JP2005203555A - Manufacturing method of sintered magnet - Google Patents

Manufacturing method of sintered magnet Download PDF

Info

Publication number
JP2005203555A
JP2005203555A JP2004008175A JP2004008175A JP2005203555A JP 2005203555 A JP2005203555 A JP 2005203555A JP 2004008175 A JP2004008175 A JP 2004008175A JP 2004008175 A JP2004008175 A JP 2004008175A JP 2005203555 A JP2005203555 A JP 2005203555A
Authority
JP
Japan
Prior art keywords
compound
sintered magnet
molded body
extrusion
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004008175A
Other languages
Japanese (ja)
Inventor
Yuichi Ogawa
雄一 小川
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP2004008175A priority Critical patent/JP2005203555A/en
Publication of JP2005203555A publication Critical patent/JP2005203555A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a thin sintered magnet of high orientation by raising the fluidity of a compound and reducing the disturbance of surface orientation caused by friction, while restraining oxidation due to the rise of a formation temperature and an increase in remaining carbon amount due to an increase in resin amount. <P>SOLUTION: In the manufacturing method of the sintered magnet, the compound is formed by mixing a thermoplastic resin and magnetic material powder, the compound is formed to a molded item by an extrusion or injection molding machine, and the thermoplastic resin is degreased from the molded item and sintered. A supercritical fluid is dissolved inside the extrusion or injection molding machine and mixed with the compound, and the molded item is formed by extrusion or injection molding in a magnetic field. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱可塑性樹脂と磁性材料粉末を混合したコンパウンドを押出または射出成形し、熱可塑性樹脂を脱脂後に焼結する焼結磁石の製造方法に関するものであり、コンパウンドの流動性を上げ、低温で高配向の磁性材料粉末含有熱可塑性樹脂成形体を作製する高配向で磁気特性の優れた薄肉焼結磁石の製造方法に関する。   The present invention relates to a method for producing a sintered magnet in which a compound in which a thermoplastic resin and a magnetic material powder are mixed is extruded or injection-molded and the thermoplastic resin is degreased and then sintered. The present invention relates to a method for producing a thin-walled sintered magnet having a high orientation and excellent magnetic properties, for producing a highly oriented magnetic material powder-containing thermoplastic resin molding.

近年R-Fe-B系永久磁石は各種モータ、アクチュエータ、センサーなどの磁気回路を構成する材料として幅広い産業分野で利用されている。特に本系磁石の高いエネルギー積に着目し環境保全、省エネルギーの観点から各種分野の小型軽量化の際重要な役割を果たしてきた。さらに今日、情報通信分野では小型軽量化が進み、磁石にも小型、薄肉化の要求が多くなってきている。   In recent years, R-Fe-B permanent magnets have been used in a wide range of industrial fields as materials for magnetic circuits such as various motors, actuators, and sensors. In particular, focusing on the high energy product of this magnet, it has played an important role in reducing the size and weight in various fields from the viewpoint of environmental conservation and energy saving. Furthermore, in the information and communication field, the size and weight have been reduced, and there has been an increasing demand for magnets to be small and thin.

プレス成形され、焼結によって製造されるNd-Fe-B系焼結磁石は、ボンド磁石と異なりバインダを含まず焼結による高密度化によって高い磁気特性が得られる。しかしプレス成形では金型キャビティ中に常に一定量の磁粉を供給しないと厚さがばらつき、焼結後に加工を施さないと一般的に要求される寸法公差内の磁石を大量生産で供給することは不可能である。加工コストは製造工程全体の中でも格別に大きなものであり、得に小型、薄物では無加工品でないと顧客要求を満足する価格製品とすることは困難である。
プレス成形の他にも特許文献1などに記載されるように、磁石粉末と熱可塑性樹脂を混ぜ、射出成形する製造方法や、特許文献2に記載されるように磁石粉末、水溶性のポリマーおよび水を混ぜ、射出成形し、脱水・脱バインダ処理後に焼結する製造方法が提案されている。しかしながら1mm以下の均一な肉厚を持った薄肉磁石を無加工で大量生産することは今だ検討されておらず、当然ながら実施にも至っていない。
特開平9−283358号公報((0005)、図1) 特開平7−130516号公報((0042))
Unlike bonded magnets, Nd-Fe-B sintered magnets that are press-molded and manufactured by sintering do not contain a binder and can obtain high magnetic properties by densification by sintering. However, in press molding, if a certain amount of magnetic powder is not always supplied into the mold cavity, the thickness will vary, and if processing is not performed after sintering, it is not possible to supply magnets within the required dimensional tolerance in mass production. Impossible. The processing cost is extremely high in the entire manufacturing process, and it is difficult to obtain a priced product that satisfies customer requirements unless it is a small, thin product that is not processed.
In addition to press molding, as described in Patent Document 1, etc., a manufacturing method in which magnet powder and a thermoplastic resin are mixed and injection molded, or as described in Patent Document 2, magnet powder, water-soluble polymer and There has been proposed a production method in which water is mixed, injection molded, and sintered after dehydration and binder removal treatment. However, mass production of thin magnets having a uniform wall thickness of 1 mm or less without processing has not yet been studied and, of course, has not been implemented.
JP-A-9-283358 ((0005), FIG. 1) JP-A-7-130516 ((0042))

本発明者らがこの小型、薄肉、無加工の焼結磁石に挑んだ結果、水溶性のバインダを用いた場合では成形体強度、保形性に問題があるため、焼結体の寸法精度が出しにくいことがわかった。また圧縮成形では形状、肉厚を薄くするのに限界がある。対して熱可塑性樹脂を用いた場合は、熱可塑性樹脂の選択、水素中での脱脂、セッタ、ゲッタなどを使用することで高配向かつ高寸法精度の小型または薄肉の焼結磁石を製造できる可能性を見出した。しかし肉厚が薄くなるほど成形体表面と金型の摩擦による成形体表面の配向乱れの影響が顕著になり特性が低下していく。成形温度を上げるまたは樹脂量を増やし、コンパウンドの流動性をあげることで摩擦低下を試みるが成形温度の上昇はコンパウンドの酸化を促進させ、樹脂量の増加は残留炭素量の増加を招くため、極薄の磁石を製造するにはその他の方法でコンパウンドの流動性をあげる必要があった。   As a result of the challenge of the present inventors to this compact, thin-walled, unprocessed sintered magnet, the use of a water-soluble binder has a problem with the compact strength and shape retention, so the dimensional accuracy of the sintered compact is low. It turned out that it was hard to put out. In compression molding, there is a limit to reducing the shape and thickness. On the other hand, when a thermoplastic resin is used, it is possible to produce a small or thin sintered magnet with high orientation and high dimensional accuracy by using thermoplastic resin, degreasing in hydrogen, setter, getter, etc. I found sex. However, as the wall thickness is reduced, the influence of the orientation disorder on the surface of the molded body due to the friction between the surface of the molded body and the mold becomes more prominent and the characteristics deteriorate. Trying to lower the friction by increasing the molding temperature or increasing the amount of resin and increasing the fluidity of the compound, but increasing the molding temperature promotes oxidation of the compound, and increasing the amount of resin causes an increase in the amount of residual carbon. In order to produce a thin magnet, it was necessary to increase the fluidity of the compound by other methods.

よって本発明は成形温度の上昇による酸化、樹脂量の増加による残留炭素量の増加を抑制しつつ、コンパウンドの流動性を上げ、金型との摩擦による表面配向の乱れを低減し高配向かつ薄肉の焼結磁石を製造する方法を提供することを課題とする。   Therefore, the present invention suppresses oxidation due to an increase in molding temperature and increases the residual carbon amount due to an increase in the amount of resin, while increasing the fluidity of the compound and reducing the disturbance of the surface orientation due to friction with the mold. It is an object of the present invention to provide a method for producing a sintered magnet.

本発明者らの検討の結果、磁場中押出または射出成形で高配向の薄肉磁石を得るためには成形体表面と金型の摩擦を低減することが最も重要であることを認識しこれに取り組んだ。肉厚が薄くなるほど金型の摩擦の影響が大きくなり、押出・射出成形された成形体表面の配向が乱れ、磁気特性が低下していく。
つまり本発明では上記問題を解決するために、熱可塑性樹脂と磁性材料粉末を混合したコンパウンドとし、前記コンパウンドを押出または射出成形機により成形体とし、前記成形体から前記熱可塑性樹脂を脱脂し、焼結する焼結磁石の製造方法であって、前記押出または射出成形機内で超臨界流体を溶解させてコンパウンドと混合し、磁場中にて押出または射出成形による成形体とする、という技術的手段を採用した。超臨界流体を溶解させることでコンパウンドの流動性が向上し、薄肉の成形体を磁場中で成形する際の成形体と金型の摩擦を低減させ、表面の配向乱れの少ない成形体を成形することが可能である。また熱可塑性樹脂と比べると超臨界流体は密度が低くい。このため超臨界流体をコンパウンドに混合すると、磁場中で磁性材料粉末が磁場方向に回転しやすくなることによる配向の向上も考えられる。さらに流動性の向上により成形温度を低くすることおよび樹脂量を低減することが可能であり、生産コスト低減、成形サイクル短縮の効果もある。超臨界流体とは臨界点以上の圧力、温度での物質のことを呼び、気体に近い拡散性と液体のような溶解性をもつなど気体と液体とは異なる性質をもち、温度、圧力で性質を制御できるなどの特徴をもつ。
As a result of the study by the present inventors, it has been recognized that it is most important to reduce the friction between the surface of the molded body and the mold in order to obtain a highly oriented thin magnet by extrusion or injection molding in a magnetic field. It is. As the wall thickness decreases, the influence of the friction of the mold increases, and the orientation of the surface of the extruded / injected molded body is disturbed, resulting in a decrease in magnetic properties.
That is, in order to solve the above-mentioned problem in the present invention, it is a compound in which a thermoplastic resin and a magnetic material powder are mixed, the compound is formed into a molded body by an extrusion or injection molding machine, and the thermoplastic resin is degreased from the molded body, A method for producing a sintered magnet to be sintered, which is a technical means in which a supercritical fluid is dissolved in the extrusion or injection molding machine and mixed with a compound to form a molded body by extrusion or injection molding in a magnetic field. It was adopted. Dissolving the supercritical fluid improves the fluidity of the compound, reduces the friction between the molded product and the mold when molding a thin molded product in a magnetic field, and forms a molded product with less surface disorder. It is possible. Further, the density of the supercritical fluid is lower than that of the thermoplastic resin. For this reason, when a supercritical fluid is mixed with a compound, the orientation of the magnetic material powder can be improved by the magnetic material powder being easily rotated in the magnetic field direction in a magnetic field. Furthermore, it is possible to lower the molding temperature and the amount of resin by improving the fluidity, and there are effects of reducing the production cost and the molding cycle. Supercritical fluid is a substance at pressure and temperature above the critical point, and has properties different from gas and liquid, such as diffusibility close to gas and solubility like liquid, and properties at temperature and pressure. It has features such as being able to control.

成形機内にコンパウンドとともに窒素または二酸化炭素を超臨界状態にした流体を注入し溶解させると注入量によるが飛躍的にコンパウンドの流動性が向上する。これにともない押出および射出圧力を低減できかつ成形体と金型表面の摩擦も低減できることにより薄肉品に大きく影響を及ぼした表面配向の乱れを大幅に低減できる。また押出および射出成形した際に圧力降下が生じ流体が発泡を始める。この発泡したセル径の平均が5μmを超えると脱脂焼結した後の焼結体内部にクラックとして残り機械的強度の低下、磁気特性の低下を招く。これらの影響はセル径を5μm以下(0μmを含まず)にすることで改善される。特に3μm以下に抑制することが好ましい。成形体の肉厚を薄くするほどセル径も小さくなる傾向にあり、薄肉の磁石を作ろうとするほど超臨界流体は好ましい挙動を出してくれる。焼結の際の収縮によりセルが消滅し、機械的強度、特性への影響はほとんど見られなくなり流動性の向上という利点だけを利用できる。圧力、厚さとセル径の関係は押出した際の圧力降下が大きいほどセル密度が高く、細かいセルとなるが周囲樹脂の冷却固化条件にも影響を受けるため、薄い試料ほどセルの成長が少なく細かいセルとなる。   When a fluid in which nitrogen or carbon dioxide is brought into a supercritical state together with a compound is injected into the molding machine and dissolved, the fluidity of the compound is drastically improved depending on the injection amount. Accordingly, the extrusion and injection pressures can be reduced, and the friction between the molded body and the mold surface can be reduced, so that the disturbance of the surface orientation that has greatly affected the thin-walled product can be greatly reduced. Further, a pressure drop occurs during extrusion and injection molding, and the fluid begins to foam. If the average diameter of the foamed cells exceeds 5 μm, it remains as a crack in the sintered body after degreasing and sintering, resulting in a decrease in mechanical strength and a decrease in magnetic properties. These effects can be improved by reducing the cell diameter to 5 μm or less (not including 0 μm). In particular, it is preferable to suppress to 3 μm or less. The cell diameter tends to decrease as the thickness of the compact is reduced, and the supercritical fluid behaves more favorably as the thinner magnet is made. The cell disappears due to shrinkage during sintering, and there is almost no influence on mechanical strength and properties, and only the advantage of improved fluidity can be used. Regarding the relationship between pressure, thickness and cell diameter, the greater the pressure drop during extrusion, the higher the cell density and the finer the cell. However, the thinner the sample, the less the cell growth and Become a cell.

磁性材料粉末としてはR−TM系(RはYを含む一種以上の希土類、TはFe,またはFeとCo、Mは必要によりCu、S、Ni、Ti、Si、V、Nb、Ta、Cr、Mo、W、Mn、Al、Sb、Ge、Sn、Zr、Hf、Ca、Mg、Sr、Ba、Beの一種以上)、R−TM−B系,R−TM−N系の希土類磁石、Srフェライト磁石、Baフェライト磁石、LaCo添加フェライト磁石なども使用できる。生産性やコストなどを考慮するとR-TM-B系磁石粉末を用いることが最も効果的である。現在最もエネルギー積が大きな磁石として使われており、小型化、薄肉化要請が強く、高特性かつ低コストな製造方法が求められており本発明が適する。   As the magnetic material powder, R-TM system (R is one or more rare earths including Y, T is Fe, or Fe and Co, M is Cu, S, Ni, Ti, Si, V, Nb, Ta, Cr if necessary. , Mo, W, Mn, Al, Sb, Ge, Sn, Zr, Hf, Ca, Mg, Sr, Ba, Be)), R-TM-B system, R-TM-N system rare earth magnet, Sr ferrite magnets, Ba ferrite magnets, LaCo-added ferrite magnets, and the like can also be used. Considering productivity and cost, it is most effective to use R-TM-B magnet powder. It is currently used as a magnet having the largest energy product, and there is a strong demand for downsizing and thinning, and there is a demand for a manufacturing method with high characteristics and low cost.

R-TM-B系の希土類磁石粉末の組成としてR量が32.5wt%以上37.5wt%以下が好ましい。32.5wt%以下だとRが熱可塑性樹脂中の炭素、酸素と反応し有効なR量が枯渇し保磁力が十分に得られない。37.5wt%以上では残留磁束密度が低下し有効な磁気特性が得られない。   The R content is preferably 32.5 wt% or more and 37.5 wt% or less as the composition of the R-TM-B rare earth magnet powder. If it is 32.5 wt% or less, R reacts with carbon and oxygen in the thermoplastic resin, the effective amount of R is depleted, and sufficient coercive force cannot be obtained. If it exceeds 37.5 wt%, the residual magnetic flux density decreases and effective magnetic properties cannot be obtained.

脱脂は水素雰囲気中で行うことが好ましい。炭素については脱脂時に水素雰囲気で加熱することによって低減する。炭素および水素を主成分とする樹脂は水素中で加熱することによってクラッキングにより分子量が低下し、脱脂がより完全に行える。クラッキングとは水素の存在下で加熱することにより樹脂分子量が低下することを意味する。焼結はAr中または真空中で行うことで成形体中への酸素混入を抑制することができる。   Degreasing is preferably performed in a hydrogen atmosphere. Carbon is reduced by heating in a hydrogen atmosphere during degreasing. A resin mainly composed of carbon and hydrogen is heated in hydrogen to reduce the molecular weight due to cracking, so that degreasing can be performed more completely. Cracking means that the resin molecular weight is lowered by heating in the presence of hydrogen. Sintering can be performed in Ar or vacuum to suppress oxygen contamination in the compact.

熱可塑性樹脂としては、例えばポリエチレン(PE)、アクタチックポリプロピレン(APP)、ポリスチレン(PS)、ポリプロピレン(PP)、アモルファスポリオレフィン(APO)、ナフタレン、ポレスチロール (GPPS、HIPS)、ポリカーボネート (PC)、アクリル(PMMA)、ポリアセチル(PC)、アクリル(POM)、ポリアセチル(PC)、塩化ビニル(PVC)、エチレン−酢酸ビニル共重合体(EVA)など適宜使用可能である。   Examples of the thermoplastic resin include polyethylene (PE), active polypropylene (APP), polystyrene (PS), polypropylene (PP), amorphous polyolefin (APO), naphthalene, porestyrol (GPPS, HIPS), polycarbonate (PC), Acrylic (PMMA), polyacetyl (PC), acrylic (POM), polyacetyl (PC), vinyl chloride (PVC), ethylene-vinyl acetate copolymer (EVA) and the like can be used as appropriate.

本発明は成形体の肉厚が1mm以下の薄肉磁石を製造する際に適用することが効果的である。1mm以上では表面配向乱れの影響が少なくなり超臨界流体を用いる効果が十分に発揮されない。また肉厚が厚くなると超臨界流体のセル径が大きくなる傾向にあり、それによる特性の低下が起こる。表面配向乱れの影響が大きくなる肉厚0.6mm以下で用いるのが特に好ましい。   The present invention is effective when applied to the production of thin magnets having a molded body thickness of 1 mm or less. If the thickness is 1 mm or more, the influence of the surface orientation disturbance is reduced, and the effect of using the supercritical fluid is not sufficiently exhibited. In addition, as the wall thickness increases, the cell diameter of the supercritical fluid tends to increase, resulting in a decrease in characteristics. It is particularly preferable to use the film with a thickness of 0.6 mm or less where the influence of the surface orientation disturbance is large.

超臨界流体をコンパウンド中に溶解させることでコンパウンドの流動性が向上し、薄肉の成形体を磁場中で押出・射出成形しても、成形体と金型の摩擦力を低減させ、成形体の表面の配向乱れが少ない成形体を成形することができる。また熱可塑性樹脂よりも磁性材料粉末が磁場方向に回転しやすくなり、配向度が向上する。さらに流動性が向上することで成形温度を低くしても樹脂量を低減することができ、生産コスト低減、成形サイクル短縮の効果が得られる。   By dissolving the supercritical fluid in the compound, the fluidity of the compound is improved, and even if a thin molded product is extruded / injected in a magnetic field, the friction force between the molded product and the mold is reduced. It is possible to mold a molded body with less surface disorder. In addition, the magnetic material powder is more easily rotated in the magnetic field direction than the thermoplastic resin, and the degree of orientation is improved. Further, by improving the fluidity, the amount of resin can be reduced even if the molding temperature is lowered, and the effects of reducing production costs and molding cycles can be obtained.

次に本発明を実施例によって具体的に説明するが、これら実施例により本発明が限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.

(実施例1)
図を用いて本発明の詳細を説明する。図1は本発明に適用する押出成形装置の一例である。射出成形装置はコンパウンド5を入れるためのホッパー1と、超臨界流体の流量を制御するための弁2と、コンパウンド5を押出すためのスクリュー3と、コンパウンド5を所定の形状に成形するための成形金型4と、コンパウンド中の磁粉を一定方向に配向させるための磁場発生装置6から主になる。
まず、重量百分率でNd32.5wt%、Dy3.0wt%、B1.05wt%、残部実質的にFeからなる合金を高周波溶解によって溶解し、ストリップキャスト法により粗粉砕粉を作製した。この粗粉砕粉を水素吸蔵・脱水素処理を行った後、ランデムミルにて500μm以下の粗粉とした。この粗粉に対してパラフィンワックスを0.05〜0.10wt%添加・混合後、ジェットミルにより微粉砕した。ジェットミルの粉砕媒体は窒素ガスで、ガス圧は0.69MPa(7kgf/cm2)とした。得られた合金粉末原料の平均粒径は4.2μmである。合金粉末原料93wt%と熱可塑性樹脂残部としてエチレン-酢酸ビニル共重合体(EVA)、ポリエチレン(PE)、パラフィンワックス(PW)を樹脂重量比率28:20:52で混練してコンパウンド5とした。ホッパー1を介してバレル内に投入されたコンパウンド5と弁2より注入された窒素の超臨界流体は、一対のスクリュー3の回転により混ぜあわされると共にせん断力が加えられる。コンパウンド5を110〜130℃の温度で加熱溶融しながら成形金型4に搬送し、そこで所定の断面積に磁場中で絞り込み成形空間内を通過させた。成形体は磁場発生装置6により異方性化され冷却用金型を通過してから押出成形され、外部に排出される。成形体の厚さを0.6mm押出し速度は1〜2cm/s、冷却金型温度を70、80、90℃として成形した。
この成形体を7mm角の大きさに打抜き加工を施し、薄肉形状の成形体を作製した。その後、この成形体を水素中で昇温速度20℃/h、脱脂温度615℃で脱脂した。焼結はAr中で昇温速度200℃/h、焼結温度1100℃でおこなった。
焼結した薄肉形状のR-Fe-B系焼結磁石の残留磁束密度、保磁力、最大エネルギー積をVSMにより測定した。表1にその結果を示す。
(Example 1)
The details of the present invention will be described with reference to the drawings. FIG. 1 shows an example of an extrusion molding apparatus applied to the present invention. The injection molding apparatus has a hopper 1 for containing the compound 5, a valve 2 for controlling the flow rate of the supercritical fluid, a screw 3 for extruding the compound 5, and a compound 5 for molding the compound 5 into a predetermined shape. Mainly from the molding die 4 and the magnetic field generator 6 for orienting the magnetic powder in the compound in a certain direction.
First, an alloy consisting of Nd 32.5 wt%, Dy 3.0 wt%, B 1.05 wt% and the balance substantially Fe in weight percentage was dissolved by high frequency melting, and coarsely pulverized powder was prepared by strip casting. The coarsely pulverized powder was subjected to hydrogen storage and dehydrogenation treatment, and then made into a coarse powder of 500 μm or less by a randem mill. Paraffin wax was added to and mixed with 0.05 to 0.10 wt% of the coarse powder, and then finely pulverized by a jet mill. The grinding media for the jet mill was nitrogen gas, and the gas pressure was 0.69 MPa (7 kgf / cm 2 ). The average particle diameter of the obtained alloy powder raw material is 4.2 μm. Compound 5 was prepared by kneading 93 wt% of alloy powder raw material and ethylene-vinyl acetate copolymer (EVA), polyethylene (PE), and paraffin wax (PW) as a thermoplastic resin balance at a resin weight ratio of 28:20:52. The supercritical fluid of nitrogen injected from the compound 5 and the valve 2 introduced into the barrel through the hopper 1 is mixed by the rotation of the pair of screws 3 and a shearing force is applied. The compound 5 was conveyed to the molding die 4 while being heated and melted at a temperature of 110 to 130 ° C., where it was narrowed down to a predetermined cross-sectional area in a magnetic field and passed through the molding space. The molded body is made anisotropic by the magnetic field generator 6, passes through a cooling mold, is extruded, and is discharged outside. The molded body was molded with a thickness of 0.6 mm and an extrusion speed of 1 to 2 cm / s and a cooling mold temperature of 70, 80 and 90 ° C.
This molded body was punched into a size of 7 mm square to produce a thin-walled molded body. Thereafter, the molded body was degreased in hydrogen at a heating rate of 20 ° C./h and a degreasing temperature of 615 ° C. Sintering was performed in Ar at a heating rate of 200 ° C./h and a sintering temperature of 1100 ° C.
The residual magnetic flux density, coercivity, and maximum energy product of the sintered thin-walled R-Fe-B sintered magnet were measured by VSM. Table 1 shows the results.

Figure 2005203555
Figure 2005203555

(比較例1)
窒素超臨界流体を使用しない以外は実施例1と同じ条件で実験を行った。冷却金型温度を70、80、90、100、110、120℃として成形体を作製した。その後実施例1と同様に試料を作製し、残留磁束密度、保磁力、最大エネルギー積をVSMにより測定した。表1にその結果を示す。超臨界流体を使用しないことで流動性が落ちるため、成形するには金型温度を30℃程度上げる必要があることが解った。また金型温度を上げることで特性は上がる傾向にあるが金型温度を120℃としても本発明の薄肉磁石と同等の特性を得ることはできないことが解った。
(Comparative Example 1)
The experiment was performed under the same conditions as in Example 1 except that no nitrogen supercritical fluid was used. Molded bodies were prepared at cooling mold temperatures of 70, 80, 90, 100, 110, and 120 ° C. Thereafter, a sample was prepared in the same manner as in Example 1, and the residual magnetic flux density, coercive force, and maximum energy product were measured by VSM. Table 1 shows the results. It was found that the mold temperature needs to be raised by about 30 ° C for molding because the fluidity is reduced by not using a supercritical fluid. Further, the characteristics tend to be improved by raising the mold temperature, but it has been found that even if the mold temperature is set to 120 ° C., characteristics equivalent to those of the thin magnet of the present invention cannot be obtained.

(参考例)
実施例1と同様の方法で冷却部温度を100℃にして成形し、試料を作製し、残留磁束密度、保磁力、最大エネルギー積をVSMにより測定した。表1にその結果を示す。温度を上げさらに流動性を上げると特性が落ちる。これは外部に押出される直前の無磁場区間であまりに流動性が高すぎると押出しの圧力により磁場中で配向した磁石粉末が乱れるためである。
(Reference example)
A cooling part temperature was set to 100 ° C. in the same manner as in Example 1 to prepare a sample, and the residual magnetic flux density, coercive force, and maximum energy product were measured by VSM. Table 1 shows the results. If the temperature is raised and the fluidity is raised, the properties will drop. This is because the magnet powder oriented in the magnetic field is disturbed by the extrusion pressure if the fluidity is too high in the non-magnetic field immediately before being extruded to the outside.

(実施例2)
実施例1と同様の方法で金型の冷却部温度を80℃に固定し、成形体厚さを0.4、0.8、1.0、1.2、2.0mmとして試料を作製した。残留磁束密度、保磁力、最大エネルギー積をVSMにより測定した。またセル径はSEMにより測定した。その結果を表2および図2に示す。厚さが厚くなるとセル径も大きくなり、焼結の際にクラックが残留し、保磁力が急激に低下し、残留磁束密度も低くなる。
(Example 2)
In the same manner as in Example 1, the mold cooling part temperature was fixed at 80 ° C., and the molded body thickness was set to 0.4, 0.8, 1.0, 1.2, and 2.0 mm. Residual magnetic flux density, coercive force, and maximum energy product were measured by VSM. The cell diameter was measured by SEM. The results are shown in Table 2 and FIG. As the thickness increases, the cell diameter also increases, cracks remain during sintering, the coercive force decreases rapidly, and the residual magnetic flux density also decreases.

(比較例2)
窒素超臨界流体を使用せずに実施例1と同様に薄肉の焼結磁石を製造した。金型の冷却部温度を110℃に固定し、成形体厚さを0.4、0.8、1.0、1.2mmとして試料を作製し、残留磁束密度、保磁力、最大エネルギー積をVSMにより測定した。表1、図2にその結果を示す。薄くなるほど特性が低くなるが超臨界流体を使用しない場合はその低下が著しい。
(Comparative Example 2)
A thin-walled sintered magnet was produced in the same manner as in Example 1 without using a nitrogen supercritical fluid. Samples were prepared with the mold cooling part temperature fixed at 110 ° C. and the molded body thicknesses of 0.4, 0.8, 1.0, and 1.2 mm, and the residual magnetic flux density, coercive force, and maximum energy product were measured by VSM. The results are shown in Table 1 and FIG. The thinner the film becomes, the lower the characteristics are. However, when the supercritical fluid is not used, the decrease is remarkable.

(参考例2)
実施例1と同様の方法で冷却部温度80℃、成形体厚さ0.6mmで超臨界流体の注入圧力と成形圧力を変えダイス付近の機内圧力を20MPaから10MPa、7MPaに変化させ、セル径が違う試料を作製し、残留磁束密度、保磁力、最大エネルギー積をVSMにより測定、セル径をSEMにより測定した。その結果を表2に示す。また、実施例1-2のデータも併記する。
(Reference Example 2)
Change the in-machine pressure near the die from 20MPa to 10MPa and 7MPa by changing the supercritical fluid injection pressure and molding pressure at the cooling part temperature of 80 ℃ and the molded body thickness of 0.6mm in the same way as in Example 1. Different samples were prepared, and the residual magnetic flux density, coercive force, and maximum energy product were measured by VSM, and the cell diameter was measured by SEM. The results are shown in Table 2. The data of Example 1-2 is also shown.

Figure 2005203555
Figure 2005203555

(実施例3)
実施例1-2の試料と比較例1-5の試料を表面を研磨しながらX線にて観察し(006)のピーク強度にて配向度を比較した。その結果、実施例1−2の試料のほうが表面付近の配向度が高いことが解った。超臨界流体を使用することで成形体表面と金型の摩擦が低減し配向の乱れが抑制されたと思われる。
(Example 3)
The sample of Example 1-2 and the sample of Comparative Example 1-5 were observed by X-ray while polishing the surface, and the degree of orientation was compared at the peak intensity of (006). As a result, it was found that the sample of Example 1-2 had a higher degree of orientation near the surface. The use of supercritical fluid seems to have reduced the friction between the surface of the molded body and the mold and suppressed the disorder of orientation.

本発明に用いる押出成形装置の一例である。It is an example of the extrusion molding apparatus used for this invention. 本発明と比較用の試料における磁石肉厚と磁気特性の関係を示す図である。It is a figure which shows the relationship between the magnet thickness and magnetic characteristic in a sample for this invention and a comparison.

符号の説明Explanation of symbols

1 ホッパー
2 弁
3 スクリュー
4 成形金型
5 コンパウンド
6 磁場発生装置
DESCRIPTION OF SYMBOLS 1 Hopper 2 Valve 3 Screw 4 Molding die 5 Compound 6 Magnetic field generator

Claims (6)

熱可塑性樹脂と磁性材料粉末を混合したコンパウンドとし、前記コンパウンドを押出または射出成形機により成形体とし、前記成形体から前記熱可塑性樹脂を脱脂し、焼結する焼結磁石の製造方法であって、
前記押出または射出成形機内で超臨界流体を溶解させてコンパウンドと混合し、磁場中にて押出または射出成形による成形体とすることを特徴とする焼結磁石の製造方法。
A method for producing a sintered magnet comprising a compound in which a thermoplastic resin and a magnetic material powder are mixed, the compound is formed into a molded body by an extrusion or injection molding machine, the thermoplastic resin is degreased from the molded body, and sintered. ,
A method for producing a sintered magnet, wherein a supercritical fluid is dissolved in an extrusion or injection molding machine and mixed with a compound to form a molded body by extrusion or injection molding in a magnetic field.
前記超臨界流体が窒素または二酸化炭素であることを特徴とする請求項1に記載の焼結磁石の製造方法。 The method for producing a sintered magnet according to claim 1, wherein the supercritical fluid is nitrogen or carbon dioxide. 前記磁性材料粉末がR-T-B系合金(RはYを含む一種または二種以上の希土類元素、TはFe及び/またはCo)であって、R量が32.5wt%以上37.5wt%以下であることを特徴とする請求項1または2に記載の焼結磁石の製造方法。 The magnetic material powder is an RTB alloy (R is one or more rare earth elements including Y, T is Fe and / or Co), and the R amount is 32.5 wt% or more and 37.5 wt% or less. 3. The method for producing a sintered magnet according to claim 1, wherein the sintered magnet is produced. 前記成形体の発泡平均セル径が5μm以下であることを特徴とする請求項1から3のいずれかに記載の焼結磁石の製造方法。 The method for producing a sintered magnet according to any one of claims 1 to 3, wherein a foamed average cell diameter of the molded body is 5 µm or less. 前記成形体は厚さが1.0mm以下の薄板状であることを特徴とする焼結磁石の製造方法。 The method for producing a sintered magnet, wherein the molded body is a thin plate having a thickness of 1.0 mm or less. 前記成形体を水素ガス中で脱脂し、真空またはArガス雰囲気中で焼結することを特徴とする焼結磁石の製造方法。
A method for producing a sintered magnet, wherein the compact is degreased in hydrogen gas and sintered in a vacuum or Ar gas atmosphere.
JP2004008175A 2004-01-15 2004-01-15 Manufacturing method of sintered magnet Pending JP2005203555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004008175A JP2005203555A (en) 2004-01-15 2004-01-15 Manufacturing method of sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004008175A JP2005203555A (en) 2004-01-15 2004-01-15 Manufacturing method of sintered magnet

Publications (1)

Publication Number Publication Date
JP2005203555A true JP2005203555A (en) 2005-07-28

Family

ID=34821626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004008175A Pending JP2005203555A (en) 2004-01-15 2004-01-15 Manufacturing method of sintered magnet

Country Status (1)

Country Link
JP (1) JP2005203555A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218518A (en) * 2007-02-28 2008-09-18 Tdk Corp Manufacturing apparatus and manufacturing method of magnet
JP2011135041A (en) * 2009-11-25 2011-07-07 Tdk Corp Method for producing rare earth sintered magnet
JP2011228656A (en) * 2010-03-31 2011-11-10 Nitto Denko Corp Permanent magnet, and method for manufacturing permanent magnet
WO2012176513A1 (en) * 2011-06-24 2012-12-27 日東電工株式会社 Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
WO2012176512A1 (en) * 2011-06-24 2012-12-27 日東電工株式会社 Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
WO2012176510A1 (en) * 2011-06-24 2012-12-27 日東電工株式会社 Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
JP2013030737A (en) * 2011-06-24 2013-02-07 Nitto Denko Corp Rare earth permanent magnet and manufacturing method of the same
JP2013030744A (en) * 2011-06-24 2013-02-07 Nitto Denko Corp Rare earth permanent magnet and manufacturing method of the same
JP2013030743A (en) * 2011-06-24 2013-02-07 Nitto Denko Corp Rare earth permanent magnet and manufacturing method of the same
JP2013030745A (en) * 2011-06-24 2013-02-07 Nitto Denko Corp Rare earth permanent magnet and manufacturing method of the same
WO2013137134A1 (en) * 2012-03-12 2013-09-19 日東電工株式会社 Rare earth permanent magnet and method for producing rare earth permanent magnet
US20140152408A1 (en) * 2012-03-12 2014-06-05 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
US20140197911A1 (en) * 2012-03-12 2014-07-17 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
US9281107B2 (en) 2011-06-24 2016-03-08 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
CN117198672A (en) * 2023-10-07 2023-12-08 东莞市众旺永磁科技有限公司 Manufacturing process method of injection molding neodymium-iron-boron magnet

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218518A (en) * 2007-02-28 2008-09-18 Tdk Corp Manufacturing apparatus and manufacturing method of magnet
JP2011135041A (en) * 2009-11-25 2011-07-07 Tdk Corp Method for producing rare earth sintered magnet
JP2011228656A (en) * 2010-03-31 2011-11-10 Nitto Denko Corp Permanent magnet, and method for manufacturing permanent magnet
CN102511071A (en) * 2010-03-31 2012-06-20 日东电工株式会社 Permanent magnet and manufacturing method for permanent magnet
CN103081041A (en) * 2011-06-24 2013-05-01 日东电工株式会社 Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
JP2013030743A (en) * 2011-06-24 2013-02-07 Nitto Denko Corp Rare earth permanent magnet and manufacturing method of the same
WO2012176510A1 (en) * 2011-06-24 2012-12-27 日東電工株式会社 Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
JP2013030737A (en) * 2011-06-24 2013-02-07 Nitto Denko Corp Rare earth permanent magnet and manufacturing method of the same
JP2013030741A (en) * 2011-06-24 2013-02-07 Nitto Denko Corp Rare earth permanent magnet and manufacturing method of the same
JP2013030744A (en) * 2011-06-24 2013-02-07 Nitto Denko Corp Rare earth permanent magnet and manufacturing method of the same
JP2013030740A (en) * 2011-06-24 2013-02-07 Nitto Denko Corp Rare earth permanent magnet and manufacturing method of the same
US9281107B2 (en) 2011-06-24 2016-03-08 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
JP2013030745A (en) * 2011-06-24 2013-02-07 Nitto Denko Corp Rare earth permanent magnet and manufacturing method of the same
CN103081040A (en) * 2011-06-24 2013-05-01 日东电工株式会社 Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
WO2012176513A1 (en) * 2011-06-24 2012-12-27 日東電工株式会社 Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
WO2012176512A1 (en) * 2011-06-24 2012-12-27 日東電工株式会社 Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
US9991034B2 (en) 2011-06-24 2018-06-05 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
US9991033B2 (en) 2011-06-24 2018-06-05 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
CN103081041B (en) * 2011-06-24 2017-07-11 日东电工株式会社 The manufacture method of rare earth element permanent magnet and rare earth element permanent magnet
WO2013137134A1 (en) * 2012-03-12 2013-09-19 日東電工株式会社 Rare earth permanent magnet and method for producing rare earth permanent magnet
EP2827347A4 (en) * 2012-03-12 2016-01-20 Nitto Denko Corp Rare earth permanent magnet and rare earth permanent magnet production method
CN103959411A (en) * 2012-03-12 2014-07-30 日东电工株式会社 Rare earth permanent magnet and rare earth permanent magnet production method
CN103959412A (en) * 2012-03-12 2014-07-30 日东电工株式会社 Rare earth permanent magnet and method for producing rare earth permanent magnet
US20140197911A1 (en) * 2012-03-12 2014-07-17 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
US20140152408A1 (en) * 2012-03-12 2014-06-05 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
US10770207B2 (en) 2012-03-12 2020-09-08 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
CN117198672A (en) * 2023-10-07 2023-12-08 东莞市众旺永磁科技有限公司 Manufacturing process method of injection molding neodymium-iron-boron magnet
CN117198672B (en) * 2023-10-07 2024-05-28 东莞市众旺永磁科技有限公司 Manufacturing process method of injection molding neodymium-iron-boron magnet

Similar Documents

Publication Publication Date Title
JP2005203555A (en) Manufacturing method of sintered magnet
Brown et al. Developments in the processing and properties of NdFeb-type permanent magnets
EP2760032B1 (en) Manufacturing method of R-T-B-M-C sintered magnet
CN101499347B (en) Production method for composite anisotropic rare earth permanent magnetic material with good temperature characteristics
EP3291264A1 (en) Method for producing sintered r-iron-boron magnet
US11469016B2 (en) R-T-B based sintered magnet
CN110931197B (en) Diffusion source for high-abundance rare earth permanent magnet
JP2016115923A (en) ANISOTROPIC COMPLEX SINTERED MAGNET COMPRISING MnBi WHICH HAS IMPROVED MAGNETIC PROPERTY AND METHOD OF PREPARING THE SAME
CN103730227B (en) A kind of nano biphase isotropic composite permanent magnet and preparation method thereof
KR20150033423A (en) Method for fabricating anisotropic permanent hot-deformed magnet using hot deformaion and the magnet fabricated thereby
EP3667685A1 (en) Heat-resistant neodymium iron boron magnet and preparation method therefor
JP2007266038A (en) Manufacturing method of rare-earth permanent magnet
CN104505207A (en) Radial hot-pressed permanent magnet ring with large length-diameter ratio and manufacturing method thereof
CN101770862A (en) Method for preparing radiation oriental magnetic ring and radiation multipolar magnetic ring
US20240013975A1 (en) Samarium cobalt and neodymium iron boride magnets and methods of manufacturing same
CN104505247A (en) Solid diffusion process with capability of improving performances of Nd-Fe-B magnet
TWI682409B (en) Rare earth magnet and linear motor using the magnet
JP6613730B2 (en) Rare earth magnet manufacturing method
JP7056264B2 (en) RTB series rare earth magnets
CN105280319A (en) Rare earth iron boron material prepared from industrial pure mixed rare earth, and preparation method and application of rare earth iron boron material
JP6596061B2 (en) Rare earth permanent magnet material and manufacturing method thereof
JP2007250646A (en) Composition for resin bond type magnet, magnetically anisotropic bond magnet using same, and manufacturing method thereof
KR101837279B1 (en) Method of controlling a growth of grains in a Rare Earth Permanent Magnet
Aich et al. Rapidly Solidified Rare-Earth Permanent Magnets: Processing, Properties, and Applications
JP2000040611A (en) Resin coupled permanent magnet material and magnetization thereof as well as encoder using the same