JP2005209842A - Shaping method and device of electromagnetic coil - Google Patents

Shaping method and device of electromagnetic coil Download PDF

Info

Publication number
JP2005209842A
JP2005209842A JP2004014158A JP2004014158A JP2005209842A JP 2005209842 A JP2005209842 A JP 2005209842A JP 2004014158 A JP2004014158 A JP 2004014158A JP 2004014158 A JP2004014158 A JP 2004014158A JP 2005209842 A JP2005209842 A JP 2005209842A
Authority
JP
Japan
Prior art keywords
coil
wire
forming
winding
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004014158A
Other languages
Japanese (ja)
Inventor
Hiroshi Uchiyama
拓 内山
Masaaki Toda
正明 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004014158A priority Critical patent/JP2005209842A/en
Publication of JP2005209842A publication Critical patent/JP2005209842A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve coil shaping method and device such that an electromagnetic coil can be shaped with high dimensional and shape accuracy without damaging the insulation coating of a coil wire. <P>SOLUTION: In the method of shaping a coil by stopping a coil wire (insulation coated wire) 11 fed out from a bobbin at a shaping jig 17 and then turning and feeding the shaping jig to wind the wire around the circumferential surface of a core metal 18, a direct driven press tool 24 is provided on the side of the shaping jig oppositely to the circumferential surface of the core metal. In the last stroke (a range α of about 30° to the end of last turn of the coil) of coil shaping process for winding the wire around the core metal by turning and feeding the shaping jig, the press tool 24 is operated to advance from a retreat position in order to press the end part of the wire forcibly against the circumferential surface of a core metal and to draw the wire thus shaping the coil such that the curvature at the coil end part conforms to the circumferential surface of the core metal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば配電用遮断器,漏電遮断器などの回路遮断器に装備した引外し用トリップコイルに適用する電磁コイルの成形方法および装置に関する。   The present invention relates to a method and apparatus for forming an electromagnetic coil applied to a tripping trip coil equipped in a circuit breaker such as a distribution breaker or a leakage breaker.

まず、本発明の対象となる電磁コイルの適用例として、頭記回路遮断器の構成を図2に示す。図において、1は遮断器ケース、2は固定接触子、3は可動接触子、4は開閉機構、5は開閉操作ハンドル、6が過電流引外し用のトリップコイルユニットであり、該トリップコイルユニット6は、電磁コイル(空心コイル)7と、該コイル7に嵌挿したコイル鉄心(ダッシュポット)8と、継鉄9と、揺動式のアーマチュア(作動片)10との組立体になり、その作動片10を開閉機構4のラッチ(引外し機構)に連繋させ、電磁コイル7を主回路に接続して電流を通電するようにしている。
かかる回路遮断器の動作は周知の通りであり、回路遮断器を給電回路に接続して使用している状態で、負荷の短絡事故などが原因で主回路に過電流が流れると、トリップコイルユニット6の電磁コイル7の起磁力が増してアーマチュア10が吸引動作し、その動きを捉えて開閉機構4がトリップして可動接触子3を開極し、電流を遮断する。
First, as an application example of an electromagnetic coil that is a subject of the present invention, a configuration of a head circuit breaker is shown in FIG. In the figure, 1 is a circuit breaker case, 2 is a stationary contact, 3 is a movable contact, 4 is an opening / closing mechanism, 5 is an opening / closing operation handle, and 6 is a trip coil unit for overcurrent tripping. 6 is an assembly of an electromagnetic coil (air core coil) 7, a coil iron core (dashpot) 8 fitted into the coil 7, a yoke 9, and a swinging armature (operating piece) 10. The operating piece 10 is connected to a latch (tripping mechanism) of the opening / closing mechanism 4, and the electromagnetic coil 7 is connected to the main circuit so as to pass current.
The operation of such a circuit breaker is well known, and when an overcurrent flows in the main circuit due to a short circuit accident of the load, etc. in a state where the circuit breaker is connected to the power supply circuit, the trip coil unit The magnetomotive force of the electromagnetic coil 7 of 6 increases and the armature 10 is attracted. The movement is detected and the opening / closing mechanism 4 trips to open the movable contact 3 and cut off the current.

ここで、前記の電磁コイル7は、線径が例えばφ0.3mmないしφ5mm程度の絶縁被覆電線を線材として、これを螺旋状に巻回成形して製作したものであり、そのコイル形状を図3(a)〜(c)に示す。すなわち、図3(a)は完成したコイル部品の外形図で、そのコイル胴部(コイル巻回部)7aの両端(巻始め側,および巻終わり側)から上下にリード部7b,7cを引き出した形状になり、コイル胴部7aは素線(丸銅線)7dが絶縁被覆7eで被覆されており、リード部7b,7cは絶縁被覆7eを剥離して素線7dを剥き出し、接続相手側の部材(端子,あるいは主回路導体)にろう付け(あるいは半田付け)するようにしている。この電磁コイル7を製作するには、まず線材を図3(b),(c)に示す形状に巻回成形した後、コイル胴部の両端から直線状に伸びているリード部7b,7cを上下の向きに曲げ加工して図3(a)のコイル形状を得るようにしている。そして、この電磁コイル7に図2で述べたコイル鉄心8,継鉄9およびアーマチュア10の各部品を組み合わせてトリップコイルユニット6を構成している。   Here, the electromagnetic coil 7 is manufactured by spirally winding an insulation coated electric wire having a wire diameter of, for example, φ0.3 mm to φ5 mm, and the coil shape is shown in FIG. (A) to (c). That is, FIG. 3A is an outline drawing of the completed coil component, and the lead portions 7b and 7c are drawn up and down from both ends (winding start side and winding end side) of the coil body portion (coil winding portion) 7a. The coil body portion 7a is covered with a wire (round copper wire) 7d with an insulation coating 7e, and the lead portions 7b and 7c are peeled off the insulation coating 7e to expose the wire 7d. These members (terminals or main circuit conductors) are brazed (or soldered). In order to manufacture this electromagnetic coil 7, first, after winding the wire into the shape shown in FIGS. 3B and 3C, lead portions 7b and 7c extending linearly from both ends of the coil body portion are formed. The coil shape shown in FIG. 3A is obtained by bending in the vertical direction. The trip coil unit 6 is configured by combining the electromagnetic coil 7 with the components of the coil core 8, the yoke 9, and the armature 10 described in FIG.

また、上記の電磁コイル7については、図2に示したトリップコイルユニット6の引外し動作特性の安定化、およびユニットの組立性(通常はトリップコイルユニット6を含めて、回路遮断器は組立ロボットを使用して自動組立を行うようにしている)を考慮して、高い寸法,成形精度が要求される。すなわち、図3の図中に表したコイル胴部7aの高さh,コイルピッチp,コイルの曲率半径r,両端リード7bと7cとの間の開き角度θについての寸法精度が厳しく指定されており、コイル高さhは設計の指定寸法に対して±0.3mm,リード部の開き角度∂は±0.3°を満足することが求められている。
一方、電磁コイルを量産する製法としては従来から様々な成形方法が知られており、その一例として線材ボビンから繰り出した絶縁被覆電線の線材の先端を巻き付け用の芯金(スピンドル軸)を備えた成形治具に係止保持した上で、この成形治具をサーボモータにより回転,送り操作し、前記心金の周面に線材を巻き付けてコイルを成形するようにしたコイル成形装置が知られている(例えば、特許文献1,特許文献2参照)。
Further, for the electromagnetic coil 7, the tripping operation characteristics of the trip coil unit 6 shown in FIG. 2 are stabilized, and the assembly of the unit (usually including the trip coil unit 6, the circuit breaker is an assembly robot). High dimensions and molding accuracy are required. That is, the dimensional accuracy for the height h of the coil body portion 7a, the coil pitch p, the radius of curvature r of the coil, and the opening angle θ between the both end leads 7b and 7c shown in FIG. The coil height h is required to satisfy ± 0.3 mm with respect to the design specified dimension, and the lead opening angle ∂ satisfies ± 0.3 °.
On the other hand, various forming methods have been known as mass production methods for electromagnetic coils. As an example, a wire core (spindle shaft) for winding the tip of an insulated coated wire drawn from a wire bobbin is provided. A coil forming apparatus is known in which a coil is formed by winding and holding a wire rod around the peripheral surface of the mandrel after rotating and feeding the forming jig with a servo motor after being locked and held by a forming jig. (For example, see Patent Document 1 and Patent Document 2).

次に、特許文献1,2に開示されている方法と同様に線材を芯金の周面に巻き付けてコイルを成形する方式を採用して図3の電磁コイルを作製する従来のコイル成形装置を図4〜図6で説明する。まず、図4(a),(b)はコイル成形装置を模式的に表した図であり、11はコイル線材(絶縁被覆電線)、12は線材を巻いたボビン(線材の供給源)、13は線材11の修正部(巻き癖を修正して真っ直ぐにする)、14は絶縁剥離部、15は線材送り部、16はコイル成形部である。
ここで、コイル成形部16は、詳細構造を後記する成形治具17と、成形治具17を下向きに装着して回転,送りする回転サーボモータ20,上下サーボモータ21からなり、線材11の供給端側にはノズル状の供給ガイド22,および線材11を裁断するカッター23を備えている。また、成形治具17は図5(a),(b)で示すように円盤状ベースの中心にコイル径に対応した巻き付け用芯金(スピンドル軸)18を植設するとともに、この芯金18の周面に対峙してベースの外周側に線材11の先端を係止保持する突起状の部17aを形成した構造になる。なお、17bは芯金18に巻き付けたコイル巻き始め側のリード部との干渉を避けるためにベースの側線に形成した逃げ用の切欠段部、19は芯金18の先端を俵入するガイド用の軸受である。
Next, a conventional coil forming apparatus for producing the electromagnetic coil of FIG. 3 by adopting a method of forming a coil by winding a wire rod around the peripheral surface of the core metal in the same manner as disclosed in Patent Documents 1 and 2. This will be described with reference to FIGS. 4A and 4B are diagrams schematically showing a coil forming apparatus, in which 11 is a coil wire (insulation-coated electric wire), 12 is a bobbin wound with a wire (wire supply source), 13 Is a correcting part of the wire 11 (correcting the curl to make it straight), 14 is an insulation peeling part, 15 is a wire feeding part, and 16 is a coil forming part.
Here, the coil forming unit 16 includes a forming jig 17 whose detailed structure will be described later, a rotary servo motor 20 that mounts the forming jig 17 downward and rotates and feeds it, and an upper and lower servo motor 21. A nozzle-shaped supply guide 22 and a cutter 23 for cutting the wire 11 are provided on the end side. Further, as shown in FIGS. 5 (a) and 5 (b), the forming jig 17 is provided with a winding cored bar (spindle shaft) 18 corresponding to the coil diameter at the center of the disc-shaped base, and this cored bar 18 This is a structure in which a protruding portion 17a that holds and holds the tip of the wire 11 is formed on the outer peripheral side of the base so as to face the peripheral surface. In addition, 17b is a notch part for relief formed in the side line of the base in order to avoid interference with the lead part on the coil winding side wound around the cored bar 18, and 19 is a guide for inserting the tip of the cored bar 18 This is a bearing.

上記の構成で、コイル成形時には線材ボビン12から繰り出したコイル線材11をコイル成形部16へ送る経路途上にて、あらかじめ指定したコイルのサイズに合わせて定ピッチおきに絶縁被覆を剥離した上で、供給ガイド22を通じてコイル成形部16の成形治具17に側方から送り出し、線材11の先端を図6(a)で表すように芯金18と爪部17aとの間の隙間に差し込む。次に図4に示した回転サーボモータ20を始動して成形治具17を時計方向に回転させながら線材11を芯金18にほぼ1ターン巻き付け、続いて上下サーボモータ21も始動し、回転駆動に同期してコイルピッチを付けるように成形治具17を上方に引き上げる。これにより、図6(b)のように線材11が芯金18の周囲に螺旋状に巻き付けられていく。そして、コイルの巻回数が指定のターン数(図示例では3ターン)になると、回転サーボモータ20を一旦停止した上で、上下サーボモータ21が成形治具17をさらに上方に引き上げて芯金18をコイルから上方に引き抜いた上で、回転サーボモータは逆転してリセットし、続いてカッター23が待機位置から前進して線材11を裁断する(図6(c)参照)。これにより、図3(b),(c)に示した形状のコイル部品が成形される。なお、裁断分離されたコイル部品はコイル成形部から取り出して次のリード曲げ工程に移し、ここで両端リード部をL字形に曲げ加工して図3(a)に示した最終形状のコイル部品が完成する。
特開2000−286139号公報 特開平10−144556号公報
With the above configuration, in the course of sending the coil wire 11 fed from the wire rod bobbin 12 to the coil forming part 16 at the time of coil forming, the insulation coating is peeled off at a constant pitch according to the size of the coil specified in advance. The feed guide 22 is fed from the side to the forming jig 17 of the coil forming portion 16, and the tip of the wire 11 is inserted into the gap between the cored bar 18 and the claw portion 17a as shown in FIG. Next, the rotary servo motor 20 shown in FIG. 4 is started to wind the wire rod 11 around the metal core 18 while rotating the forming jig 17 in the clockwise direction. Subsequently, the upper and lower servo motors 21 are also started to rotate. The forming jig 17 is pulled upward so as to give a coil pitch in synchronization with the above. As a result, the wire 11 is wound around the core bar 18 in a spiral manner as shown in FIG. When the number of turns of the coil reaches a specified number of turns (3 turns in the illustrated example), the rotary servo motor 20 is temporarily stopped, and then the upper and lower servo motors 21 pull the molding jig 17 further upward to raise the cored bar 18. Then, the rotary servo motor reverses and resets, and then the cutter 23 advances from the standby position to cut the wire 11 (see FIG. 6C). Thereby, the coil component having the shape shown in FIGS. 3B and 3C is formed. The cut and separated coil parts are taken out from the coil forming section and transferred to the next lead bending process. Here, the lead parts at both ends are bent into an L shape, and the coil parts having the final shape shown in FIG. Complete.
JP 2000-286139 A Japanese Patent Laid-Open No. 10-144556

ところで、前記した従来の成形治具(図4,図5参照)を使って電磁コイルを成形すると、次に記すような成形の不具合が発生する。
図7は図4,図5の成形治具を使って成形した電磁コイルを下面側から見た形状図であり、コイルの巻き終わり側終端部が芯金18の周面から外側に膨らんで曲率が拡大し、これに続くリード部7cが長手方向に湾曲していて、鎖線で図中に表した形状(設計仕様に対応した図3(c)の形状)通りに成形されてない。
このような成形不良の発生原因は、コイル線材11の剛性と従来のコイル成形法にある。すなわち、図8で示すように成形治具17の芯金18に線材11を所定ターン数巻き付けて成形治具17の回転を停止した状態になると、供給ガイド22を通じて繰り出したコイル線材11に張力が加わらなり、コイル線材11の曲げ剛性のためにコイル終端部分が芯金18の周面から浮いた状態になり、そのためにコイル終端部分の曲率半径が大きくなって図7のような形状を呈するようになる。なお、コイル線材に線径が例えばφ4〜5mm程度の太い絶縁被覆電線を用いる場合には、その曲げ剛性が高いことから上記のようなコイル終端部分に曲率半径の拡大が顕著に生じて製品の寸法精度が低下する。
しかも、成形されたコイル部品の巻回終端部に前記のような曲率半径の拡大が生じていると、トリップコイルユニット(図2参照)としての特性がばらつくほか、コイル成形後の工程で行うリード部の曲げ加工(図3(a)参照)、トリップコイルユニット6への組み付け、および電磁コイルのリード部と回路遮断器の接続相手部品との接続作業に支障を来すようになる。
By the way, when an electromagnetic coil is formed using the above-described conventional forming jig (see FIGS. 4 and 5), the following forming defects occur.
FIG. 7 is a shape view of an electromagnetic coil formed using the forming jig of FIGS. 4 and 5 as viewed from the lower surface side, and the end of the winding end side of the coil bulges outward from the peripheral surface of the core metal 18 and has a curvature. The lead portion 7c following this is curved in the longitudinal direction, and is not formed according to the shape shown in the figure by the chain line (the shape of FIG. 3C corresponding to the design specifications).
The cause of such defective molding is the rigidity of the coil wire 11 and the conventional coil molding method. That is, as shown in FIG. 8, when the wire 11 is wound around the core 18 of the forming jig 17 for a predetermined number of turns and the rotation of the forming jig 17 is stopped, the coil wire 11 fed through the supply guide 22 is tensioned. In addition, because of the bending rigidity of the coil wire 11, the coil end portion floats from the peripheral surface of the cored bar 18, so that the radius of curvature of the coil end portion increases and the shape as shown in FIG. 7 is exhibited. become. When a thick insulated wire having a wire diameter of, for example, about 4 to 5 mm is used as the coil wire material, the bending radius is remarkably increased at the end of the coil as described above due to its high bending rigidity. Dimensional accuracy decreases.
In addition, if the radius of curvature as described above is increased at the winding end of the molded coil component, the characteristics of the trip coil unit (see FIG. 2) vary, and leads are performed in the post-coil forming process. Bending work (see FIG. 3 (a)), assembly to the trip coil unit 6, and connection work between the lead part of the electromagnetic coil and the connection counterpart component of the circuit breaker are hindered.

そこで、発明者等は、前記特許文献2に開示されているような巻ガイドを採用し、ボビンから繰り出した線材11を芯金18に巻き付ける部位で線材を芯金の周面に押し付けながらコイルを巻き付け成形することを試みた。この方法によれば図7で述べたような成形不良がなくなってコイル形状の精度が向上する反面、直線状に延ばした状態で成形治具に供給する絶縁被覆電線を芯金の周面に密着するように押し付けるにはかなりの力が加わることから、線材11の絶縁被覆に大きな摺動摩擦力が作用し、その摩擦発熱で絶縁被覆が剥げて絶縁性が低下するといった欠陥の生じることが認められた。なお、線径が例えばφ4〜5mm程度の太い絶縁被覆電線を用いる場合には、その曲げ剛性が高いことから、絶縁被覆電線を芯金の周面に密着するように押し付けるのに加える押圧力が大きくなるために、摩擦熱による絶縁被覆の損傷が生じ易くなる。   Therefore, the inventors have adopted a winding guide as disclosed in Patent Document 2, and the coil is pressed while pressing the wire rod against the peripheral surface of the metal core 18 at the portion where the wire 11 fed from the bobbin is wound around the metal core 18. Attempted to wind. According to this method, the molding defect as described in FIG. 7 is eliminated and the accuracy of the coil shape is improved. On the other hand, the insulation-coated electric wire supplied to the forming jig in a linearly extended state is closely attached to the peripheral surface of the core metal. Since a considerable force is applied to the pressing force, a large sliding frictional force acts on the insulating coating of the wire 11, and it is recognized that defects such as the insulating coating is peeled off due to the frictional heat generation and the insulating property is lowered. It was. In addition, when using a thick insulated wire having a wire diameter of about 4 to 5 mm, for example, the bending rigidity is high, so that the pressing force applied to press the insulated wire so as to be in close contact with the peripheral surface of the core metal Therefore, the insulation coating is easily damaged by frictional heat.

本発明は上記の点に鑑みなされたものであり、その目的はコイル線材の絶縁被覆を損傷することなく、寸法,形状精度の高いコイルの成形が安定よく行えるように改良した電磁コイルの成形方法および成形装置を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to improve an electromagnetic coil molding method that can stably form a coil with high dimensional and shape accuracy without damaging the insulation coating of the coil wire. And providing a molding apparatus.

上記目的を達成するために、本発明によれば、絶縁被覆電線をコイル線材として螺旋状に巻回し、かつコイル巻き始めおよび巻き終わりの両端から絶縁被覆を剥離したリード部を引き出した形状になる電磁コイルの成形方法で、そのコイル成形治異がコイル径に対応した巻き付け芯金を備え、ボビンから繰り出したコイル線材の先端部を前記成形治具に係止した上で、成形治具を回転,送り操作して線材を芯金の周面に巻き付けるようにしたものにおいて
コイル線材を前記成形治具の芯金に巻き付けるコイル成形工程の終盤行程で、芯金に巻き付けた線材の終端部位に側方から加圧力を加え、回転している芯金の周面に線材を押し付けて扱く工程を付加するものとし(請求項1)、その加圧領域を、コイル最終ターンの終端から角度にして約30°手前の範囲に設定する(請求項2)。
In order to achieve the above object, according to the present invention, an insulation-coated electric wire is spirally wound as a coil wire, and a lead portion with the insulation coating peeled off from both ends of the coil winding start and winding ends is drawn. An electromagnetic coil forming method, in which the coil forming process is provided with a wound cored bar corresponding to the coil diameter, and the tip of the coil wire fed from the bobbin is locked to the forming jig, and then the forming jig is rotated. , In the case where the wire is wound around the peripheral surface of the core metal by feeding operation, the coil wire is wound around the end portion of the wire wound around the core metal in the final stage of the coil forming process of winding the coil wire around the core metal of the forming jig. A process of applying pressure from one side and pressing the wire against the rotating core is added (Claim 1), and the pressurizing region is angled from the end of the final turn of the coil. about It is set within the range of 30 ° (claim 2).

また、前記成形方法を実施する本発明の成形装置は、コイル成形部がコイル径に対応した巻き付け芯金,およびコイル線材の巻始め端部を係止保持する爪部を設けたコイル成形治具と、該成形治具の芯金周面に対峙して線材繰り出し側の側方に配した直動式の加圧工具とを具備した構成とし、前記成形治具を回転,送り操作して線材を芯金の周面に巻き付けるコイル成形工程の終盤行程で、前記加圧工具を後退位置から前進させて線材の終端部位を回転する芯金の周面に押しつけて扱くようにする(請求項3)。   The forming apparatus of the present invention for carrying out the forming method includes a coil forming jig in which a coil forming portion is provided with a winding core corresponding to a coil diameter, and a claw portion for locking and holding a winding start end portion of the coil wire. And a direct-acting pressure tool arranged on the side of the wire feeding side facing the core metal peripheral surface of the forming jig, and rotating and feeding the forming jig to operate the wire In the final stage of the coil forming process of winding the wire around the peripheral surface of the core metal, the pressurizing tool is advanced from the retracted position and the end portion of the wire is pressed against the peripheral surface of the rotating core metal to be handled (claim). 3).

上記のコイル成形方法によれば、コイル成形工程の開始から終盤までの行程では、加圧工具が待機位置に後退しているので、コイル線材(絶縁被覆電線)は加圧工具と摺動することなしに成形治具の芯金に巻き付けられていく。したがって、この行程範囲ではボビンから繰り出したコイル線材の絶縁被覆が加圧工具との摺動摩擦熱で損傷するおそれはない。そして、コイル成形工程が終了近く(コイル最終ターンの終端から角度にして約30°手前の範囲)まで進むと、前記の加圧工具が待機位置から前進して線材の終端部位を芯金周面に押圧する。これにより回転する芯金の周面にならって強制的に扱かれるようになり、その結果として図6,図7で述べたような成形不良を生じることなしに、コイルの巻回終端部を指定の曲率半径に成形することができる。しかも、加圧工具をコイル線材に押し付ける範囲はコイル成形工程の終盤範囲(角度にして約30°)だけで、加圧工具と摺動する範囲が短いために摺動摩擦熱によって線材の絶縁被覆が損傷することもなく、これにより絶縁性を保持しつつ形状,寸法精度の高い電磁コイルを成形することができる。   According to the above coil forming method, the coil wire (insulated coated electric wire) slides with the pressure tool since the pressure tool is retracted to the standby position in the process from the start to the end of the coil forming process. Without being wound around the core of the forming jig. Therefore, in this stroke range, the insulation coating of the coil wire fed from the bobbin is not likely to be damaged by the sliding frictional heat with the pressurizing tool. Then, when the coil forming process proceeds near the end (in the range of about 30 ° from the end of the coil final turn), the pressurizing tool advances from the standby position so that the end portion of the wire moves around the core metal peripheral surface. Press on. As a result, the coil is forcibly handled in accordance with the peripheral surface of the rotating metal core, and as a result, the winding end portion of the coil is designated without causing the molding defect described in FIGS. Can be formed with a radius of curvature of. In addition, the pressure tool is pressed against the coil wire only in the final stage of the coil forming process (about 30 ° in angle), and since the sliding range with the pressure tool is short, the insulation coating of the wire is caused by sliding frictional heat. Thus, an electromagnetic coil having high shape and dimensional accuracy can be formed while maintaining insulation without being damaged.

以下、本発明の実施の形態を図1(a),(b)の実施例に基づいて説明する。なお、実施例の図中で図4,図5に対応する部材には同じ符号を付してその説明は省略する。
すなわち、図示実施例においては、成形治具17に植設した芯金18と対峠してコイル線材11を繰り出し供給する側の側方位置に直動式の加圧工具24が追加装備されている。この加圧工具24は駆動シリンダ(例えば、エアシリンダ)25に連結し、指令に基づき鎖線で示す待機位置と実線で示す前進位置との間で往復駆動され、前進位置では供給ガイド22を通じて繰り出したコイル線材11を芯金18の周面に押圧し、芯金18の回転に合わせて線材を芯金の周面にならって強制的に扱くようにする。
ここで、加圧工具24を前進操作して線材11を芯金18の周面に押圧するタイミングはコイル成形工程の終盤とし、その加圧範囲αは芯金18に巻回されたコイルの最終ターンの終端から角度にして約30°手前の範囲に設定しておく。そして、コイル成形の開始当初は加圧工具24が待機位置に後退しておき、線材の巻き付けが前記の位置まで進んだところで駆動シリンダ25の操作により加圧工具24を待機位置から前進させ、その加圧力で線材11を芯金18の周面に押し付けて扱くようにする。
Hereinafter, embodiments of the present invention will be described based on the examples of FIGS. In the drawing of the embodiment, members corresponding to those in FIG. 4 and FIG.
That is, in the illustrated embodiment, a direct-acting pressure tool 24 is additionally provided at a side position on the side where the coil wire 11 is fed and fed against the core 18 implanted in the forming jig 17. Yes. The pressurizing tool 24 is connected to a drive cylinder (for example, an air cylinder) 25 and is driven to reciprocate between a standby position indicated by a chain line and a forward position indicated by a solid line based on a command, and is fed out through a supply guide 22 at the forward position. The coil wire 11 is pressed against the peripheral surface of the core metal 18, and the wire is forcedly handled along the peripheral surface of the core metal in accordance with the rotation of the core metal 18.
Here, the timing at which the pressurizing tool 24 is operated forward to press the wire 11 against the peripheral surface of the cored bar 18 is the final stage of the coil forming process, and the pressurizing range α is the final of the coil wound around the cored bar 18. The angle is set in the range of about 30 ° before the end of the turn. Then, at the beginning of coil forming, the pressurizing tool 24 is retracted to the standby position, and when the winding of the wire has advanced to the above position, the pressurizing tool 24 is advanced from the standby position by operating the drive cylinder 25, The wire 11 is pressed against the peripheral surface of the metal core 18 with the applied pressure so as to be handled.

これにより、コイルの巻回終端部分で線材11が芯金18の周面にならった形状に成形されるので、図7,図8で述べたように芯金18に巻き付けたコイル線材11の終端部分が芯金の周面から浮いて曲率半径が拡大するような成形不良の生じることがなくなる。
この結果、成形された電磁コイルには、図6,図7で述べたような成形不良を生じることがなく、図3(b),(c)で表した指定の形状通りに精度よく成形される。しかも、加圧工具をコイル線材に押し付ける範囲はコイル成形工程の終盤範囲.(角度で約30度)だけであり、加圧工具と摺動する範囲が短いために摺動摩擦熱によってコイル線材の絶縁被覆が剥がれたりすることもなく、これにより絶縁性を保持しつつ形状,寸法精度の高い電磁コイルを成形することができる。なお、このことは発明者等が行った実機による成形テストの結果からも確認されている。
As a result, the wire 11 is formed in the shape of the peripheral surface of the cored bar 18 at the winding end part of the coil, so that the end of the coiled wire 11 wound around the cored bar 18 as described in FIGS. A molding defect in which the portion floats from the peripheral surface of the cored bar and the radius of curvature increases is eliminated.
As a result, the molded electromagnetic coil is molded accurately according to the designated shape shown in FIGS. 3B and 3C without causing the molding defects described in FIGS. The Moreover, the range in which the pressing tool is pressed against the coil wire is the final range of the coil forming process. (The angle is about 30 degrees), and since the sliding range with the pressurizing tool is short, the insulation coating of the coil wire material is not peeled off by sliding frictional heat. An electromagnetic coil with high dimensional accuracy can be formed. This has also been confirmed from the result of a molding test performed by an actual machine performed by the inventors.

本発明の実施例によるコイル成形部の構成,配置図で、(a),(b)はそれぞれ下面,および正面図BRIEF DESCRIPTION OF THE DRAWINGS It is a structure and arrangement | positioning figure of the coil shaping | molding part by the Example of this invention, (a), (b) is a lower surface and a front view, respectively. 本発明の電磁コイルを適用する回路遮断器の構成図Configuration diagram of circuit breaker to which electromagnetic coil of the present invention is applied 図2の回路遮断器に装備したトリップコイルユニットに用いる電磁コイルの仕様で定めたコイル形状図であり、(a)はリード曲げ加工を施した状態の側面図、(b)はリード曲げ加工前のコイル成形状態の側面図、(c)は(b)の平面図It is a coil shape figure defined by the specification of the electromagnetic coil used for the trip coil unit with which the circuit breaker of FIG. 2 is equipped, (a) is a side view in a state where lead bending is performed, and (b) is before lead bending. The side view of the coil shaping | molding state of (c) is a top view of (b) 図3(b),(c)に示したコイル部品を製作する成形装置を模式的に表した構成図で、(a)は装置全体の工程図、(b)は(a)における成形部の詳細構成図FIGS. 3B and 3C are configuration diagrams schematically showing a molding apparatus for producing the coil component shown in FIGS. 3B and 3C, wherein FIG. 3A is a process diagram of the entire apparatus, and FIG. Detailed configuration diagram 図4の成形装置に採用した成形治具の詳細構造図で、(a),(b)はそれぞれ側面図,および下面図FIG. 5 is a detailed structural diagram of a forming jig employed in the forming apparatus of FIG. 4, wherein (a) and (b) are a side view and a bottom view, respectively. 図5の成形治具によるコイル成形工程の説明図で、(a),(b),(c)はそれぞれ巻き始め,巻回途中,および巻終わりの状態を表す図FIG. 6 is an explanatory diagram of a coil forming process by the forming jig of FIG. 5, and (a), (b), and (c) are diagrams showing states of winding start, winding in progress, and winding end, respectively. 図5の成形治具を用いて成形した電磁コイルの形状図Shape of electromagnetic coil molded using the molding jig of FIG. 従来のコイル成形法による線材の巻き終わり状態を表す図The figure which shows the winding end state of the wire rod by the conventional coil forming method

符号の説明Explanation of symbols

7 電磁コイル
7a コイル胴部
7b 巻き始め側のリード部
7c 巻き終わり側のリード部
7d 素線
7e 絶縁被覆
11 コイル線材
17 成形治具
18 芯金(スピンドル軸)
24 加圧工具
25 駆動シリンダ
α 加圧範囲
7 Electromagnetic coil 7a Coil body part 7b Lead part on the winding start side 7c Lead part on the winding end side 7d Wire 7e Insulation coating 11 Coil wire rod 17 Molding jig 18 Core metal (spindle shaft)
24 Pressing tool 25 Drive cylinder α Pressurizing range

Claims (3)

絶縁被覆電線をコイル線材として螺旋状に巻回し、かつコイル巻き始めおよび巻き終わりの両端から絶縁被覆を剥離したリード部を引き出した形状になる電磁コイルの成形方法であり、コイル成形治具がコイル径に対応した巻き付け芯金を備え、ボビンから繰り出したコイル線材の先端部を前記成形治具に係止した上で、形成治具を回転,送り換作して線材を芯金の周面に巻き付けるようにしたものにおいて
コイル線材を前記成形治具の芯金に巻き付けるコイル成形工程の終盤行程で、芯金に巻き付けた線材の終端部位に側方から加圧力を加えて、線材を回転する前記芯金の周面に押圧する工程を付加したことを特徴とする電磁コイルの成形方法。
This is an electromagnetic coil molding method in which an insulation coated electric wire is spirally wound as a coil wire, and leads are drawn out from both ends of the coil winding start and end of winding. The coil forming jig is a coil A winding cored bar corresponding to the diameter is provided, and the tip of the coil wire fed from the bobbin is locked to the forming jig, and then the forming jig is rotated and reworked so that the wire is placed on the peripheral surface of the cored bar. In the end of the coil forming process in which the coil wire is wound around the core of the forming jig in the one that is wound around, the pressure is applied from the side to the terminal portion of the wire wound around the core and the wire is rotated. A method for forming an electromagnetic coil, comprising a step of pressing against a peripheral surface of a core metal.
請求項1記載の成形方法において、線材に側方から加圧力を加えて芯金周面に押圧する加圧領域を、コイル最終ターンの終端から角度にして約30°手前の範囲に設定したことを特徴とする電磁コイルの成形方法。 The molding method according to claim 1, wherein the pressurizing region for applying pressure to the wire rod from the side and pressing it against the core metal peripheral surface is set to a range of about 30 ° before the end of the coil final turn. A method for forming an electromagnetic coil, characterized by comprising: 絶縁被覆電線をコイル線材として螺旋状に巻回し、かつコイル巻き始めおよび巻き終わりの両端から絶縁被覆を剥離したリード部を引き出した形状になる電磁コイルの成形装置であり、該装置のコイル成形部がコイル径に対応した巻き付け芯金,およコイル線材の巻始め端部を係止保持する爪部を設けたコイル成形治具と、該成形治具の芯金周面に対峙て線材繰り出し側の側方に配した直動式の加圧工具とを具備し、前記成形治具を回転,送り操作して線材を芯金に巻き付けるコイル成形工程の終盤行程で、前記加圧工具を後退位置から前進させて、芯金に巻き付けた線材の終端部位を回転する芯金の周面に押圧するようにしたことを特徴とする電磁コイルの成形装置。 An electromagnetic coil forming apparatus having a shape in which an insulation coated electric wire is spirally wound as a coil wire, and leads are formed by pulling out lead portions from which both ends of the coil winding start and end of winding are drawn, and the coil forming portion of the apparatus Is a winding cored bar corresponding to the coil diameter, a coil forming jig provided with a claw portion for locking and holding the winding start end of the coil wire, and a wire feeding side facing the peripheral surface of the cored bar of the forming jig The pressure tool is retracted in the final stage of the coil forming process in which the wire is wound around the core by rotating and feeding the forming jig. The electromagnetic coil forming apparatus is characterized in that the terminal portion of the wire wound around the core is pressed against the peripheral surface of the rotating core.
JP2004014158A 2004-01-22 2004-01-22 Shaping method and device of electromagnetic coil Pending JP2005209842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014158A JP2005209842A (en) 2004-01-22 2004-01-22 Shaping method and device of electromagnetic coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014158A JP2005209842A (en) 2004-01-22 2004-01-22 Shaping method and device of electromagnetic coil

Publications (1)

Publication Number Publication Date
JP2005209842A true JP2005209842A (en) 2005-08-04

Family

ID=34900029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014158A Pending JP2005209842A (en) 2004-01-22 2004-01-22 Shaping method and device of electromagnetic coil

Country Status (1)

Country Link
JP (1) JP2005209842A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100733288B1 (en) * 2007-02-16 2007-06-28 (주) 알에프세미 Microphone amplifier
CN108899254A (en) * 2018-08-28 2018-11-27 温州聚创电气科技有限公司 A kind of breaker assembly technology

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100733288B1 (en) * 2007-02-16 2007-06-28 (주) 알에프세미 Microphone amplifier
CN108899254A (en) * 2018-08-28 2018-11-27 温州聚创电气科技有限公司 A kind of breaker assembly technology

Similar Documents

Publication Publication Date Title
US9859775B2 (en) Method for forming a concentric winding coil
US10554106B2 (en) Apparatus for winding and terminating dynamo electric machine cores
EP2991199B1 (en) Armature coil and manufacturing method therefor
KR101797884B1 (en) Coil-end-molding device and method
JP6108103B2 (en) Winding device and winding method
WO2014024646A1 (en) Winding device and method for binding wire material to terminal
WO2015076179A1 (en) Conductor molding device and method
JP2013005541A (en) Molding method of bus bar, and bus bar
US10797571B2 (en) Coil manufacturing device and coil manufacturing method
JP2014128129A (en) Stator manufacturing method, coil twisting jig and stator manufacturing device
KR20170066859A (en) method for manufacturing hairpin coil
KR100900763B1 (en) Apparatus for inserting insulating film into stator core
JPH0243425B2 (en)
JP2005209842A (en) Shaping method and device of electromagnetic coil
JP5605799B2 (en) Toroidal coil manufacturing equipment
JP2017130506A (en) Manufacturing apparatus and manufacturing method of coil
JP2007181354A (en) Rotary electric machine, manufacturing method therefor and shaping equipment used for manufacture thereof
JP2009099908A (en) Winding method and winding apparatus
JP4631670B2 (en) Terminal crimping method and crimping device
JPS6166550A (en) Manufacturing apparatus for armature of flat motor
US6145774A (en) Method and apparatus for manufacturing toroidal cores
US9843245B2 (en) Apparatus and method for winding an electric-motor laminated core with a magnet coil
KR101455873B1 (en) Apparatus and Process for Inserting Insulating Film into Stator Core
JP3777371B2 (en) Armature manufacturing method
WO2010016882A1 (en) Method to continuously form surface mount flanged pins