JP2005206685A - Apparatus for manufacturing gas hydrate - Google Patents

Apparatus for manufacturing gas hydrate Download PDF

Info

Publication number
JP2005206685A
JP2005206685A JP2004014272A JP2004014272A JP2005206685A JP 2005206685 A JP2005206685 A JP 2005206685A JP 2004014272 A JP2004014272 A JP 2004014272A JP 2004014272 A JP2004014272 A JP 2004014272A JP 2005206685 A JP2005206685 A JP 2005206685A
Authority
JP
Japan
Prior art keywords
gas
flow rate
hydrate
mixing ratio
ethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004014272A
Other languages
Japanese (ja)
Other versions
JP4751025B2 (en
Inventor
Masataka Hiraide
政隆 平出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2004014272A priority Critical patent/JP4751025B2/en
Publication of JP2005206685A publication Critical patent/JP2005206685A/en
Application granted granted Critical
Publication of JP4751025B2 publication Critical patent/JP4751025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately adjust the component ratio of feedstock gases supplied to a production tank to a desired value. <P>SOLUTION: In the apparatus for manufacturing a gas hydrate having a production tank 1 in which a methane gas 3 and an ethane gas 4 are supplied and allowed to react with water 8 to form a gas hydrate, detectors 34 and 35 for detecting each gas flow rate, and controllers 37 and 38 for controlling these detected flow rates qa and qb to set flow rates qa* and qb*, this apparatus has a mixing ratio controller 40 for integrating the detected flow rates qa and qb for a correction period T to find a deviation ΔQb from a desired ratio of integrated values Qa and Qb and correcting the set flow rate qb* of the controller 38 so as to reduce this deviation ΔQb, and by this controller, the component ratio of the methane gas 3 and the ethane gas 4 supplied to the production tank 1 can be accurately adjusted to a desired value even when the flow rates of the methane gas 3 and the ethane gas 4 are varied for some cause. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ガスハイドレートの製造装置に関する。   The present invention relates to a gas hydrate manufacturing apparatus.

ガスハイドレートは、水分子の作る籠の中にガスを取り込んでなる安定な固体の水和物であり、取り込まれたガスがメタンの場合はメタンハイドレート、天然ガス(通常、メタンを主成分とした混合ガス)の場合は天然ガスハイドレートと呼ばれている。天然ガスハイドレートは、低温高圧の下で安定し、常温常圧の下で不安定になるため、陸上では永久凍土地域、海域では水深500m以深の海底下に存在することが確認され、有望な天然ガス資源として注目されている。   Gas hydrate is a stable solid hydrate that is obtained by taking gas into the jar made of water molecules. When the taken gas is methane, methane hydrate, natural gas (usually methane is the main component) Is called natural gas hydrate. Natural gas hydrate is stable under low temperature and high pressure, and unstable under normal temperature and normal pressure. It is attracting attention as a natural gas resource.

一方で、ガスハイドレートは、その構造中に大量のガスを貯蔵でき、かつ、−10数℃、大気圧で輸送、貯蔵することができることから、天然ガスハイドレート(NGH)を工業的に生産し、液化天然ガス(LNG)に代わる天然ガスの輸送や貯蔵の手段として利用する研究が進められている。   On the other hand, since gas hydrate can store a large amount of gas in its structure and can be transported and stored at -10 ° C. and atmospheric pressure, natural gas hydrate (NGH) is produced industrially. However, research is being conducted to use it as a means for transporting and storing natural gas instead of liquefied natural gas (LNG).

このようなガスハイドレートは、生成槽に原料ガスと水を充填して数℃に冷却し、数十気圧に昇圧して反応させることにより製造される(例えば、特許文献1参照)。この特許文献1によれば、メタンガスとプロパンガスを混合させたガスハイドレートが製造される。   Such a gas hydrate is produced by filling a production tank with a raw material gas and water, cooling to several degrees C., and raising the reaction pressure to several tens of atmospheres (for example, refer to Patent Document 1). According to Patent Document 1, a gas hydrate in which methane gas and propane gas are mixed is manufactured.

特開2002−38171号公報(第1図、第2頁参照)JP 2002-38171 A (see FIG. 1 and page 2)

特許文献1のように複数種類のガスを原料ガスとして用いる場合、生成槽内の原料ガスの組成を所望の割合にするために、生成槽に供給する各ガスの流量を一定の混合比に制御する必要がある。   When a plurality of types of gases are used as source gas as in Patent Document 1, the flow rate of each gas supplied to the generation tank is controlled to a constant mixing ratio so that the composition of the source gas in the generation tank is a desired ratio. There is a need to.

しかし、生成槽の圧力変動、ガス供給管路の圧力損失、および各ガスの流量制御の追従遅れなどの原因により、ガス混合比が所望値からずれる場合がある。特に、生成槽で生成されたガスハイドレートが、例えば、冷却装置や脱圧装置などの比較的低圧の取扱装置にバッチ的に排出される際に、生成槽の圧力が変動するから、ガス混合比が変動するおそれがある。   However, the gas mixture ratio may deviate from a desired value due to factors such as pressure fluctuations in the generation tank, pressure loss in the gas supply lines, and delay in tracking the flow control of each gas. In particular, when the gas hydrate produced in the production tank is batch discharged to a relatively low-pressure handling device such as a cooling device or a depressurization device, the pressure of the production tank fluctuates. The ratio may fluctuate.

本発明の課題は、生成槽に供給する原料ガスの組成の割合を精度よく所望値に調整することにある。   The subject of this invention is adjusting the ratio of the composition of the raw material gas supplied to a production tank to a desired value accurately.

本発明のガスハイドレートの製造装置は、ガスと水とを反応させてガスハイドレートを生成する生成槽と、該生成槽に複数種類の前記ガスを供給する複数のガス供給管路と、該各ガス供給管路に設けられた流量調整弁と、前記各ガス供給管路のガス流量を検出し、前記各流量調整弁を制御して各検出流量を設定流量に制御する制御手段とを備え、該制御手段の前記各設定流量は、前記複数のガスの予め定められた混合比に基づいて設定されてなるガスハイドレートの製造装置において、前記制御手段は、前記各ガスの前記検出流量を設定時間積分した各積分値を比較して前記混合比とのずれを求め、このずれを低減するように少なくとも一の前記設定流量を補正することを特徴とする。   An apparatus for producing a gas hydrate according to the present invention includes a generation tank that reacts gas and water to generate gas hydrate, a plurality of gas supply lines that supply a plurality of types of the gas to the generation tank, A flow rate adjusting valve provided in each gas supply line; and a control means for detecting a gas flow rate in each gas supply line and controlling each flow rate adjusting valve to control each detected flow rate to a set flow rate. In the gas hydrate manufacturing apparatus in which each set flow rate of the control means is set based on a predetermined mixture ratio of the plurality of gases, the control means sets the detected flow rate of each gas. Each integral value obtained by integrating the set time is compared to obtain a deviation from the mixing ratio, and at least one set flow rate is corrected so as to reduce the deviation.

すなわち、生成槽の圧力変動や、ガス供給管路の圧力損失、あるいは各ガスの流量制御の追従遅れに起因して、それぞれの流量調整弁および制御手段の制御応答にずれが生じ、このずれによりガス混合比が所望値からずれることがある。この点、本発明によれば、各ガスの検出流量を設定時間積分し、その設定時間における各ガス流量の積分値に基づいて混合比からのずれを求めて、このずれを低減するように少なくとも一の設定流量を補正するようにしているから、生成槽に供給する原料ガスの組成の割合を精度よく所望値に調整することができる。   In other words, due to pressure fluctuations in the production tank, pressure loss in the gas supply pipes, or delays in follow-up of the flow control of each gas, deviations occur in the control responses of the respective flow control valves and control means. The gas mixture ratio may deviate from the desired value. In this regard, according to the present invention, the detected flow rate of each gas is integrated for a set time, and the deviation from the mixing ratio is obtained based on the integrated value of each gas flow rate at the set time, and at least so as to reduce this deviation. Since one set flow rate is corrected, the ratio of the composition of the raw material gas supplied to the generation tank can be accurately adjusted to a desired value.

また、各制御手段は、一のガス(例えば、主成分ガス)の検出流量に混合比に応じて定められた係数を乗じた値に、他のガス(例えば、副成分ガス)の設定流量を設定するようにすることができる。これによれば、一のガスの流量に他のガスの流量を追従させて制御することができる。この場合において、制御手段は、一のガスと他のガスの検出流量を設定された補正周期ごとに積分し、一のガスの検出流量の積分値に係数を乗じた値と他のガスの積分値との差を求め、この差を低減するように次回の補正周期における他のガスの設定流量を補正する構成にできる。   In addition, each control means sets a set flow rate of another gas (for example, subcomponent gas) to a value obtained by multiplying the detected flow rate of one gas (for example, main component gas) by a coefficient determined according to the mixing ratio. Can be set. According to this, the flow rate of one gas can be controlled to follow the flow rate of another gas. In this case, the control means integrates the detected flow rates of one gas and the other gas every set correction period, and multiplies the integrated value of the detected flow rate of the one gas by a coefficient and the integral of the other gas. It is possible to obtain a difference from the value and correct the set flow rate of the other gas in the next correction cycle so as to reduce this difference.

本発明によれば、生成槽に供給する原料ガスの組成の割合を精度よく所望値に調整できる。   According to the present invention, the ratio of the composition of the raw material gas supplied to the production tank can be accurately adjusted to a desired value.

以下、本発明の実施の形態について、図面を用いて説明する。図1は、本発明のガスハイドレートの製造装置の一実施形態を示す構成図である。図2は、本発明の一実施形態の各ガスの混合比を制御する混合比制御装置の構成図である。図3は、混合比制御装置の制御を説明する図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing an embodiment of the gas hydrate production apparatus of the present invention. FIG. 2 is a configuration diagram of a mixing ratio control apparatus that controls the mixing ratio of each gas according to an embodiment of the present invention. FIG. 3 is a diagram for explaining the control of the mixing ratio control device.

図1に示すように、ガスハイドレートの製造装置は、縦型筒状の圧力容器からなる生成槽1を備えている。原料ガスの主成分であるメタンガス3と副成分ガスであるエタンガス4は、それぞれガス供給管路5、6を介して、ガス供給口7から例えば生成槽1の上部の気相空間に供給される。一方、水8は、生成槽1の頂部を鉛直下向きに挿通する水供給管路9を介して生成槽1に供給される。生成槽1の内部の圧力および温度は、周知の手段によりガスハイドレートが生成される反応圧力(例えば、30〜100気圧)および反応温度(例えば、1〜5℃)に保持される。   As shown in FIG. 1, the gas hydrate manufacturing apparatus includes a generation tank 1 formed of a vertical cylindrical pressure vessel. The methane gas 3 that is the main component of the raw material gas and the ethane gas 4 that is the subcomponent gas are supplied from the gas supply port 7 to, for example, the gas phase space above the generation tank 1 via the gas supply lines 5 and 6, respectively. . On the other hand, the water 8 is supplied to the generation tank 1 through a water supply conduit 9 that passes vertically through the top of the generation tank 1. The pressure and temperature inside the generation tank 1 are maintained at a reaction pressure (for example, 30 to 100 atm) and a reaction temperature (for example, 1 to 5 ° C.) at which gas hydrate is generated by a known means.

生成槽1に供給されたメタンガス3とエタンガス4は、水8と水和反応し、この反応によってガスハイドレート11が生成される。生成されたガスハイドレート11は、ガスハイドレートが生成される高さに設けられた排出口12を介し、図示していない、例えば冷却装置や脱圧装置などのガスハイドレートの取扱装置に排出される。   The methane gas 3 and ethane gas 4 supplied to the production tank 1 undergo a hydration reaction with water 8, and a gas hydrate 11 is produced by this reaction. The generated gas hydrate 11 is discharged to a gas hydrate handling device (not shown) such as a cooling device or a depressurization device through a discharge port 12 provided at a height at which the gas hydrate is generated. Is done.

一方、ガスハイドレート11は、生成されるときに発熱(例えば、約105kcal/kg)を伴うことから、原料ガスおよび水を生成槽1から抜き出して冷却するガス冷却手段と水冷却手段が設けられている。ガス冷却手段は、生成槽1の上部に連通された原料ガス循環ライン19を介して原料ガスを抜き出し、圧縮機20で昇圧し、冷却器21を通して冷却した後、生成槽1の頂部から鉛直下向きに生成槽1内に挿入されたノズル22から生成槽内1に戻すようになっている。ノズル22は、複数の小孔が形成されたリング状の先端部を有し、この先端部は生成槽1の底部に位置させて設けられている。水冷却手段は、生成槽1の底部に連通された水循環ライン24を介して水循環ポンプ26により水8を抜き出し、冷却器27で冷却した後、生成槽1の頂部から鉛直下向きに挿入された管28を介して生成槽1に水を戻すように構成されている。   On the other hand, since the gas hydrate 11 generates heat (for example, about 105 kcal / kg) when it is generated, a gas cooling means and a water cooling means for extracting the raw material gas and water from the generation tank 1 and cooling them are provided. ing. The gas cooling means extracts the raw material gas through the raw material gas circulation line 19 communicated with the upper part of the production tank 1, pressurizes it with the compressor 20, cools it through the cooler 21, and then vertically downwards from the top of the production tank 1. The nozzle 22 inserted in the production tank 1 is returned to the production tank 1. The nozzle 22 has a ring-shaped tip portion in which a plurality of small holes are formed, and this tip portion is provided at the bottom of the generation tank 1. The water cooling means is a pipe inserted vertically downward from the top of the generation tank 1 after extracting the water 8 by the water circulation pump 26 through the water circulation line 24 communicated with the bottom of the generation tank 1 and cooling it with the cooler 27. The water is returned to the production tank 1 through 28.

一方、メタンガス3とエタンガス4の流量調整弁31、32のガス上流側に、それぞれのガス流量を検出する検出器34、35が設けられている。検出器34から出力されるメタンガス3の検出流量qaと、検出器35から出力されるエタンガス4の検出流量qbは、それぞれ制御器37、38に入力されている。制御器37、38は、入力された検出流量qa、qbと、予め定められた設定流量qa*、qb*を比較し、その差を低減するように、例えばPID制御などにより、流量調整弁31、32の開度を制御するようになっている。検出器34、35から出力される検出流量qa、qbは、本実施形態の特徴部である混合比制御装置40に入力されている。混合比制御装置40は、図2に示すように、検出流量qaは係数器41に入力されている。係数器41には、原料ガスの所望の混合比に基づいて、メタンガスに対するエタンガスの混合割合である係数rが設定されており、次式(1)の演算を行って、検出流量qaに係数rを乗じた出力を、加算器42を介して設定流量qb*(=r・qa)として制御器38に入力するようになっている。
qb*=r・qa (1)
On the other hand, detectors 34 and 35 for detecting respective gas flow rates are provided on the gas upstream side of the flow rate adjusting valves 31 and 32 for the methane gas 3 and the ethane gas 4. The detection flow rate qa of the methane gas 3 output from the detector 34 and the detection flow rate qb of the ethane gas 4 output from the detector 35 are input to the controllers 37 and 38, respectively. The controllers 37 and 38 compare the input detected flow rates qa and qb with predetermined set flow rates qa * and qb * and reduce the difference by, for example, PID control or the like to adjust the flow rate adjustment valve 31. , 32 are controlled. The detected flow rates qa and qb output from the detectors 34 and 35 are input to the mixing ratio control device 40 which is a characteristic part of the present embodiment. In the mixing ratio control device 40, the detected flow rate qa is input to the coefficient unit 41 as shown in FIG. 2. The coefficient unit 41 is set with a coefficient r, which is a mixture ratio of ethane gas to methane gas, based on a desired mixing ratio of the raw material gas. Is output to the controller 38 as the set flow rate qb * (= r · qa) via the adder 42.
qb * = r · qa (1)

また、検出流量qa、qbは、それぞれ積分器44、45に入力され、積分器44の出力は比較器47に入力され、積分器45の出力は係数器46を介して比較器47に入力されている。係数器46には、係数器41と同一の係数rが設定されている。比較器47の出力は演算器48に入力され、演算器48の出力は加算器42に入力されている。   The detected flow rates qa and qb are input to integrators 44 and 45, respectively, the output of integrator 44 is input to comparator 47, and the output of integrator 45 is input to comparator 47 via coefficient unit 46. ing. In the coefficient unit 46, the same coefficient r as that of the coefficient unit 41 is set. The output of the comparator 47 is input to the calculator 48, and the output of the calculator 48 is input to the adder 42.

このように構成されることから、制御器37は、入力されるメタンガスの検出流量qaを、所望の混合比に基づいて設定された設定流量qa*に一致させるように、流量調整弁31の開度を制御する。この設定流量qa*は、制御器37の内部に設定されている。一方、制御器38には、加算器42を介して係数器41からエタンガスの設定流量qb*(=r・qa)が入力される。制御器38は、エタンガスの検出流量qbを、設定流量qb*に一致させるように、流量調整弁32の開度を制御する。つまり、所望の混合比に応じてエタンガス4の流量をメタンガス3の流量に追従させて制御するようになっている。その結果、流量調整弁31、32を介して生成槽1に所望の混合比に応じた組成の原料ガスが供給される。   With this configuration, the controller 37 opens the flow rate adjustment valve 31 so that the detected flow rate qa of the input methane gas matches the set flow rate qa * set based on the desired mixing ratio. Control the degree. This set flow rate qa * is set inside the controller 37. On the other hand, the set flow rate qb * (= r · qa) of ethane gas is input to the controller 38 from the coefficient unit 41 via the adder 42. The controller 38 controls the opening degree of the flow rate adjustment valve 32 so that the detected flow rate qb of ethane gas matches the set flow rate qb *. That is, the flow rate of the ethane gas 4 is controlled to follow the flow rate of the methane gas 3 in accordance with a desired mixing ratio. As a result, a raw material gas having a composition corresponding to a desired mixing ratio is supplied to the generation tank 1 via the flow rate adjusting valves 31 and 32.

次に、本実施形態の特徴部である混合比制御装置における補正制御の動作について説明する。まず、生成槽の圧力変動や、ガス供給管路の圧力損失、あるいは各ガスの流量制御の追従遅れに起因して、それぞれの流量調整弁および制御手段の制御応答にずれが生じることがある。例えば、生成槽1内の圧力が低下すると、メタンガス3の供給系を構成する検出器34、制御器37および流量調整弁31の応答が間に合わず、メタンガス3の供給量が一時的に増加するが、その後、制御器37および流量調整弁31が動作して、メタンガス3の供給量は速やかに設定流量qa*に抑えられる。しかし、エタンガス4の設定流量qb*(=r・qa)は、メタンガス3の一時的に増加に合わせて一旦増加されることになる。したがって、エタンガスの制御系は、メタンガスの制御系よりも応答が遅れ、その遅れに応じてガス混合比が所望値からずれる。この制御の遅れは、生成槽1の圧力変動のほかに、メタンガス又はエタンガスのガス供給管路5、6の圧力損失、あるいは各ガスの流量制御系自体の遅れなどがある。また、生成槽1の圧力変動は、例えば、高圧の生成槽1で生成されたガスハイドレートが、冷却装置や脱圧装置などの比較的低圧のガスハイドレート取扱装置にバッチ的に排出する場合に起こりうる。   Next, the correction control operation in the mixture ratio control apparatus, which is a characteristic part of the present embodiment, will be described. First, due to pressure fluctuations in the production tank, pressure loss in the gas supply pipes, or delays in follow-up control of the flow rate of each gas, there may be a deviation in the control response of the respective flow rate adjustment valves and control means. For example, when the pressure in the generation tank 1 decreases, the responses of the detector 34, the controller 37, and the flow rate adjustment valve 31 that constitute the supply system of the methane gas 3 are not in time, and the supply amount of the methane gas 3 temporarily increases. Thereafter, the controller 37 and the flow rate adjustment valve 31 are operated, and the supply amount of the methane gas 3 is quickly suppressed to the set flow rate qa *. However, the set flow rate qb * (= r · qa) of the ethane gas 4 is temporarily increased in accordance with the temporary increase of the methane gas 3. Accordingly, the response of the ethane gas control system is delayed from that of the methane gas control system, and the gas mixture ratio deviates from a desired value in accordance with the delay. This control delay includes, in addition to pressure fluctuations in the production tank 1, pressure loss in the gas supply lines 5 and 6 of methane gas or ethane gas, or delays in the flow rate control system itself of each gas. The pressure fluctuation in the generation tank 1 is, for example, when the gas hydrate generated in the high-pressure generation tank 1 is discharged in a batch to a relatively low-pressure gas hydrate handling device such as a cooling device or a depressurization device. Can happen.

本実施形態の混合比制御装置は、上記のような制御遅れ等に起因する混合比のずれを、以下に述べるように抑制する。つまり、積分器44、45は、それぞれあらかじめ定められた周期T(以下、補正周期という。)ごとに、メタンガス3とエタンガス4の検出流量qa、qbを補正周期Tにわたって積分する。ここで、補正周期Tは、制御器37、38の制御周期よりも十分長い時間(例えば15秒〜1分程度)に設定することが好ましい。積分器45から出力されるメタンガス3の積分値Qaは、係数器46において係数rが乗じられて比較器47に入力される。比較器47は、入力されるr・QaとQbとの差ΔQbを次式(2)によりに求めて、演算器48に出力する。ここで、補正周期Tが短すぎると、積分値の差ΔQbが小さすぎて補正制御の精度が低下し、長すぎると混合比のずれが大きくなる場合がある。
ΔQb=r・Qa−Qb (2)
The mixture ratio control apparatus of the present embodiment suppresses the deviation of the mixture ratio caused by the control delay as described above as described below. That is, the integrators 44 and 45 integrate the detected flow rates qa and qb of the methane gas 3 and the ethane gas 4 over the correction period T for each predetermined period T (hereinafter referred to as a correction period). Here, the correction cycle T is preferably set to a time sufficiently longer than the control cycle of the controllers 37 and 38 (for example, about 15 seconds to 1 minute). The integral value Qa of the methane gas 3 output from the integrator 45 is multiplied by the coefficient r in the coefficient unit 46 and input to the comparator 47. The comparator 47 obtains a difference ΔQb between the input r · Qa and Qb by the following equation (2) and outputs the difference to the calculator 48. Here, if the correction cycle T is too short, the difference ΔQb in the integral value is too small and the accuracy of the correction control is lowered.
ΔQb = r · Qa−Qb (2)

演算器48は、次式(3)により、補正量Δqbを求めて、加算器42に出力するようになっている。つまり、補正周期Tにわたる積分値を周期Tで割って時間平均を補正量Δqbとするものである。
Δqb=ΔQb/T (3)
The computing unit 48 calculates a correction amount Δqb by the following equation (3) and outputs it to the adder 42. That is, the integrated value over the correction period T is divided by the period T to obtain the time average as the correction amount Δqb.
Δqb = ΔQb / T (3)

これにより、加算器42の出力であるエタンガスの設定流量qb*は、次式(4)になる。
qb*=r・qa+Δqb (4)
As a result, the set flow rate qb * of ethane gas, which is the output of the adder 42, is expressed by the following equation (4).
qb * = r · qa + Δqb (4)

これにより、例えば、図3の(c)に示すように、任意の補正周期Tn−1(ここで、nは自然数)の補正量Δqbn−1が、次回の補正周期Tにおける設定流量qb*(=r・qa)に加えられる。その結果、補正周期Tn−1におけるメタンガスとエタンガスの所定の混合比からのずれを低減することができる。ここで、メタンガス3の積分値をQa(=Σqa)とし、エタンガス4の積分値をQb(=Σqb)とする。 Thereby, for example, as shown in FIG. 3C, the correction amount Δqb n−1 of an arbitrary correction cycle T n−1 (where n is a natural number) is the set flow rate in the next correction cycle T n . It is added to qb * (= r · qa). As a result, deviation from a predetermined mixing ratio of methane gas and ethane gas in the correction cycle T n-1 can be reduced. Here, the integrated value of the methane gas 3 is Qa (= Σqa), and the integrated value of the ethane gas 4 is Qb (= Σqb).

このように、本実施形態によれば、生成槽1の圧力変動などにより、メタンガス3とエタンガス4の流量の割合が変動しても、その変動による供給量のずれを補償できるので、生成槽1に供給する原料ガスの組成の割合を精度よく所望値に調整することができる。   Thus, according to the present embodiment, even if the ratio of the flow rates of the methane gas 3 and the ethane gas 4 varies due to the pressure variation of the production tank 1 and the like, it is possible to compensate for the deviation in supply amount due to the fluctuation, so the production tank 1 The ratio of the composition of the raw material gas supplied to can be accurately adjusted to a desired value.

なお、本実施形態では、主成分ガスとしてメタンガスを、副成分ガスとしてエタンガスを用いたものについて説明したが、これに限らず、ガスハイドレートを生成するガスであれば種々のものを用いることができる。例えば、副成分ガスとしてプロパンガスやイソブタンガスなどを添加する構成にも適用できる。この場合は、ガスハイドレートの生成圧力を低下させることができるので好ましい。また、副成分ガスとして付臭剤ガスなどを適用できる。   In the present embodiment, the methane gas is used as the main component gas and the ethane gas is used as the sub component gas. However, the present invention is not limited to this, and various gases may be used as long as they generate gas hydrate. it can. For example, the present invention can be applied to a configuration in which propane gas, isobutane gas, or the like is added as a subsidiary component gas. This is preferable because the gas hydrate generation pressure can be reduced. Moreover, odorant gas etc. are applicable as subcomponent gas.

また、本実施形態では、生成槽1として原料ガスを生成槽に充填された水に放出して反応を促すバブリング型について説明したが、これに限らず、攪拌機で水を攪拌する攪拌型や生成槽1内に水を散布するスプレー型など、種々の構成のものに適用できる。   Further, in the present embodiment, the bubbling type that releases the source gas into the water filled in the generation tank and promotes the reaction has been described as the generation tank 1. However, the present invention is not limited to this. The present invention can be applied to various types of structures such as a spray type that sprays water into the tank 1.

さらに、本実施形態では、主成分ガス(メタンガス)の流量に基づいて副成分ガス(エタンガス)の設定流量を可変する構成としたが、これに限らず、主福成分ガスの流量を独立に設定した制御系にも適用することができる。この場合は、係数器41と加算器42が不要になる。また、副成分ガスであるエタンガスの設定流量を補正する構成としたが、主成分ガスであるメタンガスの設定流量を補正してもよい。   Furthermore, in the present embodiment, the setting flow rate of the auxiliary component gas (ethane gas) is varied based on the flow rate of the main component gas (methane gas), but this is not restrictive, and the flow rate of the main component gas is set independently. It can also be applied to the control system. In this case, the coefficient unit 41 and the adder 42 are unnecessary. Further, although the configuration is such that the set flow rate of ethane gas, which is a sub-component gas, is corrected, the set flow rate of methane gas, which is a main component gas, may be corrected.

本発明のガスハイドレートの製造装置の一実施形態を示す構成図である。It is a block diagram which shows one Embodiment of the manufacturing apparatus of the gas hydrate of this invention. 本発明の一実施形態のガスの混合比を制御する混合比制御装置の構成図である。It is a block diagram of the mixing ratio control apparatus which controls the mixing ratio of the gas of one Embodiment of this invention. 混合比制御装置の制御を説明する図である。It is a figure explaining control of a mixture ratio control device.

符号の説明Explanation of symbols

1 生成槽
5、6 ガス供給管路
31、32 流量調整弁
34、35 検出器
37、38 制御器
40 混合比制御装置
41、46 係数器
42 加算器
44、45 積分器
47 比較器
48 演算器
DESCRIPTION OF SYMBOLS 1 Generation tank 5, 6 Gas supply line 31, 32 Flow rate adjustment valve 34, 35 Detector 37, 38 Controller 40 Mixing ratio control apparatus 41, 46 Coefficient unit 42 Adder 44, 45 Integrator 47 Comparator 48 Comparator 48 Calculator

Claims (2)

ガスと水とを反応させてガスハイドレートを生成する生成槽と、該生成槽に複数種類の前記ガスを供給する複数のガス供給管路と、該各ガス供給管路に設けられた流量調整弁と、前記各ガス供給管路のガス流量を検出し、前記各流量調整弁を制御して各検出流量を設定流量に制御する制御手段とを備え、該制御手段の前記各設定流量は、前記複数のガスの予め定められた混合比に基づいて設定されてなるガスハイドレートの製造装置において、
前記制御手段は、前記各ガスの前記検出流量を設定時間積分した各積分値を比較して前記混合比とのずれを求め、このずれを低減するように少なくとも一の前記設定流量を補正することを特徴とするガスハイドレートの製造装置。
A generation tank for reacting gas and water to generate gas hydrate, a plurality of gas supply lines for supplying a plurality of types of the gas to the generation tank, and a flow rate adjustment provided in each of the gas supply lines A valve and control means for detecting the gas flow rate of each gas supply line and controlling each flow rate adjustment valve to control each detected flow rate to a set flow rate. In the gas hydrate manufacturing apparatus set based on a predetermined mixing ratio of the plurality of gases,
The control means compares each integrated value obtained by integrating the detected flow rate of each gas for a set time to obtain a deviation from the mixing ratio, and corrects at least one set flow rate so as to reduce the deviation. An apparatus for producing a gas hydrate characterized by the above.
前記制御手段は、一のガスの検出流量に前記混合比に応じて定められた係数を乗じて他のガスの設定流量を設定し、前記一のガスと前記他のガスの検出流量を設定された補正周期ごとに積分し、前記一のガスの検出流量の積分値に前記係数を乗じた値と前記他のガスの積分値との差を求め、該差を低減するように次回の補正周期における前記他のガスの設定流量を補正することを特徴とする請求項1に記載のガスハイドレートの製造装置。
The control means multiplies the detected flow rate of one gas by a coefficient determined according to the mixing ratio to set a set flow rate of the other gas, and sets the detected flow rates of the one gas and the other gas. Is integrated at each correction cycle, and a difference between the integral value of the detected flow rate of the one gas multiplied by the coefficient and the integrated value of the other gas is obtained, and the next correction cycle is performed so as to reduce the difference. The apparatus for producing a gas hydrate according to claim 1, wherein a set flow rate of the other gas is corrected.
JP2004014272A 2004-01-22 2004-01-22 Gas hydrate manufacturing equipment Expired - Fee Related JP4751025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014272A JP4751025B2 (en) 2004-01-22 2004-01-22 Gas hydrate manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014272A JP4751025B2 (en) 2004-01-22 2004-01-22 Gas hydrate manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2005206685A true JP2005206685A (en) 2005-08-04
JP4751025B2 JP4751025B2 (en) 2011-08-17

Family

ID=34900114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014272A Expired - Fee Related JP4751025B2 (en) 2004-01-22 2004-01-22 Gas hydrate manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4751025B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263825A (en) * 2004-03-16 2005-09-29 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for producing gas hydrate
WO2008120767A1 (en) * 2007-03-30 2008-10-09 Mitsui Engineering & Shipbuilding Co., Ltd. Process for producing mixed gas hydrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279279A (en) * 2000-03-31 2001-10-10 Mitsubishi Heavy Ind Ltd Gas hydrate manufacturing apparatus and multistage gas hydrate manufacturing apparatus
JP2002038171A (en) * 2000-07-19 2002-02-06 Mitsubishi Heavy Ind Ltd Method and arrangement for producing hydrate, method for storing natural gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279279A (en) * 2000-03-31 2001-10-10 Mitsubishi Heavy Ind Ltd Gas hydrate manufacturing apparatus and multistage gas hydrate manufacturing apparatus
JP2002038171A (en) * 2000-07-19 2002-02-06 Mitsubishi Heavy Ind Ltd Method and arrangement for producing hydrate, method for storing natural gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263825A (en) * 2004-03-16 2005-09-29 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for producing gas hydrate
JP4676151B2 (en) * 2004-03-16 2011-04-27 三井造船株式会社 Gas hydrate manufacturing method and manufacturing apparatus
WO2008120767A1 (en) * 2007-03-30 2008-10-09 Mitsui Engineering & Shipbuilding Co., Ltd. Process for producing mixed gas hydrate
JP2008248190A (en) * 2007-03-30 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Method for producing mixed gas hydrate
US8138382B2 (en) 2007-03-30 2012-03-20 Mitsui Engineering & Shipbuilding Co., Ltd. Process for producing mixed gas hydrate

Also Published As

Publication number Publication date
JP4751025B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
TWI525734B (en) And a raw material gas supply device for a semiconductor manufacturing apparatus
JP3830670B2 (en) Semiconductor manufacturing equipment
KR101804520B1 (en) Methods and apparatus for treating exhaust gas in a processing system
JP4954995B2 (en) Ozone system for multi-chamber tools
US8927066B2 (en) Method and apparatus for gas delivery
CN107168055B (en) Ammonia desulphurization optimization control method based on multivariable predictive control
US9004107B2 (en) Methods and apparatus for enhanced gas flow rate control
US9102531B2 (en) Reactor control method
US10267512B2 (en) Multi-variable state closed-loop control for a steam generator of a thermal power plant
KR20190070872A (en) Method of processing substrate, storage medium, and raw material gas supply device
JP2006222133A (en) Method of supplying material gas, and apparatus thereof
JP4751025B2 (en) Gas hydrate manufacturing equipment
US20120108833A1 (en) Process for the preparation of phytosteryl ferulate
US20150005955A1 (en) Method and system for controlling a flow ratio controller using feedback
JP5260157B2 (en) Natural gas calorie adjustment system and calorie adjustment method
US20150005956A1 (en) Method and system for controlling a flow ratio controller using feed-forward adjustment
CN104865996A (en) Supercritical water reaction temperature control method, device and supercritical water reactor system
JP2008218760A (en) Manufacturing method for semiconductor device, and manufacturing apparatus for semiconductor device
CN103407977A (en) Method for controlling temperature of oxidizing furnace in chemical engineering device
JP2018112218A (en) BOG compressor load control device of LNG storage facility
Mahapatra et al. Dynamic maximization of oxygen yield in an elevated-pressure air separation unit using multiple model predictive control
JP2009242734A (en) Apparatus for manufacturing gas hydrate
JP2019157673A (en) Fuel gas supply device
JP6193827B2 (en) Fuel supply device, combustor, gas turbine, and fuel supply method
US11899476B2 (en) Method and apparatus for measuring gas flow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees