れるが,インダクタンス差が微小な場合には電圧比較器17での第一,第二の所定電圧設定には制限がある。   As described in the first embodiment, a voltage proportional to the inductance difference between the two coils 11 and 12 appears in the first integrating capacitor 16. The second predetermined voltage setting is limited.

第五の実施例は微小なインダクタンス差を検出する場合でも比較的容易に電圧比較器17の第一,第二の所定電圧設定を可能とする実施例である。第二積分回路82には第一積分回路15出力とその時間平均値との差が入力されるので第二積分コンデンサ83はコイル11,12のインダクタンス差に比例した電圧G(E/R)(L1−L2)/Cと時間の積に漸近する電圧が現れ,これは時間と共に増大するので電圧比較器17の第一,第二の所定電圧設定は容易となり,微小インダクタンス差の検出には更に適する実施例となる。   In the fifth embodiment, the first and second predetermined voltages of the voltage comparator 17 can be set relatively easily even when a small inductance difference is detected. Since the difference between the output of the first integrating circuit 15 and its time average value is input to the second integrating circuit 82, the second integrating capacitor 83 has a voltage G (E / R) (proportional to the inductance difference between the coils 11 and 12). A voltage asymptotically appears as the product of (L1-L2) / C and time, and this voltage increases with time, so that the first and second predetermined voltage settings of the voltage comparator 17 are facilitated. This is a suitable example.

図8の例において,基準電位生成回路81は第一積分回路15出力を時間平均して基準電位を生成しているが,フリップフロップ18がその出力1c,1dを反転させる毎に第一積分回路15出力を保持してその電位を基準電位とする回路構成としても,或いはフリップフロップ18がその出力1c,1dを反転させる毎に固定の基準電位にリセットする回路構成としても実現できる。   In the example of FIG. 8, the reference potential generation circuit 81 generates the reference potential by averaging the outputs of the first integration circuit 15 over time, but the first integration circuit every time the flip-flop 18 inverts the outputs 1c and 1d. It can be realized as a circuit configuration that holds 15 outputs and uses the potential as a reference potential, or as a circuit configuration that resets to a fixed reference potential every time the flip-flop 18 inverts its outputs 1c and 1d.

図9は,本発明の第六の実施例を示し,二つの回路素子の微小差検出回路の具体例として二つのコンデンサの微小静電容量差を識別検出する回路を示す。図5の第二の実施例とは目的,機能は同じであるが,第一積分回路15と電圧比較器17の間に第二積分回路82が挿入されている点が異なっている。即ち,図9に於いて,第一積分回路15の出力と基準電位との差を第二積分回路82は積分して第二積分コンデンサ83に蓄え,電圧比較器17は第二積分コンデンサ83の電圧を所定の電圧と比較してその出力1bを変える。図9で基準電位は第一積分回路15の出力の低周波数成分として基準電位生成回路81により生成している。   FIG. 9 shows a sixth embodiment of the present invention, and shows a circuit for discriminating and detecting a minute capacitance difference between two capacitors as a specific example of a minute difference detecting circuit of two circuit elements. The second embodiment of FIG. 5 has the same purpose and function, but differs in that a second integration circuit 82 is inserted between the first integration circuit 15 and the voltage comparator 17. That is, in FIG. 9, the difference between the output of the first integrating circuit 15 and the reference potential is integrated by the second integrating circuit 82 and stored in the second integrating capacitor 83, and the voltage comparator 17 is stored in the second integrating capacitor 83. The voltage is compared with a predetermined voltage to change its output 1b. In FIG. 9, the reference potential is generated by the reference potential generation circuit 81 as a low frequency component of the output of the first integration circuit 15.

図5の第二の実施例と図9の第六の実施例との関係は,図1に示す第一の実施例と図8の第五の実施例との関係と同じであり,その動作原理も同様であるので詳しい趣旨説明は省略する。   The relationship between the second embodiment of FIG. 5 and the sixth embodiment of FIG. 9 is the same as the relationship between the first embodiment shown in FIG. 1 and the fifth embodiment of FIG. Since the principle is the same, the detailed explanation is omitted.

図10は本発明の第七の実施例を示し,二つの回路素子の微小差検出回路の具体例として二つのコイルのインダクタンス差を識別検出する回路を示す。図6の第三の実施例とは構成が類似しているが,第一積分回路15の替わりに差分回路101,加算電圧回路102が配置されている点が異なっている。即ち同図に於いて,コイル61,62のインダクタンス差に対応する電位差を入力する点は同じであるが,加算電圧回路102で生成される電圧を加算して差分回路101で増幅して電圧比較器17に入力する。その他の構成は図1,図6と同じであるので説明は省略する。   FIG. 10 shows a seventh embodiment of the present invention, and shows a circuit for discriminating and detecting an inductance difference between two coils as a specific example of a minute difference detection circuit of two circuit elements. The configuration is similar to that of the third embodiment of FIG. 6 except that a difference circuit 101 and an addition voltage circuit 102 are arranged instead of the first integration circuit 15. That is, in the same figure, the potential difference corresponding to the inductance difference between the coils 61 and 62 is the same, but the voltage generated by the addition voltage circuit 102 is added and amplified by the difference circuit 101 for voltage comparison. Input to the device 17. Other configurations are the same as those in FIGS.

図11は動作を説明する為のパルス駆動電圧及び過度応答波形を示す。図11(a)はコイル61,62及び抵抗13,14で構成する直列回路にパルス電圧を加えた場合の過度応答を示し,前記直列回路に加えられたパルス電圧111,コイル61とコイル62との接続点に現れた電圧波形112が示されている。電圧波形112はコイル61,62のインダクタンス差に対応する検出電位差であり,正負の電圧となるが,扱いやすいように加算電圧回路102で生成される電圧を加算して単極性とした過度応答差分電圧113を電圧比較器17に入力する。過度応答差分電圧113が電圧比較器17の閾値である第一,第二の所定電圧23,24に達した時点で電圧比較器17の出力を変え,コイル61,62及び抵抗13,14で構成する直列回路に加える電圧を反転させ,自励発振回路を構成する。図11(b)には過度応答差分電圧113と第一,第二の所定電圧23,24との関係を示している。   FIG. 11 shows a pulse driving voltage and a transient response waveform for explaining the operation. FIG. 11A shows the transient response when a pulse voltage is applied to the series circuit composed of the coils 61 and 62 and the resistors 13 and 14, and the pulse voltage 111, the coil 61 and the coil 62 applied to the series circuit are shown in FIG. A voltage waveform 112 appearing at the connection point is shown. A voltage waveform 112 is a detected potential difference corresponding to the inductance difference between the coils 61 and 62 and is a positive or negative voltage. However, for the sake of easy handling, the voltage generated by the addition voltage circuit 102 is added to obtain a unipolar transient response difference. The voltage 113 is input to the voltage comparator 17. When the transient response differential voltage 113 reaches the first and second predetermined voltages 23 and 24 which are the threshold values of the voltage comparator 17, the output of the voltage comparator 17 is changed, and the coils 61 and 62 and the resistors 13 and 14 are configured. The self-excited oscillation circuit is configured by inverting the voltage applied to the series circuit. FIG. 11B shows the relationship between the transient response differential voltage 113 and the first and second predetermined voltages 23 and 24.

その他の部分の動作は図1の場合と同じであるので説明は省略する。ただ図10の例では加算電圧回路102で生成される電圧を第一,第二の所定電圧23,24の中間に設定する必要がある。   The operation of the other parts is the same as in FIG. However, in the example of FIG. 10, the voltage generated by the addition voltage circuit 102 needs to be set between the first and second predetermined voltages 23 and 24.

図12は本発明の第八の実施例である位置検出装置を示す。検出部123内に斜線部で示す磁気コア124に巻回された検出コイル121と参照コイル122とは同一仕様で構成し,導体或いは磁性体で構成される可動体が左方から検出コイル121に近接して検出コイル121のインダクタンスに変化が生じたことを検知して可動体の位置を知る。検出コイル121には抵抗13を直列に接続し,参照コイル122には抵抗14を直列に接続し,微小インダクタンス差検出回路は図8に示した第五の実施例と同一構成にしてある。   FIG. 12 shows a position detection apparatus according to an eighth embodiment of the present invention. The detection coil 121 and the reference coil 122 wound around the magnetic core 124 indicated by the hatched portion in the detection unit 123 are configured with the same specifications, and a movable body made of a conductor or a magnetic material is moved from the left to the detection coil 121. The position of the movable body is known by detecting that the inductance of the detection coil 121 has changed in the vicinity. A resistor 13 is connected in series to the detection coil 121, a resistor 14 is connected in series to the reference coil 122, and the minute inductance difference detection circuit has the same configuration as that of the fifth embodiment shown in FIG.

検出コイル121と参照コイル122とはほぼ同じインダクタンスを有するよう構成されているが,検出コイル121にアルミニウム,銅等の導体,或いは鉄,フェライト等の磁性体が近接すると,そのインダクタンスは変化し,図1,8を用いて説明したインダクタンス差検出回路の動作原理に従って参照コイル122のインダクタンスと差が生じたことが検知される。   The detection coil 121 and the reference coil 122 are configured to have substantially the same inductance. However, when a conductor such as aluminum or copper or a magnetic material such as iron or ferrite comes close to the detection coil 121, the inductance changes. It is detected that there is a difference from the inductance of the reference coil 122 in accordance with the operation principle of the inductance difference detection circuit described with reference to FIGS.

位置検出装置の一つの応用である近接センサにおいては,近接する物体を出来るだけ遠距離から検知することが望ましいが,従来は温度変化による検出コイル121の定数変動,或いは回路定数変動等により制限を受けていた。図12に示す構成では検出コイル121と参照コイル122とを同一仕様で構成して同じ温度環境に置き,その差の有無を識別検知しているので温度変動の影響を受け難い。   In a proximity sensor, which is one application of a position detection device, it is desirable to detect a nearby object from as far as possible. Conventionally, however, the limit is limited by fluctuations in the constant of the detection coil 121 due to temperature changes, fluctuations in circuit constants, or the like. I was receiving. In the configuration shown in FIG. 12, the detection coil 121 and the reference coil 122 are configured with the same specifications, placed in the same temperature environment, and the presence or absence of the difference is identified and detected, so that it is not easily affected by temperature fluctuations.

導体が検出コイル121に近接すると渦電流効果によりそのインダクタンスを低下させ,逆に磁性体が近接するとインダクタンスを増加させる。インダクタンス増減の方向は逆であるので識別した結果が参照コイル122のインダクタンスより増減した方向でディジタル的な閾値を変え,可動体の近接度合いを判断識別する事で導体及び磁性体双方何れの近接検知にも使用できる。   When the conductor is close to the detection coil 121, the inductance is reduced due to the eddy current effect, and conversely, when the magnetic body is close, the inductance is increased. Since the direction of increase / decrease in the inductance is reversed, the identification result is changed in the direction in which the increase / decrease of the inductance of the reference coil 122 is changed, and the proximity of the movable body and the magnetic body is detected by changing the digital threshold and determining the proximity of the movable body. Can also be used.

また,二つのコイルの一方を定数とした参照コイルとして金属あるいは磁性体の接近検知を目的とする近接センサの場合には二つのコイルと抵抗を含むRLC回路の平衡を故意に崩し,他方のコイルのインダクタンス増大で両者のインダクタンス差が増大し,インダクタンス減少で両者のインダクタンス差が減少するよう設定する。導体が近接するとインダクタンスは減少し,磁性体が近接するとインダクタンスが増大するが,一般に前者の変化は小さいので上記のように設定することで検出感度を補償でき,高感度の検出を可能にする。   Also, in the case of a proximity sensor for the purpose of detecting the proximity of a metal or a magnetic material as a reference coil with one of the two coils as a constant, the balance of the RLC circuit including the two coils and the resistance is intentionally broken, and the other coil It is set so that the inductance difference between the two increases as the inductance increases, and the inductance difference decreases as the inductance decreases. When the conductor is close, the inductance decreases, and when the magnetic body is close, the inductance increases. However, since the change in the former is generally small, the detection sensitivity can be compensated by setting as described above, and high sensitivity detection is possible.

さらにディジタル的な閾値を変える他に第一積分回路15或いは第二積分回路82の変換ゲインを適応的に変える手段もある。即ち,検出コイル121のインダクタンスが参照コイル122のそれより大であるか小であるかは電圧比較器17の立ち上がり端或いは立ち下がり端での出力1dのレベルから判断できるので検出コイル121のインダクタンスが大と識別している間は第一積分回路15或いは第二積分回路82のゲインを小に変える構成としても良い。   In addition to changing the digital threshold, there is also means for adaptively changing the conversion gain of the first integration circuit 15 or the second integration circuit 82. That is, whether the inductance of the detection coil 121 is larger or smaller than that of the reference coil 122 can be determined from the level of the output 1d at the rising edge or the falling edge of the voltage comparator 17, so that the inductance of the detection coil 121 is A configuration may be adopted in which the gain of the first integration circuit 15 or the second integration circuit 82 is changed to a small value while it is identified as large.

図13は本発明の第九の実施例を導体の欠陥或いは有無の識別検査装置の具体的な例として磁気探傷装置の概略構成を示す。図13(a)は検出部概略を,図13(b)は出力のダイパルス(dipulse)波形をそれぞれ示す。同図に於いて,磁気探傷装置は2つの検出コイル131,132と,検出回路130と,図示していない走査機構手段と等から構成され,2つの検出コイル131,132は検査対象となる金属の被検体133に近接して配置され,被検体133は走査機構手段により矢印134に沿って移動させられる。検出回路130は図8に示すと同じ検出回路としているので検出回路130の具体的な内容と動作原理の説明は省略する。   FIG. 13 shows a schematic configuration of a magnetic flaw detection apparatus as a specific example of a conductor defect identification inspection apparatus according to the ninth embodiment of the present invention. FIG. 13A shows the outline of the detection unit, and FIG. 13B shows the output dipulse waveform. In the figure, the magnetic flaw detector is composed of two detection coils 131 and 132, a detection circuit 130, scanning mechanism means (not shown), and the like. The two detection coils 131 and 132 are metal to be inspected. The subject 133 is disposed in the vicinity of the subject 133, and the subject 133 is moved along the arrow 134 by the scanning mechanism means. Since the detection circuit 130 is the same as that shown in FIG. 8, the description of the specific contents and operation principle of the detection circuit 130 will be omitted.

検出回路130は検出コイル131,132をパルス的に断続通電してパルス状磁束135を発生させる。パルス状磁束135は金属である被検体133の表面から内部に浸透しようとするが,被検体133表面には磁束の変化を妨げるような方向に渦電流が流れ,検出コイル131,132のインダクタンスを見かけ上減少させる。ここで被検体133表面に傷が存在すると前記渦電流は流れにくくなり,検出コイル131,132のインダクタンスの減少傾向は弱められ,見かけ上のインダクタンスは増大する。そして被検体133表面の傷が検出コイル131の磁界分布内に有れば検出コイル131のインダクタンスが通常より大となる。   The detection circuit 130 intermittently energizes the detection coils 131 and 132 to generate a pulsed magnetic flux 135. The pulsed magnetic flux 135 tends to penetrate from the surface of the subject 133 that is a metal, but an eddy current flows on the surface of the subject 133 in a direction that prevents the change of the magnetic flux, and the inductance of the detection coils 131 and 132 is increased. Apparently decrease. Here, if there is a flaw on the surface of the subject 133, the eddy current does not flow easily, the decreasing tendency of the inductance of the detection coils 131 and 132 is weakened, and the apparent inductance increases. If the scratch on the surface of the subject 133 is in the magnetic field distribution of the detection coil 131, the inductance of the detection coil 131 becomes larger than usual.

磁気探傷装置では本来有ってはならない傷或いは欠陥等の有無を確認する装置であるから当然に傷或いは欠陥の密度は低く,仮に検出コイル131の真下に傷が存在しても検出コイル132の真下の被検体133面にも傷が存在する確率は非常に小さい筈である。逆もまた同様である。図13(a)に示す検出回路130は検出コイル131,132のインダクタンス差の検出回路を基本にしているので互いに他方の検出コイル側を基準としながら被検体133の傷,欠陥有無を検査することになる。留意すべきは検出コイル131,132と被検体133との関係を出来るだけ同一条件に維持しながら相対的に移動させる走査機構手段とすることである。   Since the magnetic flaw detector is a device for confirming the presence or absence of scratches or defects that should not be present, the density of the scratches or defects is naturally low. Even if there is a scratch directly under the detection coil 131, the detection coil 132 The probability that a flaw is also present on the surface of the subject 133 directly below should be very small. The reverse is also true. Since the detection circuit 130 shown in FIG. 13A is based on the detection circuit of the inductance difference between the detection coils 131 and 132, it is possible to inspect the subject 133 for scratches and defects using the other detection coil side as a reference. become. It should be noted that the scanning mechanism means moves relatively while maintaining the relationship between the detection coils 131 and 132 and the subject 133 under the same conditions as much as possible.

本実施例で検出コイル131,132の配列は被検体133の移動方向134に沿っている。したがって,もし被検体133表面に傷があり,検出コイル131のインダクタンス変化として検知された場合,被検体133の移動時間,検出コイル131,132間の距離によって決まる時間の後には検出コイル132にもインダクタンスの変化として現れる筈である。図13(b)は検出回路130で検知されたインダクタンス差の変化の様子を示している。横軸136は時間を,縦軸137はインダクタンス差を示す。番号138は被検体133表面に傷が無く,検出コイル131,132のインダクタンスが平衡な場合の出力レベルを示している。番号139,13aはそれぞれ被検体133表面の傷が検出コイル131のインダクタンスを変化させ,次に検出コイル132のインダクタンスを変化させた事を示す。傷のサイズ,検出コイル131,132のサイズ,相対位置関係にも依存するが,インダクタンス差の変化は図13(b)のように2つの正負のパルスが連続したダイパルス(dipulse)波形として現れる。   In the present embodiment, the arrangement of the detection coils 131 and 132 is along the moving direction 134 of the subject 133. Therefore, if the surface of the subject 133 is scratched and detected as an inductance change of the detection coil 131, the detection coil 132 is also moved after the time determined by the movement time of the subject 133 and the distance between the detection coils 131 and 132. It should appear as a change in inductance. FIG. 13B shows how the inductance difference detected by the detection circuit 130 changes. The horizontal axis 136 represents time, and the vertical axis 137 represents the inductance difference. Reference numeral 138 indicates the output level when the surface of the subject 133 is not damaged and the inductances of the detection coils 131 and 132 are balanced. Reference numerals 139 and 13a respectively indicate that a flaw on the surface of the subject 133 changed the inductance of the detection coil 131 and then changed the inductance of the detection coil 132. Although depending on the size of the flaw, the size of the detection coils 131 and 132, and the relative positional relationship, the change in the inductance difference appears as a dipulse waveform in which two positive and negative pulses are continuous as shown in FIG.

上記磁気探傷装置に於いて,2つの検出コイル131,132と被検体133との配置条件は同一とすべきであるが,上に示したようにダイパルス波形が現れることを前提として磁気探傷装置を構成すれば,2つの検出コイル131,132と被検体133との配列条件を緩和できるし,またノイズ等妨害信号に対して検出確認の精度を向上できる。   In the above-described magnetic flaw detector, the arrangement conditions of the two detection coils 131 and 132 and the subject 133 should be the same, but the magnetic flaw detector is assumed on the assumption that a dipulse waveform appears as shown above. If configured, the arrangement conditions of the two detection coils 131 and 132 and the subject 133 can be relaxed, and the accuracy of detection confirmation for interference signals such as noise can be improved.

上記実施例は磁気探傷装置で金属或いは磁性体における傷或いは欠陥有無を検知目的としたが,衣服或いは食品内の金属異物検知にも応用できる事は明らかでそれぞれ高感度の検知装置を実現できる。   The above-described embodiment is a magnetic flaw detector for detecting the presence or absence of a flaw or a defect in a metal or a magnetic material.

以上に実施例を用いて本発明の原理動作等を説明した。それらの実施例において,RLC回路への通電は通電方向を反転させる例を多く用いた。RLC回路の一端を基準電位に考えれば第一の駆動電圧及び第二の駆動電圧はを基準電位より同じ電圧だけ大,小の電圧とした事になる。図6の実施例で通電制御手段は第一及び第二の駆動電圧を有してRLC回路を駆動するしたが当然に一方の駆動電圧をゼロとしても良い。通電方向を交互に反転駆動する手段は通電制御手段の一つの例であるが,駆動回路及び駆動波形を対称にしやすい事で多用した。   The principle operation and the like of the present invention have been described above using the embodiments. In these embodiments, the RLC circuit is often energized by reversing the energization direction. If one end of the RLC circuit is considered as a reference potential, the first drive voltage and the second drive voltage are set to a voltage that is larger or smaller than the reference potential by the same voltage. In the embodiment of FIG. 6, the energization control means has the first and second drive voltages to drive the RLC circuit, but naturally one drive voltage may be zero. The means for alternately inverting the energization direction is one example of the energization control means, but it is frequently used because the drive circuit and the drive waveform are easily symmetric.

さらにまた実施例で説明した以外の素子,材料等の使用はもちろんであり微小インダクタンス差,微小静電容量差の検出回路も実施例で説明した以外の構成でも本発明の趣旨に基づいて具現化は可能である。特に上記説明で積分回路を電圧電流変換回路と電位差積分コンデンサとで構成したが,回路構成上の便宜によるもので他の構成による積分回路としても何等支障は無い。また,インダクタンス検出を利用して位置検出装置,導体の欠陥或いは有無の識別検査装置について説明したが,それら以外の応用装置にも適用は可能である。以上に述べたように本発明の趣旨を変えない範囲で材料,回路素子,構成の変更等が可能なことは当然であって上記の説明が本発明の範囲を限定するわけではない。   Furthermore, not only elements, materials, etc. other than those described in the embodiments are used, but also a detection circuit for a minute inductance difference and a minute capacitance difference is embodied based on the spirit of the present invention in configurations other than those described in the embodiments. Is possible. In particular, in the above description, the integration circuit is composed of a voltage-current conversion circuit and a potential difference integration capacitor. However, this is for convenience in circuit configuration, and there is no problem as an integration circuit with other configurations. In addition, although the position detection device and the conductor defect identification / inspection inspection device have been described using inductance detection, the invention can be applied to other application devices. As described above, it is a matter of course that materials, circuit elements, configurations, and the like can be changed without departing from the spirit of the present invention, and the above description does not limit the scope of the present invention.

本発明の二つの回路素子の微小差検出回路はシンプルな回路で二つの回路素子の微小定数差に反比例する周期のパルス列を生成し,微小な回路定数差を拡大して識別できるというユニークな検出回路を実現し,微小なインダクタンス差検出を必要とする近接センサ,磁気探傷装置,金属異物検査装置,微小容量差検出を必要とする近接センサ,軸変位検出装置等の応用に適している。   The present invention is a simple detection circuit that generates a pulse train having a period inversely proportional to the small constant difference between the two circuit elements, and is able to expand and identify the small circuit constant difference. It is suitable for applications such as proximity sensors, magnetic flaw detectors, metal foreign object inspection devices, proximity sensors that require minute capacitance difference detection, shaft displacement detection devices, etc. that realize a circuit and require minute inductance difference detection.

第一の実施例である二つのコイルのインダクタンス差検出回路を示す。The inductance difference detection circuit of two coils which is a 1st Example is shown. 図1の実施例各点の信号波形を示す。The signal waveform of each point of the embodiment of FIG. 1 is shown. パルス幅と所定のレベルの関係を示す。The relationship between the pulse width and a predetermined level is shown. パルス周期とインダクタンス差の関係を示す。The relationship between a pulse period and an inductance difference is shown. 第二の実施例である二つのコンデンサの静電容量差検出回路を示す。2 shows a capacitance difference detection circuit of two capacitors according to a second embodiment. 第三の実施例である二つのコイルのインダクタンス差検出回路を示す。The inductance difference detection circuit of two coils which is a 3rd Example is shown. 第四の実施例である二つのコンデンサの静電容量差検出回路を示す。4 shows a capacitance difference detection circuit for two capacitors according to a fourth embodiment. 第五の実施例である微小インダクタンス差検出回路を示す。10 shows a minute inductance difference detection circuit according to a fifth embodiment. 第六の実施例である微小静電容量差検出回路を示す。9 shows a minute capacitance difference detection circuit according to a sixth embodiment. 第七の実施例である二つのコイルのインダクタンス差検出回路を示す。The inductance difference detection circuit of two coils which is a 7th Example is shown. 図10の実施例各点の信号波形を示す。FIG. 11 shows signal waveforms at respective points in the embodiment of FIG. 第八の実施例である位置検出装置を示す。The position detection apparatus which is an 8th Example is shown. 第九の実施例である磁気探傷装置の概略構成を示す。9 shows a schematic configuration of a magnetic flaw detector according to a ninth embodiment.

符号の説明Explanation of symbols

11,12・・コイル, 13,14・・抵抗,
15・・・第一積分回路, 16・・・第一積分コンデンサ,
17・・・電圧比較器, 18・・・フリップフロップ,
19・・・カウンタ, 1a・・・マイクロコンピュータ,
1b・・・電圧比較器出力, 1c,1d,1f・・・出力,
1e・・・カウンタ出力,
21,22・・第一積分回路出力電圧, 23・・・第一の所定電圧,
24・・・第二の所定電圧, 25・・・第一積分回路出力電圧,
26・・・第一の所定電圧, 27・・・電圧比較器出力,
28・・・リセットパルス, 29・・・フリップフロップ出力1dの波形,
2a,2b・・カウンタ出力波形, 2c・・・微小間隔パルス,
31・・・第一積分回路出力電圧,
41・・・インダクタンス差とパルス周期との関係,
42・・・計測可能領域,
51,52・・コンデンサ,
61,62・・コイル, 63・・・参照電位生成回路,
64・・・通電制御回路,
71,72・・コンデンサ, 81・・・基準電位生成回路,
82・・・第二積分回路, 83・・・第二積分コンデンサ,
101・・・差分回路, 102・・・加算電圧回路,
111・・・パルス電圧, 112・・・検出電位差,
113・・・過度応答差分電圧,
121・・・検出コイル, 122・・・参照コイル,
123・・・検出部, 124・・・磁気コア,
130・・・検出回路, 131,132・・検出コイル,
133・・・被検体, 134・・・移動方向,
135・・・磁束, 136・・・時間,
137・・・インダクタンス差,
138,139,13a・・インダクタンス差波形,
11, 12 ... coil, 13, 14 ... resistance,
15 ... 1st integration circuit, 16 ... 1st integration capacitor,
17 ... voltage comparator, 18 ... flip-flop,
19 ... counter, 1a ... microcomputer,
1b ... voltage comparator output, 1c, 1d, 1f ... output,
1e Counter output,
21, 22... First integrator circuit output voltage, 23... First predetermined voltage,
24 ... second predetermined voltage, 25 ... first integration circuit output voltage,
26: first predetermined voltage, 27: voltage comparator output,
28 ... Reset pulse, 29 ... Waveform of flip-flop output 1d,
2a, 2b, counter output waveform, 2c, minute interval pulse,
31 ... first integrator circuit output voltage,
41 ... Relationship between inductance difference and pulse period,
42 ... measurable area,
51, 52 .. capacitor
61, 62 .. coil, 63... Reference potential generation circuit,
64 ... energization control circuit,
71, 72 .. Capacitor, 81... Reference potential generation circuit,
82 ... second integration circuit, 83 ... second integration capacitor,
101 ... Difference circuit, 102 ... Addition voltage circuit,
111 ... pulse voltage, 112 ... detection potential difference,
113 ... Transient response differential voltage,
121 ... detection coil, 122 ... reference coil,
123... Detection unit, 124 ... magnetic core,
130... Detection circuit, 131, 132 .. detection coil,
133 ... subject, 134 ... moving direction,
135 ... magnetic flux, 136 ... time,
137 ... inductance difference,
138, 139, 13a .. Inductance difference waveform,

Claims (12)

比較対象の二つのコイル或いは二つのコンデンサを含みステップ状通電に対応して比較対象の二つのコイル或いは二つのコンデンサ間の定数差に対応する検出電位差を出力するRLC回路と,検出電位差と比例関係にある信号を入力として高レベル及び低レベルの閾値を持ってヒステリシス特性を示す電圧比較器と,第一及び第二の異なる駆動電圧を有してRLC回路を駆動する通電制御部と,識別制御部とより構成され,ヒステリシス特性を有する電圧比較器はこの検出電位差と比例関係にある信号が高レベル及び低レベルの閾値に達すると出力レベルを切り替え,通電制御部は電圧比較器入力が高レベル閾値に到達後は電圧比較器入力が減少し,低レベル閾値に到達後は電圧比較器入力が増加するようRLC回路に加える駆動電圧を切り替え,さらに所定の時間内に前記駆動電圧が変化しない場合には強制的に駆動電圧を切り替え,前記所定時間を最大の半周期として発振周期を前記比較対象の二つのコイル或いは二つのコンデンサ間の定数差に反比例させる自励発振回路を構成し,識別制御部はパルス列の周期から比較対象の二つのコイル或いは二つのコンデンサ間の定数差を識別する事を特徴とする二つの回路素子の微小差検出回路 An RLC circuit that includes two coils or two capacitors to be compared and outputs a detection potential difference corresponding to a constant difference between the two coils or two capacitors to be compared in response to stepwise energization, and a proportional relationship with the detection potential difference A voltage comparator having a high level and a low level threshold as input and having hysteresis characteristics, an energization control unit for driving the RLC circuit with first and second different drive voltages, and identification control The voltage comparator with hysteresis characteristics switches the output level when the signal proportional to the detected potential difference reaches the high level and low level thresholds, and the energization control unit has a high voltage comparator input level. The voltage applied to the RLC circuit is switched off so that the voltage comparator input decreases after reaching the threshold and the voltage comparator input increases after reaching the low level threshold. Further, when the drive voltage does not change within a predetermined time, the drive voltage is forcibly switched, and the oscillation period is set between the two coils or two capacitors to be compared with the predetermined time as the maximum half cycle. A self-excited oscillation circuit that is inversely proportional to the constant difference is constructed, and the identification control unit identifies the constant difference between the two coils or two capacitors to be compared from the period of the pulse train. Detection circuit 請求項1記載の二つの回路素子の微小差検出回路に於いて,更に第一積分回路を有して検出電位差と比例関係にある信号は検出電位差を積分して得る第一積分電圧とし,第一積分回路は通電制御部により駆動電圧を切り替えられた後にRLC回路を流れる過度的な電流に応じた前記検出電位差を積分し,ヒステリシス特性を有する電圧比較器は第一積分電圧が高レベル及び低レベルの閾値に達すると出力レベルを切り替え,通電制御部は第一積分電圧が高レベル閾値に到達後は前記検出電位差が積分減算され,低レベル閾値に到達後は前記検出電位差が積分加算されるようRLC回路に加える駆動電圧を切り替え,さらに所定の時間内に前記駆動電圧が変化しない場合には強制的に駆動電圧を切り替え,前記所定時間を最大の半周期として発振周期を前記比較対象の二つのコイル或いは二つのコンデンサ間の定数差に反比例させる自励発振回路を構成し,識別制御部はパルス列の周期から比較対象の二つのコイル或いは二つのコンデンサ間の定数差を識別する事を特徴とする二つの回路素子の微小差検出回路 2. The minute difference detection circuit of two circuit elements according to claim 1, further comprising a first integration circuit, wherein the signal proportional to the detection potential difference is a first integration voltage obtained by integrating the detection potential difference, One integration circuit integrates the detected potential difference corresponding to the excessive current flowing through the RLC circuit after the drive voltage is switched by the energization control unit, and the voltage comparator having a hysteresis characteristic has the first integration voltage at a high level and a low level. When the level threshold is reached, the output level is switched, and the energization control unit integrates and subtracts the detected potential difference after the first integrated voltage reaches the high level threshold, and integrates and adds the detected potential difference after the low level threshold is reached. The driving voltage applied to the RLC circuit is switched, and if the driving voltage does not change within a predetermined time, the driving voltage is forcibly switched, and the predetermined time is set as the maximum half cycle. A self-excited oscillation circuit that makes the cycle inversely proportional to the constant difference between the two coils or two capacitors to be compared and the identification control unit determines the constant difference between the two coils or two capacitors to be compared from the cycle of the pulse train. 2 circuit element minute difference detection circuit characterized by distinguishing 請求項1記載の二つの回路素子の微小差検出回路に於いて,更に第一及び第二積分回路を有して検出電位差と比例関係にある信号は検出電位差を二階積分して得る第二積分電圧とする事を特徴とし,第一積分回路は通電制御部により駆動電圧を切り替えられた後にRLC回路を流れる過度的な電流に応じた前記検出電位差を積分し,第二積分回路は第一積分回路の出力と基準電位との差を積分して比較対象の二つのコイル或いは二つのコンデンサ間の定数差に比例する第二積分電圧を得,ヒステリシス特性を有する電圧比較器はこの第二積分電圧が高レベル及び低レベルの閾値に達すると出力レベルを切り替え,通電制御部は第二積分電圧が高レベル閾値に到達後は前記検出電位差が積分減算され,低レベル閾値に到達後は前記検出電位差が積分加算されるようRLC回路に加える駆動電圧を切り替え,さらに所定の時間内に前記駆動電圧が変化しない場合には強制的に駆動電圧を切り替え,前記所定時間を最大の半周期として発振周期を前記比較対象の二つのコイル或いは二つのコンデンサ間の定数差に反比例させる自励発振回路を構成し,識別制御部はパルス列の周期から比較対象の二つのコイル或いは二つのコンデンサ間の定数差を識別する事を特徴とする二つの回路素子の微小差検出回路 2. The minute difference detection circuit of two circuit elements according to claim 1, further comprising a first integration circuit and a second integration circuit, wherein a signal proportional to the detection potential difference is obtained by second-order integration of the detection potential difference. The first integrating circuit integrates the detected potential difference corresponding to the excessive current flowing through the RLC circuit after the drive voltage is switched by the energization control unit, and the second integrating circuit is the first integrating circuit. The difference between the output of the circuit and the reference potential is integrated to obtain a second integrated voltage proportional to the constant difference between the two coils or two capacitors to be compared, and the voltage comparator with hysteresis characteristics is the second integrated voltage. When the voltage reaches the high and low level thresholds, the output level is switched, and the energization control unit integrates and subtracts the detected potential difference after the second integrated voltage reaches the high level threshold, and after reaching the low level threshold, the detected potential difference. But The drive voltage applied to the RLC circuit is switched so as to be added, and if the drive voltage does not change within a predetermined time, the drive voltage is forcibly switched, and the oscillation period is set to the predetermined half time as the maximum half cycle. A self-excited oscillation circuit is constructed that is inversely proportional to the constant difference between the two coils or two capacitors to be compared, and the identification control unit identifies the constant difference between the two coils or two capacitors to be compared from the period of the pulse train Two circuit element minute difference detection circuit 請求項1或いは2或いは3記載の二つの回路素子の微小差検出回路に於いて,識別制御部はパルス列の周期を直接或いはカウントダウンした後に微小間隔パルス計数で比較対象の二つのコイル或いは二つのコンデンサ間の定数差を識別する事を特徴とする二つの回路素子の微小差検出回路 4. The minute difference detection circuit of two circuit elements according to claim 1, 2 or 3, wherein the identification control unit directly or counts down the period of the pulse train and then compares two coils or two capacitors to be compared by minute interval pulse counting. A small difference detection circuit of two circuit elements characterized by identifying a constant difference between them 請求項1或いは2或いは3記載の二つの回路素子の微小差検出回路に於いて,電圧比較器出力の立ち上がり或いは立ち下がり端に於けるRLC回路へ通電している第一或いは第二の駆動電圧の種別から二つの回路素子の大小関係を識別することを特徴とする二つの回路素子の微小差検出回路 4. A minute difference detection circuit for two circuit elements according to claim 1, 2 or 3, wherein the first or second driving voltage is applied to the RLC circuit at the rising or falling edge of the output of the voltage comparator. A small difference detection circuit for two circuit elements characterized by distinguishing the magnitude relation between the two circuit elements from the type of the circuit 請求項1或いは2或いは3記載の二つの回路素子の微小差検出回路に於いて,二つのコイルを比較対象とするRLC回路は二つの抵抗と二つのコイルとでブリッジを構成し,二つのコイル間の定数差に対応する検出電位差を出力する事を特徴とする二つの回路素子の微小差検出回路 4. The minute difference detection circuit for two circuit elements according to claim 1, 2 or 3, wherein an RLC circuit for comparing two coils comprises a bridge composed of two resistors and two coils. A minute difference detection circuit of two circuit elements characterized by outputting a detection potential difference corresponding to a constant difference between the two circuit elements 請求項1或いは2或いは3記載の二つの回路素子の微小差検出回路に於いて,二つのコイルを比較対象とするRLC回路は二つのコイルの直列接続を基本に抵抗を更に直列に挿入或いはそれぞれのコイルに抵抗を並列に接続して構成し,検出電位差は二つのコイル間の中点相当部電位と中点相当部電位の時間平均電位との電位差としたことを特徴とする二つの回路素子の微小差検出回路 4. The minute difference detection circuit for two circuit elements according to claim 1, 2 or 3, wherein the RLC circuit for comparing the two coils is based on the serial connection of the two coils, and a resistor is further inserted in series. Two circuit elements characterized in that a resistance is connected in parallel to the coil of the coil, and the detected potential difference is a potential difference between the midpoint equivalent potential between the two coils and the time average potential of the midpoint equivalent portion potential. Minute difference detection circuit 請求項1或いは2或いは3記載の二つの回路素子の微小差検出回路に於いて,二つのコンデンサを比較対象とするRLC回路は二つの抵抗と二つのコンデンサとでブリッジを構成し,二つのコンデンサ間の定数差に対応する検出電位差を出力する事を特徴とする二つの回路素子の微小差検出回路 4. The minute difference detection circuit for two circuit elements according to claim 1, 2 or 3, wherein an RLC circuit for comparing two capacitors comprises a bridge composed of two resistors and two capacitors. A minute difference detection circuit of two circuit elements characterized by outputting a detection potential difference corresponding to a constant difference between the two circuit elements 請求項1或いは2或いは3記載の二つの回路素子の微小差検出回路に於いて,二つのコンデンサを比較対象とするRLC回路は二つのコンデンサの直列接続を基本に抵抗を更に直列に挿入して構成し,検出電位差は二つのコンデンサ間の中点相当部電位と中点相当部電位の時間平均電位との電位差としたことを特徴とする二つの回路素子の微小差検出回路 4. The minute difference detection circuit for two circuit elements according to claim 1, 2 or 3, wherein an RLC circuit for comparing two capacitors is based on a series connection of two capacitors and a resistor is further inserted in series. And a detection potential difference between the two capacitors, the difference between the midpoint equivalent portion potential and the time average potential of the midpoint equivalent portion potential. 磁性体或いは導体より成る可動体の位置により少なくとも一方のコイル定数が変化する二つのコイルと,前記二つのコイルを比較対象とする請求項1或いは2或いは3記載の二つの回路素子の微小差検出回路を有して構成され,前記二つのコイル間の定数差を識別して可動体の位置を検出する事を特徴とする位置検出装置 4. The small difference detection of two circuit elements according to claim 1, 2 or 3, wherein two coils whose at least one coil constant varies depending on a position of a movable body made of a magnetic body or a conductor and the two coils are compared. A position detection device comprising a circuit and detecting a position of a movable body by identifying a constant difference between the two coils 請求項10記載の位置検出装置において,一方のコイルをインダクタンス一定の参照コイルとし,他方のコイルのインダクタンスが増大すると二つのコイルのインダクタンス差が増大し,逆に減少すると二つのコイルのインダクタンス差が減少するよう二つのコイルを含むRLC回路を設定し,磁性体あるいは導体の近接により増減するインダクタンス変化を補償して磁性体及び導体の近接を高感度で検知することを特徴とする位置検出装置 11. The position detecting device according to claim 10, wherein one coil is a reference coil having a constant inductance, and when the inductance of the other coil increases, the inductance difference between the two coils increases, and conversely, when the inductance decreases, the inductance difference between the two coils increases. An RLC circuit including two coils is set so as to decrease, and the proximity of the magnetic body and the conductor is detected with high sensitivity by compensating for the inductance change that increases or decreases due to the proximity of the magnetic body or the conductor. 二つのコイルを含む検出部と,磁性体或いは導体を含む被検体と検出部とを相対的に移動走査せしめる走査手段と,請求項1或いは2或いは3記載の二つの回路素子の微小差検出回路を有して構成され,走査手段は被検体を二つのコイルの発生磁界内に置きながら検出部と相対的に移動走査させ,二つの回路素子の微小差検出回路は二つのコイル間の微小インダクタンス差を検出する事によりそれぞれ相互のコイルを対比参照して磁性体或いは導体の欠陥或いは有無を識別検知することを特徴とする検査装置
4. A detection unit including two coils, scanning means for relatively moving and scanning an object including a magnetic substance or a conductor, and a detection unit, and a minute difference detection circuit for two circuit elements according to claim 1, 2 or 3 The scanning means moves and scans the subject relative to the detection unit while placing the subject in the magnetic field generated by the two coils, and the minute difference detection circuit of the two circuit elements has a minute inductance between the two coils. Inspection apparatus characterized by identifying and detecting defects or presence / absence of magnetic material or conductor by referring to each other's coils by detecting difference
JP2004001567A 2003-01-09 2004-01-07 Minute difference detecting circuit between two circuit elements, position detecting device employing same, and discrimination detecting device for detecting fault or presence/absence of magnetic body or conductor Pending JP2005210146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004001567A JP2005210146A (en) 2003-01-09 2004-01-07 Minute difference detecting circuit between two circuit elements, position detecting device employing same, and discrimination detecting device for detecting fault or presence/absence of magnetic body or conductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003003002 2003-01-09
JP2003426528 2003-12-24
JP2004001567A JP2005210146A (en) 2003-01-09 2004-01-07 Minute difference detecting circuit between two circuit elements, position detecting device employing same, and discrimination detecting device for detecting fault or presence/absence of magnetic body or conductor

Publications (1)

Publication Number Publication Date
JP2005210146A true JP2005210146A (en) 2005-08-04

Family

ID=34916032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004001567A Pending JP2005210146A (en) 2003-01-09 2004-01-07 Minute difference detecting circuit between two circuit elements, position detecting device employing same, and discrimination detecting device for detecting fault or presence/absence of magnetic body or conductor

Country Status (1)

Country Link
JP (1) JP2005210146A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865037B2 (en) * 2006-10-27 2012-02-01 ザトーリウス ウェイング テクノロジー ゲーエムベーハー Measurement amplification apparatus and method
US8350583B2 (en) 2009-08-12 2013-01-08 International Business Machines Corporation Probe-able voltage contrast test structures
US8399266B2 (en) 2011-01-25 2013-03-19 International Business Machines Corporation Test structure for detection of gap in conductive layer of multilayer gate stack
EP2589987A1 (en) * 2011-11-07 2013-05-08 Robert Bosch GmbH Location device
JP2014188122A (en) * 2013-03-27 2014-10-06 Akita Prefectural Hospital Organization Magnetic substance detection sensor, magnetic substance detection method, and magnetic substance detection apparatus
US9780007B2 (en) 2012-01-04 2017-10-03 Globalfoundries Inc. LCR test circuit structure for detecting metal gate defect conditions
CN109387230A (en) * 2017-08-07 2019-02-26 马渊马达株式会社 Position sensor and motor
JP2019197042A (en) * 2018-03-16 2019-11-14 ザ・ボーイング・カンパニーTheBoeing Company System and method for measuring electric contact resistance in interface
US10989828B2 (en) * 2018-02-17 2021-04-27 Datacloud International, Inc. Vibration while drilling acquisition and processing system
JP2021531468A (en) * 2018-08-07 2021-11-18 レイセオン カンパニー Inductive sensor device with local analog-to-digital converter

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865037B2 (en) * 2006-10-27 2012-02-01 ザトーリウス ウェイング テクノロジー ゲーエムベーハー Measurement amplification apparatus and method
US8350583B2 (en) 2009-08-12 2013-01-08 International Business Machines Corporation Probe-able voltage contrast test structures
US9213060B2 (en) 2009-08-12 2015-12-15 International Business Machines Corporation Probe-able voltage contrast test structures
US9103875B2 (en) 2009-08-12 2015-08-11 International Business Machines Corporation Probe-able voltage contrast test structures
US9097760B2 (en) 2009-08-12 2015-08-04 International Business Machines Corporation Probe-able voltage contrast test structures
US8399266B2 (en) 2011-01-25 2013-03-19 International Business Machines Corporation Test structure for detection of gap in conductive layer of multilayer gate stack
US8766259B2 (en) 2011-01-25 2014-07-01 International Business Machines Corporation Test structure for detection of gap in conductive layer of multilayer gate stack
US8860435B2 (en) 2011-11-07 2014-10-14 Robert Bosch Gmbh Locating appliance
JP2013101121A (en) * 2011-11-07 2013-05-23 Robert Bosch Gmbh Position determination device
CN103091716A (en) * 2011-11-07 2013-05-08 罗伯特·博世有限公司 Location Device
EP2589987A1 (en) * 2011-11-07 2013-05-08 Robert Bosch GmbH Location device
US9780007B2 (en) 2012-01-04 2017-10-03 Globalfoundries Inc. LCR test circuit structure for detecting metal gate defect conditions
JP2014188122A (en) * 2013-03-27 2014-10-06 Akita Prefectural Hospital Organization Magnetic substance detection sensor, magnetic substance detection method, and magnetic substance detection apparatus
CN109387230A (en) * 2017-08-07 2019-02-26 马渊马达株式会社 Position sensor and motor
US10989828B2 (en) * 2018-02-17 2021-04-27 Datacloud International, Inc. Vibration while drilling acquisition and processing system
JP2019197042A (en) * 2018-03-16 2019-11-14 ザ・ボーイング・カンパニーTheBoeing Company System and method for measuring electric contact resistance in interface
JP7286348B2 (en) 2018-03-16 2023-06-05 ザ・ボーイング・カンパニー System and method for measuring electrical contact resistance at an interface
JP2021531468A (en) * 2018-08-07 2021-11-18 レイセオン カンパニー Inductive sensor device with local analog-to-digital converter
JP7119207B2 (en) 2018-08-07 2022-08-16 レイセオン カンパニー Inductive sensor device with local analog-to-digital converter

Similar Documents

Publication Publication Date Title
KR100566547B1 (en) Magnetic field detection device
US8508217B2 (en) Output circuit of charge mode sensor
WO2015058733A1 (en) Contactless magnetic sensor of the magnetic or electrically conductive objects´position
US5443552A (en) Electromagnetic flowmeter and method for electromagnetically measuring flow rate
JP2005210146A (en) Minute difference detecting circuit between two circuit elements, position detecting device employing same, and discrimination detecting device for detecting fault or presence/absence of magnetic body or conductor
US5287059A (en) Saturable core magnetometer with a parallel resonant circuit in which the W3 DC level changes with a change in an external magnetic field
US8576001B2 (en) Offset compensation apparatus for magnetic detection circuit and method thereof
US11092656B2 (en) Fluxgate magnetic field detection method and circuit
US9817048B2 (en) Image sensor power supply noise detection
JP2004184257A (en) Detection circuit for minute difference for two sets of resistors or coils or capacitors, and position-detecting device and identification inspection device for defector existence of conductor using the circuit
EP2932281B1 (en) Methods and circuits for measuring a high impedance element based on time constant measurements
JP6886674B2 (en) Non-destructive inspection equipment
US20140002069A1 (en) Eddy current probe
JP2003215108A (en) Inductance difference detecting circuit, and magnetic flaw detector and metal piece detection device using the inductance difference detecting circuit
WO1991011685A1 (en) Position detector
JP4961623B2 (en) Magnetic sensor
JP2000056000A (en) Magnetic sensor device and current sensor device
JP2004198292A (en) Inductance sensing circuit and position detector, test device for identifying defect of conductive material or its presence or absence, and torque sensor using the same
JP2761944B2 (en) Position detection device
JP2004219089A (en) Constant of circuit element, constant difference detecting circuit, position detector using it, identification inspection device for defect or existence/nonexistence of conductor, and torque sensor
JP2006242709A (en) Position detection device and magnetometric sensor output signal detection method
JP2003156304A (en) Position detector in fluid pressure cylinder
JP2000338207A (en) Driving circuit of magnetic impedance effect element
JPH03243801A (en) Noncontact type range finder
JP4207747B2 (en) Capacitance type sensor and capacitance type distance measuring device