JP2005208415A - Reverse wavelength dispersion retardation film, and polarizing plate and display apparatus using the same - Google Patents

Reverse wavelength dispersion retardation film, and polarizing plate and display apparatus using the same Download PDF

Info

Publication number
JP2005208415A
JP2005208415A JP2004016008A JP2004016008A JP2005208415A JP 2005208415 A JP2005208415 A JP 2005208415A JP 2004016008 A JP2004016008 A JP 2004016008A JP 2004016008 A JP2004016008 A JP 2004016008A JP 2005208415 A JP2005208415 A JP 2005208415A
Authority
JP
Japan
Prior art keywords
wavelength dispersion
film
reverse wavelength
retardation film
polarizing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004016008A
Other languages
Japanese (ja)
Inventor
Yutaka Omori
裕 大森
Shusaku Nakano
秀作 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004016008A priority Critical patent/JP2005208415A/en
Publication of JP2005208415A publication Critical patent/JP2005208415A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate

Landscapes

  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reverse wavelength dispersion retardation film which can be easily manufactured and shows satisfactory reverse wavelength dispersion characteristics for its thickness. <P>SOLUTION: A liquid crystal monomer has, in its molecule: an aromatic skeleton constituted of at least one aromatic ring; principal chain mesogene combining with the aromatic skeleton and having a polymerization group at its terminal; and side chain mesogene combining with the aromatic skeleton. The reverse wavelength dispersion retardation film is obtained by immobilizing the liquid crystal monomer while maintaining such an orientation that the optical axes of the principal chain mesogene and side chain mesogene cross each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、逆波長分散位相差フィルム及び該逆波長分散位相差フィルムを用いた偏光板等に関する。   The present invention relates to a reverse wavelength dispersion retardation film, a polarizing plate using the reverse wavelength dispersion retardation film, and the like.

従来、逆波長分散位相差フィルムを得る方法としては、複屈折光の位相差が1/4波長である1/4波長板と複屈折光の位相差が1/2波長である1/2波長板とを光軸を交差させて積層する方法(特許文献1)、波長分散の異なる位相差フィルムの光軸を交差させて積層する方法(特許文献2)、正の屈折率異方性を有する高分子のモノマー単位と負の屈折率異方性を有する高分子のモノマー単位とからなる高分子フィルムを延伸する方法(特許文献3)が知られている。   Conventionally, as a method for obtaining a reverse wavelength dispersion retardation film, a quarter wavelength plate in which the phase difference of birefringent light is ¼ wavelength and a half wavelength in which the phase difference of birefringent light is ½ wavelength. A method of laminating plates with crossed optical axes (Patent Document 1), a method of laminating optical axes of retardation films having different wavelength dispersions (Patent Document 2), and having positive refractive index anisotropy A method of stretching a polymer film composed of a polymer monomer unit and a polymer monomer unit having negative refractive index anisotropy (Patent Document 3) is known.

特許文献1及び2の方法では、位相差フィルム等を積層させる工程が必要であり、積層させる際に異物が混入したり光軸がずれたりする等、製造が煩雑であるという問題を有している。
特許文献3の方法では、積層工程が不要で、一層で逆波長分散位相差フィルムが得られるが、該フィルムの膜厚を数十μmと厚くしないと十分な逆波長分散特性が得られないという問題を有している。
In the methods of Patent Documents 1 and 2, a step of laminating a retardation film or the like is necessary, and there is a problem in that the production is complicated, such as mixing foreign substances or shifting the optical axis when laminating. Yes.
In the method of Patent Document 3, a lamination step is not required, and a reverse wavelength dispersion retardation film can be obtained in one layer, but sufficient reverse wavelength dispersion characteristics cannot be obtained unless the film thickness is increased to several tens of μm. Have a problem.

一方、液晶モノマーを配向させた状態で紫外線照射等により固定化させて作製される位相差フィルムは、数μmと非常に薄いことが知られている(特許文献4)。
しかし、液晶モノマーを配向させた状態で固定化させて作製される位相差フィルムで逆波長分散特性を示すものは、未だに知られていないのが現状である。
On the other hand, it is known that a retardation film produced by fixing a liquid crystal monomer by ultraviolet irradiation or the like in an aligned state is as thin as several μm (Patent Document 4).
However, the phase difference film produced by fixing the liquid crystal monomer in an aligned state and showing reverse wavelength dispersion characteristics is not yet known.

特開平10−68816号公報JP-A-10-68816 特開平5−27118号公報JP-A-5-27118 特許第3325560号公報Japanese Patent No. 3325560 特開平7−294735号公報JP-A-7-294735

本発明は、簡便に製造でき、しかも、膜厚の割に十分な逆波長分散特性を示す逆波長分散位相差フィルムを提供することを課題とする。   This invention makes it a subject to provide the reverse wavelength dispersion phase-difference film which can be manufactured simply and shows the reverse wavelength dispersion characteristic sufficient for the film thickness.

本発明者らは、上記課題を解決するために鋭意検討した結果、分子中に2種類のメソゲンを有する液晶モノマーを、各メソゲンの光軸が交わるように配向させた状態で固定化させることにより、膜厚の薄い逆波長分散特性を示す逆波長分散位相差フィルムが得られることを見いだし、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have fixed a liquid crystal monomer having two types of mesogens in the molecule so that the optical axes of the mesogens are aligned with each other. The inventors have found that a reverse wavelength dispersion retardation film having a thin reverse wavelength dispersion characteristic can be obtained, and have completed the present invention.

即ち、本発明は、分子中に少なくとも1つの芳香環からなる芳香族骨格と該芳香族骨格に結合し且つ末端に重合性基とを備える主鎖メソゲンと、前記芳香族骨格に結合した側鎖メソゲンとを有する液晶モノマーを、前記主鎖メソゲンと前記側鎖メソゲンとの光軸が交わるように配向させ、該配向を維持したまま固定化させた逆波長分散位相差フィルムを提供する。
なお、メソゲンとは、中間相(=液晶相)形成分子とも称され、液晶性分子構造とほぼ同義である。
That is, the present invention provides an aromatic skeleton composed of at least one aromatic ring in a molecule, a main chain mesogen bonded to the aromatic skeleton and having a polymerizable group at a terminal, and a side chain bonded to the aromatic skeleton. Provided is a reverse wavelength dispersion retardation film in which a liquid crystal monomer having a mesogen is aligned so that the optical axes of the main chain mesogen and the side chain mesogen intersect, and fixed while maintaining the alignment.
The mesogen is also called an intermediate phase (= liquid crystal phase) -forming molecule, and is almost synonymous with the liquid crystal molecular structure.

本発明の逆波長分散位相差フィルムは、簡便に製造でき、しかも、膜厚の割に十分な逆波長分散特性を示すことができる。
更に、本発明の逆波長分散位相差フィルムは、使用する可視波長領域全体で略一様な位相差を発生する波長分散特性を示すことができる。
The reverse wavelength dispersion retardation film of the present invention can be easily produced, and can exhibit reverse wavelength dispersion characteristics sufficient for the film thickness.
Furthermore, the reverse wavelength dispersion retardation film of the present invention can exhibit wavelength dispersion characteristics that generate a substantially uniform retardation across the entire visible wavelength region to be used.

以下、本発明の逆波長分散位相差フィルムの実施形態について説明する。
本実施形態の逆波長分散位相差フィルムは、分子中に少なくとも1つの芳香環からなる芳香族骨格と該芳香族骨格に結合し且つ末端に重合性基とを備える主鎖メソゲンと、前記芳香族骨格に結合した側鎖メソゲンとを有する液晶モノマーを、前記主鎖メソゲンと前記側鎖メソゲンとの光軸が交わるように配向させ、該配向を維持したまま固定化させたものである。
Hereinafter, embodiments of the reverse wavelength dispersion retardation film of the present invention will be described.
The reverse wavelength dispersion retardation film of the present embodiment includes an aromatic skeleton composed of at least one aromatic ring in a molecule, a main chain mesogen bonded to the aromatic skeleton and having a polymerizable group at the terminal, and the aromatic A liquid crystal monomer having a side chain mesogen bonded to a skeleton is aligned so that the optical axes of the main chain mesogen and the side chain mesogen intersect, and fixed while maintaining the alignment.

前記液晶モノマーは、分子中に少なくとも1つの芳香環からなる芳香族骨格と該芳香族骨格に結合し且つ末端に重合性基とを備える主鎖メソゲンと前記芳香族骨格に結合した側鎖メソゲンとからなる。   The liquid crystal monomer comprises an aromatic skeleton composed of at least one aromatic ring in the molecule, a main chain mesogen bonded to the aromatic skeleton and having a polymerizable group at a terminal, and a side chain mesogen bonded to the aromatic skeleton. Consists of.

前記芳香環としては、(A−1)〜(A−9)から選ばれる環構造が挙げられる。   Examples of the aromatic ring include ring structures selected from (A-1) to (A-9).

前記芳香族骨格は、(A−1)〜(A−9)から選ばれる環構造が直接或いは結合基で2つ以上連結されていてもよい。
該結合基としては、(B−1)〜(B−12)に示すものが挙げられる。
In the aromatic skeleton, two or more ring structures selected from (A-1) to (A-9) may be connected directly or via a bonding group.
Examples of the linking group include those shown in (B-1) to (B-12).

前記芳香族骨格としては、例えば、ビフェニル、フェニルオキシカルボニルフェニル、フェニルカルボニルオキシフェニル、フェニルカルボニルオキシカルボニルフェニル、フェニルオキシカルボニルフェニルカルボニルオキシフェニル等が挙げられる。   Examples of the aromatic skeleton include biphenyl, phenyloxycarbonylphenyl, phenylcarbonyloxyphenyl, phenylcarbonyloxycarbonylphenyl, phenyloxycarbonylphenylcarbonyloxyphenyl, and the like.

前記重合性基としては、メタアクリロイルオキシ基、アクリロイルオキシ基、エポキシ基、ビニルエーテル基などが挙げられる。中でもアクリロイルオキシ基が好ましい。
前記重合性基と前記芳香族骨格との間には、好ましくは、スペーサと呼ばれる柔軟な結合基が存在する。スペーサには、メチレン鎖が好ましく用いられる。メチレン鎖の炭素原子数は2〜10が好ましく,2〜6がより好ましい。
Examples of the polymerizable group include a methacryloyloxy group, an acryloyloxy group, an epoxy group, and a vinyl ether group. Of these, an acryloyloxy group is preferred.
There is preferably a flexible bonding group called a spacer between the polymerizable group and the aromatic skeleton. As the spacer, a methylene chain is preferably used. 2-10 are preferable and, as for the carbon atom number of a methylene chain, 2-6 are more preferable.

前記側鎖メソゲンも、通常、芳香環を有するものからなる。
該芳香環としては、(A−1)〜(A−9)に示す環構造の中から選ばれるものが挙げられる。該環構造が直接或いは前記結合基で2つ以上連結されていてもよい。
該側鎖メソゲンは、直接或いは前記結合基を介して前記芳香族骨格に結合している。
また、前記芳香族骨格と前記側鎖メソゲンとの結合距離は、長すぎると配向させた場合に主鎖メソゲンと側鎖メソゲンとが同一方向に配向して所望の波長分散特性が得られないため、原子数として10個以下が好ましい。
尚、前記側鎖メソゲンを構成する芳香環が、例えば、アルコキシ基、ハロゲン基、シアノ基等の官能基を置換基として有していてもよい。
The side chain mesogen is also usually composed of an aromatic ring.
Examples of the aromatic ring include those selected from the ring structures shown in (A-1) to (A-9). Two or more of the ring structures may be connected directly or by the linking group.
The side chain mesogen is bonded to the aromatic skeleton directly or through the bonding group.
In addition, when the bond distance between the aromatic skeleton and the side chain mesogen is too long, the main chain mesogen and the side chain mesogen are aligned in the same direction and the desired wavelength dispersion characteristic cannot be obtained. The number of atoms is preferably 10 or less.
In addition, the aromatic ring which comprises the said side chain mesogen may have functional groups, such as an alkoxy group, a halogen group, a cyano group, as a substituent, for example.

本実施形態の液晶モノマーの具体例を(C−1)〜(C−3)に示す。
尚、本実施形態の液晶モノマーは、ネマチック相及び/又はスメクチック相を示す。
Specific examples of the liquid crystal monomer of this embodiment are shown in (C-1) to (C-3).
In addition, the liquid crystal monomer of this embodiment shows a nematic phase and / or a smectic phase.

本実施形態の液晶モノマーは、上記の通りであるが、次いで本実施形態の逆波長分散位相差フィルムの作製について説明する。
本実施形態の逆波長分散位相差フィルムは、基板上に前記液晶モノマーを塗布し、そして、それらを配向させ固定化させることにより製造できる。
The liquid crystal monomer of this embodiment is as described above. Next, production of the reverse wavelength dispersion retardation film of this embodiment will be described.
The reverse wavelength dispersion retardation film of this embodiment can be produced by coating the liquid crystal monomer on a substrate, and aligning and fixing them.

前記基板としては、一般的に、ポリエチレンテレフタレート・トリアセチルセルロース・ノルボルネン樹脂・ポリビニルアルコール・ポリイミド・ポリアクリレート・ポリカーボネート・ポリスルホン・ポリエーテルスルホン等のポリマーフィルム又はガラス板を用いうる。   As the substrate, generally, a polymer film such as polyethylene terephthalate, triacetyl cellulose, norbornene resin, polyvinyl alcohol, polyimide, polyacrylate, polycarbonate, polysulfone, polyethersulfone, or a glass plate can be used.

前記液晶モノマーは、一般的に、基板上に設けられた配向膜を用いて配向させる。
配向膜としては、従来知られているものを用いることができる。例えば、基板上にポリイミドやポリビニルアルコール等からなる薄膜、シンナメートやアゾベンゼンなどの光重合基を有するポリマー或いはポリイミドに偏光紫外線を照射した光配向膜、斜方蒸着膜、延伸フィルムなどを用いうる。
尚、配向膜としては、ポリイミド系配向膜及びポリビニルアルコール系配向膜が代表的である。
配向膜には、該配向膜上に液晶モノマーを塗工する前に予めラビング処理を行っておく。該ラビング処理は、前記配向膜の表面を紙や布で一定方向に数回こすることにより行う。
該ラビング処理により、液晶を配向させる方向を決める。
The liquid crystal monomer is generally aligned using an alignment film provided on a substrate.
As the alignment film, a conventionally known film can be used. For example, a thin film made of polyimide, polyvinyl alcohol, or the like on a substrate, a polymer having a photopolymerizable group such as cinnamate or azobenzene, or a photo-alignment film obtained by irradiating polarized ultraviolet rays on a polyimide film, an oblique deposition film, or a stretched film can be used.
Typical examples of the alignment film include a polyimide alignment film and a polyvinyl alcohol alignment film.
The alignment film is preliminarily rubbed before the liquid crystal monomer is applied onto the alignment film. The rubbing treatment is performed by rubbing the surface of the alignment film several times in a certain direction with paper or cloth.
The rubbing treatment determines the direction in which the liquid crystal is aligned.

液晶モノマーの前記配向膜上への塗工には、加熱溶融方式又は液晶モノマーを有機溶剤に溶解し溶液として配向膜上に塗工する方式がある。通常、液晶モノマーを有機溶剤に溶解し溶液として塗工する方式を用いうる。有機溶剤に溶解し溶液として塗工する場合、バーコーター・スピンコーター・ロールコーター等の適宜な塗工機を用いて行うことができる。
前記有機溶剤としては、液晶モノマーを溶解しうるものを特に制限なく用いることができる。例えば、メチルエチルケトン・シクロヘキサノン・テトラヒドロフラン等が好ましい。尚、生産性の点から高沸点の有機溶剤は好ましくない。
Application of the liquid crystal monomer onto the alignment film includes a heat melting method or a method in which the liquid crystal monomer is dissolved in an organic solvent and applied as a solution onto the alignment film. Usually, a method in which a liquid crystal monomer is dissolved in an organic solvent and applied as a solution can be used. When dissolved in an organic solvent and applied as a solution, it can be performed using an appropriate coating machine such as a bar coater, a spin coater, or a roll coater.
As the organic solvent, those capable of dissolving the liquid crystal monomer can be used without particular limitation. For example, methyl ethyl ketone, cyclohexanone, tetrahydrofuran and the like are preferable. A high boiling point organic solvent is not preferable from the viewpoint of productivity.

前記主鎖メソゲンと前記側鎖メソゲンとの光軸が交わるように配向させる方法としては、加熱して配向させる方法を用いることができる。加熱配向の温度は、一般的には、液晶性物質のCr(結晶相)/N(ネマチック相)相転移温度以上、N(ネマチック相)/I(等方相)相転移温度以下で行う。
高温になると、熱重合反応が進行し配向を阻害する虞があるため、Cr/Nの相転移温度+50℃以下とするのが好ましい。加熱時間は、特に制限されないが、10秒〜10分程度の範囲が好ましい。
As a method of aligning so that the optical axes of the main chain mesogen and the side chain mesogen intersect, a method of aligning by heating can be used. In general, the temperature of the heating alignment is not less than the Cr (crystal phase) / N (nematic phase) phase transition temperature and not more than the N (nematic phase) / I (isotropic phase) phase transition temperature of the liquid crystalline material.
If the temperature is high, the thermal polymerization reaction may proceed and the orientation may be hindered. Therefore, the Cr / N phase transition temperature is preferably + 50 ° C. or lower. The heating time is not particularly limited, but is preferably in the range of about 10 seconds to 10 minutes.

前記固定化は、重合性基を反応させて硬化させることにより行うことができる。
前記重合性基が、アクリロイルオキシ基・メタアクリロイルオキシ基の場合の固定化方法としては、活性エネルギー線照射により行うことが好ましい。
活性エネルギー線としては、紫外線・電子線等が用いられるが、特に紫外線が好ましい。 紫外線を照射する場合には、光重合開始剤を液晶モノマーに添加することで硬化反応を迅速に進行させることができる。
光重合開始剤としては、特に限定されないが、例えば、ベンゾインエーテル類・ベンゾフェノン類・アセトフェノン類・ベンジルケタール類などが挙げられる。
光重合開始剤の添加量は、液晶モノマーに対して0.1〜10重量%が好ましく、0.3〜5重量%がより好ましい。
尚、液晶モノマーによっては、加熱配向後にCr/Nの相転移温度以下になっても結晶が析出せず配向状態を維持するものがあるので、この場合には室温で活性エネルギー線を照射することができる。また、温度が下がると結晶化しやすい場合は、Cr/Nの相転移温度以上の温度で活性エネルギー線を照射する。
The immobilization can be performed by reacting a polymerizable group and curing.
As the immobilization method when the polymerizable group is an acryloyloxy group / methacryloyloxy group, it is preferably performed by irradiation with active energy rays.
As the active energy rays, ultraviolet rays, electron beams, and the like are used, and ultraviolet rays are particularly preferable. In the case of irradiation with ultraviolet rays, the curing reaction can be rapidly advanced by adding a photopolymerization initiator to the liquid crystal monomer.
The photopolymerization initiator is not particularly limited, and examples thereof include benzoin ethers, benzophenones, acetophenones, and benzyl ketals.
The addition amount of the photopolymerization initiator is preferably 0.1 to 10% by weight, more preferably 0.3 to 5% by weight with respect to the liquid crystal monomer.
Depending on the liquid crystal monomer, there are those in which the crystal does not precipitate and maintains the alignment state even when the temperature falls below the Cr / N phase transition temperature after heating alignment. Can do. In the case where crystallization is likely to occur when the temperature is lowered, the active energy rays are irradiated at a temperature equal to or higher than the Cr / N phase transition temperature.

前記重合性基が、ビニルエーテル基やエポキシ基の場合は、光酸発生剤を液晶モノマーに添加することで、紫外線照射により速やかに硬化反応を促進させることができる。光酸発生剤の添加量は、液晶モノマー100重量部に対して0.1〜20重量部が好ましく、0.5〜10重量部がより好ましい。
光酸発生剤としては、例えば、トリアジン類・芳香族スルホニウム塩類・芳香族ジアゾニウム塩類・シアン酸エステル類・芳香族スルホン酸エステル類・ニトロベンジルエステル類・芳香族スルファミド類などを用いることができる。これらの中でも特に、添加効果や配向性への影響の無さ等の点より、トリアジン類・芳香族スルホニウム塩類が好ましい。
When the polymerizable group is a vinyl ether group or an epoxy group, the curing reaction can be promptly accelerated by ultraviolet irradiation by adding a photoacid generator to the liquid crystal monomer. The addition amount of the photoacid generator is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the liquid crystal monomer.
As the photoacid generator, for example, triazines, aromatic sulfonium salts, aromatic diazonium salts, cyanate esters, aromatic sulfonate esters, nitrobenzyl esters, aromatic sulfamides, and the like can be used. Among these, triazines and aromatic sulfonium salts are particularly preferable from the viewpoints of the addition effect and the lack of influence on the orientation.

前記基板上に形成された逆波長分散位相差フィルムは、光学フィルムとして使用される。 該逆波長分散位相差フィルムは、基板との一体物としてそのまま光学フィルムに用いることもできるし、基板から剥離して他の光学フィルムと積層させて用いることもできる。
本実施形態の逆波長分散位相差フィルムの厚さは、通常、0.1〜20μm程度である。
The reverse wavelength dispersion retardation film formed on the substrate is used as an optical film. The reverse wavelength dispersion retardation film can be used as an optical film as it is as an integral body with the substrate, or can be peeled off from the substrate and laminated with another optical film.
The thickness of the reverse wavelength dispersion retardation film of the present embodiment is usually about 0.1 to 20 μm.

本実施形態の逆波長分散位相差フィルムにおいては、前記液晶モノマーを主鎖メソゲンと側鎖メソゲンとを平行でない異なる方向に配向し、固定化させることで、前記主鎖メソゲンの光軸と前記側鎖メソゲンの光軸とが交わるようにする。
このとき、主鎖メソゲンの波長分散よりも側鎖メソゲンの波長分散が大きく、主鎖メソゲンの位相差の値よりも側鎖メソゲンの位相差の値のほうが小さいときに、△nd(450nm)/△nd(650nm)が1より小さくなり、いわゆる逆波長分散特性を示す。
尚、逆波長分散特性は、主鎖メソゲンや側鎖メソゲンの種類、連結基の長さ等によって適宜調整することができる。
In the reverse wavelength dispersion retardation film of the present embodiment, the liquid crystal monomer is oriented in a different direction that is not parallel to the main chain mesogen and the side chain mesogen, and fixed, whereby the optical axis and the side of the main chain mesogen are fixed. Make sure that the optical axis of the chain mesogen intersects.
At this time, when the wavelength dispersion of the side chain mesogen is larger than the wavelength dispersion of the main chain mesogen and the phase difference value of the side chain mesogen is smaller than the phase difference value of the main chain mesogen, Δnd (450 nm) / Δnd (650 nm) is smaller than 1, indicating so-called reverse wavelength dispersion characteristics.
The reverse wavelength dispersion characteristic can be appropriately adjusted depending on the kind of main chain mesogen and side chain mesogen, the length of the linking group, and the like.

本実施形態の逆波長分散位相差フィルムは、偏光に与える位相差が波長によりほぼ一定となるため、該逆波長分散位相差フィルムを出射した偏光の状態がほぼ等しくなる。
このような特性を有する逆波長分散位相差フィルムを偏光フィルムと貼り合わせた偏光板、即ち楕円偏光板はその位相差がλ/2やλ/4のときに特に有効である。
位相差がλ/2のときは、楕円偏光板を出射した偏光は該楕円偏光板を透過する前の偏光とは90度偏光面が回転した偏光となる。
位相差がλ/4のときは、楕円偏光板を出射した偏光は円偏光となる。このときの楕円偏光板は、特に円偏光板と呼ばれる。
本実施形態の逆波長分散位相差フィルムにおいて、位相差がλ/4であるものを偏光フィルムと積層させることで得られる円偏光板が広帯域円偏光板となる。
ここで、位相差(△nd)は下記式で表される。下記式においてnx、nyは、それぞれフィルム中のX軸、Y軸方向の屈折率を示し、dはフィルムの厚みを示す。
△nd=(nx−ny)×d
前記X軸方向とは、フィルム中の面内において最大の屈折率を示す軸方向を意味し、Y軸方向とは、前記面内において前記X軸に対して垂直な軸方向を意味する。また、位相差(△nd)は、自動複屈折計KOBRA-21ADHを用いて測定した値である。
尚、前記偏光フィルムとしては、ヨウ素−ポリビニルアルコール(PVA)系・染料−ポリビニルアルコール(PVA)系等が用いられる。
In the reverse wavelength dispersion phase difference film of the present embodiment, the phase difference given to the polarized light is substantially constant depending on the wavelength, and therefore the state of the polarized light emitted from the reverse wavelength dispersion phase difference film is substantially equal.
A polarizing plate in which an inverse wavelength dispersion retardation film having such characteristics is bonded to a polarizing film, that is, an elliptical polarizing plate, is particularly effective when the retardation is λ / 2 or λ / 4.
When the phase difference is λ / 2, the polarized light emitted from the elliptically polarizing plate is a polarized light whose plane of polarization is rotated by 90 degrees from the polarized light before passing through the elliptically polarizing plate.
When the phase difference is λ / 4, the polarized light emitted from the elliptically polarizing plate is circularly polarized light. The elliptically polarizing plate at this time is particularly called a circularly polarizing plate.
In the reverse wavelength dispersion retardation film of this embodiment, a circularly polarizing plate obtained by laminating a film having a retardation of λ / 4 with a polarizing film is a broadband circularly polarizing plate.
Here, the phase difference (Δnd) is expressed by the following equation. In the following formula, nx and ny indicate the refractive indexes in the X-axis and Y-axis directions in the film, respectively, and d indicates the thickness of the film.
Δnd = (nx−ny) × d
The X-axis direction means an axial direction showing the maximum refractive index in the plane of the film, and the Y-axis direction means an axial direction perpendicular to the X-axis in the plane. The phase difference (Δnd) is a value measured using an automatic birefringence meter KOBRA-21ADH.
In addition, as the polarizing film, iodine-polyvinyl alcohol (PVA) system, dye-polyvinyl alcohol (PVA) system, or the like is used.

前記広帯域偏光板は、円偏光モードの液晶ディスプレイ装置や各種ディスプレイ装置の反射防止フィルムとして用いられる。特に、有機ELディスプレイ装置においては、広帯域偏光板は金属電極の反射を抑える反射防止フィルムとして用いられ、明所コントラスト比を著しく向上させる。   The broadband polarizing plate is used as an antireflection film for a circularly polarized liquid crystal display device and various display devices. In particular, in an organic EL display device, a broadband polarizing plate is used as an antireflection film that suppresses reflection of a metal electrode, and remarkably improves a bright place contrast ratio.

以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

<波長分散(位相差)の測定>
王子計測機器株式会社製:自動複屈折計KOBRA-21ADHを用いて測定した。
<Measurement of wavelength dispersion (phase difference)>
Oji Scientific Instruments Co., Ltd .: Measured using an automatic birefringence meter KOBRA-21ADH.

(化合物1の合成)
3,5-ジブロモ-4-ヒドロキシ安息香酸(15.0g(50.7mmol))、2,2,2-トリクロロエタノール(0.76g(0.51mmol))、濃硫酸(2ml)の混合溶液を120℃で12時間攪拌した。反応混合物を水に注ぎ入れ、水層を酢酸エチルで3回抽出した。有機層を飽和炭酸ナトリウム水溶液、水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧下で留去した。
溶媒を完全に除去した後、再び酢酸エチルに溶解し、ヘキサンに滴下し、析出した固体を濾別、乾燥して化合物1(15.6g)を得た。
(Synthesis of Compound 1)
A mixed solution of 3,5-dibromo-4-hydroxybenzoic acid (15.0 g (50.7 mmol)), 2,2,2-trichloroethanol (0.76 g (0.51 mmol)) and concentrated sulfuric acid (2 ml) was added at 120 ° C. at 12 ° C. Stir for hours. The reaction mixture was poured into water and the aqueous layer was extracted three times with ethyl acetate. The organic layer was washed with a saturated aqueous sodium carbonate solution, water and saturated brine, and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure.
After completely removing the solvent, it was dissolved again in ethyl acetate and added dropwise to hexane. The precipitated solid was filtered off and dried to obtain Compound 1 (15.6 g).

(化合物2の合成)
4-(6-アクリロイルオキシヘキシルオキシ)安息香酸(12.8g(43.8mmol))、塩化チオニル(16.0ml(0.22mol))の混合物にDMF(ジメチルホルムアミド)を少量加え、窒素気流下、70℃で2時間攪拌した。
減圧下で過剰の塩化チオニルを除いた後、ジクロロメタン(100ml)、化合物1(15.6g(36.5mmol))、少量のBHT(ジ-n-ブチルヒドロキシトルエン)を加えた。
反応容器を水浴に浸して、トリエチルアミン(8.0ml(54.8mmol))をゆっくり滴下し、その後40℃、6時間攪拌した。反応終了後1N塩酸を加え、ジクロロメタンで抽出を行った。 有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧下で留去した後、粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=10/1)で精製し、化合物2(11.0g)を得た。
(Synthesis of Compound 2)
Add a small amount of DMF (dimethylformamide) to a mixture of 4- (6-acryloyloxyhexyloxy) benzoic acid (12.8 g (43.8 mmol)) and thionyl chloride (16.0 ml (0.22 mol)) at 70 ° C under a nitrogen stream. Stir for 2 hours.
Excess thionyl chloride was removed under reduced pressure, and then dichloromethane (100 ml), compound 1 (15.6 g (36.5 mmol)) and a small amount of BHT (di-n-butylhydroxytoluene) were added.
The reaction vessel was immersed in a water bath, and triethylamine (8.0 ml (54.8 mmol)) was slowly added dropwise, followed by stirring at 40 ° C. for 6 hours. After completion of the reaction, 1N hydrochloric acid was added and extracted with dichloromethane. The organic layer was washed with saturated brine and then dried over anhydrous magnesium sulfate. After the solvent was distilled off under reduced pressure, the crude product was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 10/1) to obtain Compound 2 (11.0 g).

(化合物3の合成)
化合物2(11.0g(15.7mmol))、THF(テトラヒドロフラン)(30ml)、酢酸(3ml)、蒸留水(3ml)の混合溶液に亜鉛粉末(3.60g(55.0mmol))を0℃で30分かけて加えた。0℃で2時間攪拌した後、室温で5時間攪拌した。水、酢酸エチルを加えて抽出し、有機層を飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留去した。粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン/メタノール=9/1)で精製し、化合物3(3.2g)を得た。
(Synthesis of Compound 3)
Zinc powder (3.60 g (55.0 mmol)) was added to a mixed solution of Compound 2 (11.0 g (15.7 mmol)), THF (tetrahydrofuran) (30 ml), acetic acid (3 ml), and distilled water (3 ml) at 0 ° C. for 30 minutes. Added. After stirring at 0 ° C. for 2 hours, the mixture was stirred at room temperature for 5 hours. Water and ethyl acetate were added for extraction, and the organic layer was washed with saturated brine. The organic layer was dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure. The crude product was purified by silica gel column chromatography (developing solvent: dichloromethane / methanol = 9/1) to obtain Compound 3 (3.2 g).

(化合物4の合成)
化合物3(3.2g(5.7mmol))、塩化チオニル(2.1ml(28.3mmol))の混合物にDMFを少量加え、窒素気流下、70℃で2時間攪拌した。減圧下で過剰の塩化チオニルを除いた後、ジクロロメタン(100ml)、4-(6-アクリロイルオキシヘキシルオキシ)フェノール(1.79g(6.8mmol))、少量のBHTを加えた。
反応容器を水浴に浸して、トリエチルアミン(1.2ml(8.6mmol))をゆっくり滴下し、その後40℃、6時間攪拌した。反応終了後1N塩酸を加え、ジクロロメタンで抽出を行った。 有機層を飽和食塩水で洗浄した後、該有機層を無水硫酸マグネシウムで乾燥した。溶媒を減圧下で留去した後、粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル/ジクロロメタン=8/1/1)で精製し、化合物4(2.63g)を得た。
(Synthesis of Compound 4)
A small amount of DMF was added to a mixture of compound 3 (3.2 g (5.7 mmol)) and thionyl chloride (2.1 ml (28.3 mmol)), and the mixture was stirred at 70 ° C. for 2 hours under a nitrogen stream. Excess thionyl chloride was removed under reduced pressure, and then dichloromethane (100 ml), 4- (6-acryloyloxyhexyloxy) phenol (1.79 g (6.8 mmol)) and a small amount of BHT were added.
The reaction vessel was immersed in a water bath, triethylamine (1.2 ml (8.6 mmol)) was slowly added dropwise, and then stirred at 40 ° C. for 6 hours. After completion of the reaction, 1N hydrochloric acid was added and extracted with dichloromethane. The organic layer was washed with saturated brine, and then the organic layer was dried over anhydrous magnesium sulfate. After the solvent was distilled off under reduced pressure, the crude product was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate / dichloromethane = 8/1/1) to obtain Compound 4 (2.63 g).

(化合物5の合成)
化合物4(2.63g(3.2mmol))、フェニルアセチレン(0.98g(9.6mmol))、Pd(dba)2(49.2mg(0.16mmol))、トリ(t-ブチル)ホスフィン(0.13g(0.65mmol))、BHT(少量)、トリエチルアミン(1.4ml(9.6mmol))、THF(10ml)の混合溶液を70℃で12時間攪拌した。
反応終了後、1N塩酸を加え、ジクロロメタンで抽出を行った。
有機層を飽和食塩水で洗浄した後、該有機層を無水硫酸マグネシウムで乾燥した。
粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル/ジクロロメタン=8/1/1)で精製し、化合物5(1.11g)を得た。
得られた化合物5が、液晶性を示す液晶モノマーであることを偏光顕微鏡観察にて確認した。
相転移温度は、Cr 130 N 145 I であった。
(Synthesis of Compound 5)
Compound 4 (2.63 g (3.2 mmol)), phenylacetylene (0.98 g (9.6 mmol)), Pd (dba) 2 (49.2 mg (0.16 mmol)), tri (t-butyl) phosphine (0.13 g (0.65 mmol) ), BHT (small amount), triethylamine (1.4 ml (9.6 mmol)) and THF (10 ml) were stirred at 70 ° C. for 12 hours.
1N hydrochloric acid was added after completion | finish of reaction, and the dichloromethane extracted.
The organic layer was washed with saturated brine, and then the organic layer was dried over anhydrous magnesium sulfate.
The crude product was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate / dichloromethane = 8/1/1) to obtain Compound 5 (1.11 g).
It was confirmed by polarizing microscope observation that the obtained compound 5 was a liquid crystal monomer exhibiting liquid crystallinity.
The phase transition temperature was Cr 130 N 145 I.

<位相差フィルムの作製>
(実施例1)
得られた化合物5をテトラクロロエタンに溶解し30重量%溶液とし、化合物5に対して3重量%のイルガキュア907(チバ・スペシャルティー・ケミカルズ社製:光重合開始剤)を添加した。ガラス板上に形成したポリビニルアルコールラビング配向膜上にスピンコート後、140℃に加熱して配向させた。その後、高圧水銀ランプにて紫外線を100mJ/cm2照射して配向を固定した。得られた配向フィルムは、3μmで、He-Neレーザを用いたセナルモン法で求めた位相差は、340nmであった。
位相差測定装置を用いて波長分散性を測定したところ、△nd(450nm)/△nd(650nm)=0.90と1より小さく、逆波長分散位相差フィルムであることを確認した。この逆波長分散位相差フィルムを透過軸を直交させた2枚の偏光板の間に挟んで観察したところ、着色がほとんどなかった。
<Production of retardation film>
(Example 1)
The obtained compound 5 was dissolved in tetrachloroethane to form a 30 wt% solution, and 3 wt% of Irgacure 907 (Ciba Specialty Chemicals, Inc .: photopolymerization initiator) was added to the compound 5. After spin coating on a polyvinyl alcohol rubbing alignment film formed on a glass plate, the film was aligned by heating to 140 ° C. Thereafter, the orientation was fixed by irradiating ultraviolet rays at 100 mJ / cm 2 with a high-pressure mercury lamp. The obtained oriented film was 3 μm, and the phase difference determined by the Senarmon method using a He—Ne laser was 340 nm.
When the wavelength dispersion was measured using a phase difference measuring apparatus, Δnd (450 nm) / Δnd (650 nm) = 0.90, which was smaller than 1, confirming that the film was a reverse wavelength dispersion retardation film. When this reverse wavelength dispersion phase difference film was observed between two polarizing plates having transmission axes orthogonal to each other, there was almost no coloring.

(実施例2)
テトラクロロエタン溶液中の化合物5の濃度を15重量%に変えた以外は、実施例1と同様にして配向フィルムを作製した。得られた配向フィルムの位相差は138nmであった。 これを配向フィルムの配向方向と偏光板の延伸軸とが45度になるように、該配向フィルムと該偏光板とを貼り合わせて円偏光板を作製した。作製した円偏光板を鏡の上に置いたところ、黒状態になり、広帯域円偏光板として機能していることが確認された。
(Example 2)
An oriented film was produced in the same manner as in Example 1 except that the concentration of Compound 5 in the tetrachloroethane solution was changed to 15% by weight. The phase difference of the obtained oriented film was 138 nm. The alignment film and the polarizing plate were bonded to each other so that the alignment direction of the alignment film and the stretching axis of the polarizing plate were 45 degrees to prepare a circularly polarizing plate. When the produced circularly polarizing plate was placed on a mirror, it became black and it was confirmed that it functions as a broadband circularly polarizing plate.

(比較例1)
化合物5に変えて(D−1)に示す液晶モノマーを用いた以外は、実施例1と同様にして位相差を有する配向フィルムを作製した。
この配向フィルムを透過軸を直交させた2枚の偏光板の間に挟んで観察したところ、青く着色していた。
(Comparative Example 1)
An alignment film having a retardation was produced in the same manner as in Example 1 except that the liquid crystal monomer shown in (D-1) was used instead of the compound 5.
When this oriented film was observed between two polarizing plates having transmission axes orthogonal to each other, it was colored blue.

化合物5に変えて比較例1の液晶モノマーを用いた以外は、実施例2と同様にして位相差を有する配向フィルムを作製した。実施例2と同様にして円偏光板を作製し、作製した円偏光板を鏡の上に置いたところ、紫色であり、広帯域円偏光板ではなかった。   An alignment film having a retardation was produced in the same manner as in Example 2 except that the liquid crystal monomer of Comparative Example 1 was used instead of Compound 5. When a circularly polarizing plate was produced in the same manner as in Example 2 and the produced circularly polarizing plate was placed on a mirror, it was purple and was not a broadband circularly polarizing plate.

実施例1より逆波長分散特性を示す位相差フィルムを得ることができた。
実施例2より逆波長分散特性を示す位相差フィルムと偏光板とを貼り合わせて得られた円偏光板が、広帯域円偏光板として機能していることが判明した。
From Example 1, a retardation film showing reverse wavelength dispersion characteristics could be obtained.
From Example 2, it was found that a circularly polarizing plate obtained by laminating a retardation film showing reverse wavelength dispersion characteristics and a polarizing plate functions as a broadband circularly polarizing plate.

Claims (5)

分子中に少なくとも1つの芳香環からなる芳香族骨格と該芳香族骨格に結合し且つ末端に重合性基とを備える主鎖メソゲンと、
前記芳香族骨格に結合した側鎖メソゲンとを有する液晶モノマーを、
前記主鎖メソゲンと前記側鎖メソゲンとの光軸が交わるように配向させ、該配向を維持したまま固定化させたことを特徴とする逆波長分散位相差フィルム。
A main chain mesogen having an aromatic skeleton composed of at least one aromatic ring in the molecule and a polymerizable group bonded to the aromatic skeleton and a terminal;
A liquid crystal monomer having a side chain mesogen bonded to the aromatic skeleton,
An inverse wavelength dispersion retardation film, wherein the main-chain mesogen and the side-chain mesogen are aligned so that the optical axes intersect with each other and are fixed while maintaining the alignment.
波長450nmで測定した位相差△nd(450nm)と、
波長650nmで測定した位相差△nd(650nm)とが、
下記式(1)を満たす請求項1記載の逆波長分散位相差フィルム。
△nd(450nm)/ △nd(650nm)<1 (1)
A phase difference Δnd (450 nm) measured at a wavelength of 450 nm;
The phase difference Δnd (650 nm) measured at a wavelength of 650 nm is
The reverse wavelength dispersion phase difference film of Claim 1 which satisfy | fills following formula (1).
Δnd (450 nm) / Δnd (650 nm) <1 (1)
請求項1又は2に記載の逆波長分散位相差フィルムと偏光フィルムとを積層したことを特徴とする偏光板。   A polarizing plate, wherein the reverse wavelength dispersion retardation film according to claim 1 or 2 and a polarizing film are laminated. 前記逆波長分散位相差フィルムの位相差が、λ/4である請求項3記載の偏光板。   The polarizing plate according to claim 3, wherein the retardation of the reverse wavelength dispersion retardation film is λ / 4. 請求項1又は2に記載の逆波長分散位相差フィルム或いは請求項3又は4に記載の偏光板を用いたディスプレイ装置。   A display device using the reverse wavelength dispersion retardation film according to claim 1 or 2 or the polarizing plate according to claim 3 or 4.
JP2004016008A 2004-01-23 2004-01-23 Reverse wavelength dispersion retardation film, and polarizing plate and display apparatus using the same Withdrawn JP2005208415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004016008A JP2005208415A (en) 2004-01-23 2004-01-23 Reverse wavelength dispersion retardation film, and polarizing plate and display apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004016008A JP2005208415A (en) 2004-01-23 2004-01-23 Reverse wavelength dispersion retardation film, and polarizing plate and display apparatus using the same

Publications (1)

Publication Number Publication Date
JP2005208415A true JP2005208415A (en) 2005-08-04

Family

ID=34901298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004016008A Withdrawn JP2005208415A (en) 2004-01-23 2004-01-23 Reverse wavelength dispersion retardation film, and polarizing plate and display apparatus using the same

Country Status (1)

Country Link
JP (1) JP2005208415A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007293314A (en) * 2006-03-29 2007-11-08 Sumitomo Chemical Co Ltd Film, process for producing film, and use of film
WO2009030332A1 (en) * 2007-09-03 2009-03-12 Merck Patent Gmbh Calamitic mesogenic compounds
JP2010537955A (en) * 2007-09-03 2010-12-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Fluorene derivative
WO2012141245A1 (en) 2011-04-15 2012-10-18 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
WO2012147904A1 (en) 2011-04-27 2012-11-01 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
WO2012169424A1 (en) 2011-06-10 2012-12-13 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
WO2012176679A1 (en) 2011-06-24 2012-12-27 日本ゼオン株式会社 Polymerizable compounds, polymerizable composition, polymer, and optically anisotropic body
WO2013046781A1 (en) 2011-09-27 2013-04-04 日本ゼオン株式会社 Intermediate for manufacture of polymerizable compound and process for manufacture thereof
WO2013180217A1 (en) 2012-05-30 2013-12-05 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
WO2014010325A1 (en) 2012-07-09 2014-01-16 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, optically anisotropic body, and method for producing polymerizable compound
KR101360715B1 (en) * 2006-03-29 2014-02-07 스미또모 가가꾸 가부시끼가이샤 Film, process for producing the film, and use of the film
CN103675980A (en) * 2012-08-31 2014-03-26 住友化学株式会社 Circular polarization light board and display device
WO2014061709A1 (en) 2012-10-19 2014-04-24 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic substance
WO2014065243A1 (en) * 2012-10-22 2014-05-01 日本ゼオン株式会社 Retarder, circularly polarising plate, and image display device
WO2014065176A1 (en) 2012-10-23 2014-05-01 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optical anistropic body
WO2014126113A1 (en) 2013-02-15 2014-08-21 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
WO2015025793A1 (en) 2013-08-22 2015-02-26 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optical anisotropic body
WO2015064698A1 (en) 2013-10-31 2015-05-07 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optical isomer
KR20160122139A (en) 2014-02-12 2016-10-21 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, and optical isomer
KR20160123327A (en) 2014-02-14 2016-10-25 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
US10059679B2 (en) 2014-03-19 2018-08-28 Zeon Corporation Method for producing polymerizable compound
WO2020026805A1 (en) * 2018-07-31 2020-02-06 住友化学株式会社 Horizontally aligned liquid crystal cured film and laminate including same
US10577306B2 (en) 2015-03-31 2020-03-03 Zeon Corporation Mixture of polymerizable compound and method of producing the same
JP7503524B2 (en) 2012-08-31 2024-06-20 住友化学株式会社 Circularly polarizing plate and display device

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007293314A (en) * 2006-03-29 2007-11-08 Sumitomo Chemical Co Ltd Film, process for producing film, and use of film
KR101360715B1 (en) * 2006-03-29 2014-02-07 스미또모 가가꾸 가부시끼가이샤 Film, process for producing the film, and use of the film
WO2009030332A1 (en) * 2007-09-03 2009-03-12 Merck Patent Gmbh Calamitic mesogenic compounds
JP2010537954A (en) * 2007-09-03 2010-12-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Calamitic mesogenic compounds
JP2010537955A (en) * 2007-09-03 2010-12-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Fluorene derivative
US8697199B2 (en) 2007-09-03 2014-04-15 Merck Patent Gmbh Calamitic mesogenic compounds
KR20140012116A (en) 2011-04-15 2014-01-29 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
WO2012141245A1 (en) 2011-04-15 2012-10-18 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
KR20190009832A (en) 2011-04-15 2019-01-29 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
US9234056B2 (en) 2011-04-15 2016-01-12 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
US10647794B2 (en) 2011-04-27 2020-05-12 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
EP3266764A1 (en) 2011-04-27 2018-01-10 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
KR20180098417A (en) 2011-04-27 2018-09-03 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
WO2012147904A1 (en) 2011-04-27 2012-11-01 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
CN106278943A (en) * 2011-04-27 2017-01-04 日本瑞翁株式会社 Optical thin film, polymerizable compound, polymerizable composition, polymerizable composition, macromolecule, optically anisotropic body and hydrazine compound
EP4223746A1 (en) 2011-04-27 2023-08-09 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
US9207360B2 (en) 2011-04-27 2015-12-08 Zeno Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
EP3483141A2 (en) 2011-04-27 2019-05-15 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
KR20190061104A (en) 2011-04-27 2019-06-04 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
WO2012169424A1 (en) 2011-06-10 2012-12-13 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
US9029490B2 (en) 2011-06-10 2015-05-12 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
US9150677B2 (en) 2011-06-24 2015-10-06 Zeon Corporation Polymerizable compounds, polymerizable composition, polymer, and optically anisotropic body
WO2012176679A1 (en) 2011-06-24 2012-12-27 日本ゼオン株式会社 Polymerizable compounds, polymerizable composition, polymer, and optically anisotropic body
WO2013046781A1 (en) 2011-09-27 2013-04-04 日本ゼオン株式会社 Intermediate for manufacture of polymerizable compound and process for manufacture thereof
US9447059B2 (en) 2011-09-27 2016-09-20 Zeon Corporation Intermediate for manufacture of polymerizable compound and process for manufacture thereof
KR20140068960A (en) 2011-09-27 2014-06-09 제온 코포레이션 Intermediate for manufacture of polymerizable compound and process for manufacture thereof
KR20190026040A (en) 2011-09-27 2019-03-12 제온 코포레이션 Intermediate for manufacture of polymerizable compound and process for manufacture thereof
KR20200024367A (en) 2011-09-27 2020-03-06 제온 코포레이션 Intermediate for manufacture of polymerizable compound and process for manufacture thereof
KR20190039623A (en) 2012-05-30 2019-04-12 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
KR20200029066A (en) 2012-05-30 2020-03-17 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
WO2013180217A1 (en) 2012-05-30 2013-12-05 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
US9856333B2 (en) 2012-05-30 2018-01-02 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
EP3327046A1 (en) 2012-05-30 2018-05-30 Zeon Corporation Hydrazine compound
US9512251B2 (en) 2012-05-30 2016-12-06 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
KR20150023395A (en) 2012-05-30 2015-03-05 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
US11091452B2 (en) 2012-07-09 2021-08-17 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, optically anisotropic body, and method for producing polymerizable compound
KR20190042777A (en) 2012-07-09 2019-04-24 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, optically anisotropic body, and method for producing polymerizable compound
WO2014010325A1 (en) 2012-07-09 2014-01-16 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, optically anisotropic body, and method for producing polymerizable compound
KR20150036047A (en) 2012-07-09 2015-04-07 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, optically anisotropic body, and method for producing polymerizable compound
US9586917B2 (en) 2012-07-09 2017-03-07 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, optically anisotropic body, and method for producing polymerizable compound
US10173992B2 (en) 2012-07-09 2019-01-08 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, optically anisotropic body, and method for producing polymerizable compound
KR20200034007A (en) 2012-07-09 2020-03-30 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, optically anisotropic body, and method for producing polymerizable compound
US10487065B2 (en) 2012-07-09 2019-11-26 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, optically anisotropic body, and method for producing polymerizable compound
JP2020140212A (en) * 2012-08-31 2020-09-03 住友化学株式会社 Circularly polarizing plate and display device
JP2021179611A (en) * 2012-08-31 2021-11-18 住友化学株式会社 Circularly polarizing plate and display device
JP7503524B2 (en) 2012-08-31 2024-06-20 住友化学株式会社 Circularly polarizing plate and display device
JP2014063143A (en) * 2012-08-31 2014-04-10 Sumitomo Chemical Co Ltd Circularly polarizing plate and display device
CN103675980A (en) * 2012-08-31 2014-03-26 住友化学株式会社 Circular polarization light board and display device
US10329247B2 (en) 2012-10-19 2019-06-25 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic substance
KR20150073961A (en) 2012-10-19 2015-07-01 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic substance
EP3330300A2 (en) 2012-10-19 2018-06-06 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic substance
EP3686222A1 (en) 2012-10-19 2020-07-29 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic substance
WO2014061709A1 (en) 2012-10-19 2014-04-24 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic substance
US9776954B2 (en) 2012-10-19 2017-10-03 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic substance
KR20200078706A (en) 2012-10-19 2020-07-01 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic substance
EP2910986A4 (en) * 2012-10-22 2016-06-22 Zeon Corp Retarder, circularly polarising plate, and image display device
US10830935B2 (en) 2012-10-22 2020-11-10 Zeon Corporation Phase difference plate, circularly polarizing plate, and image display device
WO2014065243A1 (en) * 2012-10-22 2014-05-01 日本ゼオン株式会社 Retarder, circularly polarising plate, and image display device
US9995865B2 (en) 2012-10-22 2018-06-12 Zeon Corporation Phase difference plate, circularly polarizing plate, and image display device
CN104737044A (en) * 2012-10-22 2015-06-24 日本瑞翁株式会社 Retarder, circularly polarising plate, and image display device
CN104737044B (en) * 2012-10-22 2017-09-01 日本瑞翁株式会社 Polarizer, circular polarizing disk and image display device
US9777096B2 (en) 2012-10-23 2017-10-03 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optical anisotropic body
KR20150079579A (en) 2012-10-23 2015-07-08 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, and optical anistropic body
WO2014065176A1 (en) 2012-10-23 2014-05-01 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optical anistropic body
US10227292B2 (en) 2013-02-15 2019-03-12 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
WO2014126113A1 (en) 2013-02-15 2014-08-21 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
KR20150118154A (en) 2013-02-15 2015-10-21 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
US10273322B2 (en) 2013-08-22 2019-04-30 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optical anisotropic body
WO2015025793A1 (en) 2013-08-22 2015-02-26 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optical anisotropic body
CN105452311A (en) * 2013-08-22 2016-03-30 日本瑞翁株式会社 Polymerizable compound, polymerizable composition, polymer, and optical anisotropic body
KR20160048816A (en) 2013-08-22 2016-05-04 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, and optical anisotropic body
US10730844B2 (en) 2013-10-31 2020-08-04 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic product
WO2015064698A1 (en) 2013-10-31 2015-05-07 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optical isomer
KR20160084397A (en) 2013-10-31 2016-07-13 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, and optical isomer
US9868710B2 (en) 2013-10-31 2018-01-16 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic product
KR20160122139A (en) 2014-02-12 2016-10-21 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, and optical isomer
US10392343B2 (en) 2014-02-12 2019-08-27 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic product
US10954443B2 (en) 2014-02-14 2021-03-23 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic product
US10400170B2 (en) 2014-02-14 2019-09-03 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic product
KR20160123327A (en) 2014-02-14 2016-10-25 제온 코포레이션 Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
US10059679B2 (en) 2014-03-19 2018-08-28 Zeon Corporation Method for producing polymerizable compound
US10577306B2 (en) 2015-03-31 2020-03-03 Zeon Corporation Mixture of polymerizable compound and method of producing the same
US10934246B2 (en) 2015-03-31 2021-03-02 Zeon Corporation Mixture of polymerizable compound and method of producing the same
WO2020026805A1 (en) * 2018-07-31 2020-02-06 住友化学株式会社 Horizontally aligned liquid crystal cured film and laminate including same
US11971566B2 (en) 2018-07-31 2024-04-30 Sumitomo Chemical Company, Limited Horizontally oriented liquid crystal cured film and laminate including the same

Similar Documents

Publication Publication Date Title
JP2005208415A (en) Reverse wavelength dispersion retardation film, and polarizing plate and display apparatus using the same
JP7125463B2 (en) Liquid crystalline composition, polymer liquid crystal compound, light absorption anisotropic film, laminate and image display device
JP2005208416A (en) Reverse wavelength dispersion retardation film, polarizing plate and display apparatus using the same
JP2005208414A (en) Reverse wavelength dispersion retardation film, and polarizing plate and display apparatus using the same
JP7232754B2 (en) Photo-alignable polymer, binder composition, binder layer, optical laminate, method for producing optical laminate, and image display device
JP7377927B2 (en) Anisotropic light absorption film and laminate
JP6427340B2 (en) Optically anisotropic layer and method of manufacturing the same, laminate and method of manufacturing the same, polarizing plate, liquid crystal display device and organic EL display device
KR101233950B1 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystalline polymer, and optically anisotropic material
JP5219583B2 (en) Composition, optical film and method for producing the same, optical member and display device
WO2018164252A1 (en) Composition, dichroic material, light-absorbing anisotropic film, laminate, and image display device
KR100666895B1 (en) Liquid crystalline dimethacrylate compound, phase difference film, optical film, polarizing plate, liquid crystal panel and liquid crystal display device
JP2009274984A (en) Compound, optical film and method for producing optical film
JP2007297606A (en) Ultraviolet-curable composition, retardation film and method for producing retardation film
JP2009227667A (en) Compound, and optical film containing the compound
WO2020022496A1 (en) Optical element, method for forming photo-alignment pattern, and method for manufacturing optical element
JP2016184013A (en) Retardation film, manufacturing method for the same, and optical member including the retardation film
JP2010001284A (en) Compound and optical film
JP4297436B2 (en) Liquid crystalline di (meth) acrylate compound and retardation film, optical film, polarizing plate, liquid crystal panel and liquid crystal display device using the same
JP5292778B2 (en) Compound and optical film
JP2008089894A (en) Method for manufacturing retardation filmmethod for manufacturing retardation film
WO2022202470A1 (en) Light-absorbing anisotropic membrane, laminate, and image display device
WO2006064950A1 (en) Preparation of an optical compensation sheet using photosensitive compounds
CN113980319B (en) Anisotropic light absorbing film and laminate
JP2006058546A (en) Optical retardation film, optical film, polarizing plate, liquid crystal panel, and liquid crystal display device
JP7385729B2 (en) Optical laminates, polarizing plates and image display devices

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403