JP2005207971A - Electromagnetic flowmeter - Google Patents
Electromagnetic flowmeter Download PDFInfo
- Publication number
- JP2005207971A JP2005207971A JP2004016771A JP2004016771A JP2005207971A JP 2005207971 A JP2005207971 A JP 2005207971A JP 2004016771 A JP2004016771 A JP 2004016771A JP 2004016771 A JP2004016771 A JP 2004016771A JP 2005207971 A JP2005207971 A JP 2005207971A
- Authority
- JP
- Japan
- Prior art keywords
- cores
- pair
- magnetic
- magnetic pole
- pole core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
本発明は、電磁流量計に関し、詳しくは測定管に磁場を形成するコイル、コアにおいて帰還磁路にコイルを配置するようにして測定管中心へ十分な磁場を与える回路構造を備えた電磁流量計に関する。 The present invention relates to an electromagnetic flow meter, and more particularly, a coil for forming a magnetic field in a measurement tube, and an electromagnetic flow meter having a circuit structure for providing a sufficient magnetic field to the center of a measurement tube by arranging a coil in a feedback magnetic path in a core. About.
従来技術における第1の例の残留磁気電磁流量計は、図8に示すように、101は流路管で、電極106、107が設けられている。108、109とその端面が流路管1に対向する第1のヨークで軟質磁性材料で構成されている。111、112は半硬質磁性材料からなるコア110はそれぞれ第1のヨーク108、109とコアとの間に磁気的に直列に配置された第2のヨークで、低電気伝導度の高透磁率磁性材料で構成されている。コア110と第2のヨーク111、112は同じ直径の円柱形で、一直線上に同心に配列され、それらの外周に線輪115が形成されている。第2のヨーク111、112はそれぞれ、第1のヨーク108、109に設けた円形の孔108a、109aに殆ど隙間のない状態で移動可能に挿入され結合されている。コア110の長さLnは線輪の長さLmよりも短く定めてあり、コア110と第2のヨーク111、112との端面当接部は面接触で隙間のない状態に維持されている。
As shown in FIG. 8, the residual magnetic electromagnetic flow meter of the first example in the prior art is 101 as a flow channel pipe, and electrodes 106 and 107 are provided. The
電磁流量計の第2の例は、図9に示すように、測定管121の外周であって対向する位置にポールピースコア122を配置し、このポールピースコア122に励磁コイル123を巻回した構成になっている。そして、この励磁コイル123と直交して対向する位置に検出電極124a、124bを設け、この検出電極124a、124bはゲル状樹脂を充填したガードケース125で覆われており、このガードケース125の周囲を磁性塗料膜を塗布した構造となっている。そして、この測定管121の外周位置に配置された励磁コイル123、ポールピースコア122、検出電極124a、124bを覆ったガードケース125の外周に磁性体材料で覆うことで帰還磁路125を形成する。
しかし、従来技術で説明した電磁流量計において、従来の第2の例の電磁流量計における磁気回路の構成は、コア、帰還磁路、励磁コイルで構成されているものが一般的である。この場合、本来、磁束を集中させたい測定管部の磁気抵抗より、コア−帰還磁路間の磁気抵抗のほうが短いため、漏洩磁束として起電力に寄与しない磁束が多く発生する問題がある。 However, in the electromagnetic flow meter described in the related art, the configuration of the magnetic circuit in the electromagnetic flow meter of the second conventional example is generally configured by a core, a feedback magnetic path, and an excitation coil. In this case, since the magnetic resistance between the core and the feedback magnetic path is shorter than the magnetic resistance of the measuring tube portion where the magnetic flux is to be concentrated, there is a problem that a lot of magnetic flux that does not contribute to the electromotive force is generated as leakage magnetic flux.
従来技術で説明した第1の例の電磁流量計における磁気回路の構成は、帰還磁路の一部にコイル・コアを配置し、漏洩磁束を小さくする効果を具備するが、コア自身が大きく磁束を測定管に有効に集中できないという問題点がある。
更に、電極近傍の磁気抵抗は低く、このため電極近傍の磁場が強くなり、測定管中心へ十分磁場を与えることができないという問題がある。また、この問題点は、流速分布の影響を受けやすい問題を発生させる。
The configuration of the magnetic circuit in the electromagnetic flowmeter of the first example described in the prior art has the effect of arranging the coil core in a part of the feedback magnetic path to reduce the leakage magnetic flux, but the core itself has a large magnetic flux. There is a problem in that it cannot concentrate effectively on the measuring tube.
Furthermore, there is a problem that the magnetic resistance in the vicinity of the electrode is low, so that the magnetic field in the vicinity of the electrode becomes strong, and a sufficient magnetic field cannot be applied to the center of the measuring tube. This problem also causes a problem that is easily influenced by the flow velocity distribution.
従って、高信号レベルを実現できる高効率磁気回路・流速分布の影響を受けない磁気回路を具備する電磁流量計に解決しなければならない課題を有する。 Therefore, there is a problem to be solved by a high-efficiency magnetic circuit capable of realizing a high signal level and an electromagnetic flow meter including a magnetic circuit that is not affected by the flow velocity distribution.
上記課題を解決するために、本願発明の電磁流量計は、次に示す構成にしたことである。
(1)電磁流量計は、測定管内を流れる流体に対して垂直方向に磁場を発生させる一対のコアと、前記磁場に対して直交する方向の測定管の管壁に配置され前記流体の流量に対応して発生する起電力を検出する一対の検出電極と、前記測定管以外の帰還磁路に前記一対のコアに連結した磁極コアと、前記磁極コアの周囲にコイルを巻き付けた励磁コイルと、を備えてなる。
(2)前記磁極コアの長さは前記測定管の直径よりも長くしたことを特徴とする(1)に記載の電磁流量計。
(3)前記磁極コアの長さは前記測定管の直径よりも長くすると共に前記一対のコアは前記磁極コアに連結している側を傾斜させ、且つ前記一対のコアを前記測定管に平行に対向させたことを特徴とする(1)に記載の電磁流量計。
(4)前記磁極コアの長さは前記測定管の直径よりも長くすると共に前記一対のコアは前記磁極コアに連結している側を傾斜させ、且つ前記一対のコアの先端側を前記測定管の径形状に沿った傾斜を持たせることを特徴とする(1)に記載の電磁流量計。
In order to solve the above problems, the electromagnetic flowmeter of the present invention is configured as follows.
(1) The electromagnetic flow meter is disposed on a pair of cores that generate a magnetic field in a direction perpendicular to the fluid flowing in the measurement tube, and on the tube wall of the measurement tube in a direction orthogonal to the magnetic field, and controls the flow rate of the fluid. A pair of detection electrodes for detecting a corresponding electromotive force, a magnetic pole core connected to the pair of cores in a feedback magnetic path other than the measurement tube, and an excitation coil in which a coil is wound around the magnetic pole core; It is equipped with.
(2) The magnetic flowmeter according to (1), wherein the length of the magnetic pole core is longer than the diameter of the measuring tube.
(3) The length of the magnetic core is longer than the diameter of the measuring tube, the pair of cores are inclined on the side connected to the magnetic core, and the pair of cores are parallel to the measuring tube. The electromagnetic flow meter according to (1), which is opposed to the electromagnetic flow meter.
(4) The length of the magnetic core is longer than the diameter of the measuring tube, the pair of cores are inclined on the side connected to the magnetic core, and the distal ends of the pair of cores are connected to the measuring tube. The electromagnetic flow meter according to (1), characterized in that it has an inclination along the diameter shape.
(5)電磁流量計は、測定管内を流れる流体に対して垂直方向に磁場を発生させる一対のコアと、前記磁場に対して直交する方向の測定管の管壁に配置され前記流体の流量に対応して発生する起電力を検出する一対の検出電極と、前記測定管以外の帰還磁路に前記一対のコアの一方側に連結した第1の磁極コアと、前記第1の磁極コアの周囲にコイルを巻き付けた第1の励磁コイルと、前記測定管以外の帰還磁路に前記一対のコアの他方側に連結した第2の磁極コアと、前記第2の磁極コアの周囲にコイルを巻き付けた第2の励磁コイルと、を備えてなる。
(6)前記第1及び第2の磁極コアの長さは、前記測定管の直径よりも長くしたことを特徴とする(5)に記載の電磁流量計。
(7)前記第1及び第2の磁極コアの長さは前記測定管の直径よりも長くすると共に前記一対のコアは前記第1及び第2の磁極コアに連結している側を傾斜させ、且つ前記一対のコアを前記測定管に平行に対向させたことを特徴とする(5)に記載の電磁流量計。
(5) The electromagnetic flow meter is arranged on a pair of cores that generate a magnetic field in a direction perpendicular to the fluid flowing in the measurement tube, and on the tube wall of the measurement tube in a direction orthogonal to the magnetic field, and adjusts the flow rate of the fluid. A pair of detection electrodes for detecting a corresponding electromotive force, a first magnetic pole core connected to one side of the pair of cores with a feedback magnetic path other than the measurement tube, and a periphery of the first magnetic pole core A first exciting coil wound around the coil, a second magnetic pole core connected to the other side of the pair of cores in a feedback magnetic path other than the measuring tube, and a coil wound around the second magnetic pole core And a second excitation coil.
(6) The electromagnetic flowmeter according to (5), wherein the length of the first and second magnetic pole cores is longer than the diameter of the measuring tube.
(7) The length of the first and second magnetic pole cores is longer than the diameter of the measuring tube, and the pair of cores are inclined on the side connected to the first and second magnetic pole cores, In addition, the electromagnetic flow meter according to (5), wherein the pair of cores are opposed to the measurement tube in parallel.
本発明の電磁流量計は、帰還磁路に磁極コアを配置することで、漏洩磁束の少ない磁気回路構造にすることができ、高効率・高信号レベルの電磁流量計を実現することができる。
又、一対のコアを測定管方向に傾斜させることで、磁場が不足する部分の磁気抵抗を下げることができ、均一に磁場を生成する磁気回路を実現することができるので、流速分布の影響を受けにくい電磁流量計を実現することができる。
In the electromagnetic flow meter of the present invention, by arranging the magnetic pole core in the feedback magnetic path, a magnetic circuit structure with less leakage magnetic flux can be obtained, and a high efficiency and high signal level electromagnetic flow meter can be realized.
In addition, by tilting the pair of cores in the direction of the measuring tube, the magnetic resistance of the portion where the magnetic field is insufficient can be lowered, and a magnetic circuit that generates the magnetic field uniformly can be realized. An electromagnetic flow meter that is difficult to receive can be realized.
以下、本発明の電磁流量計の実施形態について、図面を用いて詳細に説明する。 Hereinafter, embodiments of the electromagnetic flowmeter of the present invention will be described in detail with reference to the drawings.
本発明の第1の実施例の電磁流量計は、図1及び図2に示すように、測定管11内を流れる流体に対して垂直方向に磁場を発生させる一対のコア12a、12bと、磁場に対して直交する方向の測定管11の管壁に配置され流体の流量に対応して発生する起電力を検出する一対の検出電極13a、13bと、測定管11以外の帰還磁路に一対のコア12a、12bに連結した磁極コア14と、磁極コア14の周囲にコイルを巻き付けた励磁コイル15と、を備えた構成になっている。
このように帰還磁路を、磁極コア14、励磁コイル15で構成したことで、コイル内部の磁場は隣り合うコイル線の作る磁場によりキャンセルされるので、磁場は存在しない。このため、従来実施例のような、磁極コアー帰還磁路間の漏洩磁束は存在せず、上下のコア12a、12b間の磁束を有効に作ることができるのである。
このようにすることで、漏洩磁束の少ない磁気回路構造にすることができ、高効率・高信号レベルの電磁流量計を実現することができる。
As shown in FIGS. 1 and 2, the electromagnetic flow meter according to the first embodiment of the present invention includes a pair of
Since the feedback magnetic path is configured by the magnetic pole core 14 and the excitation coil 15 in this way, the magnetic field inside the coil is canceled by the magnetic field formed by the adjacent coil wire, and therefore no magnetic field exists. For this reason, there is no leakage magnetic flux between the magnetic pole core and the feedback magnetic path as in the conventional example, and the magnetic flux between the upper and
By doing in this way, it can be set as a magnetic circuit structure with few leakage magnetic fluxes, and a highly efficient and high signal level electromagnetic flowmeter can be realized.
次に、第2の実施例の電磁流量計について、図面を参照して説明する。
第2の実施例の電磁流量計は、図3及び図4に示すように、測定管11内を流れる流体に対して垂直方向に磁場を発生させる一対のコア12a、12bと、磁場に対して直交する方向の測定管11の管壁に配置され流体の流量に対応して発生する起電力を検出する一対の検出電極13a、13bと、測定管11以外の帰還磁路に一対のコア12a、12bに連結した磁極コア14Aと、磁極コア14の周囲にコイルを巻き付けた励磁コイル15Aと、を備えた構成になっている。
そして、磁極コア14Aの長さは測定管11の直径よりも長くすると共に一対のコア12a、12bは磁極コア14Aに連結している側を傾斜させ、且つ一対のコア12a、12bを測定管11に平行に対向させたことを特徴とする。
Next, an electromagnetic flow meter according to a second embodiment will be described with reference to the drawings.
As shown in FIGS. 3 and 4, the electromagnetic flow meter of the second embodiment includes a pair of
The length of the magnetic pole core 14A is longer than the diameter of the measurement tube 11, the pair of
ここで、磁極コア14Aに巻かれた励磁コイル15Aの作る磁場について考える。コイル半径aとすると、その中心の発生磁界Hは、
H=I/(2a)
I;励磁電流
で表すことができる。
故に、磁極コア14Aの半径aを小さくすることで、同じ電流でも大きな磁界を発生させることができることが容易に理解できる。
従って、磁極コア14Aの長さを長くすることで、この周囲にコイルを巻くことができ、これによりコイルの平均半径を小さくして、大きな磁界を発生できるようになるという利点がある。
更に、測定管11側とは反対側の空間に磁気抵抗は大きいものの漏洩磁束は発生する。故に、この実施例のように一対のコア12a、12bに傾斜を持たせ、測定管11側の磁気抵抗を小さくすることで、漏洩磁束を小さくすることができるという効果が得られる。
Here, consider the magnetic field generated by the
H = I / (2a)
I: can be represented by an excitation current.
Therefore, it can be easily understood that a large magnetic field can be generated with the same current by reducing the radius a of the magnetic pole core 14A.
Therefore, by increasing the length of the magnetic pole core 14A, a coil can be wound around the magnetic pole core 14A, thereby reducing the average radius of the coil and generating a large magnetic field.
Further, although the magnetic resistance is large, a leakage magnetic flux is generated in the space opposite to the measurement tube 11 side. Therefore, the effect of reducing the leakage magnetic flux can be obtained by making the pair of
次に、第3の実施例の電磁流量計について、図面を参照して説明する。
第3の実施例の電磁流量計は、図5及び図6に示すように、測定管11内を流れる流体に対して垂直方向に磁場を発生させる一対のコア12a、12bと、磁場に対して直交する方向の測定管11の管壁に配置され流体の流量に対応して発生する起電力を検出する一対の検出電極13a、13bと、測定管11以外の帰還磁路に一対のコア12a、12bに連結した磁極コア14Aと、磁極コア14Aの周囲にコイルを巻き付けた励磁コイル15Aと、を備えた構成になっている。
そして、磁極コア14Aの長さは測定管11の直径よりも長くすると共に一対のコア12a、12bは磁極コア14Aに連結している側を傾斜させ、且つ一対のコア12a、12bの先端側を測定管11の径形状に沿った傾斜を持たせることで、検出電極13a、13b近傍の磁気抵抗を小さくしたことを特徴とする。
一対のコア12a、12bが水平だと、終端側に行くほど磁気抵抗が大きくなり、磁場を測定管11内に均一に発生することができない問題があるので、この実施例により測定管11内に均一に磁場を発生させることができ、流速分布の影響を低減できる効果が得られる。
Next, an electromagnetic flow meter according to a third embodiment will be described with reference to the drawings.
As shown in FIGS. 5 and 6, the electromagnetic flow meter of the third embodiment includes a pair of
The length of the magnetic pole core 14A is longer than the diameter of the measuring tube 11, the pair of
If the pair of
次に、第4の実施例の電磁流量計について、図面を参照して説明する。
第4の実施例の電磁流量計は、図7に示すように、測定管11内を流れる流体に対して垂直方向に磁場を発生させる一対のコア12a、12bと、磁場に対して直交する方向の測定管11の管壁に配置され流体の流量に対応して発生する起電力を検出する一対の検出電極13a、13bと、測定管11以外の帰還磁路に一対のコア12a、12bの一方側に連結した第1の磁極コア14Bと、第1の磁極コア14Bの周囲にコイルを巻き付けた第1の励磁コイル15Bと、測定管11以外の帰還磁路に一対のコア12a、12bの他方側に連結した第2の磁極コア14Cと、第2の磁極コア14Cの周囲にコイルを巻き付けた第2の励磁コイル15Cと、を備えた構成になっている。
そして、第1及び第2の磁極コア14B、14Cの長さは測定管11の直径よりも長くすると共に一対のコア12a、12bは第1及び第2の磁極コア14B、14Cに連結している側を傾斜させ、且つ一対のコア12a、12bを測定管11に平行に対向させた構成になっている。
このように、コイルを2個設けた構成にすることで、測定管11内に効率よく磁場を発生させることが可能になる。
Next, an electromagnetic flow meter according to a fourth embodiment will be described with reference to the drawings.
As shown in FIG. 7, the electromagnetic flow meter according to the fourth embodiment includes a pair of
The lengths of the first and second magnetic pole cores 14B and 14C are longer than the diameter of the measuring tube 11, and the pair of
As described above, the configuration in which two coils are provided makes it possible to efficiently generate a magnetic field in the measurement tube 11.
帰還磁路を、磁極コア、励磁コイルで構成したことで、コイル内部の磁場は隣り合うコイル線の作る磁場によりキャンセルされるので、漏洩磁束をなくすことができるため、上下のコア間の磁束を有効に作ることができる電磁流量計を提供する。 By configuring the feedback magnetic path with a magnetic pole core and an exciting coil, the magnetic field inside the coil is canceled by the magnetic field created by the adjacent coil wire, so that leakage flux can be eliminated. An electromagnetic flow meter that can be effectively manufactured is provided.
11 測定管
12a コア
12b コア
13a 検出電極
13b 検出電極
14 磁極コア
14A 磁極コア
14B 第1の磁極コア
14C 第2の磁極コア
15 励磁コイル
15A 励磁コイル
15B 第1の励磁コイル
15C 第2の励磁コイル
11
Claims (7)
前記磁場に対して直交する方向の測定管の管壁に配置され前記流体の流量に対応して発生する起電力を検出する一対の検出電極と、
前記測定管以外の帰還磁路に前記一対のコアに連結した磁極コアと、
前記磁極コアの周囲にコイルを巻き付けた励磁コイルと、
を備えてなる電磁流量計。 A pair of cores that generate a magnetic field in a direction perpendicular to the fluid flowing in the measuring tube;
A pair of detection electrodes disposed on the tube wall of the measurement tube in a direction orthogonal to the magnetic field and detecting an electromotive force generated corresponding to the flow rate of the fluid;
A magnetic pole core connected to the pair of cores in a feedback magnetic path other than the measurement tube;
An exciting coil in which a coil is wound around the magnetic pole core;
An electromagnetic flow meter comprising:
前記磁場に対して直交する方向の測定管の管壁に配置され前記流体の流量に対応して発生する起電力を検出する一対の検出電極と、
前記測定管以外の帰還磁路に前記一対のコアの一方側に連結した第1の磁極コアと、
前記第1の磁極コアの周囲にコイルを巻き付けた第1の励磁コイルと、
前記測定管以外の帰還磁路に前記一対のコアの他方側に連結した第2の磁極コアと、
前記第2の磁極コアの周囲にコイルを巻き付けた第2の励磁コイルと、
を備えてなる電磁流量計。 A pair of cores that generate a magnetic field in a direction perpendicular to the fluid flowing in the measuring tube;
A pair of detection electrodes disposed on the tube wall of the measurement tube in a direction orthogonal to the magnetic field and detecting an electromotive force generated corresponding to the flow rate of the fluid;
A first magnetic pole core connected to one side of the pair of cores to a feedback magnetic path other than the measurement tube;
A first exciting coil in which a coil is wound around the first magnetic pole core;
A second magnetic pole core connected to the other side of the pair of cores in a feedback magnetic path other than the measurement tube;
A second exciting coil in which a coil is wound around the second magnetic pole core;
An electromagnetic flow meter comprising:
The lengths of the first and second magnetic pole cores are longer than the diameter of the measuring tube, the pair of cores are inclined on the side connected to the first and second magnetic pole cores, and the pair of cores The electromagnetic flowmeter according to claim 5, wherein the core of the magnet is opposed to the measurement tube in parallel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004016771A JP2005207971A (en) | 2004-01-26 | 2004-01-26 | Electromagnetic flowmeter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004016771A JP2005207971A (en) | 2004-01-26 | 2004-01-26 | Electromagnetic flowmeter |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005207971A true JP2005207971A (en) | 2005-08-04 |
Family
ID=34901819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004016771A Withdrawn JP2005207971A (en) | 2004-01-26 | 2004-01-26 | Electromagnetic flowmeter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005207971A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010142451A1 (en) * | 2009-06-12 | 2010-12-16 | Sensus Metering Systems | Magnetically inductive flowmeter |
-
2004
- 2004-01-26 JP JP2004016771A patent/JP2005207971A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010142451A1 (en) * | 2009-06-12 | 2010-12-16 | Sensus Metering Systems | Magnetically inductive flowmeter |
JP2012529633A (en) * | 2009-06-12 | 2012-11-22 | センサス メータリング システムズ | Magnetic induction flow meter |
CN102803906A (en) * | 2009-06-12 | 2012-11-28 | 感觉测量系统公司 | Magnetically inductive flowmeter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7843306B2 (en) | Transformer core | |
JP2010276422A (en) | Current sensor | |
US7267012B2 (en) | Electromagnetic flowmeter including electrodes and magnetic pole placed in proximity on one side of the outer wall | |
JPH04295722A (en) | Residual-magnetism type electromagnetic flowmeter | |
JP2005207971A (en) | Electromagnetic flowmeter | |
JP6155715B2 (en) | Displacement sensor | |
JP2012198053A (en) | Magnetic sensor and current sensor using the same | |
JP2011047942A (en) | Magnetic flux detector and method of manufacturing the same | |
JP2005221342A (en) | Coil-type current sensor | |
JP2009264992A (en) | Induction type proximity sensor | |
JP5721475B2 (en) | Interpolation probe for eddy current testing of ferromagnetic steel tubes | |
JP3443007B2 (en) | Electromagnetic flow meter | |
JP4591015B2 (en) | Electromagnetic flow meter | |
JP5412025B2 (en) | Electromagnetic flow meter | |
JP2008091147A (en) | Proximity sensor and core for the sensor | |
JP2008298753A (en) | Leak current sensor and power supply plug | |
EP0069459A1 (en) | Measuring device of electromagnetic flowmeter | |
JP2004257953A (en) | Electric current sensor device | |
JP3052472B2 (en) | Manufacturing method of electromagnetic flowmeter | |
JP2620202B2 (en) | Electromagnetic flow meter detector | |
JP3163610B2 (en) | Electromagnetic flow meter | |
JP4844019B2 (en) | Electromagnetic flow meter | |
JP2005061847A (en) | Electromagnetic flowmeter | |
JPS59198319A (en) | Electromagnetic flow meter | |
JPH038984Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20060703 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081128 |
|
A131 | Notification of reasons for refusal |
Effective date: 20081204 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090123 |