JP2005209935A - Electric discharge detecting apparatus - Google Patents

Electric discharge detecting apparatus Download PDF

Info

Publication number
JP2005209935A
JP2005209935A JP2004015775A JP2004015775A JP2005209935A JP 2005209935 A JP2005209935 A JP 2005209935A JP 2004015775 A JP2004015775 A JP 2004015775A JP 2004015775 A JP2004015775 A JP 2004015775A JP 2005209935 A JP2005209935 A JP 2005209935A
Authority
JP
Japan
Prior art keywords
current signal
chamber
discharge
current
electric discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004015775A
Other languages
Japanese (ja)
Inventor
Koichi Suzuki
功一 鈴木
Mitsuo Sato
充男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fab Solutions Inc
Original Assignee
Fab Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fab Solutions Inc filed Critical Fab Solutions Inc
Priority to JP2004015775A priority Critical patent/JP2005209935A/en
Publication of JP2005209935A publication Critical patent/JP2005209935A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric discharge detecting apparatus capable of surely detecting electric discharge generated in a chamber. <P>SOLUTION: The electric discharge detecting apparatus for detecting the electric discharge generated in the chamber 14 to which plasma is sealed includes a current probe 50 (detection means) for detecting a current signal appearing in a power feeding cable 40 for power required to generate the plasma, and an amplifier 70 (amplification means) for amplifying the detected current signal. An electromagnetic wave E generated in the chamber 14 is caught by the feeding cable 40 connected to an anode 24 and the current signal is generated in the feeding cable 40. The probe 50 detects the current signal, the amplifier 70 amplifies the current signal and thereafter a digital oscilloscope 80 displays the current. Thus, the electric discharge generated in the chamber 14 can surely be monitored independently of the frequency band of an electromagnetic wave. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プラズマエッチング装置等のチャンバの内部で発生する放電を検出するための放電検出装置に関する。   The present invention relates to a discharge detection apparatus for detecting a discharge generated inside a chamber such as a plasma etching apparatus.

半導体製造装置の一種であるプラズマエッチング装置では、チャンバ内部で発生する異常な放電現象をチャンバの窓部から目視で確認できることがあり、放電エネルギーが大きいと、半導体ウエハ上に焼損痕が見られることもある。この放電現象は、ウエハの一部又は全領域の絶縁を破壊する場合があり、電子デバイスの生産性を著しく低下させる原因となっている。ここでは、プラズマエッチング装置の事例を示したが、真空中では低い電界でも放電が起こりやすいため、イオンミリング装置、イオン注入装置、金属被膜を形成するスパッタ装置などでも同じ放電現象が発生する。   In a plasma etching apparatus, which is a kind of semiconductor manufacturing equipment, abnormal discharge phenomenon that occurs inside the chamber may be visually confirmed from the window of the chamber, and if the discharge energy is large, burning marks may be seen on the semiconductor wafer. There is also. This discharge phenomenon may break the insulation of a part or the whole region of the wafer, which causes a significant decrease in the productivity of the electronic device. Here, an example of a plasma etching apparatus is shown. However, since a discharge easily occurs even in a low electric field in a vacuum, the same discharge phenomenon occurs in an ion milling apparatus, an ion implantation apparatus, a sputtering apparatus for forming a metal film, and the like.

しかし、一般にチャンバの窓部は小さいので、チャンバ内の全領域を目視することはできない。また、放電による発光は、小さなスポット状で一瞬に消滅することが多いため、目視では認識できない場合もある。更に、プラズマ処理中に帯電したウエーハを次のステージに移動するために、ウエハの裏面を金属のピンで突き上げるが、この時点で生じる静電気放電現象を目視することもできない。
近年では、上述のチャンバ内で発生する異常な放電現象を検出するための技術として、プラズマエッチング装置の外部壁面に音響センサを取り付け、放電時に発生する音響によってモニタする技術や、約13MHzの交流電圧源の高調波電流の変化によってモニタする技術が発表されている(非特許文献1参照)。
「超音波TECHNO 2002.5-6」、日本工業出版株式会社、p41−46
However, since the window portion of the chamber is generally small, the entire area in the chamber cannot be visually observed. In addition, since light emission due to discharge often disappears in a short spot, it may not be recognized visually. Further, in order to move the wafer charged during the plasma processing to the next stage, the back surface of the wafer is pushed up with metal pins, but the electrostatic discharge phenomenon that occurs at this point cannot be visually observed.
In recent years, as a technique for detecting the abnormal discharge phenomenon that occurs in the above-described chamber, an acoustic sensor is attached to the external wall surface of the plasma etching apparatus and monitoring is performed by the sound generated during discharge, or an AC voltage of about 13 MHz. A technique for monitoring by a change in the harmonic current of the source has been announced (see Non-Patent Document 1).
“Ultrasonic TECHNO 2002.5-6”, Nippon Kogyo Publishing Co., Ltd., p41-46

しかしながら、上述の音響によってモニタする技術によれば、放電環境が真空に近いため、放電位置によっては音波が壁面に到達しないことがあり、必ずしも放電を検出することができなかった。また、高調波電流を使う場合、動作中に高周波電極板に直接放電しない現象については検出できず、またプラズマ状態以外の搬送中の放電現象を検出できないなどの不都合があった。
本発明の目的は、チャンバ内での放電を的確に検出することができる放電検出装置を提供することにある。
However, according to the technique for monitoring by the above-mentioned sound, since the discharge environment is close to vacuum, the sound wave may not reach the wall surface depending on the discharge position, and the discharge cannot always be detected. In addition, when using a harmonic current, there is a disadvantage that it is impossible to detect a phenomenon in which a high-frequency electrode plate is not directly discharged during operation, and it is impossible to detect a discharge phenomenon during conveyance other than a plasma state.
An object of the present invention is to provide a discharge detection device capable of accurately detecting a discharge in a chamber.

本発明は、プラズマを封入するチャンバの内部で発生する放電を検出する放電検出装置であって、前記チャンバ内に前記プラズマを発生させるため電力の給電経路に設けられ、該給電経路に現れる電流信号を検出するための検出手段と、前記検出手段により検出された電流信号を増幅する増幅手段と、を備える。
ここで、放電は必ず電磁波の放射を伴うので、この電磁波を外部から検出できれば、チャンバ内部での放電の発生を知ることができる。しかし、一般に、チャンバは金属製であるため、基本的には電磁波が外部に漏れ出ない構造になっている。そこで、本発明は、チャンバ内にプラズマを発生させるための電力の給電経路に着目し、この給電経路に受信されたチャンバ内の電磁波による電流信号を捕らえる。つまり、本発明の構成によれば、チャンバ内に突出した給電経路をアンテナとして電磁波を捕らえ、この電磁波によって給電経路に誘起される電流信号をモニタする。従って、給電経路上の電流信号からチャンバ内での放電の発生を知ることができる。
The present invention relates to a discharge detection device for detecting a discharge generated inside a chamber that encloses plasma, and is provided in a power supply path for generating the plasma in the chamber, and a current signal appearing in the power supply path And amplifying means for amplifying the current signal detected by the detecting means.
Here, since the discharge always involves the emission of electromagnetic waves, if the electromagnetic waves can be detected from the outside, the occurrence of discharge inside the chamber can be known. However, since the chamber is generally made of metal, the chamber basically has a structure in which electromagnetic waves do not leak outside. Therefore, the present invention focuses on a power supply path for generating plasma in the chamber, and captures a current signal due to electromagnetic waves in the chamber received by this power supply path. That is, according to the configuration of the present invention, an electromagnetic wave is captured using the feeding path protruding into the chamber as an antenna, and a current signal induced in the feeding path by the electromagnetic wave is monitored. Therefore, the occurrence of discharge in the chamber can be known from the current signal on the power supply path.

また、上記放電検出装置において、前記検出手段が、例えば、前記電流信号によって形成される磁界を検出する電流プローブから構成される。この構成によれば、給電経路上の電流信号が形成する磁界を介して給電経路上の電流信号が検出される。従って、給電経路を加工することなく、給電経路に発生する電流信号を有効に検出できる。
さらに、前記増幅手段により増幅された電流信号の周波数を識別する周波数識別手段を更に備え、前記周波数識別手段が、例えば、300MHzを閾値として前記電流信号の周波数を識別するものとしてもよい。
Moreover, in the above-described discharge detection device, the detection means includes, for example, a current probe that detects a magnetic field formed by the current signal. According to this configuration, the current signal on the power feeding path is detected via the magnetic field formed by the current signal on the power feeding path. Therefore, it is possible to effectively detect a current signal generated in the power feeding path without processing the power feeding path.
Furthermore, it is good also as a frequency identification means which identifies the frequency of the current signal amplified by the said amplifying means, and the said frequency identification means may identify the frequency of the said current signal by making 300 MHz into a threshold value, for example.

本発明によれば、チャンバ内部で発生した放電に伴う電磁波を直接的に検出することができる。従って、周波数帯域によらず、チャンバ内部の放電に伴う電磁波を精度良く検出することが可能になる。   According to the present invention, it is possible to directly detect an electromagnetic wave accompanying a discharge generated inside the chamber. Therefore, it becomes possible to detect the electromagnetic waves accompanying the discharge inside the chamber with high accuracy regardless of the frequency band.

以下、図面を参照して本発明の実施形態を説明する。
図1に、本発明の実施形態に係る放電検出装置の適用例を示す。同図において、チャンバ14は、半導体製造装置の一種であるプラズマドライエッチング装置を構成し、その内部には、ドライエッチング処理の対象物となる半導体ウエハ22を載置する陽極24と、ガスGの吹き出し口を兼ねる陰極26とが収容されている。陽極24には、チャンバ14の外部に設けられた高周波電源28が接続されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an application example of a discharge detection device according to an embodiment of the present invention. In the figure, a chamber 14 constitutes a plasma dry etching apparatus, which is a kind of semiconductor manufacturing apparatus, in which an anode 24 on which a semiconductor wafer 22 as an object of dry etching processing is placed, and a gas G A cathode 26 also serving as a blowout port is accommodated. A high-frequency power source 28 provided outside the chamber 14 is connected to the anode 24.

ガスGは、チャンバI4上端の導入口32からチャンバ内に導入され、ウエハ22の周囲を通って、チャンバ14下端の排出口34からチャンバ外に排出される。上述の高周波電源28により高周波電圧を給電ケーブル40を介して陽極24に印加し、陽極24と陰極26との間に高周波の電界を形成する。給電ケーブル40は、伝送すべき高周波電力に対して低損失の同軸ケーブルから構成されている。陽極24と陰極26との間に形成される電界によりガスGを励起してプラズマ化し、そのプラズマにより半導体ウエハ22をエッチングする。チャンバ14の外壁に設けられた窓部12は、作業者が外部からチャンバ内部を観察するためのもので、ガラスが嵌め込まれている。   The gas G is introduced into the chamber from the inlet 32 at the upper end of the chamber I4, passes through the periphery of the wafer 22, and is discharged out of the chamber from the outlet 34 at the lower end of the chamber 14. A high-frequency voltage is applied to the anode 24 by the above-described high-frequency power supply 28 via the feeding cable 40, and a high-frequency electric field is formed between the anode 24 and the cathode 26. The power feeding cable 40 is composed of a coaxial cable having a low loss with respect to the high frequency power to be transmitted. The gas G is excited by an electric field formed between the anode 24 and the cathode 26 to form plasma, and the semiconductor wafer 22 is etched by the plasma. The window portion 12 provided on the outer wall of the chamber 14 is for an operator to observe the inside of the chamber from the outside, and is fitted with glass.

電流プローブ50、信号ケーブル60、増幅器70、デジタルオシロスコープ80は、チャンバ14内で発生する放電を検出する本発明の放電検出装置を構成する。ここで、電流プローブ50は、給電ケーブル40に発生する電流信号を検出するためのもので、磁気的に給電ケーブル40と結合されて電流信号を検出するように構成され、公知の技術を用いることができる。
電流プローブ50の構成を図2に示す。同図上段は斜視図であり、同図下段は断面図である。同図上段に示すように、電流プローブ50は略環状に形成され、その表皮部51は導電性の金属部材からなり、この表皮部51の内周に沿ってスリット52が形成されている。給電ケーブル40を電流プローブ50の貫通穴に通すように、電流プローブ509が給電ケーブル40に取り付けられている。
The current probe 50, the signal cable 60, the amplifier 70, and the digital oscilloscope 80 constitute a discharge detection device of the present invention that detects a discharge generated in the chamber 14. Here, the current probe 50 is for detecting a current signal generated in the power feeding cable 40, and is configured to be magnetically coupled to the power feeding cable 40 to detect the current signal, and uses a known technique. Can do.
The configuration of the current probe 50 is shown in FIG. The upper part of the figure is a perspective view, and the lower part of the figure is a sectional view. As shown in the upper part of the figure, the current probe 50 is formed in a substantially annular shape, and the skin portion 51 is made of a conductive metal member, and a slit 52 is formed along the inner periphery of the skin portion 51. A current probe 509 is attached to the power supply cable 40 so that the power supply cable 40 passes through the through hole of the current probe 50.

また、同図下段に示すように、表皮部51の内部には磁性体53が設けられている。即ち、環状に形成された磁性体53が金属部材からなる表皮部51で覆われ、この表皮部51には、その内周に沿ってスリット52が形成されている。同図下段において、スリット52の上端部にあたる表皮部51には、信号ケーブル60の一端側の内部導体が接続され、スリット52の下端部にあたる表皮部51には、その外部導体が接続されている。信号ケーブル60の他端側は増幅器70の入力部に接続され、この信号ケーブル60を介して、電流プローブ50で検出された電流信号が増幅器70に入力される。増幅器70の出力部にはデジタルオシロスコープ80が接続されており、増幅器70の出力信号の波形が観測可能となっている。   Further, as shown in the lower part of the figure, a magnetic body 53 is provided inside the skin portion 51. That is, an annular magnetic body 53 is covered with a skin portion 51 made of a metal member, and a slit 52 is formed along the inner periphery of the skin portion 51. In the lower part of the figure, the inner conductor on one end side of the signal cable 60 is connected to the skin portion 51 corresponding to the upper end portion of the slit 52, and the outer conductor is connected to the skin portion 51 corresponding to the lower end portion of the slit 52. . The other end of the signal cable 60 is connected to the input portion of the amplifier 70, and the current signal detected by the current probe 50 is input to the amplifier 70 via the signal cable 60. A digital oscilloscope 80 is connected to the output section of the amplifier 70 so that the waveform of the output signal of the amplifier 70 can be observed.

次に、本実施形態に係る放電検出装置の動作を説明する。
半導体ウェハ22の処理中に、チャンバ14の内部で放電が発生したとすると、この放電に伴って電磁波Eが発生する。この電磁波Eの一部は、チャンバ内の陽極24に入射し、この陽極24に接続された給電ケーブル40の内部導体に、電磁波Eによる電流信号が発生する。電流信号が給電ケーブル40の内部導体に発生すると、ある遅延時間を経て、この電流信号とは逆相の電流(以下、逆相電流と称す)が給電ケーブル40の外部導体に誘導される。
Next, the operation of the discharge detection apparatus according to this embodiment will be described.
If a discharge occurs inside the chamber 14 during the processing of the semiconductor wafer 22, an electromagnetic wave E is generated along with this discharge. A part of the electromagnetic wave E enters the anode 24 in the chamber, and a current signal due to the electromagnetic wave E is generated in the internal conductor of the power supply cable 40 connected to the anode 24. When a current signal is generated in the inner conductor of the power supply cable 40, a current having a phase opposite to that of the current signal (hereinafter referred to as a reverse-phase current) is induced in the outer conductor of the power supply cable 40 after a certain delay time.

ここで、給電ケーブル40の長さを1メートルとし、電気信号の伝搬速度を30万km/sとすると、電気信号が1mの給電ケーブル40を伝搬する際の遅延時間は約1×10−9秒となる。従って、給電ケーブル40の内部導体に電流信号が発生してから外部導体に逆相電流が現れるまでに約1×10−9秒の遅延時間が発生する。この間、給電ケーブル40の内部導体にのみ電流信号が存在し、その外部導体には逆相電流がまだ発生していない状態が発生する。この状態では、電流信号によって形成される磁界が、逆相電流によって減殺されることなく電流プローブ50に到達するため、この磁界から電流信号が検出される。 Here, when the length of the feeding cable 40 is 1 meter and the propagation speed of the electric signal is 300,000 km / s, the delay time when the electric signal propagates through the feeding cable 40 of 1 m is about 1 × 10 −9. Second. Accordingly, a delay time of about 1 × 10 −9 seconds is generated from when a current signal is generated in the inner conductor of the power supply cable 40 until a reverse phase current appears in the outer conductor. During this time, a current signal exists only in the inner conductor of the power supply cable 40, and a state in which no reverse-phase current has yet occurred in the outer conductor occurs. In this state, since the magnetic field formed by the current signal reaches the current probe 50 without being attenuated by the reverse-phase current, the current signal is detected from this magnetic field.

即ち、図2下段において、電流プローブ50の貫通穴を通る給電ケーブル40に電流信号が現れると、この電流信号による磁束が磁性体53の内部に発生する。この結果、表皮部51の内周側に形成されたスリット52の上端側と、表皮部51を通ってスリット52の下端側との間に電流が誘導され、この誘導された電流が信号ケーブル60を介して増幅器70に供給され、増幅器70で増幅された後、デジタルオシロスコープ80に表示される。これにより放電の発生が報知される。   That is, in the lower part of FIG. 2, when a current signal appears in the feeding cable 40 that passes through the through hole of the current probe 50, a magnetic flux due to this current signal is generated inside the magnetic body 53. As a result, a current is induced between the upper end side of the slit 52 formed on the inner peripheral side of the skin portion 51 and the lower end side of the slit 52 through the skin portion 51, and this induced current is transmitted to the signal cable 60. The signal is supplied to the amplifier 70 via the amplifier 70, amplified by the amplifier 70, and then displayed on the digital oscilloscope 80. Thereby, the occurrence of the discharge is notified.

以上、この発明の一実施形態を説明したが、この発明は、この実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。例えば、上述の実施形態では、ウェハを載置する陽極24に給電する給電ケーブル40に電流プローブ50を取り付けるものとしたが、陰極26側に給電が行われる場合には、この陰極側に接続された給電ケーブルに電流プローブを取り付けるものとしてもよい。   Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and design changes and the like within a scope not departing from the gist of the present invention are included in the present invention. For example, in the above-described embodiment, the current probe 50 is attached to the power supply cable 40 that supplies power to the anode 24 on which the wafer is placed. However, when power is supplied to the cathode 26 side, the current probe 50 is connected to the cathode side. A current probe may be attached to the feeder cable.

また、放電の種類に応じて周波数特性を有するフィルタを増幅器70に設け、これにより、増幅された電流信号の周波数を識別し、この識別された周波数から放電の種類を特定するようにしてもよい。この場合、300MHzを閾値として周波数を識別するものとすれば、低周波放電と高周波放電を有効に区別して報知することが可能になる。また、電流プローブ50で検出された電流(誘導された電流)をデジタルオシロスコープ80に表示するものとしたが、例えばアラーム音などで報知するものとしてもよい。さらに、電流プローブ50で検出された電流に対してフィルタリング処理を施し、ノイズとなる周波数成分をカットするようにしてもよく、また、放電に関連する特定の周波数成分のみを選択的に抽出して増幅するようにしてもよい。   Further, a filter having a frequency characteristic according to the type of discharge may be provided in the amplifier 70, whereby the frequency of the amplified current signal is identified, and the type of discharge is specified from the identified frequency. . In this case, if the frequency is identified using 300 MHz as a threshold, it is possible to effectively distinguish and notify low frequency discharge and high frequency discharge. In addition, although the current detected by the current probe 50 (induced current) is displayed on the digital oscilloscope 80, it may be notified by, for example, an alarm sound. Further, a filtering process may be performed on the current detected by the current probe 50 to cut out frequency components that become noise, or only specific frequency components related to discharge are selectively extracted. It may be amplified.

本発明の実施形態に係る放電検出装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the discharge detection apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る電流プローブの構成を説明するための図である。It is a figure for demonstrating the structure of the current probe which concerns on embodiment of this invention.

符号の説明Explanation of symbols

12;窓、14;チャンバ、22;半導体ウェハ、24;陽極、25;静電チャック、26;陰極、28;高周波電圧源、32;導入口、34;排出口、40;給電ケーブル、50;電流プローブ、60;信号ケーブル、70;増幅器、80;デジタルオシロスコープ。
12; window, 14; chamber, 22; semiconductor wafer, 24; anode, 25; electrostatic chuck, 26; cathode, 28; high-frequency voltage source, 32; inlet, 34; Current probe, 60; signal cable, 70; amplifier, 80; digital oscilloscope.

Claims (4)

プラズマを封入するチャンバの内部で発生する放電を検出する放電検出装置であって、
前記チャンバ内に前記プラズマを発生させるため電力の給電経路に設けられ、該給電経路に現れる電流信号を検出するための検出手段と、
前記検出手段により検出された電流信号を増幅する増幅手段と、
を備えた放電検出装置。
A discharge detection device for detecting a discharge generated inside a chamber enclosing plasma,
Detection means for detecting a current signal that is provided in a power supply path for generating the plasma in the chamber and that appears in the power supply path;
Amplifying means for amplifying the current signal detected by the detecting means;
A discharge detection device comprising:
前記検出手段が、前記電流信号によって形成される磁界を検出する電流プローブから構成されたことを特徴とする請求項1に記載された放電検出装置。   2. The discharge detection apparatus according to claim 1, wherein the detection unit includes a current probe that detects a magnetic field formed by the current signal. 前記増幅手段により増幅された電流信号の周波数を識別する周波数識別手段を更に備えたことを特徴とする請求項1または2に記載された放電検出装置。   The discharge detection device according to claim 1, further comprising a frequency identification unit that identifies a frequency of the current signal amplified by the amplification unit. 前記周波数識別手段が、300MHzを閾値として前記電流信号の周波数を識別することを特徴とする請求項3に記載された放電検出装置。
4. The discharge detection apparatus according to claim 3, wherein the frequency identification unit identifies the frequency of the current signal with a threshold of 300 MHz.
JP2004015775A 2004-01-23 2004-01-23 Electric discharge detecting apparatus Pending JP2005209935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004015775A JP2005209935A (en) 2004-01-23 2004-01-23 Electric discharge detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004015775A JP2005209935A (en) 2004-01-23 2004-01-23 Electric discharge detecting apparatus

Publications (1)

Publication Number Publication Date
JP2005209935A true JP2005209935A (en) 2005-08-04

Family

ID=34901146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004015775A Pending JP2005209935A (en) 2004-01-23 2004-01-23 Electric discharge detecting apparatus

Country Status (1)

Country Link
JP (1) JP2005209935A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273935A (en) * 2006-03-08 2007-10-18 Harada Sangyo Kk Vacuum processor, ac power supply unit used for the same, method of controlling ac power supply
US8338298B2 (en) 2008-10-08 2012-12-25 Renesas Electronics Corporation Method and apparatus for manufacturing semiconductor integrated circuit device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216325A (en) * 1985-03-22 1986-09-26 Hitachi Ltd High frequency power supply unit
JPS6378532A (en) * 1986-09-22 1988-04-08 Hitachi Ltd Device for detecting abnormality of discharge
JPH0278976A (en) * 1988-09-14 1990-03-19 Toshiba Corp Detection of partial discharge of winding in electric apparatus
JPH0652994A (en) * 1992-07-29 1994-02-25 Ulvac Japan Ltd Discharge detecting device in vacuum system utilizing discharge
JP2003224112A (en) * 2002-01-30 2003-08-08 Alps Electric Co Ltd Plasma treatment device and plasma treatment method
JP2004288849A (en) * 2003-03-20 2004-10-14 Fab Solution Kk Electric discharge detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216325A (en) * 1985-03-22 1986-09-26 Hitachi Ltd High frequency power supply unit
JPS6378532A (en) * 1986-09-22 1988-04-08 Hitachi Ltd Device for detecting abnormality of discharge
JPH0278976A (en) * 1988-09-14 1990-03-19 Toshiba Corp Detection of partial discharge of winding in electric apparatus
JPH0652994A (en) * 1992-07-29 1994-02-25 Ulvac Japan Ltd Discharge detecting device in vacuum system utilizing discharge
JP2003224112A (en) * 2002-01-30 2003-08-08 Alps Electric Co Ltd Plasma treatment device and plasma treatment method
JP2004288849A (en) * 2003-03-20 2004-10-14 Fab Solution Kk Electric discharge detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273935A (en) * 2006-03-08 2007-10-18 Harada Sangyo Kk Vacuum processor, ac power supply unit used for the same, method of controlling ac power supply
US8338298B2 (en) 2008-10-08 2012-12-25 Renesas Electronics Corporation Method and apparatus for manufacturing semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
US10063062B2 (en) Method of detecting plasma discharge in a plasma processing system
KR100807724B1 (en) Substrate processing apparatus and substrate processing method
US9299538B2 (en) Radial waveguide systems and methods for post-match control of microwaves
JP4607517B2 (en) Plasma processing equipment
US20060100824A1 (en) Plasma processing apparatus, abnormal discharge detecting method for the same, program for implementing the method, and storage medium storing the program
WO2010001583A1 (en) Plasma processing device and method for monitoring state of discharge in plasma processing device
TW201316374A (en) Abnormality detecting unit and abnormality detecting method
TW202002723A (en) Plasma source, excitation system for excitation of a plasma, and optical monitoring system
TW200713482A (en) Method and apparatus for in-situ substrate surface arc detection
JP2005209935A (en) Electric discharge detecting apparatus
JP4364498B2 (en) Abnormal discharge detection apparatus and method
JP2010038602A (en) Method of detecting partial discharge by magnetic field measurement
Yasaka et al. Detection of supersonic waves emitted from anomalous arc discharge in plasma processing equipment
JP3631212B2 (en) Abnormal discharge detection apparatus and method
JP4287682B2 (en) Abnormal discharge detector
JP2010032450A (en) Method of determining presence or absence of partial discharge electromagnetic wave from object electric apparatus
US20140015523A1 (en) Sensor device, a detector arrangement and a method for detecting arcing
JP5159055B2 (en) AC power supply
JP2008311338A (en) Vacuum treatment apparatus and abnormal discharge precognition device used therefor, and control method of vacuum treatment apparatus
Kasashima et al. Detection of micro-arc discharge using ESC wafer stage with built-in AE sensor
JPH09266098A (en) Plasma condition detecting device and method, and etching terminating point detecting device and method
JP2006128304A (en) Plasma treatment apparatus, abnormal discharge detecting method of apparatus, program, and storage medium
JP6222656B2 (en) Sensor-integrated suction chuck and processing device
JP2005527985A (en) Method and apparatus for monitoring film deposition in a process chamber
KR20160134074A (en) The noncontact plasma electric field detection device and the method for detection

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20051118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518