JP2005206893A - Connector terminal, and surface reforming method for connector terminal - Google Patents

Connector terminal, and surface reforming method for connector terminal Download PDF

Info

Publication number
JP2005206893A
JP2005206893A JP2004015811A JP2004015811A JP2005206893A JP 2005206893 A JP2005206893 A JP 2005206893A JP 2004015811 A JP2004015811 A JP 2004015811A JP 2004015811 A JP2004015811 A JP 2004015811A JP 2005206893 A JP2005206893 A JP 2005206893A
Authority
JP
Japan
Prior art keywords
copper
irradiation
pulse
connector terminal
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004015811A
Other languages
Japanese (ja)
Inventor
Toshihiko Furukawa
利彦 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP2004015811A priority Critical patent/JP2005206893A/en
Publication of JP2005206893A publication Critical patent/JP2005206893A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide connector terminals each composed of copper or a copper alloy having a corrosion resistant finished surface free from a secular change and whose contact resistance is not increased as well by being finished in accordance with prescribed treatment working without the application of nickel substrate plating, e.g., as a copper diffusion barrier, the protection of the substrate plating and the formation of an intermediate plating layer corresponding to the pinholes of gold plating and also without requiring gold plating, and to provide a surface reforming method for connector terminals composed of copper or a copper alloy. <P>SOLUTION: The surface of a comb-shaped producing member for connector terminals each composed of copper or a copper alloy is irradiated with the pulse of an electron beam having energy density at which the surface layer part is instantaneously melted by the irradiation for a short irradiation time limiting the energy quantity to the one at which the melted part is immediately resolidified for one or more times, thus a corrosion resistant-wear resistant copper amorphous layer is formed on the surface part so as to be finished. In this way, surface treatment is made needless. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、基体が銅または銅合金から成るコネクタ用端子の改良及びコネクタ用端子の表面改質加工方法に関する。   The present invention relates to an improvement in a connector terminal whose base is made of copper or a copper alloy, and a surface modification processing method for the connector terminal.

従来、コネクタ用端子としては、黄銅、ベリリウム銅、リン青銅、または洋白等の銅合金からなる基体に、銅の拡散バリヤとしてのニッケルめっき層を施し、さらにその表面に電気特性、耐蝕性に優れた金めっきを施したものが多く、一部に錫めっきしたものが用いられていた。金は電気特性、及び耐食性に優れているため、端子材の表面にめっきする金属としては最適であるが、その反面極めて高価であるため、経済性の点からめっき厚を薄くしたり、電気接点としての機能上必要な部分にのみめっき範囲を限定するなど、その使用量を極力抑える試みがなされて来ている。   Conventionally, as a connector terminal, a nickel plating layer as a copper diffusion barrier is applied to a base made of a copper alloy such as brass, beryllium copper, phosphor bronze, or white, and the surface is further improved in electrical characteristics and corrosion resistance. Many were excellent gold-plated, and some were tin-plated. Gold is excellent as an electrical property and corrosion resistance, so it is ideal as a metal to be plated on the surface of the terminal material. However, it is extremely expensive. Attempts have been made to limit the amount of use as much as possible, for example, by limiting the plating range only to the parts necessary for the function.

しかし、金めっきの厚さを薄くすると、めっきの本質的欠点ピンホール数が増加して、下地金属が腐食される危険性が高くなり、また部分金めっきでは、露出したニッケルめっき面が直接腐食環境に晒される結果、容易に腐食され、ニッケル或いは素地銅の腐食生成物が金めっき表面に移行して接触抵抗の増加を招くなど信頼性を損なう問題があった。このため、薄い金めっき厚、或いは部分めっきとしても、耐食性に優れた端子材の開発が望まれていた。   However, reducing the gold plating thickness increases the number of pinholes, which increases the risk of corrosion of the underlying metal. In partial gold plating, the exposed nickel plating surface is directly corroded. As a result of exposure to the environment, there is a problem that the corrosion is easily corroded, and the corrosion product of nickel or base copper migrates to the gold plating surface and causes an increase in contact resistance, thereby impairing reliability. For this reason, it has been desired to develop a terminal material having excellent corrosion resistance even with a thin gold plating thickness or partial plating.

これが解決手段として、前記銅合金基体の全面に、全体で1〜4μm厚の銅拡散バリヤとしてのニッケルめっき層、及び錫含有量50〜80wt%の中間層としての錫−ニッケル合金めっき層を順次に設け、さらに該錫−ニッケル合金めっき層の少なくとも接点となる表面に金めっき層を設けることが提案されている(特許文献1参照。)。
また、上記中間層の錫−ニッケルめっき層に替え、前記下地のニッケルめっき層より酸化し易い硫化性のニッケルサブライトめっきを中間層として施し、最後に上層として金めっきを施すことも提案されている(特許文献2参照。)。
また、さらに、上記各中間層としてのめっき層を設けるのに替え、最上層として設けられた金めっき層のピンホールに対し、特殊な(A)、(B)2成分を必須とする有機溶剤液より成る封孔処理液により封孔することも提案されている(特許文献3参照。)。
As a solution to this, a nickel plating layer as a copper diffusion barrier having a thickness of 1 to 4 μm as a whole and a tin-nickel alloy plating layer as an intermediate layer having a tin content of 50 to 80 wt% are sequentially formed on the entire surface of the copper alloy substrate. Further, it has been proposed that a gold plating layer be provided on at least the surface of the tin-nickel alloy plating layer that serves as a contact (see Patent Document 1).
It has also been proposed that instead of the intermediate tin-nickel plating layer, sulfide nickel sublite plating that is easier to oxidize than the underlying nickel plating layer is applied as an intermediate layer, and finally gold plating is applied as an upper layer. (See Patent Document 2).
In addition, instead of providing the plating layers as the intermediate layers, an organic solvent containing two special components (A) and (B) for the pinhole of the gold plating layer provided as the uppermost layer. It has also been proposed to seal with a sealing treatment liquid made of a liquid (see Patent Document 3).

しかし、先ず何れの提案も、金または金合金の必要使用量に多少の多い、少ないがあるにしても、高価な金を使用諸費していることには変わりがなく、金めっき処理工程を依然として必要とするものであり、そして、その上で、上述の中間層のめっきによる形成が封孔処理が必要となるものであるから、一段の開発が望まれているのである。   However, first of all, even if there is a little more or less required amount of gold or gold alloy, there is no change in the use of expensive gold. Further, since the formation of the intermediate layer by plating described above requires a sealing treatment, further development is desired.

ところで、プリント基板用コネクタの接触子として、黄銅やリン青銅を基材し、これに酸化防止のためにAuめっきやSnめっきしていたものに替え、めっき処理を要しない、重量百分比で、2〜4%Ni、0.2〜1.5%Si,0.05〜0.25%Mg、残部Cuから成る銅合金を用いることも提案されているが、その実用化の程は定かでない(特許文献4。)。   By the way, as a contact for a printed circuit board connector, brass or phosphor bronze is used as a base material, and this is replaced with Au plating or Sn plating to prevent oxidation. It has been proposed to use a copper alloy composed of ˜4% Ni, 0.2 to 1.5% Si, 0.05 to 0.25% Mg, and the balance Cu, but its practical use is not certain ( Patent Document 4).

特開昭63−121693号公報JP-A-63-121893 特開平06−200395号公報Japanese Patent Laid-Open No. 06-200395 特許第2520981号公報Japanese Patent No. 2520981 実開平05−023433号公報Japanese Utility Model Publication No. 05-023433

そこで、本発明は、銅または銅合金をコネクタ用端子として用いるもので、銅拡散バリヤなどとしてのニッケル下地めっきや、該下地めっきの保護及び金めっきのピンホール対応の中間めっき層を形成することなく、そしてさらに金めっきを必要とすることなく、所定の処理加工によって仕上げることにより、耐蝕性で、経年変化することなく、かつ接触抵抗も増大しない仕上げ表面を有するコネクタ用端子及び、銅または銅合金から成るコネクタ用端子の表面改質加工方法を提案することにある。   Therefore, the present invention uses copper or a copper alloy as a connector terminal, and forms a nickel base plating as a copper diffusion barrier or the like, and forms an intermediate plating layer corresponding to the protection of the base plating and a pinhole of gold plating. And a connector terminal having a finish surface that is corrosion resistant, does not change over time, and does not increase contact resistance by finishing by a predetermined processing without further gold plating, and copper or copper The object is to propose a method for modifying the surface of a connector terminal made of an alloy.

前述の本発明の目的は、(1)銅、または銅合金からなるコネクタ用端子の表面に、照射により表層部分が所定の溶解状態となるエネルギ密度を持ち、かつ、前記溶解表層部分が溶解後直ちに再凝固するエネルギ照射量に制限する照射時間の短い電子ビームのパルスを少なくとも1回以上照射して、前記表面部分に銅アモルファス層を形成させるコネクタ用端子の表面改質加工方法とすることにより達成される。   The objects of the present invention are as follows: (1) The surface of a connector terminal made of copper or a copper alloy has an energy density at which a surface layer portion is brought into a predetermined dissolved state by irradiation, and the dissolved surface layer portion is dissolved. By a surface modification processing method for a connector terminal in which a copper amorphous layer is formed on the surface portion by irradiating at least once with a pulse of an electron beam having a short irradiation time, which is limited to the energy irradiation amount that is immediately re-solidified. Achieved.

また、前述の本発明の目的は、(2)銅、銅合金、または所要の金属または合金めっきを施した銅または銅合金から成るコネクタ用端子の少なくとも接触面となる表面部分に、
照射軸と垂直な断面の径Lrが、Lr=x×10mm(但し、x=0.1、0.2、0.3、・・・0.5、・・・0.8、・・・1.0、2.0、・・・5.0、・・・7.0)、エネルギ密度Edが、Ed=0.1〜10J/cm、パルスビームのパルス時間幅τsが、τs=0.05〜5.0μsの電子ビームのパルスを少なくとも1回以上照射して、前記表面部分に電気接触面としての銅アモルファス層を形成させるコネクタ用端子の表面改質加工方法とすることにより達成される。
In addition, the object of the present invention described above is (2) at least on a surface portion which becomes a contact surface of a connector terminal made of copper, a copper alloy, or a copper or copper alloy plated with a required metal or alloy,
The diameter Lr of the cross section perpendicular to the irradiation axis is Lr = x × 10 mm (where x = 0.1, 0.2, 0.3,... 0.5,... 0.8,. 1.0, 2.0, ... 5.0, ... 7.0), the energy density Ed is, Ed = 0.1~10J / cm 2, a pulse beam of the pulse time width .tau.s is, .tau.s = Achieved by a surface modification processing method for a connector terminal in which a 0.05 to 5.0 μs electron beam pulse is irradiated at least once to form a copper amorphous layer as an electrical contact surface on the surface portion. Is done.

そして、また、前述の本発明の目的は、(3)銅、または銅合金からなるコネクタ用端子の表面を、照射により表層部分が瞬時に溶解するエネルギ密度を持ち、かつ前記溶解表層部分が溶解後再凝固するエネルギ量に制限された照射時間の短い電子ビームのパルスを少なくとも1回照射して前記表面部分に銅アモルファス層を形成させて表面を仕上げて成るコネクタ用端子とすることにより達成される。   The object of the present invention is as follows: (3) The surface of the connector terminal made of copper or a copper alloy has an energy density that instantaneously dissolves the surface layer portion by irradiation, and the melted surface layer portion dissolves. This is achieved by irradiating a pulse of an electron beam with a short irradiation time limited to the amount of energy to be re-solidified at least once to form a copper amorphous layer on the surface portion and finishing the surface to provide a connector terminal. The

また、さらに前述の本発明の目的は、(4)銅、銅合金、または所要の金属または合金めっきを施した銅または銅合金から成るコネクタ用端子の少なくとも接触面となる表面部分を、照射軸と垂直な断面の径Lrが、Lr=x×10mm(但し、x=0.1、0.2、0.3、・・・0.5、・・・0.8、・・・1.0、2.0、・・・5.0、・・・7.0)、エネルギ密度Edが、Ed=0.1〜10J/cm、パルスビームのパルス時間幅τsが、τs=0.05〜5.0μsの電子ビームのパルスを少なくとも1回以上照射して、前記表面部分に電気接触面としての銅アモルファス層を形成させて表面を仕上げて成るコネクタ用端子とすることにより達成されるものである。 Further, the object of the present invention described above is as follows: (4) A surface portion that becomes at least a contact surface of a connector terminal made of copper, a copper alloy, or a copper or copper alloy plated with a required metal or alloy is provided on an irradiation axis. The diameter Lr of the cross section perpendicular to Lr = x × 10 mm (where x = 0.1, 0.2, 0.3,... 0.5,... 0.8,. 0, 2.0,..., 5.0,... 7.0), the energy density Ed is Ed = 0.1 to 10 J / cm 2 , and the pulse time width τs of the pulse beam is τs = 0. This is achieved by irradiating a pulse of an electron beam of 05 to 5.0 μs at least once to form a copper amorphous layer as an electric contact surface on the surface portion to finish the surface to be a connector terminal. Is.

また、本発明の目的は、(5)コネクタ、プラグ、ジャック、ソケット、スイッチ、またはリレー等の電気接続用の接触子部分であって、該接触子部分又は全体が銅もしくは銅系合金、鉄もしくは鉄系合金、またはチタンもしくはチタン系合金から成る電子機構部品において、前記接触子部の表面を照射ビームとして、表層部分が溶解するエネルギ密度を持ち、かつ、前記溶解表層部分が、溶解後微小短時間で再凝固する照射エネルギ量に制限された照射時間の短い電子ビームのパルスを少なくとも1回以上照射して、前記表層部分に表面面粗度が改善された接触子金属部材のアモルファス層を形成させて表面を仕上げて成る電子機構部品の接触子とすることにより達成される。   Another object of the present invention is (5) a contact portion for electrical connection such as a connector, plug, jack, socket, switch, or relay, and the contact portion or the entirety thereof is copper or a copper-based alloy, iron Alternatively, in an electronic mechanism component made of an iron-based alloy, or titanium or a titanium-based alloy, the surface of the contact portion is used as an irradiation beam, and the surface layer portion has an energy density that melts, and the melted surface layer portion is minute after melting. Irradiate at least one electron beam pulse with a short irradiation time limited to the amount of irradiation energy to be resolidified in a short time to form an amorphous layer of contact metal member with improved surface roughness on the surface layer portion. This is achieved by forming a contact for an electronic mechanism component formed and finished with a surface.

本発明(1)乃至(4)によれば、銅または銅合金製のコネクタ用端子に、特殊な必要とする広がりを持った、高エネルギ密度で、照射継続時間が著しく短い電子ビームのパルスを1回以上繰り返し照射して銅のアモルファス層をまたは被膜を形成させたので、表面面粗度が著しく改善され、耐摩耗性が増大し、かつ耐酸化等の耐腐食性があって、電気的接触抵抗等の電気的特性が低下することなく持続する優れた特性のコネクタ用端子を得ることができる。   According to the present invention (1) to (4), a pulse of an electron beam having a specially required spread, a high energy density, and an extremely short irradiation duration is applied to a connector terminal made of copper or a copper alloy. Irradiated at least once to form an amorphous layer or film of copper, the surface roughness is significantly improved, wear resistance is increased, and corrosion resistance such as oxidation resistance is achieved. It is possible to obtain a connector terminal having excellent characteristics that lasts without deteriorating electrical characteristics such as contact resistance.

そして本発明によれば、コネクタ用端子材として調整された銅板または銅合金板からプレス打ち抜きによって端子部を櫛歯状に有する素材に対し、少なくとも接点部とその廻り、または接点側の大半部にまとめて電子ビームのパルスを必要とする回数照射して表面に薄い銅のアモルファス層を形成させる丈であるから、従来のコネクタ用端子のように、銅の拡散バリヤとしての下地のニッケルめっき、該下地ニッケルめっき保護のための錫−ニッケル合金の中間めっきまたは金めっき、そして前記下地保護及び電気的特性保持のための金めっき等を実質上必要とすることなく、そして高価な金を必要とせず費消しないから、設備及び設備使用による製造も簡単で、取扱いが容易であり、かつ、製造一般に人及び時間を要しないから、著しく安価となり、コネクタ用端子の製造、提供に革命をもたらす可能性があるものである。   And according to the present invention, at least the contact portion and its surroundings, or most of the contact side, with respect to the material having the terminal portion in a comb-teeth shape by press punching from a copper plate or copper alloy plate adjusted as a connector terminal material In summary, it is the length that forms a thin copper amorphous layer on the surface by irradiating the required number of pulses of the electron beam, so that the nickel plating of the base as a copper diffusion barrier, like the conventional connector terminal, There is substantially no need for intermediate plating or gold plating of tin-nickel alloy for protecting the underlying nickel plating, and gold plating for protecting the underlying and maintaining the electrical properties, and no expensive gold is required. Since there is no consumption, the equipment and the use of the equipment are easy to manufacture, easy to handle, and generally less manpower and time-consuming to manufacture. Next, the manufacture of the connector terminals, are those which may revolutionize provided.

また、本発明(5)によれば、本発明はコネクタ用端子という1電子機構部品に止まらず、同類のプラグ、ジャック、ソケット、スイッチ、またはリレー等の特に電気的接続部の接触子に適用して有用であり、そして、さらにその表面改質加工処理の対象素材としても、無酸素銅などの前記銅や銅合金に限らず、該銅系合金、鉄もしくは鉄系合金、またはチタンまたはチタン系合金、或いは各種接点材から成る接点に適用してさらにその性能向上に資する可能性を有するものである。   Further, according to the present invention (5), the present invention is not limited to one electronic mechanism component called a connector terminal, but is applied to a contact of an electrical connection part such as a similar plug, jack, socket, switch, or relay. Further, the target material for the surface modification processing is not limited to the copper or copper alloy such as oxygen-free copper, but the copper alloy, iron or iron alloy, or titanium or titanium. It can be applied to a contact made of a base alloy or various contact materials to further contribute to improving its performance.

図1は、コネクタ用端子31−1,31−2、31−3、・・31−nの実施例の大量生産工程において、例えば無酸素銅または黄銅などより成る帯板材31からプレスにより打ち抜いた生産部材31Aの部分の拡大平面図である。そして、このプレス加工の後適宜研磨仕上げた後、従来はニッケルめっきをしてその上に金めっきをするなどと言う表面処理をしていたのに対し、本発明では前述適宜の研磨仕上げの後、後で一例を詳しく説明する特殊な電子ビーム利用の金属部材の表面改質加工装置の真空ハウジング装置の加工処理ハウジング部内加工テーブル上に前記生産部材31Aが設置され、コネクタ用端子31−1、31−2、31−3、・・31−nの全体、または、少なくともコンタクトが有る側の端部側で、少なくともコンタクトが有る側の面に対し、照射により表層部分が瞬時に所定の溶解状態になるエネルギ密度を持ち、前記溶解表層部分が溶解後直ちに再凝固するエネルギ量に制限された照射時間の短い電子ビームのパルスを少なくとも1回、通常は秒オーダ程度の短い時間を置いて所望複数回照射するものである。   FIG. 1 shows, in a mass production process of the embodiments of connector terminals 31-1, 31-2, 31-3,... 31-n, stamped from a strip 31 made of oxygen-free copper or brass by a press, for example. It is an enlarged plan view of a part of a production member 31A. Then, after this press working, the surface is treated to be properly polished and then nickel-plated and then gold-plated on the surface. The production member 31A is installed on the processing table in the processing housing portion of the vacuum housing device of the surface modification processing device for a special metal member using an electron beam, which will be described in detail later, and a connector terminal 31-1, 31-2, 31-3,... 31-n, or at least the end portion on the side where the contact is present, and at least the surface on the side where the contact is present, the surface layer portion is instantaneously dissolved in a predetermined state by irradiation. And at least one pulse of an electron beam with a short irradiation time, usually limited to the amount of energy that the melting surface layer portion resolidifies immediately after melting, usually It is for irradiating a desired plurality of times at a short time of about the order.

以下前述の断面積の大きい電子ビームによる表面改質加工方法及び装置の一例を説明するに、図4は、全体構成の概略を示す装置断面図で、1は真空ハウジング、6は環状アノード、8はチタン(Ti)針金の結束体のような大面積カソード、Sは電子加速空間、5は上下ソレノイドコイルから成る磁場付与手段、14はビームコレクタを示している。前記真空ハウジング1は、電子ビーム発生部を収納する筒状のビームハウジング部1Aと、電子ビームの照射を受けるコレクタ14等を収納する加工処理ハウジング部1Bとから成り、前記ビームハウジング部1Aは電子ビームを上下鉛直方向に照射するように設置されるのに対し、加工処理ハウジング部1Bは、コレクタ14上のワーク12(生産部材31A)を、鉛直照射電子ビーム11に対して直交する水平方向に移動又は送り位置決めし得るように回転台13又は直線1軸若しくは直交2軸のテーブルに取り付け収設している。   Hereinafter, an example of the surface modification processing method and apparatus using the electron beam having a large cross-sectional area will be described. FIG. 4 is a cross-sectional view of the apparatus showing an outline of the entire configuration, 1 is a vacuum housing, 6 is an annular anode, 8 Is a large area cathode such as a bundle of titanium (Ti) wires, S is an electron acceleration space, 5 is a magnetic field applying means comprising upper and lower solenoid coils, and 14 is a beam collector. The vacuum housing 1 includes a cylindrical beam housing portion 1A that houses an electron beam generating portion, and a processing housing portion 1B that houses a collector 14 and the like that receive electron beam irradiation. The beam housing portion 1A is an electron housing. The processing housing portion 1B is disposed so as to irradiate the beam in the vertical direction, while the processing housing portion 1B causes the workpiece 12 (production member 31A) on the collector 14 to be in a horizontal direction perpendicular to the vertical irradiation electron beam 11. It is attached and collected on a turntable 13 or a linear 1-axis or orthogonal 2-axis table so that it can be moved or fed.

前記回転台13は廻りにコレクタ14を取り付けた円形板13Aと、該円形板13Aを加工処理ハウジング部1Bに取り付け支持する回転支柱13Bと、加工処理ハウジング部1B壁に気密に取り付けられた回転支柱13Bを外部で回転駆動するように設けた回転モータ13Cを有し、所要のコレクタ14の載置ワーク12を電子ビーム11の照射を受ける加工処理ポジションPAに位置させることが出来るように構成されている。   The rotary table 13 includes a circular plate 13A around which a collector 14 is attached, a rotary column 13B that attaches and supports the circular plate 13A to the processing housing part 1B, and a rotary column that is airtightly attached to the wall of the processing housing part 1B. A rotary motor 13C is provided so as to drive the rotation of 13B externally, and is configured so that the work 12 mounted on the required collector 14 can be positioned at the processing position PA where the electron beam 11 is irradiated. Yes.

前記真空ハウジング1には、スクロールポンプ2とターボ分子ポンプ3とが夫々流量調節弁2A、3Aを介して連結され、さらに、アルゴン(A)等のガスボンベ15を、図示しない真空ハウジング部1に設置の真空センサによる検出ガス圧が、設定ガス圧となるよう制御される圧力調整弁4を介して連結することにより、真空ハウジング部1内は、一旦1×10−2Pa以下の真空状態とした後、例えば、0.3〜0.5×10−1Pa程度の所定の低ガス圧状態に保たれる。 A scroll pump 2 and a turbo molecular pump 3 are connected to the vacuum housing 1 via flow control valves 2A and 3A, respectively, and a gas cylinder 15 such as argon (A r ) is connected to the vacuum housing portion 1 (not shown). By connecting through the pressure regulating valve 4 that is controlled so that the gas pressure detected by the installed vacuum sensor becomes the set gas pressure, the inside of the vacuum housing portion 1 is once in a vacuum state of 1 × 10 −2 Pa or less. After that, for example, a predetermined low gas pressure state of about 0.3 to 0.5 × 10 −1 Pa is maintained.

この図4の加工処理装置には、図4〜5で図示説明するように3つの、通常コンデンサ使用のパルス電源が設けられる。先ず第1のパルス電源16は、カソード8とアノード6及びコレクタ14間の陽極プラズマ7形成を伴う低圧ガス中放電を、カソード8とアノード6が対向する電子加速空間S内に安定的に閉じ込めた状態で行われるように、図6に示す磁場空間を前記電子加速空間Sを取り囲んだ状態に形成する電子ビーム照射軸方向に複数個設けられるソレノイド5、5励磁用コンデンサ充放電パルス電源で、具体的には、例えば、約1000μFのコンデンサを約1〜2KVに充電し、約100〜200Aの放電ピーク電流で、約10〜20msのパルス幅で放電させて前記閉じ込め磁場、例えば、4.4KOを発生形成させるよう、環状アノード6は、上下のソレノイド5、5の間に位置する。 The processing apparatus shown in FIG. 4 is provided with three pulse power sources using ordinary capacitors as shown in FIGS. First, the first pulse power supply 16 stably traps the discharge in the low-pressure gas accompanied by the formation of the anode plasma 7 between the cathode 8 and the anode 6 and the collector 14 in the electron acceleration space S where the cathode 8 and the anode 6 face each other. As shown in FIG. 6, a plurality of solenoids 5, 5 excitation capacitor charging / discharging pulse power sources provided in the electron beam irradiation axis direction forming the magnetic field space shown in FIG. 6 so as to surround the electron acceleration space S, Specifically, for example, a capacitor of about 1000 μF is charged to about 1 to 2 KV and discharged at a discharge peak current of about 100 to 200 A and a pulse width of about 10 to 20 ms, so that the confined magnetic field, for example, 4.4 KO e is used. The annular anode 6 is positioned between the upper and lower solenoids 5 and 5.

次に第2のパルス電源17は、カソード8とアノード6及びコレクタ14に印加されて前記閉じ込め磁場が形成されている電子加速空間Sの領域に低圧ガス電離の陽極プラズマ形成を伴う低圧ガス放電、グロー放電を生成させるコンデンサ充放電パルスで、具体的には、例えば、約5μFのコンデンサを約4〜5KVに充電し、約50〜150Aの放電ピーク電流で、約10〜100μsのパルス幅で、前記第1のパルス電源のスイッチ・オンによる放電開始後約20μs〜5ms遅延させて、充分な磁場形成を待って放電のスイッチ・オンにして、前記陽極プラズマ7形成を伴う低圧ガスグロー放電を生じさせるパルス電源である。   Next, the second pulse power source 17 is applied to the cathode 8, the anode 6 and the collector 14, and the low pressure gas discharge accompanied by the anode plasma formation of the low pressure gas ionization in the region of the electron acceleration space S in which the confinement magnetic field is formed. Capacitor charge / discharge pulses for generating glow discharge, specifically, for example, a capacitor of about 5 μF is charged to about 4 to 5 KV, a discharge peak current of about 50 to 150 A, and a pulse width of about 10 to 100 μs, A delay of about 20 .mu.s to 5 ms after the start of discharge by switching on of the first pulse power supply, waiting for a sufficient magnetic field formation to switch on the discharge, thereby generating a low-pressure gas glow discharge accompanied with the formation of the anode plasma 7. It is a pulse power supply.

そして、第3のパルス電源18は、前述第1のパルス電源16及び第2のパルス電源17により、閉じ込め磁場中での陽極プラズマ7の形成を伴う低圧ガス放電領域から、大面積のエネルギ密度が適度に高い電子ビーム11の短いパルスを発生照射させるために、立ち上がりが、例えば、約5〜10nsの立ち上がり時間の短いパルス、具体的には、例えば、約3μFのコンデンサを約20〜60KVに充電し、約5〜25KAの放電ピーク電流で、約1〜5μsの極めて短いパルス幅で、前記第2のパルス電源のスイッチ・オンによる放電開始後約10〜100μs遅延させて低圧ガス放電が発生したのを待ってスイッチ・オンすることにより、カソード8に高い立ち上がりの負の高電圧パルスを印加し、アノード6からのイオンビームによってカソード8表面に高密度のカソードプラズマを形成させ、該高密度のカソードプラズマとカソード8からの電子とにより生成する高密度の電子ビーム11を陽極プラズマ7を通じて、アノード6の環内を通り、コレクタ14に照射されることになるのである。   The third pulse power source 18 has a large area energy density from the low-pressure gas discharge region accompanied by the formation of the anode plasma 7 in the confined magnetic field by the first pulse power source 16 and the second pulse power source 17. In order to generate and irradiate a short pulse of a moderately high electron beam 11, the rise is, for example, a pulse with a short rise time of about 5 to 10 ns, specifically, for example, a capacitor of about 3 μF is charged to about 20 to 60 KV Then, at a discharge peak current of about 5 to 25 KA, a low-pressure gas discharge was generated with a very short pulse width of about 1 to 5 μs, delayed by about 10 to 100 μs after the start of discharge by switching on the second pulse power source. By switching on after waiting for this, a negative high voltage pulse with a high rise is applied to the cathode 8, and an ion beam from the anode 6 is applied. A high-density cathode plasma is formed on the surface of the cathode 8, and a high-density electron beam 11 generated by the high-density cathode plasma and electrons from the cathode 8 is passed through the anode plasma 7 through the ring of the anode 6, The collector 14 is irradiated.

このような、大面積のパルス電子ビーム11の、照射による金属材の表面仕上げ、及び/または表面のアモルファス化の改質加工には、前記電子ビーム11のエネルギ密度が約0.1〜10J/cm程度で、継続照射時間が数μs以内の短いものであるから、ワーク12の表面の電子ビーム照射領域に対して、所定複数回繰り返し照射する場合や、ワーク12表面の電子ビーム11の径よりも大きい領域を順次にスキャンニングして加工等をする場合には、前記第1乃至第3の各パルス電源16〜18を再充電してパルス電子ビームの発生、照射を繰り返えさせる必要があるもので、上述のような電源構成の場合、加工処理の目的、効果から約5〜10s毎又はそれより短い時間間隔で繰り返し照射し得る仕様とすることが望ましいものである。 In such a large-area pulsed electron beam 11, the energy density of the electron beam 11 is about 0.1 to 10 J / in for the surface finishing of the metal material by irradiation and / or the modification of the amorphization of the surface. cm 2 and about, because continuous irradiation time are those within a short few .mu.s, the electron beam irradiation area of the surface of the workpiece 12, and when repeatedly irradiated predetermined plurality of times, the diameter of the workpiece 12 surface of the electron beam 11 When processing a larger area sequentially by scanning, it is necessary to recharge the first to third pulse power supplies 16 to 18 to repeat generation and irradiation of the pulsed electron beam. In the case of the power supply configuration as described above, it is desirable that the specifications be such that the irradiation can be repeated repeatedly at intervals of about 5 to 10 s or shorter than that, from the purpose and effect of processing. That.

以上の構成によれば、前述第2の電源17はパルス電源で、アノード6及びカソード8間に対する電圧印加による電界は常時ではなく、また熱電子などの積極的な供給はないので、電圧印加時の上述プラズマ形成は容易でないが、このため第2の電源17によるアノード6及びカソード8間電圧印加に先だって、第1のパルス電源16によるソレノイド5、5の励磁による磁場を生成作用させ、低圧ガス中に存在する自然電子を回転させて電子加速空間S内から逃げ出さないようにするのである。なお、第2のパルス電源17によるパルス電圧印加時に、電離を起動させるための初期荷電粒子の発生には、(1)カソード8の微小な突起物の電界集中を利用する、(2)カソード8を加熱して熱電子を放出させる、(3)紫外線など光を照射して光電子を作る、(4)別の粒子源で荷電粒子を発生させておいて注入するなどの補助的手段を付設作動させるようにしてもよい。   According to the above configuration, the second power source 17 is a pulse power source, and the electric field due to voltage application between the anode 6 and the cathode 8 is not always, and there is no active supply of thermoelectrons. The above plasma formation is not easy, but for this reason, prior to the voltage application between the anode 6 and the cathode 8 by the second power source 17, a magnetic field is generated by the excitation of the solenoids 5 and 5 by the first pulse power source 16, thereby generating a low-pressure gas. The natural electrons existing inside are rotated so as not to escape from the electron acceleration space S. It should be noted that, when a pulse voltage is applied by the second pulse power source 17, the initial charged particles for starting the ionization are generated by (1) utilizing the electric field concentration of the minute protrusions of the cathode 8 and (2) the cathode 8 Auxiliary means such as (3) irradiate light such as ultraviolet rays to produce photoelectrons, (4) generate charged particles by another particle source, and inject them, and operate. You may make it make it.

ここで、前記作用磁場が、コンデンサの放電が進んでほぼ最大となったところで、アノード6及びカソード8間に第2のパルス電源17からアノード電圧を印加すると、磁場中に補足されている電子は螺旋を描くことによりガス分子との衝突の頻度が大きくなって進行し、ガス分子と衝突して電離し、発生した電子と正イオンとは、夫々反対方向に移動して電離を繰り返す。このとき電子は速やかにアノード6及びカソード8間を通過するのに対し、正イオンは移動度が小さいので短い時間の間には一部以上が残留し、電界の歪みが生じる。即ち、カソード8の周辺に正イオンが多くなり、それがカソード8側の電界を強め放電を進展させる傾向をもつ。正イオンが電子に対し過剰に多くなれば、アノード6及びカソード8間に電位差が生じ、アノード6に向かう電子はそこでトラップ(捕捉)されるようになる。その結果アノード6の近くにアノードプラズマ7が生成し、電子トラップを解消しながらカソード8側へ成長する。   Here, when the anode magnetic field is applied from the second pulse power source 17 between the anode 6 and the cathode 8 when the working magnetic field becomes substantially maximum as the discharge of the capacitor progresses, the electrons captured in the magnetic field are By drawing a spiral, the frequency of collision with gas molecules increases and ionizes by colliding with gas molecules, and the generated electrons and positive ions move in opposite directions and repeat ionization. At this time, electrons quickly pass between the anode 6 and the cathode 8, whereas positive ions have a low mobility, so that some or more remain in a short time, resulting in distortion of the electric field. That is, the number of positive ions increases around the cathode 8, which tends to strengthen the electric field on the cathode 8 side and advance the discharge. If the positive ions are excessive with respect to the electrons, a potential difference is generated between the anode 6 and the cathode 8, and the electrons directed to the anode 6 are trapped there. As a result, anode plasma 7 is generated near the anode 6 and grows toward the cathode 8 while eliminating the electron trap.

アノードプラズマ7部分では、正イオンと電子の密度がほぼ同じであるから、空間電荷電界は殆どなく極めて低い一様な電界で電子流をアノード6に運ぶ状態にある。之に対し、カソード8周辺では、電離によって必要な電子流を作ると同時に急峻な電界を作るのに必要な正イオンの蓄積が起こる。それらの正イオンは電離によって生じた正イオンとアノード6側から流れ込む正イオンとからなり、正イオンはカソード電極8に衝突し、電極から電子を叩き出す。それらの電子はガス分子と衝突して電離させ、之が次々と繰り返されることにより、一次電子、二次電子、三次・・・、の電子が生じる。   In the anode plasma 7 portion, the positive ions and the electron density are almost the same, so there is almost no space charge electric field, and the electron flow is carried to the anode 6 by a very low uniform electric field. On the other hand, in the vicinity of the cathode 8, positive ions necessary for creating a steep electric field at the same time as creating an electron flow necessary by ionization occur. These positive ions consist of positive ions generated by ionization and positive ions flowing from the anode 6 side. The positive ions collide with the cathode electrode 8 and knock out electrons from the electrode. These electrons collide with gas molecules and ionize them, and these electrons are repeated one after another, thereby generating primary electrons, secondary electrons, tertiary, and so on.

このようにして、十分電子が増殖されて正イオンとほぼ同量となる部分にカソードプラズマ9が形成され、急峻な電界を維持するためのバッファ作用の効果をもち、アノードプラズマ7とカソードプラズマ9との中間では僅かに電界は上昇し、再結合を防ぐ役割と消散する荷電粒子を補うために僅かに電離を起こす役割をする。即ち、カソード8周辺の強い電界の部分で、電子が発生・増殖され、カソードプラズマ9とアノードプラズマ7は導電性の良い電子の通路を形成しているものと考えられる。   In this way, the cathode plasma 9 is formed in a portion where electrons are sufficiently propagated and become approximately the same amount as the positive ions, and has the effect of a buffer function for maintaining a steep electric field. The anode plasma 7 and the cathode plasma 9 In the middle, the electric field rises slightly, and serves to prevent recombination and to slightly ionize to compensate for dissipated charged particles. That is, it is considered that electrons are generated and propagated in the portion of the strong electric field around the cathode 8, and the cathode plasma 9 and the anode plasma 7 form a passage of electrons having good conductivity.

この状態になったとき、前述した5〜10nsと言う短い立ち上がり時間で高い負の電圧(50〜60KV)の短い持続時間(1〜5μs)のパルス電圧を印加してカソード電位を深い負電位に下げると、カソード8の周辺電界はより急峻となり、電離による電子・イオンは爆的に増殖し、カソードプラズマ9及びアノードプラズマ7を通る大きいエネルギ密度(0.1〜1.0J/cm以上)の面積広がりを持った電子流が、環状アノード6を通りコレクタ14上のワーク12に照射されることになる。 In this state, the cathode potential is changed to a deep negative potential by applying a pulse voltage having a short duration (1 to 5 μs) of a high negative voltage (50 to 60 KV) with a short rise time of 5 to 10 ns described above. When lowered, the electric field around the cathode 8 becomes steeper, the electrons and ions due to ionization proliferate explosively, and a large energy density (0.1 to 1.0 J / cm 2 or more) passing through the cathode plasma 9 and the anode plasma 7 The electron flow having a wide area is irradiated onto the work 12 on the collector 14 through the annular anode 6.

この電子ビームの照射時間は、加工処理ワーク12の表面改質の物理的(物性的)条件から決まって来る因子で、これはワーク12材料の硬さと電子のエネルギ(KV)によって決まる電子が材料の内部へ侵入する深さと材料の熱伝導度とによる。なお、以上は、材料の表面を急速加熱した後急速冷却する手法で表面をアモルファス化して加工改質処理する場合を想定した場合であって、一般に軽い金属や熱伝導の良い金属は、電子ビーム照射時間を短くするものである。   The irradiation time of the electron beam is a factor determined from the physical (physical properties) conditions of the surface modification of the workpiece 12 to be processed. This is because the electron determined by the hardness of the workpiece 12 and the electron energy (KV) is the material. Depends on the depth of penetration of the material and the thermal conductivity of the material. Note that the above is a case where the surface of the material is amorphized by a method of rapidly heating the surface of the material and then rapidly cooling. In general, a light metal or a metal with good heat conduction is an electron beam. It shortens the irradiation time.

このような断面が大面積の電子ビームのエネルギの分布密度を一様にするには、カソード8周辺の電界が一様であることが重要で、そのためにはカソードプラズマ9及びアノードプラズマ7を一様に形成しなければならず、そのためには、プラズマを均一に閉じ込める磁場の方式、形成が重要になる。放電空間が低ガス圧力(約1Pa以下)では、電子の平均自由行程が長くなり、電離のための衝突の機会が減少するので、プラズマの生成、維持は困難になる。これを可能にする方法として前述磁場を用いる方法がプラズマの閉じ込めに有効である所から、プラズマの生成、維持には有用であるが、プラズマの均一化には必ずしも有効でない。即ち、例えば、磁場強度を強くすると、電子は中心部に集中することになり、断面が大面積のプラズマを均一化することは難しい。   In order to make the energy distribution density of an electron beam having a large cross section uniform, it is important that the electric field around the cathode 8 is uniform. For this purpose, the cathode plasma 9 and the anode plasma 7 are combined. For this purpose, it is important to form and form a magnetic field for uniformly confining plasma. When the discharge space is at a low gas pressure (about 1 Pa or less), the mean free path of electrons becomes long, and the chance of collision for ionization decreases, so that it is difficult to generate and maintain plasma. As a method for enabling this, since the method using the magnetic field is effective for confining the plasma, it is useful for generating and maintaining the plasma, but not necessarily effective for making the plasma uniform. That is, for example, when the magnetic field strength is increased, electrons are concentrated in the central portion, and it is difficult to uniformize the plasma having a large cross section.

前記大面積の電子ビームのパルスは、その電子ビームの照射領域の各所に於けるエネルギ密度が、ソレノイド5の励磁電流を決定する第1のパルス電源のコンデンサ充電電源電圧はコンデンサの静電容量、又は電子ビーム発生部のグロー放電発生電源である第2のパルス電源の主としてコンデンサ充電電源の電圧でアノード電圧の設定切換えによって大凡0.1J/cm乃至10J/cmの範囲で変更設定できるように構成するのが手っ取り早く簡単であるが、この図示説明の大面積の大エネルギ電子ビームパルス発生装置は低圧ガス中の電極プラズマを用いた電子ビーム発生装置であるから、前述電子ビームのエネルギ密度を変更するのに真空ハウジング1内の低圧ガスのガス圧を変更するようにしても良い。 The pulse of the large-area electron beam has an energy density at various locations in the irradiation region of the electron beam, the capacitor charging power supply voltage of the first pulse power supply that determines the excitation current of the solenoid 5 is the capacitance of the capacitor, or to be able to change settings in the range of approximately 0.1 J / cm 2 to 10J / cm 2 primarily by setting switching of the anode voltage in the voltage of the capacitor charging power supply of the second pulse source is a glow discharge generation power of the electron beam generating section However, since the large-area large-energy electron beam pulse generator shown in the drawing is an electron beam generator using electrode plasma in low-pressure gas, In order to change the energy density, the gas pressure of the low-pressure gas in the vacuum housing 1 may be changed.

即ち、図7に照射電子ビームのエネルギ密度(J/cm)と真空ハウジング1内稀ガス(Ar)のガス圧(Torr)との関係を第3のパルス電源18による3つの異なる加速電圧の場合について示したように、ガス圧の変更によるエネルギ密度の変更設定が、比較的エネルギ密度の大きい領域で、加速電圧が高い場合ほど変更可能な幅が大きいことが判る。そして、このことから、逆に真空ハウジング1内のガス圧安定制御(<±1%)が重要なことが判る。 That is, FIG. 7 shows the relationship between the energy density (J / cm 2 ) of the irradiation electron beam and the gas pressure (Torr) of the rare gas (Ar) in the vacuum housing 1 with three different acceleration voltages by the third pulse power supply 18. As shown in the case, it can be seen that the change setting of the energy density by changing the gas pressure is a region where the energy density is relatively high, and the changeable range is larger as the acceleration voltage is higher. From this, on the contrary, it is understood that stable control of gas pressure in the vacuum housing 1 (<± 1%) is important.

なお、前述照射電子ビームのエネルギ密度の変更は、第3のパルス電源18による加速電圧の変更によっても可能であるが、この加速電圧はパルス幅が約1〜5μsと短くて変更等の自由度が小さく、かつ加速電圧の変更は、照射電子ビームのワーク材料内部へ侵入する深さを変化させて、ビームのエネルギを材料の表面層のみに与えて改質処理等をすると言う処理の目的を損なう可能性があるので、この第3のパルス電源18は、調整設定された一定条件で、繰り返し使用することが望ましい。   The energy density of the irradiation electron beam can be changed by changing the acceleration voltage by the third pulse power supply 18. However, the acceleration voltage has a short pulse width of about 1 to 5 μs, and the degree of freedom in changing the acceleration voltage. The change of the acceleration voltage is intended to modify the depth of penetration of the irradiated electron beam into the workpiece material and apply the energy of the beam only to the surface layer of the material for the modification process. The third pulse power supply 18 is desirably used repeatedly under a fixed condition that is set in an adjusted manner.

以上の表面改質加工装置において、第1のパルス電源16によるソレノイド5の励磁電流の変更制御手段、第2のパルス電源17によりアノード6とカソード8間にグロー放電を生ぜしめるよう印加されるアノード電圧の変更制御手段、及び真空ハウジング1内のグロー放電用希ガスのガス圧変更制御手段等の組み合わせにより、断面径が約60mm弱で、エネルギ密度を0.1乃至10J/cm間で各所定値に変更設定して、生産部材31Aのコンタクトを有せしめる端部側の表面の同一箇所に、各同一エネルギ密度の電子ビームを約5秒間隔で、各10回照射した所、前記生産部材31Aの表面面粗度(Ryμm)と表面に形成された銅アモルファス層の厚さ(μm)の測定値は、電子ビームパルスのエネルギ密度(J/cm)横軸に対して図2のような特性曲線図となった。なお、この場合の電子ビームパルスの照射時間幅は何れも約2μsである。 In the surface modification processing apparatus described above, the first pulse power supply 16 controls the excitation current change of the solenoid 5, and the second pulse power supply 17 applies the anode applied to cause glow discharge between the anode 6 and the cathode 8. By combining the voltage change control means and the gas pressure change control means for the rare gas for glow discharge in the vacuum housing 1, the cross-sectional diameter is less than about 60 mm and the energy density is between 0.1 and 10 J / cm 2. The production member is changed to a predetermined value and irradiated with an electron beam having the same energy density at an interval of about 5 seconds on the same portion of the surface on the end side where the contact of the production member 31A is provided, and the production member The measured values of the surface roughness (Ry μm) of 31A and the thickness (μm) of the copper amorphous layer formed on the surface are the energy density (J / cm 2 ) of the electron beam pulse. In contrast, a characteristic curve as shown in FIG. 2 was obtained. In this case, the irradiation time width of the electron beam pulse is about 2 μs.

図2よれば、照射電子ビームのエネルギ密度を増大して行くと、エネルギ密度が約7J/cm前後の電子ビームのパルスを繰り返し照射したとき、面粗度(表面平坦度)が小さくなり、銅のアモルファス化層も薄膜ながらしっかりしており、肉紅色乃至は赤血の金属色を示していた。そして、前記電子ビームのエネルギ密度が9〜10J/cm程度またはそれ以上と大きくなると、生産部部31Aの材質、形状及び寸法などにもよるが、従前の細く絞った線状電子ビームによる加工、深溶け込みを利用する切断、穿孔、または溶接などの加工現象が生じる状態となって表面が荒れるようになるので、前述程度のエネルギ密度のものを用いることが推奨される。 According to FIG. 2, when the energy density of the irradiation electron beam is increased, the surface roughness (surface flatness) decreases when the pulse of the electron beam having an energy density of about 7 J / cm 2 is repeatedly irradiated. The amorphized layer of copper was also thin but firm and showed a flesh-colored or red-blooded metallic color. When the energy density of the electron beam is increased to about 9 to 10 J / cm 2 or more, depending on the material, shape, dimensions, etc. of the production section 31A, processing with a previously narrowed linear electron beam is performed. Since the surface becomes rough due to processing phenomena such as cutting, drilling, or welding using deep penetration, it is recommended to use an energy density of the above-mentioned degree.

前述の条件で、電子ビームのパルスを照射して綺麗な金属色となった表面層は、下記条件に設定した薄膜X線回折装置により平行ビーム薄膜測定工学系で、X線入射角を0.5°に固定して測定したところ、結晶(銅の場合等軸晶系、面心立法格子)に由来する回折ピーク(銅では40°近傍)が現われず、ぼんやりとしたピーク(ハロー)が現われるに止ったことから、前記表面層はアモルファス(非晶質)であると推定された。
測定条件
線源 CμKα
光学系 平行ビーム光学系
入射スリット:0.2mW
X線入射角度:0.5°
受光スリット:0.23ソーラスリット
走査軸 2Θ
Under the above-mentioned conditions, the surface layer that has become a beautiful metallic color when irradiated with an electron beam pulse is a parallel beam thin film measurement engineering system using a thin film X-ray diffractometer set to the following conditions, and the X-ray incident angle is set to 0. When measured at a fixed angle of 5 °, a diffraction peak (around 40 ° for copper) derived from the crystal (equiaxial crystal system, face-centered cubic lattice in the case of copper) does not appear, and a faint peak (halo) appears. Therefore, it was estimated that the surface layer was amorphous (amorphous).
Measurement conditions Radiation source CμKα
Optical system Parallel beam optical system
Entrance slit: 0.2 mW
X-ray incident angle: 0.5 °
Receiving slit: 0.23 solar slit Scanning axis 2Θ

図3の(A)、(B)は、前述の電子ビームの照射処理をした端子10個のサンプルと、照射処理をしていない端子5個のサンプルの接触データ集計中ながら大きくは変化していない。抵抗をヒューレット・パッカード社製のLCRメータ(HEWLETTT PACKARD 4284A 20Hz−1MHz PRECISION LCRmeters)により測定したものである。測定方法は、サンプル端子のコンタクト部を上下電極間に挿入して挟み、記載する分銅(10g、50g、及び100g)を乗せ、周波数20Hz、電圧10Vの条件とした。測定結果(A)、(B)によると、殆どが1mΩ以内に入っており、また対比しても差が殆ど無いので、電子ビーム照射の処理の有無は、接触抵抗値に影響しないものと考えられている。   3 (A) and 3 (B) are greatly changed while the contact data of the sample with 10 terminals subjected to the electron beam irradiation process and the sample with 5 terminals not subjected to the irradiation process are being counted. Absent. The resistance was measured by an LCR meter (HEWLETT PACKARD 4284A 20 Hz-1 MHz PRECISION LCRmeters) manufactured by Hewlett-Packard Company. The measurement method was performed by inserting the contact portion of the sample terminal between the upper and lower electrodes and placing the weights (10 g, 50 g, and 100 g) to be described, and a frequency of 20 Hz and a voltage of 10 V. According to the measurement results (A) and (B), most of them are within 1 mΩ, and there is almost no difference in comparison. Therefore, the presence or absence of the electron beam irradiation treatment does not affect the contact resistance value. It has been.

その他環境試験等、
(1)高温(耐熱性)試験、
120℃の温度環境下で120時間放置し、その後電気抵抗を測る。
電子ビームの照射処理をしたサンプルの表面は、目視テストでも変化が見られず、接触抵抗値も変化がなかった。
Other environmental tests, etc.
(1) High temperature (heat resistance) test,
The sample is left for 120 hours in a temperature environment of 120 ° C., and then the electric resistance is measured.
The surface of the sample subjected to the electron beam irradiation treatment was not changed by a visual test, and the contact resistance value was not changed.

(2)低温(耐寒性)試験、
−50℃の温度下に120時間放置した後、常温に戻した後接触抵抗を測定する。
特に変化が認められない。
(2) Low temperature (cold resistance) test,
After leaving at −50 ° C. for 120 hours, after returning to room temperature, the contact resistance is measured.
There is no particular change.

(3)耐温性試験、
60℃で90から95%の湿度下に置き、DC12Vで通電した状態で30分室温にて放置した後、接触抵抗を測定する。
データ集計中ながら大きくは変化していない。
(3) Temperature resistance test,
The sample is placed at a humidity of 90 to 95% at 60 ° C. and left at room temperature for 30 minutes while being energized with DC 12 V, and then the contact resistance is measured.
While the data is being aggregated, it has not changed significantly.

(4)塩水噴霧試験、
5%の食塩水を2時間噴射し、40℃で90から95%の湿度環境に22時間放置する処理を4回繰り返す。
結果は目視検査で変化を見る。データを採取中である。
(4) salt spray test,
The treatment of spraying 5% saline for 2 hours and leaving it in a humidity environment of 90 to 95% at 40 ° C. for 22 hours is repeated four times.
The result is visually altered. Data is being collected.

(5)耐摩耗試験、
未実施である。
(5) Abrasion resistance test,
Not implemented.

以上のように、本発明の技術は未だ開発途上であって、コネクタ用端子のコンタクト材の純銅につき適用し2〜3の性能を測定、確認したに過ぎないが、本発明の対象金属表層をアモルファス化(非晶質化)する技術は、従来慣用の液相凍結法と気相凍結法に対して、特殊と言われるイオン衝撃により結晶表面をアモルファス化する固相反応法の一翼をなすもので発展が期待されるものである。   As described above, the technology of the present invention is still under development, and is only applied to pure copper as a contact material for connector terminals and measured and confirmed a few performances. Amorphization (amorphization) technology forms part of the solid-phase reaction method that amorphizes the crystal surface by ion bombardment, which is called special, compared to the conventional liquid-phase freezing method and vapor-phase freezing method. The development is expected.

そして本発明によれば、コネクタ用端子材としての黄銅、リン青銅、ベリリウム銅、及び洋白などの銅合金、またこれらの銅合金の表面一部以上に銅バリヤ用ニッケルめっきなどの表面処理を施した端子材に適用して有効である蓋然性が高いものであり、そしてさらに、その他の鉄もしくは鉄系合金やチタンもしくはチタン系合金の如き電気導電材や電極材の外、接点及び接点材への適用も思考されているものである。   And according to the present invention, copper alloy such as brass, phosphor bronze, beryllium copper, and white as a terminal material for connectors, and surface treatment such as nickel plating for copper barrier on a part of the surface of these copper alloys. It has a high probability of being effective when applied to applied terminal materials, and in addition to other electrically conductive materials and electrode materials such as iron or iron-based alloys, titanium or titanium-based alloys, and to contacts and contact materials. The application of is also considered.

本発明は、電気回路または機器などの相互間を電気的に接続するための接続具の製造における表面処理に替えて使用することができる。   The present invention can be used in place of a surface treatment in manufacturing a connector for electrically connecting electrical circuits or devices.

本発明の加工処理の対象部材となるコネクタ用端子の一実施例の生産部材の部分平面図。The fragmentary top view of the production member of one Example of the terminal for connectors used as the process target object of this invention. 本発明の加工処理が生産部材の面粗さに与える影響と形成薄膜の状態を示す特性曲線図。The characteristic curve figure which shows the influence which the processing of this invention has on the surface roughness of a production member, and the state of a formed thin film. (A)は本発明の一実施例サンプルの接触抵抗測定表、(B)は従来例のサンプルの測定表である。(A) is a contact resistance measurement table of a sample of one embodiment of the present invention, and (B) is a measurement table of a sample of a conventional example. 従来例の大面積電子ビームパルスによる表面改質加工装置の一例を示す正断面図。The front sectional view showing an example of the surface modification processing device by the large area electron beam pulse of the conventional example. 同じく図4の装置の3つのパルス電源の放電特性図。FIG. 5 is a discharge characteristic diagram of three pulse power sources of the apparatus of FIG. 4. 同じく図4の装置における磁場形成状態の説明図。Explanatory drawing of the magnetic field formation state similarly in the apparatus of FIG. 同じく図4の装置の照射電子ビームのエネルギ密度とガス圧(Torr)との関係を異なる加速電圧の場合について示した特性図。FIG. 5 is a characteristic diagram showing the relationship between the energy density of the irradiation electron beam and the gas pressure (Torr) of the apparatus shown in FIG. 4 for different acceleration voltages.

符号の説明Explanation of symbols

31 帯板材
31A 生産部材
31−1、31−2、31−3、・・31−n コネクタ用端子
31 Band plate material 31A Production member 31-1, 31-2, 31-3, ... 31-n Connector terminal

Claims (5)

銅、または銅合金からなるコネクタ用端子の表面に、照射により表層部分が所定の溶解状態となるエネルギ密度を持ち、かつ、前記溶解表層部分が溶解後直ちに再凝固するエネルギ照射量に制限する照射時間の短い電子ビームのパルスを少なくとも1回以上照射して、前記表面部分に銅アモルファス層を形成させることを特徴とするコネクタ用端子の表面改質加工方法。   Irradiation on the surface of the connector terminal made of copper or a copper alloy has an energy density at which the surface layer part is in a predetermined dissolved state by irradiation, and the irradiation is limited to an energy irradiation amount that re-solidifies immediately after the dissolved surface layer part is dissolved. A method for surface modification of a connector terminal, comprising irradiating a pulse of an electron beam with a short time at least once to form a copper amorphous layer on the surface portion. 銅、銅合金、または所要の金属または合金めっきを施した銅または銅合金から成るコネクタ用端子の少なくとも接触面となる表面部分に、
照射軸と垂直な断面の径Lrが、Lr=x×10mm(但し、x=0.1、0.2、0.3、・・・0.5、・・・0.8、・・・1.0、2.0、・・・5.0、・・・7.0)、エネルギ密度Edが、Ed=0.1〜10J/cm、パルスビームのパルス時間幅τsが、τs=0.05〜5.0μsの電子ビームのパルスを少なくとも1回以上照射して、前記表面部分に電気接触面としての銅アモルファス層を形成させることを特徴とするコネクタ用端子の表面改質加工方法。
At least on the surface portion that becomes the contact surface of the connector terminal made of copper, copper alloy, or copper or copper alloy plated with the required metal or alloy,
The diameter Lr of the cross section perpendicular to the irradiation axis is Lr = x × 10 mm (where x = 0.1, 0.2, 0.3,... 0.5,... 0.8,. 1.0, 2.0, ... 5.0, ... 7.0), the energy density Ed is, Ed = 0.1~10J / cm 2, a pulse beam of the pulse time width .tau.s is, .tau.s = A surface modification processing method for a connector terminal, characterized in that an electron beam pulse of 0.05 to 5.0 μs is irradiated at least once to form a copper amorphous layer as an electrical contact surface on the surface portion. .
銅、または銅合金からなるコネクタ用端子の表面を、照射により表層部分が溶解するエネルギ密度を持ち、かつ前記溶解表層部分が溶解後再凝固するエネルギ量に制限された照射時間の短い電子ビームのパルスを少なくとも1回照射して前記表面部分に銅アモルファス層を形成させて表面を仕上げて成ることを特徴とするコネクタ用端子。   The surface of a connector terminal made of copper or a copper alloy has an energy density at which a surface layer portion is melted by irradiation, and an electron beam with a short irradiation time limited to an energy amount that the melted surface layer portion resolidifies after melting. A connector terminal, wherein the surface is finished by irradiating a pulse at least once to form a copper amorphous layer on the surface portion. 銅、銅合金、または所要の金属または合金めっきを施した銅または銅合金から成るコネクタ用端子の少なくとも接触面となる表面部分を、
照射軸と垂直な断面の径Lrが、Lr=x×10mm(但し、x=0.1、0.2、0.3、・・・0.5、・・・0.8、・・・1.0、2.0、・・・5.0、・・・7.0)、エネルギ密度Edが、Ed=0.1〜10J/cm、パルスビームのパルス時間幅τsが、τs=0.05〜5.0μsの電子ビームのパルスを少なくとも1回以上照射して、前記表面部分に電気接触面としての銅アモルファス層を形成させて表面を仕上げて成ることを特徴とするコネクタ用端子。
At least a surface portion to be a contact surface of a connector terminal made of copper, a copper alloy, or a copper or copper alloy plated with a required metal or alloy,
The diameter Lr of the cross section perpendicular to the irradiation axis is Lr = x × 10 mm (where x = 0.1, 0.2, 0.3,... 0.5,... 0.8,. 1.0, 2.0, ... 5.0, ... 7.0), the energy density Ed is, Ed = 0.1~10J / cm 2, a pulse beam of the pulse time width .tau.s is, .tau.s = A connector terminal comprising: a surface of a copper amorphous layer serving as an electrical contact surface formed by irradiating a pulse of an electron beam of 0.05 to 5.0 μs at least once or more to form a copper amorphous layer on the surface portion. .
コネクタ、プラグ、ジャック、ソケット、スイッチ、またはリレー等の電気接続の接触子部分であって、該接触子部分又は全体が銅もしくは銅系合金、鉄もしくは鉄系合金、またはチタンもしくはチタン系合金から成る電子機構部品において、前記接触子部の表面を照射ビームとして、表層部分が溶解するエネルギ密度を持ち、かつ、前記溶解表層部分が、溶解後微小短時間で再凝固する照射エネルギ量に制限された照射時間の短い電子ビームのパルスを少なくとも1回以上照射して、前記表層部分に表面面粗度が改善された接触子金属部材のアモルファス層を形成させて表面を仕上げて成ることを特徴とする電子機構部品の接触子。   A contact part of an electrical connection such as a connector, plug, jack, socket, switch, or relay, the contact part or the whole being made of copper or a copper alloy, iron or an iron alloy, or titanium or a titanium alloy In the electronic mechanism component, the surface of the contact portion is used as an irradiation beam, the surface layer portion has an energy density for melting, and the melting surface layer portion is limited to an irradiation energy amount that resolidifies in a very short time after melting. The surface is finished by irradiating a pulse of an electron beam with a short irradiation time at least once to form an amorphous layer of a contact metal member with improved surface roughness on the surface layer portion. Contact for electronic mechanism parts.
JP2004015811A 2004-01-23 2004-01-23 Connector terminal, and surface reforming method for connector terminal Pending JP2005206893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004015811A JP2005206893A (en) 2004-01-23 2004-01-23 Connector terminal, and surface reforming method for connector terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004015811A JP2005206893A (en) 2004-01-23 2004-01-23 Connector terminal, and surface reforming method for connector terminal

Publications (1)

Publication Number Publication Date
JP2005206893A true JP2005206893A (en) 2005-08-04

Family

ID=34901169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004015811A Pending JP2005206893A (en) 2004-01-23 2004-01-23 Connector terminal, and surface reforming method for connector terminal

Country Status (1)

Country Link
JP (1) JP2005206893A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049882A (en) * 2011-08-30 2013-03-14 Sodick Co Ltd Device for modification of metallic surface
US11699942B2 (en) * 2019-05-23 2023-07-11 GM Global Technology Operations LLC Hybrid additive manufacturing assisted prototyping for making electro-mechanical components

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049882A (en) * 2011-08-30 2013-03-14 Sodick Co Ltd Device for modification of metallic surface
US11699942B2 (en) * 2019-05-23 2023-07-11 GM Global Technology Operations LLC Hybrid additive manufacturing assisted prototyping for making electro-mechanical components

Similar Documents

Publication Publication Date Title
US3359422A (en) Arc discharge atomic particle source for the production of neutrons
US5587226A (en) Porcelain-coated antenna for radio-frequency driven plasma source
Yushkov et al. Effect of the pulse repetition rate on the composition and ion charge-state distribution of pulsed vacuum arcs
US7002096B2 (en) Surface modification process on metal dentures, products produced thereby, and the incorporated system thereof
RU2422555C1 (en) Procedure for electric-explosive application of metal coating on contact surfaces
KR910011341A (en) Method and apparatus for coating substrates
JP5373903B2 (en) Deposition equipment
US3573098A (en) Ion beam deposition unit
WO1991006969A1 (en) Metal-ion source and process for the generation of metal ions
JP2005206893A (en) Connector terminal, and surface reforming method for connector terminal
Bhuyan et al. Experimental studies of ion beam anisotropy in a low energy plasma focus operating with methane
JPH0211974B2 (en)
JP2005076061A (en) Method and device for reforming surface of metal member
Demokan Ion implantation and deposition on the inner surfaces of cylinders by exploding metallic foils
Fang et al. Fundamental plasma processes
van der Geer et al. Nonlinear electrostatic emittance compensation in kA, fs electron bunches
RU2384911C1 (en) Method for treatment of electrodes in insulating gaps of high-voltage electric vacuum instruments
EP1624471B1 (en) Method for making an electrode by ion beam implantation
RU2805413C1 (en) Method of electro-explosive spraying of electro-erosion-resistant coating based on tungsten and gold on copper electrical contact
JPS59501430A (en) Low voltage operation in arc discharge devices
CN100389476C (en) Scan type ion gun
SU1721651A1 (en) Method of manufacture of contact plating of magnetically controlled air-tight contact
WO1993001327A1 (en) Continuous vacuum arc broad beam ion source
JPS5887272A (en) Planar magnetron sputtering device
RU2185698C2 (en) Arrester