JP2005207926A - Method and instrument for measuring resistance - Google Patents

Method and instrument for measuring resistance Download PDF

Info

Publication number
JP2005207926A
JP2005207926A JP2004015773A JP2004015773A JP2005207926A JP 2005207926 A JP2005207926 A JP 2005207926A JP 2004015773 A JP2004015773 A JP 2004015773A JP 2004015773 A JP2004015773 A JP 2004015773A JP 2005207926 A JP2005207926 A JP 2005207926A
Authority
JP
Japan
Prior art keywords
voltage
measured
electrode
time constant
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004015773A
Other languages
Japanese (ja)
Inventor
Koichi Suzuki
功一 鈴木
Mitsuo Sato
充男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fab Solutions Inc
Original Assignee
Fab Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fab Solutions Inc filed Critical Fab Solutions Inc
Priority to JP2004015773A priority Critical patent/JP2005207926A/en
Publication of JP2005207926A publication Critical patent/JP2005207926A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an instrument for measuring a resistance capable of measuring properly an effective resistance value of a conductive member in discharge of an electric charge charged in a protection object protected from static electricity. <P>SOLUTION: A prescribed capacity of capacitor 204 is connected between an electrode 100 and a prescribed node (grounding). The electrode 100 is fixed onto an instrument body. The instrument main body is provided with a surface electrometer 201, an arithmetic processing part 202, a display part 203, the capacitor 204, a voltage source 205, and a switch 206. The switch 206 is closed and the capacitor 204 is charged preliminarily by the voltage source 205, when measuring the resistance of the measured object. Then, the switch 206 is opened, and the electrode 100 is brought into contact with the measuring object to discharge the capacitor 204. A voltage of the electrode 100 is measured therein by the surface electrometer 201. A time constant of the measured object is acquired based on a voltage measured result therein, and the time constant is converted into the resistance value of the measured object to be output. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体装置等の電子部品を静電気から保護するために用いられる導電性部材の抵抗を測定する抵抗測定装置および方法に関する。   The present invention relates to a resistance measuring apparatus and method for measuring the resistance of a conductive member used to protect an electronic component such as a semiconductor device from static electricity.

微細加工技術を用いて製造される半導体装置は、静電気のダメージを受けやすいため、製造現場では、抵抗値が1kΩ〜1014Ω程度の導電性部材が、半導体装置を静電気から保護するための静電保護用部材として用いられている。具体的には、静電保護用の導電性部材は、半導体装置を取り扱うために用いられるピンセットの先端部、作業場所の床面、半導体装置を載置する作業台の上面、半導体装置を収納するトレーや梱包材、指サック、静電気除去用リストバンド、作業靴の靴底などに用いられている(特許文献1、特許文献2参照)。 Since a semiconductor device manufactured using microfabrication technology is easily damaged by static electricity, a conductive member having a resistance value of about 1 kΩ to 10 14 Ω is statically protected from static electricity at the manufacturing site. Used as an electrical protection member. Specifically, the conductive member for electrostatic protection stores the tip of tweezers used for handling the semiconductor device, the floor surface of the work place, the upper surface of the work table on which the semiconductor device is placed, and the semiconductor device. It is used for trays, packing materials, finger sack, wristbands for removing static electricity, and shoe soles of work shoes (see Patent Document 1 and Patent Document 2).

ところで、上述の導電性部材の抵抗値が低すぎると、保護対象物の半導体装置に帯電した電荷が瞬時に放電するため、過大な放電電流が発生し、保護対象物にダメージを与える。このため、保護対象物に帯電した電荷による放電電流を抑制すると共に帯電を防止する必要上、導電性部材の抵抗値を上述の1kΩ〜1014Ω程度の適正値に設定する必要があり、この抵抗値を測定評価するための手段が要請されている。 By the way, if the resistance value of the conductive member described above is too low, the electric charge charged on the semiconductor device to be protected is instantaneously discharged, so that an excessive discharge current is generated and damages the protection target. For this reason, it is necessary to set the resistance value of the conductive member to an appropriate value of about 1 kΩ to 10 14 Ω as described above in order to suppress the discharge current due to the charge charged on the object to be protected and prevent charging. A means for measuring and evaluating the resistance value is required.

図4を参照して、導電性部材の抵抗値を測定するための従来方法を説明する。同図に示す例は、作業場所の床面に敷かれる導電性マット1000の抵抗を測定する場合を示し、被測定対象物の導電性マット1000は金属板110の上に敷かれ、このマット1000の上に重さ2キログラム程の電極1300が載置される。また、電極1300と金属板1100との間に抵抗計1200が接続される。   A conventional method for measuring the resistance value of the conductive member will be described with reference to FIG. The example shown in the figure shows a case where the resistance of the conductive mat 1000 placed on the floor surface of the work place is measured. The conductive mat 1000 of the object to be measured is placed on the metal plate 110 and this mat 1000 is shown. An electrode 1300 weighing about 2 kilograms is placed on the substrate. An ohmmeter 1200 is connected between the electrode 1300 and the metal plate 1100.

電極1300の重さは、導電性マット1000に加えられる作業者の体重を表現したものであり、この電極1300により導電性部材に加えられる荷重が大きい程、測定値として得られる抵抗値が小さくなる傾向を示す。このため、静電気対策上の安全を見込んで、電極1300の重さは実際の人体による荷重よりも小さく設定され、一般には2キログラム程度に設定されている。この従来技術によれば、マット1000に約2キログラムの荷重が加えられた状態で抵抗計1200によりマット1000の抵抗値が測定される。
特開平9−143279号公報 特開平8−204376号公報
The weight of the electrode 1300 represents the weight of the worker applied to the conductive mat 1000. The greater the load applied to the conductive member by the electrode 1300, the smaller the resistance value obtained as a measurement value. Show the trend. For this reason, the weight of the electrode 1300 is set to be smaller than the actual load by the human body, and is generally set to about 2 kilograms in anticipation of safety against static electricity. According to this prior art, the resistance value of the mat 1000 is measured by the resistance meter 1200 in a state where a load of about 2 kilograms is applied to the mat 1000.
JP-A-9-143279 JP-A-8-204376

しかしながら、上述の従来方法に係る抵抗値測定方法によれば、導電性部材に載置される保護対象物が半導体装置等のような場合、導電性部材と保護対象物との間の接触面積が極めて小さく、且つ保護対象物により導電性部材に加えられる荷重が小さくなる。このため、保護対象物に帯電した電荷が導電性部材を介して放電せず、従って導電性部材の抵抗値を測定することができないという問題がある。   However, according to the resistance value measuring method according to the conventional method described above, when the protection target placed on the conductive member is a semiconductor device or the like, the contact area between the conductive member and the protection target is small. It is extremely small and the load applied to the conductive member by the object to be protected is small. For this reason, there is a problem that the electric charge charged on the object to be protected is not discharged through the conductive member, and therefore the resistance value of the conductive member cannot be measured.

この発明は、上記事情に鑑みてなされたもので、静電気から保護すべき保護対象物と導電性部材との間の接触面積や荷重の影響を受けることなく、保護対象物に帯電した電荷の放電に対する導電性部材の実効抵抗値を適切に測定することができる抵抗測定装置および方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and discharge of electric charges charged on an object to be protected without being affected by the contact area or load between the object to be protected and the conductive member to be protected from static electricity. An object of the present invention is to provide a resistance measuring apparatus and method capable of appropriately measuring the effective resistance value of a conductive member against the above.

上記課題を解決するため、この発明は以下の構成を有する。
即ち、この発明に係る抵抗測定装置は、被測定対象物に当接される電極と、前記電極と所定ノードとの間に接続された容量性素子と、前記容量素子を試験規格よりも高い任意の電圧に充電する充電手段と、前記電極が被測定対象物に当接されることにより前記容量素子が放電される際の前記電極の電圧を測定する電圧測定手段と、前記電圧測定手段の測定結果に基づき前記被測定対象物の時定数を取得する時定数取得手段と、前記時定数を前記被測定対象物の抵抗値に換算する抵抗値換算手段と、を備える。
In order to solve the above problems, the present invention has the following configuration.
That is, the resistance measuring apparatus according to the present invention includes an electrode that is in contact with an object to be measured, a capacitive element connected between the electrode and a predetermined node, and an arbitrary element that is higher than a test standard. Charging means for charging to the voltage of the electrode, voltage measuring means for measuring the voltage of the electrode when the capacitive element is discharged when the electrode is in contact with the object to be measured, and measurement by the voltage measuring means Time constant acquisition means for acquiring a time constant of the object to be measured based on a result, and resistance value conversion means for converting the time constant into a resistance value of the object to be measured.

前記抵抗測定装置において、例えば、前記時定数取得手段は、前記電圧測定手段により測定された電圧が、前記試験規格に応じた所定の第1電圧から、前記時定数を規定する所定係数を前記第1電圧に乗じて得られる第2電圧に変化するまでの時間を計時し、該時間を前記時定数として出力することを特徴とする。   In the resistance measurement device, for example, the time constant acquisition unit may be configured such that the voltage measured by the voltage measurement unit obtains a predetermined coefficient that defines the time constant from a predetermined first voltage according to the test standard. The time until the second voltage obtained by multiplying by one voltage is measured, and the time is output as the time constant.

また、前記抵抗測定装置において、例えば、前記電圧測定手段は、表面電位計であることを特徴とする。
また、前記抵抗測定装置において、例えば、前記電極は、前記被測定対象物が静電保護用部材として適用される装置に応じた形状を有することを特徴とする。
また、前記抵抗測定装置において、例えば、前記電極に加えられる荷重を測定する荷重測定手段をさらに備えたことを特徴とする。
In the resistance measuring apparatus, for example, the voltage measuring means is a surface potentiometer.
In the resistance measurement device, for example, the electrode has a shape corresponding to a device to which the measurement object is applied as an electrostatic protection member.
Further, the resistance measuring device further includes, for example, load measuring means for measuring a load applied to the electrode.

この発明に係る抵抗測定方法は、(a)測定の際に被測定対象物に当接されるべき電極に接続された所定の容量性素子を、試験規格よりも高い任意の電圧に予め充電する充電ステップと、(b)前記電極を前記被測定対象物に当接させることにより、前記電極に接続された容量性素子を放電させる放電ステップと、(c)前記容量素子が放電される際の前記電極の電圧を測定する電圧測定ステップと、(d)前記電極の電圧測定結果に基づき前記被測定対象物の時定数を取得する時定数取得ステップと、(e)前記時定数を前記被測定対象物の抵抗値に換算する抵抗値換算ステップと、を含む。   In the resistance measuring method according to the present invention, (a) a predetermined capacitive element connected to an electrode to be brought into contact with an object to be measured at the time of measurement is charged in advance to an arbitrary voltage higher than the test standard. A charging step; (b) a discharging step in which the capacitive element connected to the electrode is discharged by bringing the electrode into contact with the object to be measured; and (c) when the capacitive element is discharged. A voltage measurement step for measuring the voltage of the electrode; (d) a time constant acquisition step for acquiring a time constant of the object to be measured based on a voltage measurement result of the electrode; and (e) a time constant of the measurement target. And a resistance value conversion step for converting into the resistance value of the object.

また、前記抵抗測定方法において、例えば、前記時定数取得ステップでは、前記電圧測定ステップで測定された電圧が、前記試験規格に応じた所定の第1電圧から、前記時定数を規定する所定係数を前記第1電圧に乗じて得られる第2電圧に変化するまでの時間を計時し、該時間を前記時定数として出力することを特徴とする。   In the resistance measurement method, for example, in the time constant acquisition step, the voltage measured in the voltage measurement step is a predetermined coefficient that defines the time constant from a predetermined first voltage according to the test standard. The time until the second voltage obtained by multiplying the first voltage is measured, and the time is output as the time constant.

この発明によれば、静電気から保護すべき保護対象物と導電性部材との間の接触面積や荷重の影響を受けることなく、保護対象物に帯電した電荷の放電に対する導電性部材の実効抵抗値を適切に測定することができる。   According to the present invention, the effective resistance value of the conductive member against the discharge of the electric charge charged on the protection target without being affected by the contact area or load between the protection target and the conductive member to be protected from static electricity. Can be measured appropriately.

以下、本発明の実施形態について、図面を参照して説明する。
図1は、本実施形態に係る抵抗測定装置1の概観を概略的に示す図である。同図に示すように、この抵抗測定装置1は、測定の際に被測定対象物(図示せず)に当接されるべき電極100と、装置本体200とから構成され、電極100は、電気的に絶縁された状態で装置本体200に固定されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically showing an overview of a resistance measuring apparatus 1 according to the present embodiment. As shown in the figure, the resistance measuring apparatus 1 is composed of an electrode 100 to be brought into contact with an object to be measured (not shown) at the time of measurement, and an apparatus main body 200. It is fixed to the apparatus main body 200 in an insulated state.

図2に、本抵抗測定装置の構成を示す。同図に示す構成要素のうち、表面電位計201、演算処理部202、表示部203、コンデンサ(容量性素子)204、電圧源205、スイッチ206は、上述の装置本体200に収納されている。コンデンサ204の容量値は、切替可能(可変)となっており、複数の所定容量値の中から選択可能となっている。後述するように、この容量値は、抵抗値の測定レンジを決定する意味を有している。   FIG. 2 shows the configuration of the resistance measuring apparatus. Among the components shown in the figure, the surface electrometer 201, the arithmetic processing unit 202, the display unit 203, the capacitor (capacitive element) 204, the voltage source 205, and the switch 206 are housed in the apparatus main body 200 described above. The capacitance value of the capacitor 204 is switchable (variable) and can be selected from a plurality of predetermined capacitance values. As will be described later, this capacitance value has the meaning of determining the measurement range of the resistance value.

ここで、コンデンサ204は、電極100と、接地された装置本体200の筐体(所定ノード)との間に接続されている。即ち、コンデンサ204は、一端が接地電位(グランド電位)とされ、他端が電極100に接続されたコンデンサ回路を形成する。また、電極100と接地との間には、このコンデンサ204を試験規格よりも高い所定の電圧に充電するための充電手段として、電圧源205とスイッチ206とからなる直列回路が上記コンデンサ204に対して並列に接続されている。   Here, the capacitor 204 is connected between the electrode 100 and the case (predetermined node) of the grounded apparatus main body 200. That is, the capacitor 204 forms a capacitor circuit in which one end is set to the ground potential (ground potential) and the other end is connected to the electrode 100. In addition, a series circuit including a voltage source 205 and a switch 206 is connected between the electrode 100 and the ground as a charging means for charging the capacitor 204 to a predetermined voltage higher than the test standard. Connected in parallel.

また、上記電極100の表面に対向するようにして、電圧測定手段として表面電位計201が装置本体200に設けられている。表面電位計201の測定結果を示す信号は、抵抗値の演算処理を実行する演算処理部202に与えられ、この演算処理部202の演算結果を示す信号は表示部203に与えられる。なお、特に図示していないが、上記表面電位計201、演算処理部202、および表示部203の各部に対する給電回路も装置本体200に内蔵されている。   Further, a surface electrometer 201 is provided in the apparatus main body 200 as a voltage measuring means so as to face the surface of the electrode 100. A signal indicating the measurement result of the surface electrometer 201 is given to the calculation processing unit 202 that executes the calculation process of the resistance value, and a signal showing the calculation result of the calculation processing unit 202 is given to the display unit 203. Although not particularly illustrated, a power supply circuit for each of the surface electrometer 201, the arithmetic processing unit 202, and the display unit 203 is also built in the apparatus main body 200.

次に、本実施形態の動作を説明する。
測定の際、まず、作業者の操作によりスイッチ206を閉じ、電圧源205により接地と電極100との間に試験規格よりも高い所定の電圧Vintを印加する。これにより、電極100に接続されたコンデンサ204を、電圧Vintに予め充電する。コンデンサ204が電圧Vintに充電されると、これを表面電位計201が検出し、演算処理部202がスイッチ206を開放制御する。これにより、コンデンサ204が電圧Vintに充電された状態に維持され、電極100は、コンデンサ206に蓄えられた電荷に帯電した状態となる。
Next, the operation of this embodiment will be described.
At the time of measurement, first, the switch 206 is closed by an operator's operation, and a predetermined voltage Vint higher than the test standard is applied between the ground and the electrode 100 by the voltage source 205. As a result, the capacitor 204 connected to the electrode 100 is charged to the voltage Vint in advance. When the capacitor 204 is charged to the voltage Vint, the surface electrometer 201 detects this, and the arithmetic processing unit 202 controls the switch 206 to be opened. As a result, the capacitor 204 is maintained in a state of being charged to the voltage Vint, and the electrode 100 is charged to the electric charge stored in the capacitor 206.

続いて、作業者が、図示しない被測定対象物に電極100を接触させる。ここで、被測定対象物とは、例えば、片面をグランド面に接触した導電体の物体(マット、電子デバイス用のトレーや梱包材など)であり、測定対象量の抵抗R(図示なし)を有する。電極100を被測定対象物に接触させると、電極100に接続されたコンデンサ204に蓄えられた電荷が被測定対象物を介して放電され、電圧Vintに充電されたコンデンサ204の電荷は、被測定対象物の抵抗Rを介してグランドに流れ、電極100の電圧Vが、図3に点線で示すように、電圧Vintから時間の経過とともに指数関数的に低下してゼロ(グランド電位)に近づく。   Subsequently, an operator brings the electrode 100 into contact with a measurement target (not shown). Here, the object to be measured is, for example, a conductive object (mat, electronic device tray, packing material, etc.) whose one surface is in contact with the ground surface, and a resistance R (not shown) of the amount to be measured. Have. When the electrode 100 is brought into contact with the object to be measured, the charge stored in the capacitor 204 connected to the electrode 100 is discharged through the object to be measured, and the charge of the capacitor 204 charged to the voltage Vint is measured. As shown by a dotted line in FIG. 3, the voltage V of the electrode 100 decreases exponentially with the passage of time and approaches zero (ground potential).

このとき、被測定対象物に印加される電圧Vは、図3に実線で示され、次式(1)で表される。
V=V1×exp(-t/CR) ・・・(1)
上式(1)において、Cはコンデンサ204の容量であり、Rは被測定対象物の抵抗である。これらの積CRは時定数と呼ばれ、これをτで表す。また、V1は放電ピーク電圧であり、tは時間である。
At this time, the voltage V applied to the object to be measured is indicated by a solid line in FIG. 3 and is expressed by the following equation (1).
V = V1 × exp (-t / CR) (1)
In the above equation (1), C is the capacitance of the capacitor 204, and R is the resistance of the object to be measured. These products CR are called time constants and are represented by τ. V1 is the discharge peak voltage, and t is time.

表面電位計201は、電極100の表面電位を常時測定し、その測定結果を、タイマー回路を含む演算処理部202に出力する。
演算処理部202は、表面電位計201から測定結果を入力すると、以下のように、この測定結果に基づき被測定対象物の抵抗Rを演算する。即ち、演算処理部202は、表面電位計201の測定結果から被測定対象物の時定数τを取得し、この取得した時定数を被測定対象物の抵抗Rに換算する。
The surface potential meter 201 constantly measures the surface potential of the electrode 100 and outputs the measurement result to the arithmetic processing unit 202 including a timer circuit.
When the measurement processing unit 202 inputs the measurement result from the surface electrometer 201, the calculation processing unit 202 calculates the resistance R of the object to be measured based on the measurement result as follows. That is, the arithmetic processing unit 202 acquires the time constant τ of the measurement target object from the measurement result of the surface electrometer 201 and converts the acquired time constant into the resistance R of the measurement target object.

ここで、図3を参照して、時定数τの取得方法を説明する。同図において、実線は、放電電流が被測定対象を介して流れることによって被測定対象物に発生する電圧波形を示し、破線は、コンデンサ204の放電電圧波形を示す。同図に示すように、時刻t0で、上述の電極100が被測定対象物に当接されると、これにより、コンデンサ204が放電され、その端子電圧が徐々に低下する。一方、コンデンサ204の放電電流が被測定対象物の抵抗Rを流れ、この被測定対象物には、放電ピーク電圧V1をピーク値として徐々に減少する電圧が発生する。この放電ピーク電圧V1は、試験規格に応じたものであり、例えば1000Vである。即ち、上述の充電電圧Vint(即ち、電圧源205の電圧)は、放電ピーク電圧V1が試験規格で定められた所定値となるように適切に設定される。   Here, a method for obtaining the time constant τ will be described with reference to FIG. In the figure, a solid line indicates a voltage waveform generated in the object to be measured as a discharge current flows through the object to be measured, and a broken line indicates a discharge voltage waveform of the capacitor 204. As shown in the figure, when the electrode 100 is brought into contact with the object to be measured at time t0, the capacitor 204 is thereby discharged, and the terminal voltage thereof gradually decreases. On the other hand, the discharge current of the capacitor 204 flows through the resistance R of the object to be measured, and a voltage that gradually decreases with the discharge peak voltage V1 as a peak value is generated in the object to be measured. This discharge peak voltage V1 corresponds to the test standard, and is, for example, 1000V. That is, the above-mentioned charging voltage Vint (that is, the voltage of the voltage source 205) is appropriately set so that the discharge peak voltage V1 becomes a predetermined value determined by the test standard.

図3に実線で示される電圧波形は、被測定対象物の時定数τに応じたものとなる。
ここで、t=CRとし、そのときの電圧VをV2とすれば、上式(1)から次式(2)が得られる。ただし、eは自然対数の底である。
V2=V1/e ・・・(2)
被測定対象物の時定数τ(=CR)は、放電ピーク電圧V1が測定された時刻t1から、上式(2)の電圧V2が測定される時刻t2までの経過時間として測定される。上式(2)より、電圧V2は、放電ピーク電圧V1に自然対数の底eの逆数(所定係数=約0.37)を乗算して得られ、放電ピーク電圧V1の約37パーセントの値となる。
The voltage waveform indicated by the solid line in FIG. 3 corresponds to the time constant τ of the object to be measured.
Here, if t = CR and the voltage V at that time is V2, the following equation (2) is obtained from the above equation (1). Where e is the base of the natural logarithm.
V2 = V1 / e (2)
The time constant τ (= CR) of the measurement object is measured as an elapsed time from the time t1 when the discharge peak voltage V1 is measured to the time t2 when the voltage V2 of the above equation (2) is measured. From the above equation (2), the voltage V2 is obtained by multiplying the discharge peak voltage V1 by the reciprocal of the base e of the natural logarithm (predetermined coefficient = about 0.37), and has a value of about 37 percent of the discharge peak voltage V1. Become.

演算処理部202は、上述のようにして取得した時定数τから被測定対象物の抵抗Rを算出する。即ち、抵抗Rをτ/Cから算出する。
一例として、コンデンサ204の容量値Cを0.1pFとし、時定数τとして0.1秒が測定された場合、抵抗Rとして1Mオームが得られる。
The arithmetic processing unit 202 calculates the resistance R of the measurement object from the time constant τ acquired as described above. That is, the resistance R is calculated from τ / C.
As an example, when the capacitance value C of the capacitor 204 is 0.1 pF and the time constant τ is measured for 0.1 seconds, 1 M ohm is obtained as the resistance R.

本実施形態では、表面電位計201を用いている関係上、測定値の下限は、表面電位計201の動作周波数に依存する。即ち、表面電位計201は、1秒間に500〜1000回程度の頻度で開閉動作するゲートを介して電極100からの電気力線を取り込み、そのときに誘導される電圧波形から電位を検出している。このため、図3に実線で示す電圧波形の時定数τの値が小さくなると、表面電位計201による定数数τの測定精度が低下する。   In the present embodiment, since the surface electrometer 201 is used, the lower limit of the measured value depends on the operating frequency of the surface electrometer 201. That is, the surface electrometer 201 takes in the electric lines of force from the electrode 100 through the gate that opens and closes at a frequency of about 500 to 1000 times per second, and detects the potential from the voltage waveform induced at that time. Yes. For this reason, when the value of the time constant τ of the voltage waveform indicated by the solid line in FIG. 3 decreases, the measurement accuracy of the constant number τ by the surface electrometer 201 decreases.

一方、測定値の上限は、作業者が電極100を被測定対象物に当接した状態を維持する時間に依存する。即ち、電極100を被測定対象物に当接した状態をながく保つほど、時定数τの上限が改善され、従って測定値の上限が改善される。しかしながら、作業時間には限りがあるため、例えば時定数τの上限を100秒に制限すれば、抵抗値Rとして1GΩまで測定できることになる(C=0.1pFの場合)。   On the other hand, the upper limit of the measured value depends on the time during which the operator maintains the state in which the electrode 100 is in contact with the object to be measured. That is, the upper limit of the time constant τ is improved as the electrode 100 is kept in contact with the object to be measured, and thus the upper limit of the measured value is improved. However, since the working time is limited, for example, if the upper limit of the time constant τ is limited to 100 seconds, the resistance value R can be measured up to 1 GΩ (when C = 0.1 pF).

また、コンデンサ204の容量値Cを変えれば、同一の時定数τに対する抵抗値Rが異なるから、コンデンサ204の容量値Cを測定レンジ切替用のパラメータとすることができる。即ち、表面電位計201の周波数特性に基づく測定精度上の理由から時定数τを一定範囲に制限したとしても、コンデンサ204の容量値Cを切り替えることにより、抵抗値Rの表示範囲を切り替えることができ、結果として、表面電位計201の周波数特性上の制約にかかわらず、抵抗値Rの測定範囲を改善することができる。   Further, if the capacitance value C of the capacitor 204 is changed, the resistance value R for the same time constant τ is different, so that the capacitance value C of the capacitor 204 can be used as a parameter for switching the measurement range. That is, even if the time constant τ is limited to a certain range for measurement accuracy reasons based on the frequency characteristics of the surface potential meter 201, the display range of the resistance value R can be switched by switching the capacitance value C of the capacitor 204. As a result, the measurement range of the resistance value R can be improved regardless of the restriction on the frequency characteristics of the surface electrometer 201.

一例として、容量値Cおよび時定数τに対する抵抗値Rの測定可能範囲を示す。
C=10μF,τ=0.01〜99秒の場合、R=103〜10Ω。
C=0.1μF,τ=0.01〜99秒の場合、R=105〜10Ω。
C=1000pF,τ=0.01〜99秒の場合、R=107〜1011Ω。
即ち、この例から理解されるように、時定数τの測定範囲を0.01〜99秒に固定したとしても、コンデンサ204の容量値Cを切り替えることにより、抵抗値Rの測定範囲を任意に変えることができる。従って表面電位計201の周波数特性の制約を受けることなく、抵抗値Rの測定範囲を拡大することができる。
As an example, the measurable range of the resistance value R with respect to the capacitance value C and the time constant τ is shown.
When C = 10 μF and τ = 0.01 to 99 seconds, R = 103 to 10 7 Ω.
When C = 0.1 μF and τ = 0.01 to 99 seconds, R = 105 to 10 9 Ω.
When C = 1000 pF and τ = 0.01 to 99 seconds, R = 107 to 10 11 Ω.
That is, as understood from this example, even if the measurement range of the time constant τ is fixed to 0.01 to 99 seconds, the measurement range of the resistance value R can be arbitrarily set by switching the capacitance value C of the capacitor 204. Can be changed. Therefore, the measurement range of the resistance value R can be expanded without being restricted by the frequency characteristics of the surface electrometer 201.

以上、この発明の一実施形態を説明したが、本発明は、上述の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。例えば、上述の実施形態では、電圧測定手段として表面電位計201を用いたが、通常の電圧計を用いてもよい。ただし、通常の電圧計を用いた場合、高電圧に対する安全上の理由から、測定電圧の上限が制限される不都合がある。これに対し、上述の実施形態では表面電位計201を用いているので、通常の電圧計を用いた場合の上述の不都合を回避することができ、測定電圧の上限を大幅に拡大することができる。   Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and design changes and the like within a scope not departing from the gist of the present invention are also included in the present invention. For example, in the above-described embodiment, the surface potentiometer 201 is used as the voltage measuring unit, but a normal voltmeter may be used. However, when a normal voltmeter is used, there is a disadvantage that the upper limit of the measurement voltage is limited for safety reasons against high voltages. On the other hand, since the surface electrometer 201 is used in the above-described embodiment, the above-described disadvantages when a normal voltmeter is used can be avoided, and the upper limit of the measurement voltage can be greatly expanded. .

また、上述の実施形態では、電極100に形状については特に限定しなかったが、この形状を、被測定対象物が静電保護用部材として適用される装置に応じた形状を有するものとすれば、実際に保護対象とされる装置を用いた場合に近似した測定を行うことができ、一層測定精度を改善することができる。この電極100の形状の具体例としては、被測定対象物による静電気保護対象とされる半導体チップが封止されたパッケージのリード端子と同一形状、針状、球状、板状などが挙げられる。   In the above-described embodiment, the shape of the electrode 100 is not particularly limited. However, this shape is assumed to have a shape corresponding to a device to which the measurement target is applied as an electrostatic protection member. Thus, it is possible to perform an approximate measurement when using a device that is actually a protection target, and to further improve the measurement accuracy. Specific examples of the shape of the electrode 100 include the same shape, needle shape, spherical shape, and plate shape as the lead terminal of the package in which the semiconductor chip to be electrostatically protected by the object to be measured is sealed.

さらに、電極100が被測定対象物に当接されることにより、この電極100に加えられる荷重を測定する荷重測定手段をさらに備えるものとしてもよい。これにより、荷重を考慮に入れて放電を適切に再現することができ、さらに一層精度よく被測定対象物の抵抗値を測定することが可能になる。   Furthermore, it is good also as a thing further provided with the load measurement means which measures the load applied to this electrode 100, when the electrode 100 contact | abuts to a to-be-measured object. As a result, the discharge can be appropriately reproduced taking the load into consideration, and the resistance value of the object to be measured can be measured with higher accuracy.

本発明の実施形態に係る抵抗測定装置の概観を概略的に示す斜視図である。It is a perspective view showing roughly an outline of a resistance measuring device concerning an embodiment of the present invention. 本発明の実施形態に係る抵抗測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the resistance measuring apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る抵抗測定装置の動作原理を説明するための波形図である。It is a wave form diagram for demonstrating the principle of operation of the resistance measuring apparatus which concerns on embodiment of this invention. 従来技術に係る抵抗測定方法を説明するための説明図である。It is explanatory drawing for demonstrating the resistance measuring method which concerns on a prior art.

符号の説明Explanation of symbols

100;電極、200;装置本体、201;表面電位計、202;演算処理部、203;表示部、204;コンデンサ、205;電圧源、206;スイッチ。   DESCRIPTION OF SYMBOLS 100; Electrode, 200; Apparatus main body, 201; Surface electrometer, 202; Arithmetic processing part, 203; Display part, 204; Capacitor, 205; Voltage source, 206;

Claims (7)

被測定対象物に当接される電極と、
前記電極と所定ノードとの間に接続された容量性素子と、
前記容量素子を試験規格よりも高い任意の電圧に充電する充電手段と、
前記電極が被測定対象物に当接されることにより前記容量素子が放電される際の前記電極の電圧を測定する電圧測定手段と、
前記電圧測定手段の測定結果に基づき前記被測定対象物の時定数を取得する時定数取得手段と、
前記時定数を前記被測定対象物の抵抗値に換算する抵抗値換算手段と、
を備えた抵抗測定装置。
An electrode in contact with an object to be measured;
A capacitive element connected between the electrode and a predetermined node;
Charging means for charging the capacitive element to an arbitrary voltage higher than a test standard;
Voltage measuring means for measuring a voltage of the electrode when the capacitive element is discharged by contacting the electrode with an object to be measured;
Time constant obtaining means for obtaining a time constant of the object to be measured based on a measurement result of the voltage measuring means;
Resistance value conversion means for converting the time constant into a resistance value of the object to be measured;
A resistance measuring device.
前記時定数取得手段は、
前記電圧測定手段により測定された電圧が、前記試験規格に応じた所定の第1電圧から、前記時定数を規定する所定係数を前記第1電圧に乗じて得られる第2電圧に変化するまでの時間を計時し、該時間を前記時定数として出力することを特徴とする請求項1に記載された抵抗値測定装置。
The time constant acquisition means includes
Until the voltage measured by the voltage measuring means changes from a predetermined first voltage according to the test standard to a second voltage obtained by multiplying the first voltage by a predetermined coefficient that defines the time constant. 2. The resistance value measuring apparatus according to claim 1, wherein time is measured and the time is output as the time constant.
前記電圧測定手段は、表面電位計であることを特徴とする請求項1または2の何れか1項に記載された抵抗値測定装置。   The resistance value measuring apparatus according to claim 1, wherein the voltage measuring unit is a surface potentiometer. 前記電極は、前記被測定対象物が静電保護用部材として適用される装置に応じた形状を有することを特徴とする請求項1ないし3の何れか1項に記載された抵抗値測定装置。   The resistance measuring device according to any one of claims 1 to 3, wherein the electrode has a shape corresponding to a device to which the object to be measured is applied as an electrostatic protection member. 前記電極に加えられる荷重を測定する荷重測定手段をさらに備えたことを特徴とする請求項1ないし4の何れか1項に記載された抵抗値測定装置。   5. The resistance value measuring apparatus according to claim 1, further comprising a load measuring unit that measures a load applied to the electrode. (a)測定の際に被測定対象物に当接されるべき電極に接続された所定の容量性素子を、試験規格よりも高い任意の電圧に予め充電する充電ステップと、
(b)前記電極を前記被測定対象物に当接させることにより、前記電極に接続された容量性素子を放電させる放電ステップと、
(c)前記容量素子が放電される際の前記電極の電圧を測定する電圧測定ステップと、
(d)前記電極の電圧測定結果に基づき前記被測定対象物の時定数を取得する時定数取得ステップと、
(e)前記時定数を前記被測定対象物の抵抗値に換算する抵抗値換算ステップと、
を含む抵抗測定方法。
(A) a charging step of precharging a predetermined capacitive element connected to an electrode to be brought into contact with an object to be measured at the time of measurement to an arbitrary voltage higher than a test standard;
(B) a discharging step of discharging the capacitive element connected to the electrode by bringing the electrode into contact with the object to be measured;
(C) a voltage measuring step for measuring a voltage of the electrode when the capacitive element is discharged;
(D) a time constant acquisition step of acquiring a time constant of the object to be measured based on a voltage measurement result of the electrode;
(E) a resistance value conversion step for converting the time constant into a resistance value of the object to be measured;
A resistance measurement method including:
前記時定数取得ステップでは、
前記電圧測定ステップで測定された電圧が、前記試験規格に応じた所定の第1電圧から、前記時定数を規定する所定係数を前記第1電圧に乗じて得られる第2電圧に変化するまでの時間を計時し、該時間を前記時定数として出力することを特徴とする請求項6に記載された抵抗値測定方法。
In the time constant acquisition step,
Until the voltage measured in the voltage measurement step changes from a predetermined first voltage according to the test standard to a second voltage obtained by multiplying the first voltage by a predetermined coefficient that defines the time constant. 7. The resistance value measuring method according to claim 6, wherein time is measured and the time is output as the time constant.
JP2004015773A 2004-01-23 2004-01-23 Method and instrument for measuring resistance Pending JP2005207926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004015773A JP2005207926A (en) 2004-01-23 2004-01-23 Method and instrument for measuring resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004015773A JP2005207926A (en) 2004-01-23 2004-01-23 Method and instrument for measuring resistance

Publications (1)

Publication Number Publication Date
JP2005207926A true JP2005207926A (en) 2005-08-04

Family

ID=34901144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004015773A Pending JP2005207926A (en) 2004-01-23 2004-01-23 Method and instrument for measuring resistance

Country Status (1)

Country Link
JP (1) JP2005207926A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023119A (en) * 2004-07-06 2006-01-26 Fab Solution Kk Method and device for evaluating electrostatic discharge damage preventing material
JP2007292686A (en) * 2006-04-27 2007-11-08 Harada Sangyo Kk Resistance measuring device and method
WO2010050673A2 (en) * 2008-10-30 2010-05-06 한국표준과학연구원 Resistance measuring apparatus and measuring method
JP2010190815A (en) * 2009-02-20 2010-09-02 Toshiyuki Sugimoto Device and method for measuring surface resistance
KR101114971B1 (en) * 2008-07-31 2012-03-09 가부시끼가이샤 다쓰노.메카트로닉스 Oil supplying apparatus
JP2012247251A (en) * 2011-05-26 2012-12-13 Yokogawa Electric Corp Glass film resistance measuring circuit
CN108535548A (en) * 2018-02-08 2018-09-14 北京东方计量测试研究所 High value resistor measurement method, device, electronic equipment and computer program product

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023119A (en) * 2004-07-06 2006-01-26 Fab Solution Kk Method and device for evaluating electrostatic discharge damage preventing material
JP2007292686A (en) * 2006-04-27 2007-11-08 Harada Sangyo Kk Resistance measuring device and method
KR101114971B1 (en) * 2008-07-31 2012-03-09 가부시끼가이샤 다쓰노.메카트로닉스 Oil supplying apparatus
WO2010050673A2 (en) * 2008-10-30 2010-05-06 한국표준과학연구원 Resistance measuring apparatus and measuring method
WO2010050673A3 (en) * 2008-10-30 2010-06-24 한국표준과학연구원 Resistance measuring apparatus and measuring method
KR100974650B1 (en) 2008-10-30 2010-08-06 한국표준과학연구원 Resistance Measuring Apparatus and Method
JP2010190815A (en) * 2009-02-20 2010-09-02 Toshiyuki Sugimoto Device and method for measuring surface resistance
JP2012247251A (en) * 2011-05-26 2012-12-13 Yokogawa Electric Corp Glass film resistance measuring circuit
CN108535548A (en) * 2018-02-08 2018-09-14 北京东方计量测试研究所 High value resistor measurement method, device, electronic equipment and computer program product
CN108535548B (en) * 2018-02-08 2020-02-07 北京东方计量测试研究所 High-value resistance measuring method, high-value resistance measuring device, electronic equipment and computer-readable storage medium

Similar Documents

Publication Publication Date Title
AU2008206044B2 (en) Methods of performing electrostatic discharge testing on a payment card
US20170010130A1 (en) Pliable capacitive structure apparatus and methods
CN110622012B (en) Current measuring apparatus including charging/discharging device and current measuring method using the same
JP3158063B2 (en) Non-contact voltage measurement method and device
JP2908240B2 (en) Method for measuring charge, method for measuring electrostatic energy, and device for measuring charge
CN111164436A (en) Method, apparatus and computer program for determining the impedance of a conductive device
JPH0146833B2 (en)
JP2005207926A (en) Method and instrument for measuring resistance
US11493394B2 (en) Capacitance detection device
JP3736853B2 (en) Battery recharger
US9513738B2 (en) Input device and position determining method
TW201011308A (en) Circuit for measuring capacitor and method thereof
EP0789249A2 (en) Test method and apparatus for semiconductor element
US7378857B2 (en) Methods and apparatuses for detecting the level of a liquid in a container
US5166624A (en) Method for testing assembly susceptibility to electrostatic discharge events
JP2007292686A (en) Resistance measuring device and method
Merev et al. The construction of a DC high voltage precision divider
JP6688257B2 (en) Charged plate monitor
KR101188161B1 (en) Electronic device measuring method and electronic device measuring apparatus
US5016136A (en) Charge build-up and decay monitor
JP7010169B2 (en) Static eliminator and electronic balance
JP2004012330A (en) Measuring instrument for measuring micro electric current
JP2009103683A (en) Device and method for testing electrostatic charge
US6518765B1 (en) Multi-sensor electrometer
JP2007292685A (en) Charge density measuring device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20051118

A621 Written request for application examination

Effective date: 20061127

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20070613

Free format text: JAPANESE INTERMEDIATE CODE: A711

A977 Report on retrieval

Effective date: 20090820

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090825

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20091222

Free format text: JAPANESE INTERMEDIATE CODE: A02