JP2005061847A - Electromagnetic flowmeter - Google Patents

Electromagnetic flowmeter Download PDF

Info

Publication number
JP2005061847A
JP2005061847A JP2003207241A JP2003207241A JP2005061847A JP 2005061847 A JP2005061847 A JP 2005061847A JP 2003207241 A JP2003207241 A JP 2003207241A JP 2003207241 A JP2003207241 A JP 2003207241A JP 2005061847 A JP2005061847 A JP 2005061847A
Authority
JP
Japan
Prior art keywords
magnetic pole
pedestal
core
fitted
measuring tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003207241A
Other languages
Japanese (ja)
Inventor
Hironobu Yao
博信 矢尾
Takuya Shibazaki
卓也 柴崎
Keita Okawa
啓太 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003207241A priority Critical patent/JP2005061847A/en
Publication of JP2005061847A publication Critical patent/JP2005061847A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic flowmeter short in the time required for assembling with excellent stability of a characteristic. <P>SOLUTION: In this flowmeter, a magnetic pole 4a is constituted of two components of a core 41a having a core main body part 411 wound with an excitation coil, and a positioning protrusion part 412 fitted into a through hole 421 formed in a pedestal 42a, and the pedestal 42a for contacting with a tube wall of a measuring tube to stabilize the magnetic pole 4a and to optimize a magnetic field distribution, and having the through hole 421 fitted with the positioning protrusion part 412 of the core 41a. The magnetic pole 4a is integrated by welding both components in a welding part 45 under the condition where the positioning protrusion part 412 is fitted into the through hole 421, so as to constitute the magnetic pole 4a. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、電磁誘導を利用して導電性の流体の流量を測定する電磁流量計に関する。
【0002】
【従来の技術】
導電性の流体が磁場内を通過すると、ファラデーの誘導法則に従って、その流速に比例した起電力が発生する。この起電力を測定することによって磁場内を流れる導電性の流体の流量を測定する計器が電磁流量計である。
電磁流量計の検出器は、一般的に、図2および図3に示すように、内部を測定対象の流体が流れる、例えばステンレス鋼からなる測定管1と、測定管1を測定流体から電気的に絶縁するために測定管1の内面および側面に配備されている、例えばフッ素樹脂からなるライニング材2と、測定流体が流れる測定管1内に磁場を発生させるために、測定管1の外壁に対向して配置され且つそれぞれに励磁コイル3が巻かれている一対の磁極4と、漏れ磁束を低減するために磁極4の外側に接して配置されている珪素鋼板からなる磁路5と、一対の磁極4間に形成される磁場の方向および測定管1の軸方向のそれぞれに直交する位置の測定管1の管壁に、測定流体に接触するようにライニング材2を貫通して設けられている、例えばステンレス鋼からなる電極6と、で構成されている。
【0003】
磁極4は、電磁流量計の検出器を小形軽量にし、且つ測定管1内に必要な磁場分布を形成するために、高い透磁率をもつ材料、例えば炭素鋼からなるコアと台座とで構成されている。
従来技術においては、図4に示すように、磁極4は、台座42がコア41とステンレス鋼の位置決め用部材43とに挟まれてステンレス鋼のねじ44で締結された構造となっている。位置決め用部材43は、磁極4を測定管1に取り付ける際に、予め測定管1に設けられている凹部11に挿入されることによって、磁極4の位置決めを容易にする。この従来例では、位置決め用部材43とねじ44は、ステンレス鋼で作られているが、炭素鋼に変えることもできる。
なお、この種の電磁流量計の構造としては、例えば、特開平11−118548号公報(特許文献1参照)に記載のものが知られている。
【0004】
【特許文献1】
特開平11−118548号公報
【0005】
【発明が解決しようとする課題】
前述したように、従来技術による磁極4は、コア41と位置決め用部材43とで台座42を挟み付けてねじ44によって締め付ける構造となっている。このため、組立作業に要する時間が長く、また、ねじ44の締め付けが不十分な場合には、ねじ44の緩みを発生することがあって、電磁流量計の特性を変動させ、電磁流量計の特性安定性を阻害する要因となっている。
この発明の課題は、上記の問題を解消して、組立に要する時間が短く、且つ特性の安定性が優れている電磁流量計を提供することである。
【0006】
【課題を解決するための手段】
請求項1の発明は、測定管内を流れる導電性の流体の流速を、測定管の外壁に対向して配置され且つそれぞれに励磁コイルを巻かれている一対の磁極が測定管内に発生させる磁場による電磁誘導起電力によって測定する電磁流量計であって、前記磁極として、励磁コイルを巻かれるコア本体部および台座に形成された貫通孔に嵌め合わされる突出部を有するコアと、測定管の管壁に接触して磁極を安定させ、磁場分布を最適化し、且つコアの前記突出部が嵌め合わされる貫通孔を有する台座と、が前記貫通孔に前記突出部を嵌め合わされた状態で溶接された一体構造の磁極を備えている。
この発明においては、磁極の部品が突出部を有するコアおよび突出部を嵌め合わされる貫通孔を有する台座の2点と少なくなり、コアおよび台座は溶接一体化されているので、ねじの緩みのような特性安定性を阻害する要因がなくなる。
【0007】
請求項2の発明は、前記コアの突出部の突き出し長さが、前記台座の板厚よりも大きく、測定管の磁極配置位置には、台座から突出している突出部を嵌め合わせるための凹部が形成されている。
この発明においては、測定管の凹部にコアの突出部を嵌め合わせることによって磁極を位置決めすることができるので、磁極を正確に且つ容易に位置決めすることができる。
【0008】
【発明の実施の形態】
この発明による電磁流量計の実施の形態について実施例を用いて説明する。
なお、従来技術と同じ機能の部分には同じ符号を付ける。
この発明は電磁流量計の磁極の構造に関する発明であって、電磁流量計全体の構成は従来技術と同様であるので、全体構成の説明は省略し、磁極の構造とこれに関連する部分に限定して説明する。
図1は、この発明による電磁流量計の実施例の磁極4aの構造を示し、(a)は全体の断面図、(b)はコア41aの外形図、(c)は台座42aの断面図である。
この実施例の磁極4aは、炭素鋼や純鉄等の透磁率の高い強磁性材料からなるコア41aおよび炭素鋼等の透磁率の高い強磁性材料からなる台座42aの2部品からなる。コア41aには、励磁コイルが巻かれるコア本体部411に加えて、それよりひとまわり小さい直径Φdをもつ位置決め用突出部412が形成されている。一方、台座42aの中央には、位置決め用突出部412が嵌め込まれる、直径ΦDの貫通孔421が形成されている。コア41aおよび台座42aは、貫通孔421に位置決め用突出部412を嵌め合わせた状態で、コア本体部411と台座42aとの接触部の外周に沿って溶接され(溶接部45の形成)一体化されている。
【0009】
位置決め用突出部412および貫通孔421の直径は隙間はめ合い公差で製作されている。すなわち、ΦdとΦDは隙間はめ合い公差をもつ関係にある。位置決め用突出部412の長さLは、台座42aの厚さTより大きく、台座42aの下部に突出した部分が、磁極4aを測定管の所定の位置に位置決めするのに利用される。すなわち、従来技術の項で説明したのと同様に、この突出した部分が、測定管に形成されている凹部に嵌め合わされて、磁極4aを測定管の所定の位置に位置決めする。
この実施例によれば、磁極4aは2部品から構成され、その2部品は溶接で一体化されるので、磁極4aの製作に要する時間が短くなる。更に、この磁極4aは溶接で一体化されているので、ねじの緩みのような不安定要因をもたず、電磁流量計の特性を安定させる。
【0010】
【発明の効果】
請求項1の発明においては、磁極として、励磁コイルを巻かれるコア本体部および台座に形成された貫通孔に嵌め合わされる突出部を有するコアと、測定管の管壁に接触して磁極を安定させ、磁場分布を最適化し、且つコアの前記突出部が嵌め合わされる貫通孔を有する台座と、が溶接されて一体化した構造の磁極を備えているので、磁極の部品が突出部を有するコアおよび突出部を嵌め合わされる貫通孔を有する台座の2点と少なくなり、加えて、ねじの緩みのような特性安定性を阻害する要因がなくなる。
したがって、この発明によれば、組立に要する時間が短く、且つ特性の安定性が優れている電磁流量計を提供することができる。
【0011】
請求項2の発明においては、測定管の凹部にコアの突出部を嵌め合わせることによって磁極を位置決めすることができるので、磁極を正確に且つ容易に位置決めすることができる。
【図面の簡単な説明】
【図1】この発明による電磁流量計の実施例の磁極4aの構造を示し、(a)は全体の断面図、(b)はコア41aの外形図、(c)は台座42aの断面図
【図2】従来技術による電磁流量計の検出器の一例100の構造を示す流体の流れに平行方向の断面図
【図3】従来例100の構造を示す流体の流れに垂直方向の断面図
【図4】従来例100の磁極4の構造を示す断面図
【符号の説明】
1 測定管
11 凹部
2 ライニング材
3 励磁コイル
4、4a 磁極
41、41a コア
411 コア本体部 412 位置決め用突出部
42、42a 台座
421 貫通孔
43 位置決め部材
44 ねじ
45 溶接部
5 磁路
6 電極
100 電磁流量計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic flowmeter that measures the flow rate of a conductive fluid using electromagnetic induction.
[0002]
[Prior art]
When the conductive fluid passes through the magnetic field, an electromotive force proportional to the flow velocity is generated according to Faraday's law of induction. An instrument that measures the flow rate of a conductive fluid flowing in a magnetic field by measuring this electromotive force is an electromagnetic flowmeter.
As shown in FIG. 2 and FIG. 3, the detector of the electromagnetic flowmeter generally includes a measuring tube 1 made of, for example, stainless steel, through which a fluid to be measured flows, and an electric fluid from the measuring fluid. In order to generate a magnetic field in the lining material 2 made of, for example, fluororesin, which is disposed on the inner surface and the side surface of the measuring tube 1 to insulate the measuring tube 1 and in which the measuring fluid flows, on the outer wall of the measuring tube 1 A pair of magnetic poles 4 arranged opposite to each other and wound with an exciting coil 3, a magnetic path 5 made of a silicon steel plate arranged in contact with the outside of the magnetic pole 4 to reduce leakage magnetic flux, and a pair The lining material 2 is provided through the tube wall of the measurement tube 1 at a position orthogonal to the direction of the magnetic field formed between the magnetic poles 4 and the axial direction of the measurement tube 1 so as to contact the measurement fluid. Is, for example stainless steel Become electrode 6, in being configured.
[0003]
The magnetic pole 4 is composed of a core having a high permeability, for example, a core made of carbon steel and a pedestal, in order to make the detector of the electromagnetic flowmeter small and light and to form a necessary magnetic field distribution in the measuring tube 1. ing.
In the prior art, as shown in FIG. 4, the magnetic pole 4 has a structure in which a base 42 is sandwiched between a core 41 and a stainless steel positioning member 43 and fastened with a stainless steel screw 44. The positioning member 43 facilitates the positioning of the magnetic pole 4 by being inserted into the recess 11 provided in the measurement tube 1 in advance when the magnetic pole 4 is attached to the measurement tube 1. In this conventional example, the positioning member 43 and the screw 44 are made of stainless steel, but can be changed to carbon steel.
In addition, as a structure of this kind of electromagnetic flowmeter, the thing of Unexamined-Japanese-Patent No. 11-118548 (refer patent document 1) is known, for example.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-118548
[Problems to be solved by the invention]
As described above, the magnetic pole 4 according to the prior art has a structure in which the base 42 is sandwiched between the core 41 and the positioning member 43 and is tightened by the screw 44. For this reason, the time required for the assembly work is long, and if the screw 44 is not sufficiently tightened, the screw 44 may be loosened, and the characteristics of the electromagnetic flow meter may be changed. This is a factor that hinders characteristic stability.
An object of the present invention is to solve the above-described problems, and to provide an electromagnetic flow meter having a short time required for assembly and excellent characteristics stability.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, the flow velocity of the conductive fluid flowing in the measurement tube is determined by a magnetic field generated in the measurement tube by a pair of magnetic poles arranged opposite to the outer wall of the measurement tube and wound with an excitation coil respectively. An electromagnetic flow meter for measuring by an electromagnetic induction electromotive force, wherein the magnetic pole is a core having a core body portion around which an exciting coil is wound and a projecting portion fitted in a through hole formed in a pedestal, and a tube wall of the measurement tube And a pedestal having a through hole in which the magnetic pole is stabilized by optimizing the magnetic field, the magnetic field distribution is optimized, and the protruding portion of the core is fitted, and the protruding portion is fitted in the through hole. It has a magnetic pole of structure.
In this invention, the magnetic pole parts are reduced to two points: a core having a protrusion and a pedestal having a through hole into which the protrusion is fitted. Since the core and the pedestal are integrated with each other by welding, it seems that the screw is loose. The factor which disturbs characteristic stability is lost.
[0007]
In the invention of claim 2, the protruding length of the protruding portion of the core is larger than the plate thickness of the pedestal, and a concave portion for fitting the protruding portion protruding from the pedestal is provided at the magnetic pole arrangement position of the measuring tube. Is formed.
In this invention, the magnetic pole can be positioned by fitting the protruding portion of the core into the recess of the measuring tube, so that the magnetic pole can be accurately and easily positioned.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the electromagnetic flowmeter according to the present invention will be described with reference to examples.
In addition, the same code | symbol is attached | subjected to the part of the same function as a prior art.
The present invention relates to the structure of the magnetic pole of the electromagnetic flow meter, and since the entire configuration of the electromagnetic flow meter is the same as that of the prior art, the description of the entire configuration is omitted, and the structure of the magnetic pole and its related parts are limited. To explain.
FIG. 1 shows the structure of a magnetic pole 4a of an embodiment of an electromagnetic flow meter according to the present invention, where (a) is an overall sectional view, (b) is an outline view of a core 41a, and (c) is a sectional view of a pedestal 42a. is there.
The magnetic pole 4a of this embodiment is composed of two parts: a core 41a made of a ferromagnetic material with high permeability such as carbon steel and pure iron, and a pedestal 42a made of a ferromagnetic material with high permeability such as carbon steel. In addition to the core main body 411 around which the exciting coil is wound, the core 41a is formed with a positioning protrusion 412 having a diameter Φd that is slightly smaller than the core main body 411. On the other hand, a through hole 421 having a diameter ΦD into which the positioning protrusion 412 is fitted is formed at the center of the base 42a. The core 41a and the pedestal 42a are welded along the outer periphery of the contact portion between the core main body 411 and the pedestal 42a (formation of the welded portion 45) in a state where the positioning protrusion 412 is fitted in the through hole 421. Has been.
[0009]
The diameters of the positioning protrusions 412 and the through holes 421 are manufactured with a clearance fit tolerance. That is, Φd and ΦD have a gap fitting tolerance. The length L of the positioning protrusion 412 is larger than the thickness T of the pedestal 42a, and the portion protruding to the lower part of the pedestal 42a is used to position the magnetic pole 4a at a predetermined position of the measuring tube. That is, as described in the section of the prior art, this protruding portion is fitted into a recess formed in the measurement tube, and the magnetic pole 4a is positioned at a predetermined position of the measurement tube.
According to this embodiment, the magnetic pole 4a is composed of two parts, and the two parts are integrated by welding, so that the time required for manufacturing the magnetic pole 4a is shortened. Further, since the magnetic pole 4a is integrated by welding, there is no instability factor such as loosening of screws, and the characteristics of the electromagnetic flow meter are stabilized.
[0010]
【The invention's effect】
According to the first aspect of the present invention, the magnetic pole is stabilized by contacting the core body portion around which the exciting coil is wound and the projecting portion fitted into the through hole formed in the pedestal, and the wall of the measuring tube as the magnetic pole. A magnetic pole having a structure in which the magnetic field distribution is optimized and a base having a through hole into which the protruding portion of the core is fitted is integrated by welding. In addition, the number of the pedestal having the through hole into which the protruding portion is fitted is reduced, and in addition, there is no factor that hinders characteristic stability such as loosening of the screw.
Therefore, according to the present invention, it is possible to provide an electromagnetic flowmeter having a short time required for assembly and excellent characteristic stability.
[0011]
In the invention of claim 2, the magnetic pole can be positioned by fitting the protruding portion of the core into the concave portion of the measuring tube, so that the magnetic pole can be accurately and easily positioned.
[Brief description of the drawings]
1A and 1B show the structure of a magnetic pole 4a of an embodiment of an electromagnetic flowmeter according to the present invention, where FIG. 1A is an overall cross-sectional view, FIG. 1B is an external view of a core 41a, and FIG. 1C is a cross-sectional view of a pedestal 42a; 2 is a cross-sectional view in the direction parallel to the fluid flow showing the structure of an example 100 of a conventional electromagnetic flowmeter detector. FIG. 3 is a cross-sectional view in the direction perpendicular to the fluid flow showing the structure of the conventional example 100 . 4 is a sectional view showing the structure of the magnetic pole 4 of the conventional example 100 .
DESCRIPTION OF SYMBOLS 1 Measurement tube 11 Recessed part 2 Lining material 3 Excitation coil 4, 4a Magnetic pole 41, 41a Core 411 Core main-body part 412 Positioning protrusion part 42, 42a Base 421 Through-hole 43 Positioning member 44 Screw 45 Welding part 5 Magnetic path 6 Electrode
100 electromagnetic flow meter

Claims (2)

測定管内を流れる導電性の流体の流速を、測定管の外壁に対向して配置され且つそれぞれに励磁コイルを巻かれている一対の磁極が測定管内に発生させる磁場による電磁誘導起電力によって測定する電磁流量計であって、前記磁極として、励磁コイルを巻かれるコア本体部および台座に形成された貫通孔に嵌め合わされる突出部を有するコアと、測定管の管壁に接触して磁極を安定させ、磁場分布を最適化し、且つコアの前記突出部が嵌め合わされる貫通孔を有する台座と、が前記貫通孔に前記突出部を嵌め合わされた状態で溶接された一体構造の磁極を備えている、ことを特徴とする電磁流量計。The flow velocity of the conductive fluid flowing in the measuring tube is measured by electromagnetic induction electromotive force generated by a magnetic field generated in the measuring tube by a pair of magnetic poles arranged opposite to the outer wall of the measuring tube and wound with an excitation coil. An electromagnetic flowmeter, wherein the magnetic pole is stabilized by contacting the core body portion around which the exciting coil is wound and the projecting portion fitted into the through hole formed in the pedestal, and the wall of the measuring tube as the magnetic pole. And a pedestal having a through hole in which the magnetic field distribution is optimized and the protruding portion of the core is fitted, and a magnetic pole having an integral structure welded in a state where the protruding portion is fitted in the through hole. An electromagnetic flow meter characterized by that. 前記コアの突出部の突き出し長さが、前記台座の板厚よりも大きく、
測定管の磁極配置位置には、台座から突出している突出部を嵌め合わせるための凹部が形成されている、ことを特徴とする請求項1に記載の電磁流量計。
The protruding length of the protruding portion of the core is larger than the plate thickness of the pedestal,
The electromagnetic flowmeter according to claim 1, wherein a concave portion for fitting a protruding portion protruding from the pedestal is formed at a magnetic pole arrangement position of the measuring tube.
JP2003207241A 2003-08-12 2003-08-12 Electromagnetic flowmeter Withdrawn JP2005061847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003207241A JP2005061847A (en) 2003-08-12 2003-08-12 Electromagnetic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003207241A JP2005061847A (en) 2003-08-12 2003-08-12 Electromagnetic flowmeter

Publications (1)

Publication Number Publication Date
JP2005061847A true JP2005061847A (en) 2005-03-10

Family

ID=34363784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003207241A Withdrawn JP2005061847A (en) 2003-08-12 2003-08-12 Electromagnetic flowmeter

Country Status (1)

Country Link
JP (1) JP2005061847A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183492A1 (en) * 2016-04-20 2017-10-26 ナブテスコ株式会社 Pressure sensor
CN112504365A (en) * 2020-11-25 2021-03-16 合肥工业大学 Magnetic circuit structure optimization design method of electromagnetic flow sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183492A1 (en) * 2016-04-20 2017-10-26 ナブテスコ株式会社 Pressure sensor
CN112504365A (en) * 2020-11-25 2021-03-16 合肥工业大学 Magnetic circuit structure optimization design method of electromagnetic flow sensor
CN112504365B (en) * 2020-11-25 2022-05-20 合肥工业大学 Magnetic circuit structure optimization design method of electromagnetic flow sensor

Similar Documents

Publication Publication Date Title
JP2014202662A (en) Electromagnetic flowmeter
JP2008275566A (en) Current sensor
JPH06103202B2 (en) Electromagnetic flow meter
US3610040A (en) Electromagnetic flowmeter
US6453756B2 (en) Magneto-inductive flowmeter
RU2411454C2 (en) Magnetic-inductive transducer
KR20160015372A (en) Electromagnetic flowmeter
JP2005061847A (en) Electromagnetic flowmeter
JP2010038752A (en) Electromagnetic flowmeter
JP3443007B2 (en) Electromagnetic flow meter
JP2007171011A (en) Electromagnetic flowmeter
JP2005055276A (en) Electromagnetic flowmeter
JP3914113B2 (en) Electromagnetic flow meter
JP2004294176A (en) Electromagnetic flowmeter
JPH08261807A (en) Electromagnetic flowmeter
JP2620202B2 (en) Electromagnetic flow meter detector
JP3163610B2 (en) Electromagnetic flow meter
JPS6014176Y2 (en) electromagnetic flow meter
JP2009264992A (en) Induction type proximity sensor
JP2001281028A (en) Electromagnetic flowmeter
JP4453903B2 (en) Electromagnetic flow meter
JPH11351925A (en) Measuring tube for electromagnetic flowmeter
KR100477085B1 (en) Linerless and capsulated magnetic flow meter with electrode and exiting coil
KR830000412Y1 (en) Electronic flow meter
JPS62255820A (en) Electromagnetic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071026

A131 Notification of reasons for refusal

Effective date: 20071106

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20080107

Free format text: JAPANESE INTERMEDIATE CODE: A761