JP2005203334A - Insulated wire and its manufacturing method - Google Patents
Insulated wire and its manufacturing method Download PDFInfo
- Publication number
- JP2005203334A JP2005203334A JP2004169163A JP2004169163A JP2005203334A JP 2005203334 A JP2005203334 A JP 2005203334A JP 2004169163 A JP2004169163 A JP 2004169163A JP 2004169163 A JP2004169163 A JP 2004169163A JP 2005203334 A JP2005203334 A JP 2005203334A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- enamel
- extrusion
- thickness
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 229920005989 resin Polymers 0.000 claims abstract description 140
- 239000011347 resin Substances 0.000 claims abstract description 140
- 210000003298 dental enamel Anatomy 0.000 claims abstract description 128
- 239000004020 conductor Substances 0.000 claims abstract description 73
- 238000007765 extrusion coating Methods 0.000 claims abstract description 38
- 239000000463 material Substances 0.000 claims abstract description 17
- 239000010410 layer Substances 0.000 claims description 179
- 238000001125 extrusion Methods 0.000 claims description 92
- 239000012790 adhesive layer Substances 0.000 claims description 34
- 239000000853 adhesive Substances 0.000 claims description 18
- 230000001070 adhesive effect Effects 0.000 claims description 18
- 230000009477 glass transition Effects 0.000 claims description 5
- 230000000052 comparative effect Effects 0.000 description 47
- 238000000034 method Methods 0.000 description 30
- 239000002904 solvent Substances 0.000 description 25
- 239000004697 Polyetherimide Substances 0.000 description 24
- 229920001601 polyetherimide Polymers 0.000 description 24
- 239000004734 Polyphenylene sulfide Substances 0.000 description 23
- 229920000069 polyphenylene sulfide Polymers 0.000 description 23
- 239000010408 film Substances 0.000 description 18
- 239000011248 coating agent Substances 0.000 description 17
- 238000000576 coating method Methods 0.000 description 17
- 238000005452 bending Methods 0.000 description 16
- 238000005259 measurement Methods 0.000 description 16
- 239000002966 varnish Substances 0.000 description 16
- 229920002312 polyamide-imide Polymers 0.000 description 15
- 230000008569 process Effects 0.000 description 14
- 230000032683 aging Effects 0.000 description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- 239000004962 Polyamide-imide Substances 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 230000037303 wrinkles Effects 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 10
- 229920000491 Polyphenylsulfone Polymers 0.000 description 9
- -1 polyethylene Polymers 0.000 description 9
- 229920001721 polyimide Polymers 0.000 description 9
- 239000004696 Poly ether ether ketone Substances 0.000 description 8
- 239000004642 Polyimide Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 229920002530 polyetherether ketone Polymers 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000010998 test method Methods 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 7
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 7
- 230000003068 static effect Effects 0.000 description 7
- 238000005299 abrasion Methods 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 6
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 229920010524 Syndiotactic polystyrene Polymers 0.000 description 5
- 229920004747 ULTEM® 1000 Polymers 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920002492 poly(sulfone) Polymers 0.000 description 4
- 239000011116 polymethylpentene Substances 0.000 description 4
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 4
- 239000005751 Copper oxide Substances 0.000 description 3
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 239000004695 Polyether sulfone Substances 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 229910000431 copper oxide Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005461 lubrication Methods 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920006393 polyether sulfone Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920013633 Fortron Polymers 0.000 description 2
- 239000004738 Fortron® Substances 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920003295 Radel® Polymers 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000012777 electrically insulating material Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229920003055 poly(ester-imide) Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001470 polyketone Polymers 0.000 description 2
- 229920000306 polymethylpentene Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 229920006367 Neoflon Polymers 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 229920005531 TPX™ MX004 Polymers 0.000 description 1
- 229920004003 Torlon® 4203 Polymers 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Insulated Conductors (AREA)
- Processes Specially Adapted For Manufacturing Cables (AREA)
Abstract
Description
本発明は、絶縁ワイヤに関し、詳しくは耐インバータサージ絶縁ワイヤに関するものである。 The present invention relates to an insulated wire, and more particularly to an inverter surge resistant insulated wire.
インバータは効率的な可変速制御装置として、多くの電気機器に取り付けられるようになってきている。インバータは数kHz〜数十kHzでスイッチングが行われ、それらのパルス毎にサージ電圧が発生する。インバータサージはその伝搬系内でインピーダンスの不連続点、例えば接続する配線の始端、終端等において反射が発生し、その結果最大でインバータ出力電圧の2倍の電圧が印加される現象である。特に、IGBT等の高速スイッチング素子により発生する出力パルスは電圧俊度が高く、それにより接続ケーブルが短くてもサージ電圧が高く、更にその接続ケーブルによる電圧減衰も小さく、その結果インバータ出力電圧の2倍近い電圧が発生するのである。 Inverters have come to be attached to many electrical devices as efficient variable speed control devices. The inverter is switched at several kHz to several tens of kHz, and a surge voltage is generated for each pulse. Inverter surge is a phenomenon in which reflection occurs at a discontinuous point of impedance in the propagation system, for example, at the start and end of a connected wiring, and as a result, a voltage twice as large as the inverter output voltage is applied. In particular, an output pulse generated by a high-speed switching element such as an IGBT has a high voltage agility, so that even if the connection cable is short, the surge voltage is high, and furthermore, the voltage attenuation by the connection cable is also small. A voltage nearly doubled is generated.
インバータ関連機器、例えば高速スイッチング素子、インバータモーター、変圧器等の電気機器コイルにはマグネットワイヤとして、主にエナメル線である絶縁ワイヤが用いられている。しかも前述したように、インバータ関連機器ではそのインバータ出力電圧の2倍近い電圧がかかることから、それら電気機器コイルを構成する材料の一つであるエナメル線のインバータサージ劣化を最小限にすることが要求されるようになってきている。 Insulator-related equipment, for example, electrical equipment coils such as high-speed switching elements, inverter motors, transformers, etc., insulated wires, mainly enameled wires, are used as magnet wires. Moreover, as described above, in inverter-related equipment, a voltage nearly twice as high as the inverter output voltage is applied, so that it is possible to minimize inverter surge deterioration of enameled wire, which is one of the materials constituting these electrical equipment coils. It is becoming required.
一般に、部分放電劣化は電気絶縁材料がその部分放電で発生した荷電粒子の衝突による分子鎖切断劣化、スパッタリング劣化、局部温度上昇による熱溶融或いは熱分解劣化、放電で発生したオゾンによる化学的劣化等が複雑に起こる現象である。このような訳で、実際の部分放電で劣化した電気絶縁材料では厚さが減少したりすることが見られる。 In general, partial discharge deterioration includes degradation of molecular chains caused by collision of charged particles generated by the partial discharge of an electrically insulating material, sputtering deterioration, thermal melting or thermal decomposition deterioration due to local temperature rise, chemical deterioration due to ozone generated by discharge, etc. Is a complicated phenomenon. For this reason, it can be seen that the thickness of the electrically insulating material deteriorated by the actual partial discharge is reduced.
絶縁ワイヤのインバータサージ劣化も一般の部分放電劣化と同様なメカニズムで進行するものと考えられている。すなわち、エナメル線のインバータサージ劣化は、インバータで発生した波高値の高いサージ電圧により絶縁ワイヤに部分放電が起こり、その部分放電により絶縁ワイヤの塗膜が部分放電劣化を引き起こす現象、つまり高周波部分放電劣化である。 It is considered that the inverter surge degradation of the insulated wire proceeds by the same mechanism as general partial discharge degradation. In other words, the inverter surge degradation of enameled wire is a phenomenon in which partial discharge occurs in the insulated wire due to high surge voltage generated by the inverter, and the coating of the insulated wire causes partial discharge degradation due to the partial discharge, that is, high frequency partial discharge. It is deterioration.
最近の電気機器では、500Vのサージ電圧に耐えうるような絶縁ワイヤが求めらるようになってきた。即ち部分放電発生電圧が500V以上であることが必要ということになる。ここで、部分放電発生電圧とは、市販の部分放電試験器と呼ばれる装置で測定する値である。測定温度、用いる交流電圧の周波数、測定感度等は必要に応じて変更するものであるが、上記の値は、25℃、50Hz、10pCにて測定して、部分放電が発生した電圧の実効値である。 In recent electric equipment, an insulated wire capable of withstanding a surge voltage of 500 V has been demanded. That is, the partial discharge generation voltage needs to be 500 V or more. Here, the partial discharge generation voltage is a value measured by a device called a commercially available partial discharge tester. The measurement temperature, the frequency of the AC voltage used, the measurement sensitivity, etc. are changed as necessary. The above values are measured at 25 ° C., 50 Hz, 10 pC, and the effective value of the voltage at which partial discharge occurs. It is.
部分放電発生電圧を測定する際は、マグネットワイヤとして用いられる場合におけるもっとも過酷な状況を想定し、密着する二本の絶縁ワイヤの間について観測できるような試料形状を作製する方法が用いられる。例えば、断面円形の絶縁ワイヤについては、二本の絶縁ワイヤーを螺旋状にねじることで線接触させ、二本の間に電圧をかける。また、断面形状が方形の絶縁ワイヤについては、二本の絶縁ワイヤの長辺である面同士を面接触させ、二本の間に電圧をかけるという方法である。 When measuring the partial discharge generation voltage, the most severe situation when used as a magnet wire is assumed, and a method for producing a sample shape that can be observed between two insulating wires in close contact is used. For example, with respect to an insulating wire having a circular cross section, two insulating wires are spirally twisted to make line contact, and a voltage is applied between the two. In addition, with respect to an insulating wire having a square cross-sectional shape, the long surfaces of two insulating wires are brought into surface contact with each other, and a voltage is applied between the two.
このような部分放電による、絶縁ワイヤのエナメル層の劣化を防ぐため、部分放電を発生させない、すなわち、部分放電発生電圧が高い絶縁ワイヤを得るには、エナメル層に比誘電率が低い樹脂を用いるか、エナメル層の厚さを厚くするといった方法が考えられる。しかし、常用的に使用される樹脂ワニスの樹脂は、ほとんどが比誘電率は3〜4の間のものであり、比誘電率が特別低いものが無いということと、エナメル層に求められる他の特性(耐熱性、耐溶剤性、可撓性等)をも考慮した場合、必ずしも比誘電率が低い物を選択できるという訳ではないのが現実的である。従って高い部分放電発生電圧を得るためには、エナメル層の厚さを厚くすることが不可欠である。これら比誘電率3〜4の樹脂をエナメル層に用いた場合、部分放電発生電圧を目標の500V以上にするには、経験からエナメル層の厚さは60μm以上必要である。 To prevent degradation of the enamel layer of the insulated wire due to such partial discharge, in order to obtain an insulated wire that does not generate partial discharge, that is, high partial discharge generation voltage, a resin having a low relative dielectric constant is used for the enamel layer. Or a method of increasing the thickness of the enamel layer. However, most commonly used resin varnish resins have a relative dielectric constant between 3 and 4, and there is no specific dielectric constant that is low, and other enamel layers are required. In consideration of characteristics (heat resistance, solvent resistance, flexibility, etc.), it is practical that it is not always possible to select a material having a low relative dielectric constant. Therefore, in order to obtain a high partial discharge generation voltage, it is essential to increase the thickness of the enamel layer. When these resins having a relative dielectric constant of 3 to 4 are used for the enamel layer, the thickness of the enamel layer is required to be 60 μm or more from experience in order to set the partial discharge generation voltage to 500 V or more as a target.
しかし、エナメル層を厚くするためには、製造工程において焼き付け炉を通す回数が多くなり、導体である銅表面の酸化銅からなる被膜の厚さが成長し、それに起因して導体とエナメル層との接着力が低下する。特に厚さ50μm以上のエナメル層を得る場合、焼き付け炉を通す回数が10回を超える。この10回を超えると、導体とエナメル層との接着力が極端に低下することがわかってきた。
また、焼き付け炉を通す回数を増やさないために、1回の焼き付けで塗布できる厚さを厚くする方法もあるが、この方法では、ワニスの溶媒が蒸発しきれずに、エナメル層の中に気泡として残るという欠点があった。
エナメル線の外側に被覆樹脂を設けることで、特性上の付加価値(部分放電発生電圧以外の特性)を与えるという試みはこれまでにもなされてきた。エナメル層に押出被覆層を設ける構成での従来技術としては、特許文献1〜3等があるが、これらは部分放電発生電圧と導体とエナメル層の密着性を両立させるという観点からはエナメル層や押出被覆の厚さ構成において満足なものではなかった。
However, in order to increase the thickness of the enamel layer, the number of times of passing through a baking furnace in the manufacturing process is increased, and the thickness of the coating made of copper oxide on the copper surface, which is the conductor, grows. The adhesive strength of the is reduced. In particular, when an enamel layer having a thickness of 50 μm or more is obtained, the number of passes through the baking furnace exceeds 10 times. It has been found that the adhesive strength between the conductor and the enamel layer is extremely reduced when the number of times exceeds 10 times.
In addition, there is a method to increase the thickness that can be applied by one baking so as not to increase the number of times of passing through the baking furnace, but in this method, the solvent of the varnish cannot be completely evaporated and bubbles are formed in the enamel layer. There was a drawback of remaining.
Attempts have been made so far to provide added value on characteristics (characteristics other than partial discharge voltage) by providing a coating resin outside the enameled wire. As conventional techniques in the configuration in which the extrusion coating layer is provided on the enamel layer, there are Patent Documents 1 to 3 and the like. From the viewpoint of making the partial discharge generation voltage and the adhesion between the conductor and the enamel layer compatible, The thickness configuration of the extrusion coating was not satisfactory.
また、近年の電気機器では各種性能、例えば耐熱性、機械的特性、化学的特性、電気的特性、信頼性等を従来のものより一段と高度に上げることが要求されるようになってきている。このような中で宇宙用電気機器、航空機用電気機器、原子力用電気機器、エネルギー用電気機器、自動車用電気機器用のマグネットワイヤとして用いられるエナメル線などの絶縁ワイヤには、優れた耐摩耗性、耐熱老化特性、耐溶剤性が要求されるようになってきている。
また、モーターや変圧器に代表される電気機器は近年、これらの機器の小型化及び高性能化が進展し、絶縁電線を非常に狭い部分へ押しこんで使用する様な使い方が多く見られるようになった。具体的には、ステータースロット中に何本の電線を入れられるかにより、そのモーターなどの回転機の性能が決定するといっても過言ではない。その結果、ステータースロット断面積に対するの導体の断面積の比率(占積率)が近年非常に高くなってきている。
ステータースロットの内部に、丸断面の電線を細密充填した場合、デッドスペースとなる空隙と絶縁皮膜の断面積が問題となる。このため、ユーザーでは、丸断面の電線が変形するほど、ステータースロットへの電線の押し込みをおこない、少しでも占積率の向上を行おうとしている。しかし、絶縁皮膜の断面積を少なくすることは、その電気的な性能(絶縁破壊など)を犠牲にするため、行われなかった。
以上の理由から、占積率を向上させる手段として、ごく最近では導体の形状が四角型(正方形や長方形)に類似した平角線を使用することが試みられている。平角線の使用は、占積率の向上には劇的な効果を示すが、平角導体上に絶縁皮膜を均一に塗布する事が難しく、特に断面積の小さい絶縁電線には絶縁皮膜の厚さの制御が難しいことから、あまり普及していない。
モーターやトランスのコイル巻を行う場合に必要な絶縁皮膜の特性としては、皮膜の耐加工性能がある。これは、前述したコイル加工工程において、電線皮膜に損傷があると電気絶縁性能が低下してしまう事による。
この耐加工性能を電線皮膜に付与する方法は各種の方法が考えられている。それは、皮膜に潤滑性を付与して摩擦係数を下げコイル加工時の外傷を少なくする方法や、皮膜と電気導体間の密着性を向上させてその皮膜が導体から剥離する事を防止して電気絶縁性能を保持させる方法などである。
前者の潤滑性能を付与させる方法は、電線の表面にワックスなどの潤滑剤を塗布する方法や絶縁皮膜中に潤滑剤を添加して、電線の製造時にその潤滑剤を電線表面にブリードアウトさせて潤滑性能を付与させる方法が旧来採られており、その実施例は多い。しかしながら、この潤滑性能を付与させる方法は、電線皮膜自体の強度を向上させる訳ではないので、外傷要因に対しては効果があるように見えるが、実際にはその効果には限界があった。
これらの従来からおこなわれている手段として、まず前述の絶縁皮膜の表面の摩擦係数を小さくする方法については、特許文献4などで、絶縁電線表面にワックス、油、界面活性剤、固体潤滑剤などを塗布することが、また特許文献5などでは、水に乳化可能な鑞と水に乳化可能で加熱により固化する樹脂からなる減摩剤を塗布焼き付けして使用することが、さらには特許文献6などでは、絶縁塗料自体にポリエチレン微粉末を添加し潤滑化をはかること等が提案されている。以上の方法は、絶縁電線の表面潤滑性を向上させ、結果として電線の表面すべりによって外傷から絶縁層を保護しようと考えられたものである。
しかしながら、これらの微粉末を添加する方法は、微粉末の添加手法が複雑であり、分散が困難であるため、多くは溶剤に分散させたこれらの微粉末を絶縁塗料中に添加する方法が採られている。
これらの自己潤滑成分は、その潤滑成分によって自己潤滑性能(摩擦係数)の向上は見られるが、耐加工性に起因する往復摩耗などの特性向上は見られない。また、ポリエチレンやポリテトラフルオロエチレンなどの多くの自己潤滑成分が絶縁塗料との比重の差によって、絶縁塗料中で分離してしまい、これらの塗料を使用する時に細心の注意が必要であった。
In recent years, electrical devices such as motors and transformers have been increasingly miniaturized and improved in performance, and many uses such as pushing insulated wires into very narrow parts can be seen. Became. Specifically, it is no exaggeration to say that the performance of a rotating machine such as a motor is determined depending on how many wires can be put in the stator slot. As a result, the ratio of the cross-sectional area of the conductor to the cross-sectional area of the stator slot (space factor) has become very high in recent years.
When the electric wire having a round cross-section is densely filled in the stator slot, the gap that becomes a dead space and the cross-sectional area of the insulating film become a problem. For this reason, the user tries to improve the space factor as much as possible by pushing the electric wire into the stator slot as the electric wire having a round cross section is deformed. However, reducing the cross-sectional area of the insulating film has not been performed because it sacrifices its electrical performance (such as dielectric breakdown).
For the above reasons, as a means for improving the space factor, recently, attempts have been made to use a rectangular wire whose conductor shape is similar to a square shape (square or rectangle). The use of a flat wire has a dramatic effect on improving the space factor, but it is difficult to uniformly apply an insulating film on a flat conductor, and the thickness of the insulating film is particularly difficult for insulated wires with a small cross-sectional area. It is not so popular because it is difficult to control.
As a characteristic of the insulating film necessary for coiling a motor or a transformer, there is a processing performance of the film. This is because, in the coil processing step described above, if the wire coating is damaged, the electrical insulation performance is lowered.
Various methods are conceivable as a method for imparting this processing resistance to the wire coating. This can be achieved by applying lubricity to the film to reduce the coefficient of friction and reducing the damage caused by coil processing, or by improving the adhesion between the film and the electrical conductor to prevent the film from peeling off the conductor. For example, the insulation performance can be maintained.
The former method of imparting lubrication performance is to apply a lubricant such as wax to the surface of the wire, or to add a lubricant to the insulation film and bleed out the lubricant to the surface of the wire when manufacturing the wire. A method of imparting lubrication performance has been adopted in the past, and there are many examples. However, since this method of imparting lubrication performance does not improve the strength of the electric wire film itself, it seems to be effective against the cause of trauma, but the effect is actually limited.
As a means conventionally used, as for the method of reducing the friction coefficient of the surface of the insulating film as described above, in Patent Document 4, wax, oil, surfactant, solid lubricant, etc. In Patent Document 5, etc., it is possible to apply and bake a lubricant that is emulsified in water and a resin that can be emulsified in water and solidified by heating. For example, it has been proposed to lubricate the insulating coating itself by adding fine polyethylene powder. The above method is considered to improve the surface lubricity of the insulated wire, and as a result, to protect the insulating layer from damage by the surface slippage of the wire.
However, since these fine powders are added in a complicated manner and are difficult to disperse, many of these fine powders dispersed in a solvent are added to the insulating paint. It has been.
Although these self-lubricating components are improved in self-lubricating performance (coefficient of friction) due to the lubricating components, characteristics such as reciprocating wear due to workability are not observed. In addition, many self-lubricating components such as polyethylene and polytetrafluoroethylene are separated in the insulating paint due to the difference in specific gravity from the insulating paint, and great care must be taken when using these paints.
本発明は、部分放電発生電圧の高い絶縁ワイヤを提供することを目的とする。本発明はまた、部分放電発生電圧を上げるための絶縁層の厚膜化を、絶縁ワイヤの導体とエナメル層の接着強度を下げることなく実現できる絶縁ワイヤを提供することを目的とする。また、本発明の別の目的は、絶縁ワイヤに要求される、耐摩耗性、耐熱老化特性、耐溶剤性に対しても、要求を満足させる絶縁ワイヤを提供するものである。また、本発明の別の目的は、部分放電発生電圧を下げることなく、占積率を上げることができる絶縁ワイヤを提供するものである。また、本発明の別の目的は、モーター等加工時に挿入性が良好な絶縁ワイヤを提供するものである。本発明のさらに別の目的は、小さな半径に曲げ加工した場合でも、その部分においての部分放電発生電圧の低下を防止する絶縁ワイヤおよびその製造方法を提供するものである。 An object of this invention is to provide the insulated wire with a high partial discharge generation voltage. Another object of the present invention is to provide an insulating wire that can realize the thickening of the insulating layer for increasing the partial discharge generation voltage without lowering the adhesive strength between the conductor of the insulating wire and the enamel layer. Another object of the present invention is to provide an insulating wire that satisfies the requirements for wear resistance, heat aging characteristics, and solvent resistance required for an insulating wire. Another object of the present invention is to provide an insulated wire capable of increasing the space factor without lowering the partial discharge generation voltage. Another object of the present invention is to provide an insulated wire having good insertability when processing a motor or the like. Still another object of the present invention is to provide an insulating wire and a method for manufacturing the same, which prevent a partial discharge generation voltage from being lowered at that portion even when bending to a small radius.
本発明者らは、上記の従来技術が有する課題を解決するため鋭意検討した結果、エナメル線のエナメル層の外側に押出被覆樹脂層を設けることにより部分放電発生電圧を高くしうることを見出した。本発明は、この知見に基づきなされたものである。 As a result of intensive studies to solve the problems of the above-described conventional techniques, the present inventors have found that the partial discharge generation voltage can be increased by providing an extrusion-coated resin layer outside the enamel layer of the enameled wire. . The present invention has been made based on this finding.
すなわち、本発明は、
(1)導体の外周に、少なくとも1層のエナメル焼き付け層と、その外側に少なくとも1層の押出被覆樹脂層を有し、該エナメル焼き付け層と該押出被覆樹脂層の厚さの合計が60μm以上であることを特徴とする絶縁ワイヤ、
(2)前記エナメル焼き付け層の厚さが50μm以下であることを特徴とする(1)項記載の絶縁ワイヤ、
(3)前記押出被覆樹脂層が、25℃における引張弾性率が1000MPa以上であり、かつ250℃における引張弾性率が10MPa以上である樹脂材料からなることを特徴とする(1)または(2)項記載の絶縁ワイヤ、
(4)断面が矩形状である導体の外周に、少なくとも1層のエナメル焼き付け層と、その外側に少なくとも1層の押出被覆樹脂層を有する絶縁ワイヤであって、該断面の一対の対向する2辺に設けられた押出被覆樹脂層の厚さが、他の一対の対向する2辺に設けられた押出被覆樹脂層の厚さと異なることを特徴とする(1)〜(3)のいずれか1項記載の絶縁ワイヤ、
(5)前記エナメル焼き付け層と前記押出被覆樹脂層との間に接着層を有し、該接着層を媒体として、エナメル焼き付け層と押出被覆樹脂層との接着力を強化させたことを特徴とする(1)〜(4)のいずれか1項に記載の絶縁ワイヤ、及び、
(6)前記エナメル焼き付け層の外周に、ワニス化された樹脂を焼き付けてこれを接着層とし、その後、前記樹脂のガラス転移温度よりも高い温度の溶融状態である押出被覆樹脂と接触させ、エナメル層と押出被覆樹脂層とを熱融着させることを特徴とする(5)項記載の絶縁ワイヤの製造方法
を提供するものである。
That is, the present invention
(1) At least one enamel baking layer on the outer periphery of the conductor and at least one extrusion coating resin layer on the outer side thereof, and the total thickness of the enamel baking layer and the extrusion coating resin layer is 60 μm or more. Insulated wire, characterized in that
(2) The insulated wire according to (1), wherein the thickness of the enamel baking layer is 50 μm or less,
(3) The extrusion-coated resin layer is made of a resin material having a tensile elastic modulus at 25 ° C. of 1000 MPa or more and a tensile elastic modulus at 250 ° C. of 10 MPa or more (1) or (2) Insulated wire according to item
(4) An insulated wire having at least one enamel-baked layer on the outer periphery of a conductor having a rectangular cross section and at least one extrusion-coated resin layer on the outer side thereof, and a pair of opposing 2 in the cross section Any one of (1) to (3), wherein the thickness of the extrusion-coated resin layer provided on the side is different from the thickness of the extrusion-coated resin layer provided on the other pair of opposing two sides. Insulated wire according to item
(5) An adhesive layer is provided between the enamel baked layer and the extrusion-coated resin layer, and the adhesive force between the enamel baked layer and the extrusion-coated resin layer is reinforced using the adhesive layer as a medium. The insulated wire according to any one of (1) to (4), and
(6) On the outer periphery of the enamel baking layer, a varnished resin is baked to form an adhesive layer, which is then contacted with an extrusion coating resin that is in a molten state at a temperature higher than the glass transition temperature of the resin. The method for producing an insulated wire according to item (5), wherein the layer and the extrusion-coated resin layer are heat-sealed.
本発明の絶縁ワイヤは「部分放電発生電圧」と「導体/エナメル層の接着強度」の両方を満足し、インバータサージ劣化が起こりにくくなる。
また、エナメル層の厚さを50μm以下とするとで、焼き付け炉を通す回数を減らし、導体とエナメル層との接着力が極端に低下すること防ぐことができる。
また、押出被覆樹脂層が、25℃における引張弾性率が1000MPa以上であり、かつ250℃における引張弾性率が10MPa以上である樹脂材料からなるものとすると、耐摩耗性、耐熱老化特性、耐溶剤性にも優れたものである。
また、矩形状断面を有する導体の絶縁ワイヤの場合、放電が起きる方の1対の面の押出被覆樹脂層の厚さが所定の厚さであれば、もう1対の対向する面の厚さがそれより薄くても部分放電発生電圧を維持することができ、さらに占積率を上げることができる。
また、本発明の絶縁ワイヤは、静摩擦係数が小さく、電線のモーター加工時の挿入性も良好である。
また、エナメル層と押出被覆樹脂層との間に接着機能を有する層を導入して接着強度を高めることで、上記のようなシワの発生を防ぐことができる。
さらに、エナメル焼き付け層の外周に、ワニス化された樹脂を焼き付けてこれを接着層とし、その後、該接着層に用いられた樹脂のガラス転移温度よりも高い温度の溶融状態である押出被覆樹脂と接触させ、エナメル焼き付け層と押出被覆樹脂層とを熱融着させるで本発明の絶縁ワイヤを好適に製造することができる。
The insulated wire of the present invention satisfies both the “partial discharge generation voltage” and the “conductor / enamel layer adhesive strength”, and the inverter surge deterioration is less likely to occur.
Further, when the thickness of the enamel layer is 50 μm or less, the number of times of passing through the baking furnace can be reduced, and the adhesive force between the conductor and the enamel layer can be prevented from being extremely reduced.
Further, when the extrusion-coated resin layer is made of a resin material having a tensile elastic modulus at 25 ° C. of 1000 MPa or more and a tensile elastic modulus at 250 ° C. of 10 MPa or more, wear resistance, heat aging characteristics, solvent resistance It is also excellent in properties.
Further, in the case of a conductor insulated wire having a rectangular cross section, if the thickness of the extrusion-coated resin layer of the pair of surfaces where discharge occurs is a predetermined thickness, the thickness of the other pair of facing surfaces Even if it is thinner than that, the partial discharge generation voltage can be maintained, and the space factor can be further increased.
In addition, the insulated wire of the present invention has a small coefficient of static friction and good insertability during electric wire motor processing.
Moreover, generation | occurrence | production of the above wrinkles can be prevented by introduce | transducing the layer which has an adhesive function between an enamel layer and an extrusion coating resin layer, and improving adhesive strength.
Further, an varnished resin is baked on the outer periphery of the enamel baking layer to form an adhesive layer, and then an extruded coating resin in a molten state at a temperature higher than the glass transition temperature of the resin used in the adhesive layer; The insulated wire of the present invention can be suitably produced by bringing the enamel baked layer and the extrusion-coated resin layer into thermal contact with each other.
本発明の一つの実施態様は、導体の外周に、少なくとも1層のエナメル焼き付け層と、その外側に少なくとも1層の押出被覆樹脂層を有し、エナメル焼き付け層と押出被覆樹脂層の厚さの合計が60μm以上である絶縁ワイヤである。上記のエナメル焼き付け層の厚さは、50μm以下であることが好ましい。本発明の絶縁ワイヤは耐熱巻線用として好適なものであり、例えば、インバータ関連機器、高速スイッチング素子、インバータモーター、変圧器等の電気機器コイルや宇宙用電気機器、航空機用電気機器、原子力用電気機器、エネルギー用電気機器、自動車用電気機器用のマグネットワイヤ等に用いることができる。
モーター等のステータースロット内でおきる部分放電はスロットと電線の間で起きる場合、及び電線と電線の間で起きる場合の2種類ある。そこで、フラット面に設けられた押出被覆樹脂層の厚さが、エッジ面に設けられた押出被覆樹脂層の厚さと異なる絶縁ワイヤを用いることによって、部分放電発生電圧の値を維持しつつ、モーターのスロット内の全断面積に対する導体のトータル断面積の割合(占積率)を向上させることができる。
スロット内に1列にエッジ面とフラット面での厚さが異なる電線を並べるとき、スロットと電線の間で放電が起きる場合はスロットに対して厚膜面が接するように並べ、隣あう電線間の膜厚は薄い方で並べる。膜厚が薄い分より多くの本数を挿入することができ、占積率は向上する。またこの時、部分放電発生電圧の値は維持できる。同様に電線と電線の間で放電が起きやすい場合は膜厚の厚い面を電線と接する面にして、スロットに面する方は薄くすること必要以上にスロットの大きさを大きくしないため占積率は向上する。またこの時、部分放電発生電圧の値は維持できる。
ここで言うフラット面とは平角線の断面が矩形の対の対向する2辺のうち長辺の対をさす。またエッジ面とは対向する2辺のうち短辺の対をさす。
また押出被覆樹脂層の厚さが、該断面の一対の対向する2辺と他の一対の対向する2辺とで異なる場合は、一対の対向する2辺の厚さを1とした時もう1対の対向する2辺の厚さは1.01〜5の範囲のものである。好ましくは1.01〜3の範囲のものである。
One embodiment of the present invention has at least one enamel baked layer on the outer periphery of the conductor and at least one extruded coated resin layer on the outside thereof, and the thickness of the enamel baked layer and the extruded coated resin layer is Insulated wires with a total of 60 μm or more. The thickness of the enamel baking layer is preferably 50 μm or less. The insulated wire of the present invention is suitable for heat-resistant windings, for example, inverter-related equipment, high-speed switching elements, inverter motors, transformers and other electrical equipment coils, space electrical equipment, aircraft electrical equipment, nuclear power It can be used for an electrical device, an electrical device for energy, a magnet wire for an automotive electrical device, and the like.
There are two types of partial discharge that occur in a stator slot of a motor or the like, when it occurs between the slot and the wire, and when it occurs between the wire and the wire. Therefore, by using an insulating wire in which the thickness of the extrusion-coated resin layer provided on the flat surface is different from the thickness of the extrusion-coated resin layer provided on the edge surface, while maintaining the value of the partial discharge generation voltage, the motor It is possible to improve the ratio (space factor) of the total cross-sectional area of the conductor to the total cross-sectional area in the slot.
When arranging wires with different thicknesses on the edge surface and flat surface in a single row in the slot, if a discharge occurs between the slot and the wire, arrange so that the thick film surface is in contact with the slot, and between adjacent wires The film thicknesses are arranged in the thinner one. More lines can be inserted than the thin film thickness, and the space factor is improved. At this time, the value of the partial discharge generation voltage can be maintained. Similarly, if electric discharge is likely to occur between wires, the thicker side should be the surface in contact with the wire, and the side facing the slot should be thinner. Will improve. At this time, the value of the partial discharge generation voltage can be maintained.
The flat surface mentioned here refers to a pair of long sides out of two opposing sides of a pair of rectangular wires having a rectangular cross section. Further, the edge surface refers to a pair of short sides of two sides facing each other.
Further, when the thickness of the extrusion-coated resin layer is different between a pair of opposing two sides of the cross section and another pair of opposing two sides, another one when the thickness of the pair of opposing two sides is 1. The thickness of the two opposite sides of the pair is in the range of 1.01-5. Preferably it is the range of 1.01-3.
(導体)
本発明に用いられる導体としては、従来、絶縁ワイヤで用いられているものを使用することができるが、好ましくは、酸素含有量が30ppm以下の低酸素銅、さらに好ましくは20ppm以下の低酸素銅または無酸素銅の導体である。酸素含有量が30ppm以下であれば、導体を溶接するために熱で溶融させた場合、溶接部分に含有酸素に起因するボイドの発生がなく、溶接部分の電気抵抗が悪化することを防止するとともに溶接部分の強度を保持することができる。
また、導体はその横断面が所望の形状のものを使用できるが、円以外の形状を有するものを使用するのが好ましく、特に平角形状のものが好ましい。更には、角部からの部分放電を抑制するという点において、4隅に面取り(半径r)を設けた形状であることが望ましい。
(conductor)
As the conductor used in the present invention, those conventionally used for insulated wires can be used. Preferably, the oxygen content is low oxygen copper of 30 ppm or less, more preferably 20 ppm or less. Or an oxygen-free copper conductor. When the oxygen content is 30 ppm or less, when the conductor is melted with heat to prevent welding, voids due to oxygen contained in the welded portion are not generated, and the electrical resistance of the welded portion is prevented from deteriorating. The strength of the welded portion can be maintained.
Further, the conductor having a desired cross-sectional shape can be used, but a conductor having a shape other than a circle is preferably used, and a rectangular shape is particularly preferable. Furthermore, it is desirable to have a shape with chamfers (radius r) at the four corners in terms of suppressing partial discharge from the corners.
(エナメル層)
エナメル焼き付け層(以下、単に「エナメル層」ともいう)については、樹脂ワニスを導体上に複数回塗布、焼付して形成したものである。樹脂ワニスを塗布する方法は常法でよく、たとえば、導体形状の相似形としたワニス塗布用ダイスを用いる方法や、もし導体断面形状が四角形であるならば、井桁状に形成された「ユニバーサルダイス」と呼ばれるダイスを用いることができる。これらの樹脂ワニスを塗布した導体はやはり常法にて焼付炉で焼き付けされる。具体的な焼き付け条件はその使用される炉の形状などに左右されるが、およそ5mの自然対流式の竪型炉であれば、400〜500℃にて通過時間を10〜90秒に設定することにより達成することができる。
(Enamel layer)
The enamel baking layer (hereinafter also simply referred to as “enamel layer”) is formed by applying and baking a resin varnish on a conductor a plurality of times. The method of applying the resin varnish may be a conventional method. For example, a method of using a varnish application die having a similar conductor shape, or a “universal die formed in a cross-beam shape if the conductor cross-sectional shape is a quadrangle” Can be used. The conductors coated with these resin varnishes are baked in a baking furnace in the usual manner. Although the specific baking conditions depend on the shape of the furnace used, etc., in the case of a natural convection type vertical furnace of about 5 m, the passage time is set to 10 to 90 seconds at 400 to 500 ° C. Can be achieved.
エナメル層を形成するエナメル樹脂としては、従来用いられているものを使用することができ、例えば、ポリイミド、ポリアミドイミド、ポリエステルイミド、ポリエーテルイミド、ポリイミドヒダントイン変性ポリエステル、ポリアミド、ホルマール、ポリウレタン、ポリエステル、ポリビニルホルマール、エポキシ、ポリヒダントインが挙げられ、好ましくは耐熱性において優れる、ポリイミド、ポリアミドイミド、ポリエステルイミド、ポリエーテルイミド、ポリイミドヒダントイン変性ポリエステルなどのポリイミド系樹脂である。
また、これらは 1種を単独で使用してもよく、また、2種以上を混合して使用するようにしてもよい。
As the enamel resin for forming the enamel layer, those conventionally used can be used, for example, polyimide, polyamideimide, polyesterimide, polyetherimide, polyimide hydantoin-modified polyester, polyamide, formal, polyurethane, polyester, Polyvinyl formal, epoxy, and polyhydantoin are mentioned, and polyimide resins such as polyimide, polyamideimide, polyesterimide, polyetherimide, and polyimide hydantoin-modified polyester that are excellent in heat resistance are preferable.
Moreover, these may be used individually by 1 type, and may mix and use 2 or more types.
焼き付け炉を通す回数を減らし、導体とエナメル層との接着力が極端に低下すること防ぐため、エナメル層の厚さは、50μm以下であることが好ましく、40μm以下がさらに好ましい。また、絶縁ワイヤーとしてのエナメル線に必要な特性である、耐電圧特性や、耐熱特性を損なわないためには、エナメル層がある程度の厚さがある方が好ましい。エナメル層の下限の厚さはピンホールが生じない程度の厚さであれば特に制限するものではなく、好ましくは3μm以上、更に好ましくは6μm以上である。
エナメル層は1層であっても複数層であってもよい。
The thickness of the enamel layer is preferably 50 μm or less, and more preferably 40 μm or less, in order to reduce the number of passes through the baking furnace and prevent the adhesive force between the conductor and the enamel layer from being extremely reduced. Moreover, in order not to impair the withstand voltage characteristics and the heat resistance characteristics, which are characteristics necessary for an enameled wire as an insulating wire, it is preferable that the enamel layer has a certain thickness. The lower limit thickness of the enamel layer is not particularly limited as long as it does not cause pinholes, and is preferably 3 μm or more, more preferably 6 μm or more.
The enamel layer may be a single layer or a plurality of layers.
(押出被覆樹脂層)
本発明においては、部分放電発生電圧の高い絶縁ワイヤを得るために、エナメル焼き付け層の外側に少なくとも1層の押出被覆樹脂層を設けるものである。押出被覆法の利点は、製造工程にて焼き付け炉を通す必要が無いため、導体の酸化被膜層の厚さを成長させることなく絶縁層の厚さを厚くすることができるということである。
(Extruded resin layer)
In the present invention, in order to obtain an insulated wire having a high partial discharge generation voltage, at least one extrusion-coated resin layer is provided outside the enamel baking layer. The advantage of the extrusion coating method is that the thickness of the insulating layer can be increased without increasing the thickness of the oxide film layer of the conductor because it is not necessary to pass through a baking furnace in the manufacturing process.
押出被覆樹脂層に用いる樹脂については、押出加工が可能なものであれば何でも良いが、部分放電発生電圧を低くするためには、比誘電率が4.5以下のものが好ましい。例えば、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(ETFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリアミド(PA)、ポリエステル(PE)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリフェニレンエーテル(PPE)、ポリエーテルエーテルケトン(PEEK)、芳香族ポリエステル、ポリイミド(PI)、脂環式オレフィン、ポリエーテルイミド(PEI)、ポリアミドイミド(PAI)、ポリエーテルサルホン(PES)、ポリフェニレンスルフィド(PPS)、ポリメチルペンテン(PMP)、シンジオタクチックポリスチレン(SPS)、ポリケトン(PK)、ポリサルホン(PSU)、ポリフェニルサルホン(PPSU)、ポリアセタール(POM)等が挙げらる。比誘電率は4.0以下であることがさらに好ましい。 The resin used for the extrusion-coated resin layer may be anything as long as it can be extruded. However, in order to reduce the partial discharge generation voltage, those having a relative dielectric constant of 4.5 or less are preferable. For example, polypropylene (PP), polymethylpentene (PMP), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-ethylene copolymer (ETFE), tetrafluoro Ethylene / perfluoroalkyl vinyl ether copolymer (PFA), polyamide (PA), polyester (PE), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene ether (PPE), polyether ether ketone (PEEK), Aromatic polyester, polyimide (PI), alicyclic olefin, polyetherimide (PEI), polyamideimide (PAI), polyethersulfone (PES), polyphenylene sulfide PPS), polymethylpentene (PMP), syndiotactic polystyrene (SPS), polyketone (PK), polysulfone (PSU), polyphenyl sulfone (PPSU), polyacetal (POM) and the like Ageraru. More preferably, the dielectric constant is 4.0 or less.
ここで、比誘電率とは市販の誘電率測定装置で測定することができる。測定温度、周波数については、必要に応じて変更するものであるが、本発明においては、特に記載の無い限り、25℃、50Hzにおいて測定した値のことを意味する。 Here, the relative dielectric constant can be measured with a commercially available dielectric constant measuring apparatus. The measurement temperature and frequency are changed as necessary. In the present invention, unless otherwise specified, it means values measured at 25 ° C. and 50 Hz.
そして、部分放電発生電圧が500V以上という要求を満たすためには、エナメル層と押出被覆樹脂層の厚さの合計は60μm以上を必要とする。即ち、エナメル層厚さが50μm以下、厚さの合計が60μm以上のものであれば、「部分放電発生電圧」と「導体/エナメル層の接着強度」の両方を満足できるので好ましい。 And in order to satisfy | fill the request | requirement that a partial discharge generation voltage is 500 V or more, the sum total of the thickness of an enamel layer and an extrusion coating resin layer needs 60 micrometers or more. That is, it is preferable that the enamel layer thickness is 50 μm or less and the total thickness is 60 μm or more because both “partial discharge generation voltage” and “conductor / enamel layer adhesive strength” can be satisfied.
本発明において、導体とエナメル層の接着強度は、例えば、JIS C 3003エナメル線試験方法の、8.密着性、8.1b)ねじり法と同じ要領で行い、被膜の浮きが生じるまでの回転数で評価することができる。断面方形の平角線においても、同様に行うことができる。この場合、被膜の浮きが生じるまでの回転数が15回転以上であるものを密着性の良いものとする。 In the present invention, the adhesive strength between the conductor and the enamel layer is, for example, 8. JIS C 3003 enamel wire test method. Adhesiveness, 8.1b) It can be performed in the same manner as the torsion method, and can be evaluated by the number of rotations until the coating floats. The same can be done for a rectangular wire having a square cross section. In this case, the one having a rotation speed of 15 rotations or more until the coating is lifted is assumed to have good adhesion.
また、本発明の一つの好ましい態様においては、押出被覆樹脂層が、25℃における引張弾性率が1000MPa以上であり、かつ250℃における引張弾性率が10MPa以上である樹脂材料からなるものである。25℃における引張弾性率は2000MPa以上であることがさらに好ましい。また、250℃における引張弾性率は100MPa以上であることがさらに好ましい。 Moreover, in one preferable aspect of this invention, an extrusion coating resin layer consists of a resin material whose tensile elasticity modulus in 25 degreeC is 1000 Mpa or more, and whose tensile elasticity modulus in 250 degreeC is 10 Mpa or more. The tensile modulus at 25 ° C is more preferably 2000 MPa or more. The tensile modulus at 250 ° C. is more preferably 100 MPa or more.
本発明の絶縁ワイヤは、昨今絶縁ワイヤに要求されている、耐摩耗性、耐熱老化特性、耐溶剤性にも、対応可能なものとする。耐摩耗性は、絶縁ワイヤをモーター等へ加工した場合にうける傷の度合いの指標になり静摩擦係数は挿入しやすさの度合いになる。また、熱老化特性は、高温の環境で使用されても長時間信頼性を保つための指標になる。耐溶剤性も使用環境や組立工程の多様化から必要とされている。 The insulated wire of the present invention can also cope with wear resistance, heat aging characteristics, and solvent resistance, which are required for insulated wires. Abrasion resistance is an index of the degree of scratches when an insulated wire is processed into a motor or the like, and a static friction coefficient is a degree of ease of insertion. The heat aging characteristic is an index for maintaining reliability for a long time even when used in a high temperature environment. Solvent resistance is also required due to diversification of usage environment and assembly process.
本発明において、耐摩耗性の評価は、例えば、JIS C 3003エナメル線試験方法の、9.耐摩耗(丸線)と同じ要領で行うことができる。断面方形の平角線の場合は、四隅のコーナーについて行う。2000g以上で非常に優れたものと評価できる。 In the present invention, the abrasion resistance is evaluated by, for example, 9. JIS C 3003 enamel wire test method. This can be done in the same way as wear resistance (round wire). In the case of a rectangular wire with a square cross section, the process is performed for the four corners. It can be evaluated as being very excellent at 2000 g or more.
また、本発明において、熱老化特性の評価は、例えば、JIS C 3003エナメル線試験方法の、7.可撓性に従って巻き付けたものを、180℃高温槽へ300時間(h)静置した後の、エナメル層または押出被覆樹脂層にき裂がないか目視にて調べて行うことができる。この場合、異常が無いと非常に優れたものと評価できる。 In the present invention, the evaluation of the heat aging property is performed, for example, according to JIS C 3003 enamel wire test method. What was wound according to flexibility can be carried out by visually checking whether there is a crack in the enamel layer or the extrusion-coated resin layer after leaving it in a high-temperature bath at 180 ° C. for 300 hours (h). In this case, if there is no abnormality, it can be evaluated as very excellent.
また、本発明において、耐溶剤性の評価は、例えば、JIS C 3003エナメル線試験方法の、7.可撓性に従って巻き付けたものを、溶剤に10秒間浸漬後、エナメル層または押出被覆樹脂層の表面を目視にて確認して行うことができる。この場合、溶剤としてはアセトン、キシレン、スチレンの3種類によって行い、温度は常温と150℃(試料を150℃×30分加熱後に熱い状態で溶剤へ浸漬する)の2水準によって行い、何れも異常無いと非常に優れたものと評価できる。 In the present invention, the solvent resistance is evaluated by, for example, JIS C 3003 enameled wire test method. What was wound according to flexibility can be carried out by visually observing the surface of the enamel layer or the extrusion-coated resin layer after being immersed in a solvent for 10 seconds. In this case, three types of solvents are used: acetone, xylene, and styrene, and the temperature is set at two levels: normal temperature and 150 ° C. (the sample is immersed in a solvent in a hot state after being heated at 150 ° C. for 30 minutes). Without it, it can be evaluated as very excellent.
本発明者らは、数々の実験の結果、耐摩耗性、耐熱老化特性、耐溶剤性と、引張弾性率とのある相関を発見した。即ち、25℃での引張弾性率が1000MPa以上であれば、常温で行われる耐摩耗特性が2000g以上(質量)を達成させることができる。また、250℃での引張弾性率が、10MPa以上であれば、180℃で行われる熱老化特性が300hを達成することができるということである。また、前記の二項目を満足させる樹脂であれば、残る必要特性である耐溶剤性も常温および150℃において良好な結果を達成できることも導き出した。 As a result of numerous experiments, the present inventors have found a certain correlation between wear resistance, heat aging characteristics, solvent resistance, and tensile modulus. That is, if the tensile elastic modulus at 25 ° C. is 1000 MPa or more, the wear resistance performed at room temperature can achieve 2000 g or more (mass). Further, if the tensile elastic modulus at 250 ° C. is 10 MPa or more, the heat aging characteristic performed at 180 ° C. can achieve 300 h. Further, it was also derived that if the resin satisfies the above two items, the solvent resistance, which is a necessary characteristic remaining, can achieve good results at room temperature and 150 ° C.
ここで、引張弾性率とは、市販の粘弾性測定装置で測定した値であり、測定時の制御モード、周波数、歪み量、測定温度等は必要に応じて変えらるものである。本発明においては、特に記載の無い限り、引張モード、周波数1Hz、歪み量1/1000にて行い、測定温度は昇温速度5℃/分で変えながら測定した値を意味する。 Here, the tensile modulus is a value measured with a commercially available viscoelasticity measuring device, and the control mode, frequency, strain amount, measurement temperature, and the like at the time of measurement can be changed as necessary. In the present invention, unless otherwise specified, the tensile temperature, the frequency is 1 Hz, the strain amount is 1/1000, and the measurement temperature means a value measured while changing at a heating rate of 5 ° C./min.
25℃における引張弾性率が1000MPa以上であり、かつ250℃における引張弾性率が10MPa以上である樹脂材料は、特に限定されるものではないが、例えば、ポリフェニルサルホン(PPSU)、ポリアミドイミド(PAI)、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)等が挙げられ、PPSおよびPEEKがさらに好ましい。また、引張弾性率が上記の範囲から外れない程度であれば、これらの樹脂に他の樹脂やエラストマー等をブレンドしたものでもよい。さらには、引張弾性率が上記の範囲から外れない程度であれば、他のモノマーとのブロック共重合体を用いることも可能である。 The resin material having a tensile elastic modulus at 25 ° C. of 1000 MPa or more and a tensile elastic modulus at 250 ° C. of 10 MPa or more is not particularly limited. For example, polyphenylsulfone (PPSU), polyamideimide ( PAI), polyphenylene sulfide (PPS), polyether ether ketone (PEEK) and the like, and PPS and PEEK are more preferable. Further, these resins may be blended with other resins, elastomers, or the like as long as the tensile elastic modulus does not deviate from the above range. Furthermore, a block copolymer with another monomer can be used as long as the tensile elastic modulus does not deviate from the above range.
また、本発明の別の好ましい態様は、エナメル焼き付け層と押出被覆樹脂層との間に接着層を有し、接着層を媒体として、エナメル焼き付け層と押出被覆樹脂層との接着力を強化させた絶縁ワイヤである。
また、本発明のさらに別の好ましい態様は、エナメル焼き付け層の外周に、ワニス化された樹脂を焼き付けてこれを接着層とし、その後の押出被覆工程において、接着層に用いられる樹脂のガラス転移温度よりも高い温度の溶融状態である押出被覆樹脂と接触させることで、エナメル層と押出被覆樹脂層とを熱融着させる絶縁ワイヤの製造方法である。
In another preferred embodiment of the present invention, an adhesive layer is provided between the enamel baked layer and the extrusion-coated resin layer, and the adhesive force between the enamel baked layer and the extrusion-coated resin layer is reinforced using the adhesive layer as a medium. Insulated wire.
Further, another preferred embodiment of the present invention is that the varnished resin is baked on the outer periphery of the enamel baked layer to form an adhesive layer, and the glass transition temperature of the resin used for the adhesive layer in the subsequent extrusion coating step. It is the manufacturing method of the insulated wire which heat-fuses an enamel layer and an extrusion coating resin layer by making it contact with the extrusion coating resin which is a molten state of higher temperature.
押出被覆樹脂層とエナメル焼き付け層の間の接着力が十分でない場合、過酷な加工条件例えば小さな半径に曲げ加工される場合には、曲げの円弧内側に、押出被覆樹脂層のシワが発生する場合がある。このようなシワが発生すると、エナメル層と押出被覆樹脂層との間のに空間が生じることから、部分放電発生電圧が、低下するという現象につながる場合がある。
この部分放電発生電圧の低下を防止するためには、曲げの円弧内側にシワが生じないようにする必要があり、エナメル層と押出被覆樹脂層との間に接着機能を有する層を導入して接着強度を高めることで、上記のようなシワの発生を防ぐことができる。
When the adhesive force between the extrusion coating resin layer and the enamel baking layer is not sufficient, when severe processing conditions such as bending to a small radius, wrinkles of the extrusion coating resin layer occur inside the bending arc There is. When such wrinkles occur, a space is generated between the enamel layer and the extrusion-coated resin layer, which may lead to a phenomenon that the partial discharge generation voltage decreases.
In order to prevent this decrease in the partial discharge generation voltage, it is necessary to prevent wrinkles from occurring inside the arc of bending, and a layer having an adhesive function is introduced between the enamel layer and the extrusion coating resin layer. By increasing the adhesive strength, the generation of wrinkles as described above can be prevented.
絶縁ワイヤの曲がり部分の部分放電発生電圧の測定装置や測定条件については、前述の部分放電試験器による測定と同様であるが、もっとも過酷な状況を想定して、試料形状として、二本の絶縁ワイヤを密着させるのではなく、一本の絶縁ワイヤの曲がり部分を金属箔(アルミ等)で覆ったものを用い、ワイヤ導体と金属箔との間に電圧をかけて測定するものである。この測定法での測定値は、密着させた二本の絶縁ワイヤに電圧をかけた場合とは値が異なるため、正常部分と不良部分との相対比較で議論する。 The measurement device and measurement conditions for the partial discharge generation voltage at the bent part of the insulated wire are the same as those measured by the partial discharge tester described above, but assuming the most severe conditions, the sample shape is divided into two pieces of insulation. The measurement is performed by applying a voltage between the wire conductor and the metal foil using a wire in which a bent portion of one insulated wire is covered with a metal foil (aluminum or the like) instead of closely contacting the wire. The measurement value obtained by this measurement method is different from that in the case where voltage is applied to the two insulated wires that are brought into close contact with each other.
接着層は熱融着可能な樹脂であればいずれの樹脂を用いても良いが、ワニス化する必要性があることから、溶剤に溶けやすい非結晶性樹脂であることが好ましい。さらには、絶縁ワイヤとしての耐熱性を低下させないためにも、耐熱性に優れる樹脂であることが好ましい。これらのことを考慮すると好ましい樹脂としてはポリサルホン(PSU)、ポリエーテルサルホン(PES)、ポリエーテルイミド(PEI)、ポリフェニルサルホン(PPSU)、ポリアミドイミド(PAI)、ポリイミド(PI)等が挙げられ、PESおよびPPSUがさらに好ましい。 Any resin can be used for the adhesive layer as long as it can be heat-sealed. However, since the resin needs to be varnished, it is preferably an amorphous resin that is easily dissolved in a solvent. Furthermore, in order not to reduce the heat resistance as the insulating wire, a resin having excellent heat resistance is preferable. Considering these matters, preferred resins include polysulfone (PSU), polyethersulfone (PES), polyetherimide (PEI), polyphenylsulfone (PPSU), polyamideimide (PAI), polyimide (PI) and the like. PES and PPSU are more preferable.
また、ワニス化に用いる溶剤は、選択した樹脂を溶解させ得る溶剤であればいずれでも良いが、エナメル層へ焼き付ける際に下地となるエナメル層との接着性を良くするためには、下地となるエナメル層を焼き付ける際に用いたものと同一の溶剤が好ましい。
また、接着層の厚さは2〜20μmが好ましく、5〜10μmが更に好ましい。接着層と押出被覆樹脂層を十分に熱融着させるためには、押出被覆工程における樹脂温度は、接着層に選んだ樹脂のTg(ガラス転移温度)以上である必要があり、好ましくはTgよりも30℃以上高い温度、更に好ましくはTgよりも50℃以上高い温度が良い。
The solvent used for varnishing may be any solvent that can dissolve the selected resin. However, in order to improve the adhesiveness with the enamel layer that is the base when baking to the enamel layer, the base is used. The same solvent used when baking the enamel layer is preferred.
Further, the thickness of the adhesive layer is preferably 2 to 20 μm, and more preferably 5 to 10 μm. In order to sufficiently heat-bond the adhesive layer and the extrusion-coated resin layer, the resin temperature in the extrusion coating process needs to be equal to or higher than the Tg (glass transition temperature) of the resin selected for the adhesive layer, preferably from Tg Also, a temperature higher by 30 ° C. or higher, more preferably a temperature higher by 50 ° C. or higher than Tg is preferable.
以下に本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例および比較例のうち、実施例1〜4及び比較例1〜3は請求項1及び2に係る発明の、実施例5〜7及び比較例4〜10は請求項3に係る発明の、実施例8〜11及び比較例11〜12は請求項4及び5に係る発明の、実施例12〜13及び比較例13は請求項6に係る発明の、それぞれ実施例及び比較例である。また、実施例14、15及び比較例14は絶縁ワイヤの静摩擦係数とコイル挿入性の効果を示すものである。 The present invention will be described below in more detail based on examples, but the present invention is not limited thereto. Of the following Examples and Comparative Examples, Examples 1 to 4 and Comparative Examples 1 to 3 are inventions according to claims 1 and 2, and Examples 5 to 7 and Comparative Examples 4 to 10 are claims 3. Examples 8 to 11 and Comparative Examples 11 to 12 of the present invention are the inventions according to claims 4 and 5, Examples 12 to 13 and Comparative example 13 are the examples and comparative examples of the invention according to claim 6, respectively. It is. Examples 14 and 15 and Comparative Example 14 show the effects of the static friction coefficient of the insulated wire and the coil insertion property.
[実施例1]
1.8×2.5mm(厚さ×幅)で四隅の面取り半径r=0.5mmの平角導体(酸素含有量15ppmの銅)を準備した。エナメル層の形成に際しては、導体の形状と相似形のダイスを使用して、ポリアミドイミド樹脂ワニス(日立化成(株)製 商品名 HI406)を導体へコーティングし、450℃に設定した炉長8mの焼付炉内を、焼き付け時間15秒となる速度で通過させ、この1回の焼き付け工程で厚さ5μmのエナメルを形成した。これを繰り返し4回行うことで厚さ20μmのエナメル層を形成し、被膜厚さ20μmのエナメル線を得た。
得られたエナメル線を心線とし、押出機のスクリューは、30mmフルフライト、L/D=20、圧縮比3を用いた。材料はポリエーテルイミド(PEI)(GEプラスチック:ウルテム1000)を用い、押出温度条件は表1に従い行った。押出ダイを用いて樹脂の押出被覆を行い、エナメル層の外側に厚さ40μmの押出被覆樹脂層を形成し、トータル厚さ(エナメル層と押出被覆樹脂層の厚さの合計)60μmのPEI押出被覆エナメル線からなる絶縁ワイヤを得た。
[Example 1]
A rectangular conductor (copper having an oxygen content of 15 ppm) having a chamfer radius r = 0.5 mm at four corners with a thickness of 1.8 × 2.5 mm (thickness × width) was prepared. For the formation of the enamel layer, using a die similar in shape to the shape of the conductor, a polyamideimide resin varnish (trade name HI406 manufactured by Hitachi Chemical Co., Ltd.) is coated on the conductor, and the furnace length is set to 450 ° C. The inside of the baking furnace was passed at a speed of a baking time of 15 seconds, and an enamel having a thickness of 5 μm was formed by this single baking process. By repeating this four times, an enamel layer having a thickness of 20 μm was formed, and an enameled wire having a thickness of 20 μm was obtained.
The obtained enameled wire was used as a core wire, and the screw of the extruder used 30 mm full flight, L / D = 20, and a compression ratio of 3. The material was polyetherimide (PEI) (GE plastic: Ultem 1000), and the extrusion temperature conditions were as shown in Table 1. Extrusion coating of resin is performed using an extrusion die to form an extruded coating resin layer having a thickness of 40 μm on the outer side of the enamel layer, and PEI extrusion with a total thickness of 60 μm (the total thickness of the enamel layer and the extruded coating resin layer). An insulated wire made of coated enameled wire was obtained.
[実施例2]
エナメル層の焼き付け回数を8回とし、厚さ40μmのエナメル層を形成し、その上に厚さ60μmの押出被覆層を形成したこと以外は実施例1と同様にして、トータル厚さ100μmのPEI押出被覆エナメル線からなる絶縁ワイヤを得た。押出温度条件は表1に従った。
[Example 2]
The PEI having a total thickness of 100 μm was formed in the same manner as in Example 1 except that the enamel layer was baked 8 times, an enamel layer having a thickness of 40 μm was formed, and an extrusion coating layer having a thickness of 60 μm was formed thereon. An insulated wire made of an extrusion-coated enameled wire was obtained. Extrusion temperature conditions followed Table 1.
[実施例3]
エナメル層の焼き付け回数を4回とし、厚さ20μmのエナメル層を形成し、その上に厚さ80μmの押出被覆層を形成したこと以外は実施例1と同様にして、トータル厚さ100μmのPEI押出被覆エナメル線からなる絶縁ワイヤを得た。押出温度条件は表1に従った。
[Example 3]
The PEI having a total thickness of 100 μm was formed in the same manner as in Example 1 except that the enamel layer was baked four times, an enamel layer having a thickness of 20 μm was formed, and an extruded coating layer having a thickness of 80 μm was formed thereon. An insulated wire made of an extrusion-coated enameled wire was obtained. Extrusion temperature conditions followed Table 1.
[実施例4]
押出被覆樹脂にテトラフルオロエチレン−エチレン共重合体(ETFE)を用いたこと以外は実施例2と同様にして、トータル厚さ100μmのETFE押出被覆エナメル線からなる絶縁ワイヤを得た。押出温度条件は表1に従った。
[Example 4]
An insulated wire made of an ETFE extrusion-coated enameled wire having a total thickness of 100 μm was obtained in the same manner as in Example 2 except that tetrafluoroethylene-ethylene copolymer (ETFE) was used as the extrusion-coated resin. Extrusion temperature conditions followed Table 1.
[比較例1]
1.8×2.5mm(厚さ×幅)で四隅の面取り半径r=0.5mmの平角導体(酸素含有量15ppmの銅)を準備した。エナメル層の形成に際しては、導体の形状と相似形のダイスを使用して、ポリアミドイミド樹脂ワニス(日立化成(株)製 商品名 HI406)を導体へコーティングし、450℃に設定した炉長8mの焼付炉内を、焼き付け時間15秒となる速度で通過させ、この1回の焼き付け工程で厚さ5μmのエナメルを形成した。これを繰り返し8回行うことで厚さ40μmのエナメル層を形成し、被膜厚さ40μmのエナメル線からなる絶縁ワイヤを得た。
[Comparative Example 1]
A rectangular conductor (copper having an oxygen content of 15 ppm) having a chamfer radius r = 0.5 mm at four corners with a thickness of 1.8 × 2.5 mm (thickness × width) was prepared. For the formation of the enamel layer, using a die similar in shape to the shape of the conductor, a polyamideimide resin varnish (trade name HI406 manufactured by Hitachi Chemical Co., Ltd.) is coated on the conductor, and the furnace length is set to 450 ° C. The inside of the baking furnace was passed at a speed of a baking time of 15 seconds, and an enamel having a thickness of 5 μm was formed by this single baking process. By repeating this eight times, an enamel layer having a thickness of 40 μm was formed, and an insulating wire made of an enameled wire having a thickness of 40 μm was obtained.
[比較例2]
エナメル層の焼き付け工程を12回とし、厚さ60μmのエナメル層を形成したこと以外は、比較例1と同様にして、被覆厚さ60μmのエナメル線からなる絶縁ワイヤを得た。
[Comparative Example 2]
An insulating wire made of enameled wire having a coating thickness of 60 μm was obtained in the same manner as in Comparative Example 1 except that the enamel layer baking process was performed 12 times and an enamel layer having a thickness of 60 μm was formed.
[比較例3]
エナメル層の焼き付け工程を20回とし、厚さ100μmのエナメル層を形成したこと以外は、比較例2と同様にして、被覆厚さ100μmのエナメル線からなる絶縁ワイヤを得た。
[Comparative Example 3]
An insulating wire made of an enameled wire having a coating thickness of 100 μm was obtained in the same manner as in Comparative Example 2 except that the enamel layer baking process was performed 20 times and an enamel layer having a thickness of 100 μm was formed.
実施例1〜4および比較例1〜3について以下の評価を行った。
(部分放電発生電圧)
部分放電発生電圧の測定には、菊水電子工業製の部分放電試験機「KPD1050」を用いた。断面形状が方形の絶縁ワイヤーを、二本の絶縁ワイヤの長編となる面同士を長さ150mmに亘って隙間が無いように密着させた試料を作製した。この二本の導体間に電極をつなぎ、温度は25℃にて、50Hzの交流電圧かけながら連続的に昇圧していき、10pCの部分放電が発生した時点の電圧を実行値で読みとった。500V以上を合格とした。
(導体とエナメル層の接着性)
導体とエナメル層の接着強度を、JIS C 3003エナメル線試験方法の、8.密着性、8.1b)ねじり法と同じ要領で行い、被膜の浮きが生じるまでの回転数により測定した。15回以上を合格とした。
結果を表1に示す。
The following evaluation was performed about Examples 1-4 and Comparative Examples 1-3.
(Partial discharge generation voltage)
For the measurement of the partial discharge generation voltage, a partial discharge tester “KPD1050” manufactured by Kikusui Electronics Corporation was used. A sample was prepared in which insulating wires having a square cross-sectional shape were brought into close contact with each other over a length of 150 mm between the long surfaces of the two insulating wires. An electrode was connected between the two conductors, and the voltage was continuously increased while applying an AC voltage of 50 Hz at a temperature of 25 ° C., and the voltage at the time when a partial discharge of 10 pC occurred was read as an actual value. More than 500V was set as the pass.
(Adhesiveness between conductor and enamel layer)
The adhesive strength between the conductor and the enamel layer is determined according to JIS C 3003 enamel wire test method, 8. Adhesion, 8.1b) It was performed in the same manner as the torsion method, and was measured by the number of rotations until the coating floated. More than 15 times were accepted.
The results are shown in Table 1.
表1から解るように、実施例1〜4、比較例1〜3の部分放電開始電圧については、エナメル層と押出被覆層のトータル厚さが60μmの実施例1、比較例2はそれぞれ580V、570Vであり、トータル厚さが100μmの実施例2、3、4、比較例3はそれぞれ、780V、790V、810V、770Vであった。部分放電開始電圧の要求値500Vに対しては、トータル厚さが60μmあれば十分であることがわかる。また、同じトータル厚さの試料間でも部分放電開始電圧が微妙に異なるのは、構成する材料の比誘電率の違いから生じたものと考えられる。比較例1はトータル厚さが40μmと小さいため部分放電開始電圧は305Vとなり、要求の500Vには達しなかった。 As can be seen from Table 1, the partial discharge start voltages of Examples 1 to 4 and Comparative Examples 1 to 3 are 580 V in Example 1 and Comparative Example 2 in which the total thickness of the enamel layer and the extrusion coating layer is 60 μm, respectively. In Examples 2, 3, 4 and Comparative Example 3 having a total thickness of 100 μm, the voltage was 780 V, 790 V, 810 V and 770 V, respectively. It can be seen that a total thickness of 60 μm is sufficient for the required value of 500 V for the partial discharge start voltage. Further, the slight difference in partial discharge starting voltage between samples having the same total thickness is considered to be caused by the difference in relative dielectric constant of the constituent materials. In Comparative Example 1, since the total thickness was as small as 40 μm, the partial discharge start voltage was 305 V, which did not reach the required 500 V.
つぎに、導体とエナメル層の接着性について見てみると、実施例1、実施例3は20μmのエナメル層を形成するため、焼き付け回数が4回であった。そのため、導体表面の酸化銅からなる被膜の厚さの成長を防ぐことができたと考えられ、導体とエナメル層の接着性はともに22で、要求値である15を大きく上回った。実施例2、4、比較例1は、40μmのエナメル層を形成するために8回の焼き付け回数を経ているため、接着性は19と、実施例1、3よりは劣るものの、要求値である15を上回った。比較例2、3はそれぞれ60μm、100μmのエナメル層を形成するため、それぞれ12回、20回の焼き付け回数を経ている。従って導体表面の酸化銅被膜厚さも成長したものと考えられ、接着性が13、11と悪いものであった。
このように、部分放電発生電圧が要求の500Vに達するためにはトータル厚さ60μmが必要で、接着性が要求の15に達するためには、エナメル層の厚さが40μm以下であれば十分であった。
Next, looking at the adhesiveness between the conductor and the enamel layer, Example 1 and Example 3 formed a 20 μm enamel layer, so the number of baking was four. Therefore, it is considered that the growth of the thickness of the coating made of copper oxide on the conductor surface could be prevented, and the adhesion between the conductor and the enamel layer was 22 and greatly exceeded the required value of 15. In Examples 2 and 4 and Comparative Example 1, 8 times of baking were performed to form a 40 μm enamel layer. More than 15. In Comparative Examples 2 and 3, enamel layers having a thickness of 60 μm and 100 μm were formed, respectively. Therefore, it was considered that the copper oxide film thickness on the conductor surface was also grown, and the adhesion was poor at 13 and 11.
Thus, in order for the partial discharge generation voltage to reach the required 500 V, a total thickness of 60 μm is necessary, and in order for the adhesiveness to reach the required 15, it is sufficient that the thickness of the enamel layer is 40 μm or less. there were.
[実施例5]
1.8×2.5mm(厚さ×幅)で四隅の面取り半径r=0.5mmの平角導体(酸素含有量15ppmの銅)を準備した。エナメル層の形成に際しては、導体の形状と相似形のダイスを使用して、ポリアミドイミド樹脂ワニス(日立化成(株)製 商品名 HI406)を導体へコーティングし、450℃に設定した炉長8mの焼付炉内を、焼き付け時間15秒となる速度で通過させ、この1回の焼き付け工程で厚さ5μmのエナメルを形成した。これを繰り返し5回行うことで厚さ25μmのエナメル層を形成し、被膜厚さ25μmのエナメル線を得た。
得られたエナメル線を心線とし、実施例1と同じ要領で、押出機のスクリューは、30mmフルフライト、L/D=20、圧縮比3を用いた。材料はポリアミドイミド(PAI)(ソルベイアドバンストポリマー:トーロン4203)を用い、押出温条件は表2に従って行った。押出ダイを用いて樹脂の押出被覆を行い、エナメル層の外側に厚さ75μmの押出被覆樹脂層を形成し、トータル厚さ(エナメル層と押出被覆樹脂層の厚さの合計)100μmのPAI押出被覆エナメル線からなる絶縁ワイヤを得た。
[Example 5]
A rectangular conductor (copper having an oxygen content of 15 ppm) having a chamfer radius r = 0.5 mm at four corners with a thickness of 1.8 × 2.5 mm (thickness × width) was prepared. For the formation of the enamel layer, using a die similar in shape to the shape of the conductor, a polyamideimide resin varnish (trade name HI406 manufactured by Hitachi Chemical Co., Ltd.) is coated on the conductor, and the furnace length is set to 450 ° C. The inside of the baking furnace was passed at a speed of a baking time of 15 seconds, and an enamel having a thickness of 5 μm was formed by this single baking process. By repeating this five times, an enamel layer having a thickness of 25 μm was formed, and an enameled wire having a thickness of 25 μm was obtained.
The obtained enameled wire was used as a core wire, and in the same manner as in Example 1, the screw of the extruder used 30 mm full flight, L / D = 20, and a compression ratio of 3. The material used was polyamideimide (PAI) (Solvay Advanced Polymer: Torlon 4203), and the extrusion temperature conditions were as shown in Table 2. Extrusion coating of resin is performed using an extrusion die to form an extrusion coating resin layer having a thickness of 75 μm on the outer side of the enamel layer, and PAI extrusion with a total thickness (total of the thickness of the enamel layer and the extrusion coating resin layer) of 100 μm An insulated wire made of coated enameled wire was obtained.
[実施例6]
押出被覆樹脂としてポリフェニレンスルフィド(PPS)(ポリプラスチクス:フォートロン0220A9)を用いたこと以外は、実施例5と同様にしてトータル厚さ100μmのPPS押出被覆エナメル線からなる絶縁ワイヤを得た。押出温条件は表2に従って行った。
[Example 6]
An insulating wire made of PPS extruded coated enameled wire having a total thickness of 100 μm was obtained in the same manner as in Example 5 except that polyphenylene sulfide (PPS) (polyplastics: Fortron 0220A9) was used as the extruded coated resin. Extrusion temperature conditions were performed according to Table 2.
[実施例7]
押出被覆樹脂としてポリエーテルエーテルケトン(PEEK)(ビクトレックス・エムシー:PEEK450G)を用いたこと以外は、実施例5と同様にしてトータル厚さ100μmのPEEK押出被覆エナメル線からなる絶縁ワイヤを得た。押出温条件は表2に従って行った。
[Example 7]
An insulating wire made of PEEK extrusion-coated enameled wire having a total thickness of 100 μm was obtained in the same manner as in Example 5 except that polyether ether ketone (PEEK) (Victorex MC: PEEK450G) was used as the extrusion-coated resin. . Extrusion temperature conditions were performed according to Table 2.
[比較例4]
押出被覆樹脂としてテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)(旭硝子:アフロンPFAP−63P)を用いたこと以外は、実施例5と同様にしてトータル厚さ100μmのPFA押出被覆エナメル線からなる絶縁ワイヤを得た。押出温条件は表2に従って行った。
[Comparative Example 4]
PFA extruded coated enameled wire with a total thickness of 100 μm in the same manner as in Example 5 except that tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) (Asahi Glass: Aflon PFAP-63P) was used as the extruded coated resin. An insulated wire consisting of Extrusion temperature conditions were performed according to Table 2.
[比較例5]
押出被覆樹脂としてテトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)(旭硝子:ネオフロンFEPNP−120)を用いたこと以外は、実施例5と同様にしてトータル厚さ100μmのFEP押出被覆エナメル線からなる絶縁ワイヤを得た。押出温条件は表2に従って行った。
[Comparative Example 5]
From an FEP extrusion-coated enameled wire having a total thickness of 100 μm in the same manner as in Example 5 except that tetrafluoroethylene / hexafluoropropylene copolymer (FEP) (Asahi Glass: NEOFLON FEPNP-120) was used as the extrusion-coated resin. An insulated wire was obtained. Extrusion temperature conditions were performed according to Table 2.
[比較例6]
押出被覆樹脂としてテトラフルオロエチレン・エチレン共重合体(ETFE)
(旭硝子:アフロンETFEC55AXP)を用いたこと以外は、実施例5と同様にしてトータル厚さ100μmのETFE押出被覆エナメル線からなる絶縁ワイヤを得た。押出温条件は表2に従って行った。
[Comparative Example 6]
Tetrafluoroethylene / ethylene copolymer (ETFE) as an extrusion coating resin
An insulating wire made of an ETFE extrusion-coated enameled wire having a total thickness of 100 μm was obtained in the same manner as in Example 5 except that (Asahi Glass: Aflon ETFEC55AXP) was used. Extrusion temperature conditions were performed according to Table 2.
[比較例7]
押出被覆樹脂としてポリメチルペンテンテン(PMP)(三井化学:TPX MX004)を用いたこと以外は、実施例5と同様にしてトータル厚さ100μmのPMP押出被覆エナメル線からなる絶縁ワイヤを得た。押出温条件は表2に従って行った。
[Comparative Example 7]
An insulating wire made of PMP extrusion-coated enameled wire having a total thickness of 100 μm was obtained in the same manner as in Example 5 except that polymethylpenteneten (PMP) (Mitsui Chemicals: TPX MX004) was used as the extrusion-coated resin. Extrusion temperature conditions were performed according to Table 2.
[比較例8]
押出被覆樹脂としてシンジオタクチックポリスチレン(SPS)(出光石油化学:ザレックS101)を用いたこと以外は、実施例5と同様にしてトータル厚さ100μmのSPS押出被覆エナメル線からなる絶縁ワイヤを得た。押出温条件は表2に従って行った。
[Comparative Example 8]
An insulating wire made of an SPS extrusion-coated enameled wire having a total thickness of 100 μm was obtained in the same manner as in Example 5 except that syndiotactic polystyrene (SPS) (Idemitsu Petrochemical: Zalek S101) was used as the extrusion-coated resin. . Extrusion temperature conditions were performed according to Table 2.
[比較例9]
押出被覆樹脂としてポリエーテルイミド(PEI)(GEプラスチックス:ウルテム1000)を用いたこと以外は、実施例5と同様にしてトータル厚さ100μmのPEI押出被覆エナメル線からなる絶縁ワイヤを得た。押出温条件は表2に従って行った。
[Comparative Example 9]
An insulated wire made of PEI extruded coated enameled wire with a total thickness of 100 μm was obtained in the same manner as in Example 5 except that polyetherimide (PEI) (GE Plastics: Ultem 1000) was used as the extruded coated resin. Extrusion temperature conditions were performed according to Table 2.
[比較例10]
押出被覆樹脂としてポリエーテルサルホン(PES)(ソルベイアドバンストポリマー:レーデルA300)を用いたこと以外は、実施例5と同様にしてトータル厚さ100μmのPES押出被覆エナメル線からなる絶縁ワイヤを得た。押出温条件は表2に従って行った。
[Comparative Example 10]
An insulated wire made of PES extruded coated enameled wire with a total thickness of 100 μm was obtained in the same manner as in Example 5 except that polyethersulfone (PES) (Solvay Advanced Polymer: Radel A300) was used as the extruded coated resin. . Extrusion temperature conditions were performed according to Table 2.
実施例5〜7および比較例4〜10における押出被覆樹脂の引張弾性率の測定には、予め作製しておいた長さ20mm、幅10mm、厚さ0.2mmのシートサンプルを用いた。セイコーインスツルメンツ製の粘弾性スペクトロメーター「DMS200」を用いて、測定モードは引張モード、周波数1Hz、歪み量1/1000にて行い、測定温度は昇温速度5℃/分で変えながら測定し、25℃と250℃での引張弾性率を記録した。 For measurement of the tensile modulus of the extrusion-coated resin in Examples 5 to 7 and Comparative Examples 4 to 10, a sheet sample having a length of 20 mm, a width of 10 mm, and a thickness of 0.2 mm prepared in advance was used. Using a viscoelastic spectrometer “DMS200” manufactured by Seiko Instruments Inc., the measurement mode is the tensile mode, the frequency is 1 Hz, the strain is 1/1000, and the measurement temperature is measured while changing the heating rate at 5 ° C./min. The tensile modulus at ℃ and 250 ℃ was recorded.
実施例5〜7および比較例4〜10について以下の評価を行った。
(耐磨耗性(常温))
耐摩耗性を、JIS C 3003エナメル線試験方法の、9.耐摩耗(丸線)と同じ要領で、平角線の四隅のコーナーについて測定した。2000g以上を合格とした。
(耐熱老化特性(180℃))
熱老化特性を、JIS C 3003エナメル線試験方法の、7.可撓性に従って巻き付けたものを、180℃高温槽へ300h静置した後の、エナメル層または押出被覆樹脂層にき裂の有無を目視にて調べた。異常なしであるものを合格とした。
(耐溶剤性)
耐溶剤性を、JIS C 3003エナメル線試験方法の、7.可撓性に従って巻き付けたものを、溶剤に10秒間浸漬後、エナメル層または押出被覆樹脂層の表面を目視にて、クラックやクレージングの有無を確認した。溶剤としてはアセトン、キシレン、スチレンの3種類によって行い、温度は常温と150℃(試料を150℃×30分加熱後に熱い状態で溶剤へ浸漬する)の2水準について行った。異常なしであるものを合格とした。
結果を表2に示す。
The following evaluation was performed about Examples 5-7 and Comparative Examples 4-10.
(Abrasion resistance (room temperature))
Abrasion resistance is measured according to JIS C 3003 enamel wire test method. Measurements were made on the four corners of a flat wire in the same manner as wear resistance (round wire). 2,000 g or more was accepted.
(Heat aging characteristics (180 ° C))
6. Heat aging characteristics are determined according to JIS C 3003 enamel wire test method. What was wound according to flexibility was visually examined for the presence of cracks in the enamel layer or the extrusion-coated resin layer after being left in a high-temperature bath at 180 ° C. for 300 hours. Those with no abnormalities were accepted.
(Solvent resistance)
The solvent resistance is measured according to JIS C 3003 enamel wire test method, 7. What was wound according to flexibility was immersed in a solvent for 10 seconds, and the surface of the enamel layer or the extrusion-coated resin layer was visually checked for cracks and crazing. As the solvent, three types of acetone, xylene, and styrene were used, and the temperature was measured at two levels of normal temperature and 150 ° C. (the sample was immersed in the solvent in a hot state after being heated at 150 ° C. for 30 minutes). Those with no abnormalities were accepted.
The results are shown in Table 2.
実施例5、6、7、比較例8、9、10は何れも25℃での引張弾性率が1000MPaを上回るものである。そしてこれらは、常温で評価する耐摩耗性が2000g以上であり、耐磨耗性が非常に優れるものであった。一方、比較例4、5、6、7は何れも25℃での引張弾性率が1000MPaを下回るものである。そしてこれらは、耐摩耗特性が実施例5〜7に比べやや劣るものとなった。これらの結果より、常温での剛性が高いことが、摩耗を防止する効果につながっているものと考えらる。
また、実施例5、6、7、比較例4、5、6は、250℃での引張弾性率が10MPaを上回るものである。そしてこれらは、180℃で評価した耐熱老化特性が非常に優れるものであった。一方比較例7、8、9、10は、250℃での引張弾性率が10MPaを下回るものである。そしてこれらの耐熱老化特性評価結果は、実施例5〜7に比べやや劣るものとなった。これらの結果より、耐熱老化特性は耐熱性の一種であり、高温、例えば250℃における引張弾性率との相関が得られたと言える。
また、これらの条件を満足する実施例5、6、7は、常温や150℃で評価する耐溶剤性に対しても非常に優れた特性を持つことも確認された。
即ち、引張弾性率が常温で1000MPa以上、250℃で10MPa以上の樹脂材料であれば、耐摩耗性、耐熱老化特性、耐溶剤性の3つの特性について非常に優れたものとなることがわかった。
Examples 5, 6, and 7 and Comparative Examples 8, 9, and 10 all have a tensile elastic modulus at 25 ° C. exceeding 1000 MPa. And these were 2000 g or more of abrasion resistance evaluated at normal temperature, and they were very excellent in abrasion resistance. On the other hand, Comparative Examples 4, 5, 6, and 7 all have a tensile elastic modulus at 25 ° C. of less than 1000 MPa. And these were somewhat inferior in wear resistance characteristics to Examples 5-7. From these results, it is considered that high rigidity at normal temperature leads to the effect of preventing wear.
In Examples 5, 6, and 7, and Comparative Examples 4, 5, and 6, the tensile elastic modulus at 250 ° C. exceeds 10 MPa. These were excellent in heat aging characteristics evaluated at 180 ° C. On the other hand, Comparative Examples 7, 8, 9, and 10 have a tensile elastic modulus at 250 ° C. of less than 10 MPa. And these heat-resistant aging characteristic evaluation results became a little inferior compared with Examples 5-7. From these results, it can be said that the heat aging characteristic is a kind of heat resistance, and a correlation with the tensile elastic modulus at a high temperature, for example, 250 ° C. was obtained.
It was also confirmed that Examples 5, 6, and 7 satisfying these conditions had very excellent characteristics with respect to the solvent resistance evaluated at room temperature and 150 ° C.
That is, it was found that a resin material having a tensile elastic modulus of 1000 MPa or more at room temperature and 10 MPa or more at 250 ° C. would be excellent in terms of three characteristics of wear resistance, heat aging characteristics, and solvent resistance. .
[実施例8]
1.8×2.5mm(厚さ×幅)で四隅の面取り半径r=0.5mmの平角導体(酸素含有量15ppmの銅)を準備した。エナメル層の形成に際しては、導体の形状と相似形のダイスを使用して、ポリアミドイミド樹脂ワニス(日立化成(株)製 商品名 HI406)を導体へコーティングし、450℃に設定した炉長8mの焼付炉内を、焼き付け時間15秒となる速度で通過させ、この1回の焼き付け工程で厚さ5μmのエナメルを形成した。これを繰り返し5回行うことで厚さ25μmのエナメル層を形成し、エナメル線を得た。
次に、N−メチル−2−ピロリドン(NMP)にポリフェニルサルホン樹脂(PPSU)(ソルベイアドバンストポリマー:レーデルR5800)を溶解させ、20wt%溶液とした樹脂ワニスを、導体の形状と相似形のダイスを使用して、前記エナメル線へコーティングし、450℃に設定した炉長8mの焼付炉内を、焼き付け時間15秒となる速度で通過させ、これを繰り返し2回行うことで厚さ10μmの接着層を形成し(1回の焼き付け工程で形成される厚さは5μm)、厚さ35μmの接着層付きエナメル線を得た。
得られた接着層付きエナメル線を心線とし、実施例1と同じ要領で、押出機のスクリューは、30mmフルフライト、L/D=20、圧縮比3を用いた。材料はポリエーテルイミド(PEI)(GEプラスチック:ウルテム1000)を用い、押出温度条件は表3のとおりである。押出ダイを用いて樹脂の押出被覆を行い、接着層の外側に厚さ65μmの押出被覆樹脂層を形成し、トータル厚さ(エナメル層と接着層と押出被覆樹脂層の厚さの合計)100μmの接着層付きPEI押出被覆エナメル線からなる絶縁ワイヤを得た。
[Example 8]
A rectangular conductor (copper having an oxygen content of 15 ppm) having a chamfer radius r = 0.5 mm at four corners with a thickness of 1.8 × 2.5 mm (thickness × width) was prepared. For the formation of the enamel layer, using a die similar in shape to the shape of the conductor, a polyamideimide resin varnish (trade name HI406 manufactured by Hitachi Chemical Co., Ltd.) is coated on the conductor, and the furnace length is set to 450 ° C. The inside of the baking furnace was passed at a speed of a baking time of 15 seconds, and an enamel having a thickness of 5 μm was formed by this single baking process. By repeating this five times, an enamel layer having a thickness of 25 μm was formed, and an enameled wire was obtained.
Next, polyphenylsulfone resin (PPSU) (Solvay Advanced Polymer: Radel R5800) is dissolved in N-methyl-2-pyrrolidone (NMP), and a resin varnish made into a 20 wt% solution is similar to the shape of the conductor. Using a die, the enameled wire was coated and passed through a baking furnace having a furnace length of 8 m set at 450 ° C. at a speed that would result in a baking time of 15 seconds. By repeating this twice, a thickness of 10 μm was obtained. An adhesive layer was formed (the thickness formed in one baking process was 5 μm), and an enameled wire with an adhesive layer having a thickness of 35 μm was obtained.
The obtained enameled wire with an adhesive layer was used as a core wire, and the same screw as that used in Example 1 was used. As the screw of the extruder, 30 mm full flight, L / D = 20, and a compression ratio of 3 were used. The material is polyetherimide (PEI) (GE Plastic: Ultem 1000), and the extrusion temperature conditions are as shown in Table 3. Extrusion coating of the resin is performed using an extrusion die to form an extrusion coating resin layer having a thickness of 65 μm on the outside of the adhesive layer, and the total thickness (the total thickness of the enamel layer, the adhesive layer, and the extrusion coating resin layer) is 100 μm. An insulating wire made of PEI extrusion-coated enameled wire with an adhesive layer was obtained.
[実施例9]
押出被覆樹脂にPPSを用いたこと以外は実施例8と同様にして、トータル厚さ100μmの接着層付きPPS押出被覆エナメル線からなる絶縁ワイヤを得た。押出温度条件は表3のとおりである。
[Example 9]
An insulated wire made of a PPS extruded coated enameled wire with an adhesive layer having a total thickness of 100 μm was obtained in the same manner as in Example 8 except that PPS was used as the extruded coated resin. Table 3 shows the extrusion temperature conditions.
[実施例10]
樹脂ワニスとして用いた樹脂をPESにしたこと以外は、実施例8と同様にして、トータル厚さ100μmの接着層付きPEI押出被覆エナメル線からなる絶縁ワイヤを得た。押出温度条件は表3のとおりである。
[Example 10]
An insulating wire made of a PEI extrusion-coated enameled wire with an adhesive layer having a total thickness of 100 μm was obtained in the same manner as in Example 8 except that the resin used as the resin varnish was PES. Table 3 shows the extrusion temperature conditions.
[実施例11]
押出被覆樹脂にPPSを用いたこと以外は実施例10と同様にして、トータル厚さ100μmの接着層付きPPS押出被覆エナメル線からなる絶縁ワイヤを得た。押出温度条件は表3のとおりである。
[Example 11]
An insulated wire made of a PPS extruded coated enameled wire with an adhesive layer having a total thickness of 100 μm was obtained in the same manner as in Example 10 except that PPS was used as the extruded coated resin. Table 3 shows the extrusion temperature conditions.
[比較例11]
1.8×2.5mm(厚さ×幅)で四隅の面取り半径r=0.5mmの平角導体(酸素含有量15ppmの銅)を準備した。エナメル層の形成に際しては、導体の形状と相似形のダイスを使用して、ポリアミドイミド樹脂ワニス(日立化成(株)製 商品名 HI406)を導体へコーティングし、450℃に設定した炉長8mの焼付炉内を、焼き付け時間15秒となる速度で通過させ、この1回の焼き付け工程で厚さ5μmのエナメルを形成した。これを繰り返し5回行うことで厚さ25μmのエナメル層を形成し、エナメル線を得た。
得られたエナメル線を心線とし、実施例1と同じ要領で、押出機のスクリューは、30mmフルフライト、L/D=20、圧縮比3を用いた。材料はポリエーテルイミド(PEI)(GEプラスチック:ウルテム1000)を用い、押出温度条件は表3のとおりである。押出ダイを用いて樹脂の押出被覆を行い、接着層の外側に厚さ75μmの押出被覆樹脂層を形成し、トータル厚さ100μmの接着層付きPEI押出被覆エナメル線からなる絶縁ワイヤを得た。
[Comparative Example 11]
A rectangular conductor (copper having an oxygen content of 15 ppm) having a chamfer radius r = 0.5 mm at four corners with a thickness of 1.8 × 2.5 mm (thickness × width) was prepared. For the formation of the enamel layer, using a die similar in shape to the shape of the conductor, a polyamideimide resin varnish (trade name HI406 manufactured by Hitachi Chemical Co., Ltd.) is coated on the conductor, and the furnace length is set to 450 ° C. The inside of the baking furnace was passed at a speed of a baking time of 15 seconds, and an enamel having a thickness of 5 μm was formed by this single baking process. By repeating this five times, an enamel layer having a thickness of 25 μm was formed, and an enameled wire was obtained.
The obtained enameled wire was used as a core wire, and in the same manner as in Example 1, the screw of the extruder used 30 mm full flight, L / D = 20, and a compression ratio of 3. The material is polyetherimide (PEI) (GE Plastic: Ultem 1000), and the extrusion temperature conditions are as shown in Table 3. Extrusion coating of the resin was performed using an extrusion die to form an extrusion-coated resin layer having a thickness of 75 μm on the outside of the adhesive layer, and an insulating wire made of PEI extrusion-coated enameled wire with an adhesive layer having a total thickness of 100 μm was obtained.
[比較例12]
押出被覆樹脂にPPSを用いたこと以外は比較例11と同様にして、100μmのPPS押出被覆エナメル線からなる絶縁ワイヤを得た。押出温度条件は表3のとおりである。
[Comparative Example 12]
An insulating wire made of a 100 μm PPS extruded coated enameled wire was obtained in the same manner as Comparative Example 11 except that PPS was used as the extruded coated resin. Table 3 shows the extrusion temperature conditions.
実施例8〜11、比較例11〜12について以下の評価を行った。
曲げ評価を、曲げ半径1、2、3、4、5mmのエッジワイズ曲げを行い、曲げ円弧の内側にシワがが無いかどうか目視で判定した。
また、曲げ部分の部分放電発生電圧を、菊水電子工業製の部分放電試験機「KPD1050」を用いて測定した。絶縁ワイヤの曲がり部分を金属箔(アルミ等)で覆い、温度は25℃にて、ワイヤ導体と金属箔との間に、50Hzの交流電圧かけながら連続的に昇圧していき、10pCの部分放電が発生した時点の電圧を実効値で読みとった。
The following evaluation was performed about Examples 8-11 and Comparative Examples 11-12.
For the bending evaluation, edgewise bending with a bending radius of 1, 2, 3, 4, 5 mm was performed, and it was visually determined whether or not there were wrinkles inside the bending arc.
Moreover, the partial discharge generation voltage of the bent portion was measured using a partial discharge tester “KPD1050” manufactured by Kikusui Electronics Corporation. Cover the bent part of the insulated wire with metal foil (aluminum, etc.), and at a temperature of 25 ° C, the voltage is continuously increased while applying an AC voltage of 50 Hz between the wire conductor and the metal foil. The voltage at the time of occurrence was read as an effective value.
なお、上記の表1〜3の押出温度条件において、C1、C2、C3は押出機のシリンダー部分における温度制御を分けて行っている3ゾーンを材料投入側から順に示したものである。また、Hは押出機のシリンダーの後ろにあるヘッドを示す。また、Dはヘッドの先にあるダイを示す。 In the extrusion temperature conditions shown in Tables 1 to 3, C1, C2, and C3 indicate the three zones in which the temperature control in the cylinder portion of the extruder is performed separately from the material input side. H indicates the head behind the cylinder of the extruder. D indicates a die at the tip of the head.
曲げ評価結果について見てみると、実施例8、9、10、11は何れも接着層を有する試料で、それぞれ、接着層として用いる樹脂と押出被覆樹脂層として用いる樹脂の組み合わせを変えたものであるが、どの例を見ても、最も厳しい曲げ半径1mmにおいてもシワは確認されなかった。また、比較例11、12は実施例8、9、10、11と同じ押出被覆樹脂であるが、接着層を有しない試料であるため、曲げ半径が厳しくなるにつれ、シワが発生した。これはエナメル層と押出被覆層の接着強度に起因するものと考えられ、接着層を有する試料と有しない試料との差が明確に出ている。
次に、曲げ部分の部分放電発生電圧について見てみると、実施例8、9、10、11は曲げ半径に関わらず何れも480Vであった。これは曲げ加工する前の直線状態の試料についての測定値と全く同じであり、曲げ加工によってもシワが発生しなかったことから、部分放電発生電圧にも影響が無かったものと考えられる。また比較例11、12の結果を見ると、曲げ半径が小さく、シワが発生した試料については、部分放電発生電圧が480Vを下回り、更に曲げ半径が小さくなるほど低下量が顕著に現れていることから、押出被覆層のシワが部分放電発生電圧に影響したものと考えられる。このように接着層を有する実施例8〜11の試料では非常に過酷な条件下においても、曲げ性に優れたものとなった。
Looking at the bending evaluation results, each of Examples 8, 9, 10, and 11 is a sample having an adhesive layer, and the combination of the resin used as the adhesive layer and the resin used as the extrusion coating resin layer is changed. However, no wrinkle was observed in any example even at the most severe bending radius of 1 mm. Further, Comparative Examples 11 and 12 were the same extrusion coated resin as Examples 8, 9, 10 and 11, but were samples having no adhesive layer, and thus wrinkles were generated as the bending radius became severe. This is considered to be caused by the adhesive strength between the enamel layer and the extrusion coating layer, and the difference between the sample having the adhesive layer and the sample not having the adhesive layer clearly appears.
Next, looking at the partial discharge generation voltage at the bent portion, all of Examples 8, 9, 10, and 11 were 480 V regardless of the bending radius. This is exactly the same as the measured value for the sample in a straight line state before bending, and wrinkles were not generated by bending, so it is considered that there was no effect on the partial discharge generation voltage. Further, when the results of Comparative Examples 11 and 12 are seen, in the samples where the bending radius is small and wrinkles are generated, the amount of decrease is more noticeable as the partial discharge generation voltage is lower than 480 V and the bending radius is further decreased. The wrinkles of the extrusion coating layer are considered to have influenced the partial discharge generation voltage. Thus, the samples of Examples 8 to 11 having the adhesive layer were excellent in bendability even under very severe conditions.
[実施例12]
1.8×2.5mm(厚さ×幅)で四隅の面取り半径r=0.5mmの平角導体(酸素含有量15ppmの銅)を準備した。エナメル層の形成に際しては、導体の形状と相似形のダイスを使用して、ポリアミドイミド樹脂ワニス(日立化成(株)製商品名H1406)を銅体へコーティングし、450℃に設定した炉長8mの焼付炉内を、焼付時間15秒となる速度で通過させ、この1回の焼付け工程で厚さ5μmのエナメルを形成した。これを繰り返し4回行なうことで厚さ20μmのエナメル層を形成し、被膜厚さ20μmのエナメル線を得た。得られたエナメル線を心線として、押出機のスクリューは、30mmフルフライト、L/D=20,圧縮比3を用いた。材料はポリフェニレンスルフィド(PPS)(大日本インキ株式会社製商品名ML-320P)を用い、押出温度条件は表4に従い行なった。押出ダイを用いて導体に対してフラット面がエッジ面より厚いダイスを用いて樹脂の押出被覆を行い、エナメル層の外側にフラット面が75μm、エッジ面が40μmの押出被覆樹脂を形成し、トータル厚さ(エナメル層と押出被覆樹脂層の厚さの合計)がフラット面で100μm、エッジ面で65μmのPPS押出被覆エナメル線からなる絶縁ワイヤを得た。ここで言うフラット面とは該断面が矩形の対の対向する2辺のうち長辺の対をさす。またエッジ面とは対向する2辺のうち短辺の対をさす。
[Example 12]
A flat conductor (copper having an oxygen content of 15 ppm) having a chamfer radius r = 0.5 mm at four corners at 1.8 × 2.5 mm (thickness × width) was prepared. For the formation of the enamel layer, a polyamide imide resin varnish (trade name H1406, manufactured by Hitachi Chemical Co., Ltd.) was coated on a copper body using a die similar to the shape of the conductor, and the furnace length was set to 450 ° C. Then, the enamel having a thickness of 5 μm was formed in this one baking process. By repeating this four times, an enamel layer having a thickness of 20 μm was formed, and an enameled wire having a thickness of 20 μm was obtained. The obtained enameled wire was used as a core wire, and the screw of the extruder used 30 mm full flight, L / D = 20, and a compression ratio of 3. The material used was polyphenylene sulfide (PPS) (trade name ML-320P, manufactured by Dainippon Ink Co., Ltd.), and the extrusion temperature conditions were as shown in Table 4. Extrusion coating of the resin is performed on the conductor using a die whose flat surface is thicker than the edge surface, using an extrusion die to form an extruded coating resin with a flat surface of 75μm and an edge surface of 40μm outside the enamel layer. An insulating wire made of a PPS extruded coated enameled wire having a thickness (total thickness of enamel layer and extrusion coated resin layer) of 100 μm on the flat surface and 65 μm on the edge surface was obtained. The flat surface mentioned here refers to a pair of long sides among two opposing sides of a pair of rectangular cross sections. Further, the edge surface refers to a pair of short sides of two sides facing each other.
[実施例13]
押出ダイを用いて導体に対してエッジ面がフラット面より厚いダイスを用いて樹脂の押出被覆を行ったこと以外は実施例12と同様にして、エナメル層の外側にフラット面が40μm、エッジ面が75μmの押出被覆樹脂を形成し、トータル厚さ(エナメル層と押出被覆樹脂層の厚さの合計)がフラット面で65μm、エッジ面で100μmのPPS押出被覆エナメル線からなる絶縁ワイヤを得た。押出温度条件は表4の通りである。
[Example 13]
The flat surface is 40 μm on the outer side of the enamel layer, the edge surface is the same as in Example 12 except that the extrusion is applied to the conductor using a die having a thicker edge surface than the flat surface. Formed an extrusion coated resin with a thickness of 75 μm, and an insulated wire consisting of PPS extruded coated enameled wire with a total thickness (total thickness of enamel layer and extrusion coated resin layer) of 65 μm on the flat surface and 100 μm on the edge surface was obtained. . Extrusion temperature conditions are as shown in Table 4.
[比較例13]
押出ダイの形状が導体断面形状の相似形ダイを使ったこと以外は実施例12と同様にしてトータル厚さエッジ面、フラット面ともに100μmのPPS押出被覆エナメル線からなる絶縁ワイヤを得た。押出温度条件は表4の通りである。
[Comparative Example 13]
An insulated wire made of PPS extrusion-coated enameled wire with a total thickness of 100 μm on both the edge surface and the flat surface was obtained in the same manner as in Example 12 except that a similar die having a conductor cross-sectional shape was used. Extrusion temperature conditions are as shown in Table 4.
実施例12〜13および比較例13について以下の評価を行なった。
部分放電発生電圧の測定には、菊水電子工業製の部分放電試験機「KPD1050」を用いた。断面形状が方形の絶縁ワイヤーを、二本の絶縁ワイヤの長辺となる面同士を長さ150mmに亘って隙間が無いように密着させた試料を作製した。この二本の導体間に電極をつなぎ、温度は25℃にて、50Hzの交流電圧かけながら連続的に昇圧していき、10pCの部分放電が発生した時点の電圧を実効値で読みとった。500V以上を合格とした。
また、占積率とは、本発明のワイヤ複数本をフラット面同士を密着させてなる総合的な断面形状に対し、過不足ない断面を提供できる寸法の、断面方形のモーターのスロットを想定し、そのスロット断面積に対する、導体のトータル面積の割合をいう。
具体的には、フラット側外寸法a、エッジ側外寸法bを持つワイヤについて、そのワイヤ二本をそのフラット面同士を密着させて得られる集合体の方形の断面積を(2ab)とした場合、これに占める、元の二本のワイヤの断面の、導体面積(二本分の合計)をパーセント表示した値である。
結果を表4に示す。
The following evaluations were performed on Examples 12 to 13 and Comparative Example 13.
For the measurement of the partial discharge generation voltage, a partial discharge tester “KPD1050” manufactured by Kikusui Electronics Corporation was used. A sample was produced in which insulating wires having a square cross-sectional shape were brought into close contact with each other over the length of 150 mm between the long sides of the two insulating wires over a length of 150 mm. An electrode was connected between the two conductors, and the voltage was continuously increased while applying an AC voltage of 50 Hz at a temperature of 25 ° C., and the voltage at the time when a partial discharge of 10 pC occurred was read as an effective value. More than 500V was set as the pass.
In addition, the space factor is assumed to be a square motor slot with a dimension that can provide a cross-section that is not excessive or deficient with respect to the overall cross-sectional shape in which the flat surfaces of two or more wires of the present invention are closely adhered to each other. The ratio of the total area of the conductor to the slot cross-sectional area.
Specifically, for a wire having a flat-side outer dimension a and an edge-side outer dimension b, the square cross-sectional area of the assembly obtained by bringing the two flat surfaces into close contact with each other is (2ab) The conductor area (total of two wires) of the cross section of the original two wires occupying this is expressed as a percentage.
The results are shown in Table 4.
表4から明らかなように、実施例12〜13、比較例13の部分放電開始電圧に関しては、実施例12〜13、比較例13ともに900Vであった。放電が起きる方の1対の面の膜の厚さが所定の厚さであれば、もう1対の対向する面の厚さがそれより薄くても部分放電発生電圧は維持できた。 As is clear from Table 4, regarding the partial discharge start voltages of Examples 12 to 13 and Comparative Example 13, both Examples 12 to 13 and Comparative Example 13 were 900V. If the thickness of the film on the pair of surfaces where discharge occurs is a predetermined thickness, the partial discharge generation voltage can be maintained even if the thickness of the other pair of facing surfaces is smaller than that.
つぎに占積率をみてみると実施例12〜13は占積率は86%であり、比較例13は83%であった。部分放電を小さくしようとすると被覆膜が厚くするため、占積率が小さくなるという問題があったが、実施例のように膜厚の構成を変えることで部分放電開始電圧を維持しながら占積率を上げられることができた。 Next, looking at the space factor, the space factor of Examples 12 to 13 was 86%, and that of Comparative Example 13 was 83%. When trying to reduce the partial discharge, the coating film becomes thicker, so there is a problem that the space factor is reduced. The momentum could be raised.
[実施例14]
1.8×2.5mm(厚さ×幅)で四隅の面取り半径r=0.5mmの平角導体(酸素含有量15ppmの銅)を準備した。エナメル層の形成に際しては、導体の形状と相似形のダイスを使用して、ポリアミドイミド樹脂ワニス(日立化成(株)製商品名H1406)を銅体へコーティングし、450℃に設定した炉長8mの焼付炉内を、焼付時間15秒となる速度で通貨させ、この1回の焼付け工程で厚さ5μmのエナメルを形成した。これを繰り返し5回行なうことで厚さ25μmのエナメル層を形成し、被膜厚さ25μmのエナメル線を得た。得られたエナメル線を心線として、押出機のスクリューは、30mmフルフライト、L/D=20,圧縮比3を用いた。材料はポリフェニレンスルフィド(PPS)(ポリプラスチクス:フォートロン0220A9)を用い、押出温度条件は表4に従い行なった。押出ダイを用いて導体に対して樹脂の押出被覆を行い、エナメル層の外側に75μmのPPS押出被覆樹脂を形成し、トータル厚さ(エナメル層と押出被覆樹脂層の厚さの合計)が100μmのPPS押出被覆エナメル線からなる絶縁ワイヤを得た。
[Example 14]
A flat conductor (copper having an oxygen content of 15 ppm) having a chamfer radius r = 0.5 mm at four corners at 1.8 × 2.5 mm (thickness × width) was prepared. For the formation of the enamel layer, a polyamide imide resin varnish (trade name H1406, manufactured by Hitachi Chemical Co., Ltd.) was coated on a copper body using a die similar to the shape of the conductor, and the furnace length was set to 450 ° C. The inside of the baking furnace was currencyd at a speed that would result in a baking time of 15 seconds, and an enamel having a thickness of 5 μm was formed in this single baking process. By repeating this five times, an enamel layer having a thickness of 25 μm was formed, and an enameled wire having a thickness of 25 μm was obtained. The obtained enameled wire was used as a core wire, and the screw of the extruder used 30 mm full flight, L / D = 20, and a compression ratio of 3. The material used was polyphenylene sulfide (PPS) (polyplastics: Fortron 0220A9), and the extrusion temperature conditions were as shown in Table 4. Extrusion coating of resin is performed on the conductor using an extrusion die to form a 75μm PPS extrusion coating resin on the outside of the enamel layer, and the total thickness (the total thickness of the enamel layer and the extrusion coating resin layer) is 100μm. An insulated wire made of PPS extrusion coated enameled wire was obtained.
[実施例15]
押出被覆樹脂層にポリエーテルイミド(PEI)(GEプラスチック社製:商品名ウルテム1000)を用いたこと以外は実施例14と同様にして、トータル厚さ100μmのPEI押出被覆エナメル線からなる絶縁ワイヤを得た。押出温度は表5に従った。
[Example 15]
Insulated wire made of PEI extrusion-coated enameled wire with a total thickness of 100 μm in the same manner as in Example 14 except that polyetherimide (PEI) (product name: ULTEM 1000) was used for the extrusion-coated resin layer Got. The extrusion temperature was in accordance with Table 5.
[比較例14]
1.8×2.5mm(厚さ×幅)で四隅の面取り半径r=0.5mmの平角導体(酸素
含有量15ppmの銅)を準備した。エナメル層の形成に際しては、導体の形状と相似形のダイスを使用して、ポリアミドイミド樹脂ワニス(日立化成(株)製 商品名 HI406)を導体へコーティングし、450℃に設定した炉長8mの焼付炉内を、焼き付け時間15秒となる速度で通過させ、この1回の焼き付け工程で厚さ5μmのエナメルを形成した。これを繰り返し20回行うことで厚さ100μmのエナメル層を形成し、被膜厚さ100μmのエナメル線からなる絶縁ワイヤを得た。
[Comparative Example 14]
A rectangular conductor (copper having an oxygen content of 15 ppm) having a chamfer radius r = 0.5 mm at four corners with a thickness of 1.8 × 2.5 mm (thickness × width) was prepared. For the formation of the enamel layer, using a die similar in shape to the shape of the conductor, a polyamideimide resin varnish (trade name HI406 manufactured by Hitachi Chemical Co., Ltd.) is coated on the conductor, and the furnace length is set to 450 ° C. The inside of the baking furnace was passed at a speed of a baking time of 15 seconds, and an enamel having a thickness of 5 μm was formed by this single baking process. By repeating this 20 times, an enamel layer having a thickness of 100 μm was formed, and an insulating wire made of an enameled wire having a thickness of 100 μm was obtained.
実施例14〜15および比較例14について以下の評価を行なった。
静摩擦係数の評価は、エナメル線同士間の静摩擦係数を測定するものであり、その測定方法は、台上に予め0.5%伸長した電線2本を平行に張り渡しその両端はホルダーピンで止め、この上に電線を2本平行に張り渡した荷重をこの2本の電線と交差するように上に乗せ荷重から滑車を介して結び付けられた受け皿に徐々におもりを乗せていき荷重がすべり始める時の重さを読み取った。なお荷重は100gである。
The following evaluation was performed on Examples 14 to 15 and Comparative Example 14.
The evaluation of the static friction coefficient is to measure the static friction coefficient between enameled wires. The measurement method is to stretch two wires that have been stretched 0.5% in advance on the table in parallel, and fix both ends with holder pins. When a load with two wires stretched in parallel is placed on top of the two wires so that they cross each other, a weight is gradually placed on a tray connected via a pulley from the load and the load begins to slide. I read the weight. The load is 100 g.
表5から明らかなように実施例14〜15の静摩擦係数は0.19,0.17であり、比較例15では0.25である。実施例14〜15の外層は押出被覆樹脂であり比較例はエナメル焼付け層であり、押出被覆樹脂の電線では静摩擦係数が小さく、電線のモーター加工時の挿入性も良好である。 As is apparent from Table 5, the static friction coefficients of Examples 14 to 15 are 0.19 and 0.17, and that of Comparative Example 15 is 0.25. The outer layers of Examples 14 to 15 are extrusion-coated resins, and the comparative example is an enamel-baked layer. The wires of the extrusion-coated resins have a low coefficient of static friction, and the insertability of the wires during motor processing is also good.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004169163A JP4177295B2 (en) | 2003-12-17 | 2004-06-07 | Inverter surge resistant wire and method for manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003420170 | 2003-12-17 | ||
JP2004169163A JP4177295B2 (en) | 2003-12-17 | 2004-06-07 | Inverter surge resistant wire and method for manufacturing the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008120753A Division JP4904312B2 (en) | 2003-12-17 | 2008-05-02 | Inverter surge resistant wire and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005203334A true JP2005203334A (en) | 2005-07-28 |
JP4177295B2 JP4177295B2 (en) | 2008-11-05 |
Family
ID=34829248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004169163A Expired - Lifetime JP4177295B2 (en) | 2003-12-17 | 2004-06-07 | Inverter surge resistant wire and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4177295B2 (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007312564A (en) * | 2006-05-22 | 2007-11-29 | Denso Corp | Stator of rotary electric machine |
JP2007336725A (en) * | 2006-06-16 | 2007-12-27 | Denso Corp | Stator of rotating electric machine |
JP2008123759A (en) * | 2006-11-09 | 2008-05-29 | Sumitomo Electric Wintec Inc | Method of manufacturing insulation wire, insulation wire, and electric coil |
JP2008257924A (en) * | 2007-04-02 | 2008-10-23 | Furukawa Electric Co Ltd:The | Insulated wire, and transformer using the same |
WO2008126375A1 (en) | 2007-03-30 | 2008-10-23 | The Furukawa Electric Co., Ltd. | Method and apparatus for producing insulated wire |
JP2009043495A (en) * | 2007-08-07 | 2009-02-26 | Furukawa Electric Co Ltd:The | Insulation wire and signalling transformer, or transformer for vehicle |
JP2009245652A (en) * | 2008-03-28 | 2009-10-22 | Furukawa Electric Co Ltd:The | Insulated wire |
WO2010024359A1 (en) | 2008-08-28 | 2010-03-04 | 古河電気工業株式会社 | Insulated wire |
JP2010056049A (en) * | 2008-08-30 | 2010-03-11 | Furukawa Electric Co Ltd:The | Insulated wire and its manufacturing method |
JP2010055965A (en) * | 2008-08-28 | 2010-03-11 | Furukawa Electric Co Ltd:The | Insulated wire for winding and method of manufacturing coil |
JP2010183839A (en) * | 2010-05-26 | 2010-08-19 | Denso Corp | Stator of rotating electrical machine |
JP2011009200A (en) * | 2009-05-28 | 2011-01-13 | Sumitomo Electric Ind Ltd | Insulated wire, and method of manufacturing the same |
US20120154099A1 (en) * | 2009-02-09 | 2012-06-21 | Hideo Fukuda | Multilayer insulated electric wire and transformer using the same |
JP2013085476A (en) * | 2013-02-12 | 2013-05-09 | Denso Corp | Stator for rotary electric machine |
CN103109445A (en) * | 2010-06-23 | 2013-05-15 | 丰田自动车株式会社 | Stator manufacturing method and stator |
US8569628B2 (en) | 2010-02-10 | 2013-10-29 | Hitachi Cable, Ltd. | Insulated wire |
US8741441B2 (en) | 2009-11-30 | 2014-06-03 | Hitachi Metals, Ltd. | Insulated wire |
WO2014084101A1 (en) | 2012-11-30 | 2014-06-05 | 古河電気工業株式会社 | Inverter surge-resistant insulated wire and method for producing same |
WO2014103665A1 (en) * | 2012-12-28 | 2014-07-03 | 古河電気工業株式会社 | Insulated wire, electrical device, and method for producing insulated wire |
US8802231B2 (en) | 2011-03-22 | 2014-08-12 | Hitachi Metals, Ltd. | Insulating coating material and insulated wire using the same |
WO2014122828A1 (en) | 2013-02-05 | 2014-08-14 | 古河電気工業株式会社 | Invertor-surge resistant insulated wire |
WO2014123123A1 (en) | 2013-02-07 | 2014-08-14 | 古河電気工業株式会社 | Insulating laminated body of enamel resin, and insulated wire and electric appliance using the same |
US8809684B2 (en) | 2010-03-30 | 2014-08-19 | Hitachi Metals, Ltd. | Insulated wire |
US8847075B2 (en) | 2011-08-12 | 2014-09-30 | Furukawa Electric Co., Ltd. | Insulated wire |
JP2015099742A (en) * | 2013-11-20 | 2015-05-28 | 古河電気工業株式会社 | Inverter surge-resistant insulation wire and method for production thereof |
WO2015098640A1 (en) * | 2013-12-26 | 2015-07-02 | 古河電気工業株式会社 | Insulated wire, coil, and electronic/electrical device |
WO2015098639A1 (en) * | 2013-12-26 | 2015-07-02 | 古河電気工業株式会社 | Multilayer insulated wire, coil and electrical/electronic device |
WO2015137254A1 (en) * | 2014-03-12 | 2015-09-17 | 古河電気工業株式会社 | Flat-type insulated wire, coil, and electric/electronic equipment |
US20160189824A1 (en) * | 2013-09-06 | 2016-06-30 | Furukawa Electric Co., Ltd. | Rectangular wire, and method of producing the same and electrical equipment using the same |
US20160189826A1 (en) * | 2013-09-06 | 2016-06-30 | Furukawa Electric Co., Ltd. | Rectangular wire, and method of producing the same and electrical equipment using the same |
JP2016165224A (en) * | 2016-06-17 | 2016-09-08 | 株式会社デンソー | Stator for rotary electric machine |
TWI550654B (en) * | 2012-11-30 | 2016-09-21 | Furukawa Electric Co Ltd | Insulated wire and electrical. Electronic machine |
US20160307668A1 (en) * | 2013-12-26 | 2016-10-20 | Furukawa Electric Co., Ltd. | Insulated wire, motor coil, electric/electronic equipment and method of producing insulated wire |
WO2017142036A1 (en) * | 2016-02-19 | 2017-08-24 | 古河電気工業株式会社 | Insulated electrical wire, motor coil and electrical/electronic apparatus |
CN112687433A (en) * | 2020-12-25 | 2021-04-20 | 厦门市能诚电子科技有限公司 | Power line cladding production system |
WO2021210668A1 (en) * | 2020-04-16 | 2021-10-21 | 東京特殊電線株式会社 | Heat-resistant insulated electric wire |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5931097B2 (en) | 2014-01-22 | 2016-06-08 | 古河電気工業株式会社 | Insulated wire and method for manufacturing the same, rotating electric machine and method for manufacturing the same |
CN111587462B (en) | 2018-03-30 | 2022-04-08 | 埃赛克斯古河电磁线日本有限公司 | Insulated wire |
-
2004
- 2004-06-07 JP JP2004169163A patent/JP4177295B2/en not_active Expired - Lifetime
Cited By (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007312564A (en) * | 2006-05-22 | 2007-11-29 | Denso Corp | Stator of rotary electric machine |
JP2007336725A (en) * | 2006-06-16 | 2007-12-27 | Denso Corp | Stator of rotating electric machine |
JP2008123759A (en) * | 2006-11-09 | 2008-05-29 | Sumitomo Electric Wintec Inc | Method of manufacturing insulation wire, insulation wire, and electric coil |
US20100203231A1 (en) * | 2007-03-30 | 2010-08-12 | Hiroyuki Kusaka | Method and apparatus for producing insulated wire |
WO2008126375A1 (en) | 2007-03-30 | 2008-10-23 | The Furukawa Electric Co., Ltd. | Method and apparatus for producing insulated wire |
JP2014063756A (en) * | 2007-03-30 | 2014-04-10 | Furukawa Electric Co Ltd:The | Method and apparatus for manufacturing insulated wire |
JP5441686B2 (en) * | 2007-03-30 | 2014-03-12 | 古河電気工業株式会社 | Insulated wire manufacturing method and apparatus |
US8790747B2 (en) | 2007-03-30 | 2014-07-29 | Furukawa Electric Co., Ltd. | Method and apparatus for producing insulated wire |
JP2008257924A (en) * | 2007-04-02 | 2008-10-23 | Furukawa Electric Co Ltd:The | Insulated wire, and transformer using the same |
JP2009043495A (en) * | 2007-08-07 | 2009-02-26 | Furukawa Electric Co Ltd:The | Insulation wire and signalling transformer, or transformer for vehicle |
JP2009245652A (en) * | 2008-03-28 | 2009-10-22 | Furukawa Electric Co Ltd:The | Insulated wire |
US20110226508A1 (en) * | 2008-08-28 | 2011-09-22 | Furukawa Electric Co., Ltd. | Insulated wire |
US8586869B2 (en) | 2008-08-28 | 2013-11-19 | Furukawa Electric Co., Ltd. | Insulated wire |
WO2010024359A1 (en) | 2008-08-28 | 2010-03-04 | 古河電気工業株式会社 | Insulated wire |
JP2010055965A (en) * | 2008-08-28 | 2010-03-11 | Furukawa Electric Co Ltd:The | Insulated wire for winding and method of manufacturing coil |
KR101331711B1 (en) * | 2008-08-28 | 2013-11-20 | 후루카와 덴키 고교 가부시키가이샤 | Insulated wire |
EP2328154A4 (en) * | 2008-08-28 | 2013-04-24 | Furukawa Electric Co Ltd | Insulated wire |
JP2010055964A (en) * | 2008-08-28 | 2010-03-11 | Furukawa Electric Co Ltd:The | Insulated wire |
JP2010056049A (en) * | 2008-08-30 | 2010-03-11 | Furukawa Electric Co Ltd:The | Insulated wire and its manufacturing method |
US20120154099A1 (en) * | 2009-02-09 | 2012-06-21 | Hideo Fukuda | Multilayer insulated electric wire and transformer using the same |
JP2011009200A (en) * | 2009-05-28 | 2011-01-13 | Sumitomo Electric Ind Ltd | Insulated wire, and method of manufacturing the same |
US8946557B2 (en) * | 2009-09-02 | 2015-02-03 | Furukawa Electric Co., Ltd. | Multilayer insulated electric wire and transformer using the same |
US8741441B2 (en) | 2009-11-30 | 2014-06-03 | Hitachi Metals, Ltd. | Insulated wire |
US8569628B2 (en) | 2010-02-10 | 2013-10-29 | Hitachi Cable, Ltd. | Insulated wire |
US8809684B2 (en) | 2010-03-30 | 2014-08-19 | Hitachi Metals, Ltd. | Insulated wire |
JP2010183839A (en) * | 2010-05-26 | 2010-08-19 | Denso Corp | Stator of rotating electrical machine |
CN103109445A (en) * | 2010-06-23 | 2013-05-15 | 丰田自动车株式会社 | Stator manufacturing method and stator |
US8802231B2 (en) | 2011-03-22 | 2014-08-12 | Hitachi Metals, Ltd. | Insulating coating material and insulated wire using the same |
US8847075B2 (en) | 2011-08-12 | 2014-09-30 | Furukawa Electric Co., Ltd. | Insulated wire |
JP2014110241A (en) * | 2012-11-30 | 2014-06-12 | Furukawa Electric Co Ltd:The | Inverter surge-resistant insulation wire and manufacturing method thereof |
US20150027748A1 (en) * | 2012-11-30 | 2015-01-29 | Furukawa Electric Co., Ltd. | Inverter surge-resistant insulated wire and method of producing the same |
US9514863B2 (en) | 2012-11-30 | 2016-12-06 | Furukawa Electric Co., Ltd. | Inverter surge-resistant insulated wire and method of producing the same |
US9728301B2 (en) | 2012-11-30 | 2017-08-08 | Furukawa Electric Co., Ltd. | Insulated wire and electric or electronic equipment |
TWI550654B (en) * | 2012-11-30 | 2016-09-21 | Furukawa Electric Co Ltd | Insulated wire and electrical. Electronic machine |
EP2843668A4 (en) * | 2012-11-30 | 2016-01-06 | Furukawa Electric Co Ltd | Inverter surge-resistant insulated wire and method of producing same |
JP2014110146A (en) * | 2012-11-30 | 2014-06-12 | Furukawa Electric Co Ltd:The | Inverter surge-resistant insulation wire and manufacturing method thereof |
WO2014084101A1 (en) | 2012-11-30 | 2014-06-05 | 古河電気工業株式会社 | Inverter surge-resistant insulated wire and method for producing same |
EP2940697A4 (en) * | 2012-12-28 | 2016-09-07 | Furukawa Electric Co Ltd | Insulated wire, electrical device, and method for producing insulated wire |
US9728296B2 (en) | 2012-12-28 | 2017-08-08 | Furukawa Electric Co., Ltd. | Insulated wire, electrical equipment, and method of producing insulated wire |
CN109273139A (en) * | 2012-12-28 | 2019-01-25 | 古河电气工业株式会社 | The manufacturing method of insulated electric conductor, electrical equipment and insulated electric conductor |
CN104185879A (en) * | 2012-12-28 | 2014-12-03 | 古河电气工业株式会社 | Insulated wire, electrical device, and method for producing insulated wire |
JPWO2014103665A1 (en) * | 2012-12-28 | 2017-01-12 | 古河電気工業株式会社 | Insulated wire, electrical equipment, and method of manufacturing insulated wire |
JP2017050292A (en) * | 2012-12-28 | 2017-03-09 | 古河電気工業株式会社 | Insulation wire, electrical device and manufacturing method of insulation wire |
WO2014103665A1 (en) * | 2012-12-28 | 2014-07-03 | 古河電気工業株式会社 | Insulated wire, electrical device, and method for producing insulated wire |
KR20150035486A (en) | 2013-02-05 | 2015-04-06 | 후루카와 덴키 고교 가부시키가이샤 | Invertor-surge resistant insulated wire |
WO2014122828A1 (en) | 2013-02-05 | 2014-08-14 | 古河電気工業株式会社 | Invertor-surge resistant insulated wire |
US9224523B2 (en) | 2013-02-05 | 2015-12-29 | Furukawa Electric Co., Ltd. | Inverter surge-resistant insulated wire |
JP2014154262A (en) * | 2013-02-05 | 2014-08-25 | Furukawa Electric Co Ltd:The | Inverter surge resistant insulation wire |
KR101688711B1 (en) | 2013-02-05 | 2016-12-21 | 후루카와 덴키 고교 가부시키가이샤 | Invertor-surge resistant insulated wire |
US10418151B2 (en) | 2013-02-07 | 2019-09-17 | Furukawa Electric Co., Ltd. | Enamel resin-insulating laminate, inverter surge-resistant insulated wire using the same and electric/electronic equipment |
WO2014123123A1 (en) | 2013-02-07 | 2014-08-14 | 古河電気工業株式会社 | Insulating laminated body of enamel resin, and insulated wire and electric appliance using the same |
JP2013085476A (en) * | 2013-02-12 | 2013-05-09 | Denso Corp | Stator for rotary electric machine |
US10319491B2 (en) * | 2013-09-06 | 2019-06-11 | Furukawa Electric Co., Ltd. | Rectangular wire, and method of producing the same and electrical equipment using the same |
US20160189826A1 (en) * | 2013-09-06 | 2016-06-30 | Furukawa Electric Co., Ltd. | Rectangular wire, and method of producing the same and electrical equipment using the same |
US20160189824A1 (en) * | 2013-09-06 | 2016-06-30 | Furukawa Electric Co., Ltd. | Rectangular wire, and method of producing the same and electrical equipment using the same |
US10325695B2 (en) * | 2013-09-06 | 2019-06-18 | Furukawa Electric Co., Ltd. | Rectangular wire, and method of producing the same and electrical equipment using the same |
JP2015099742A (en) * | 2013-11-20 | 2015-05-28 | 古河電気工業株式会社 | Inverter surge-resistant insulation wire and method for production thereof |
WO2015098639A1 (en) * | 2013-12-26 | 2015-07-02 | 古河電気工業株式会社 | Multilayer insulated wire, coil and electrical/electronic device |
US20160307664A1 (en) * | 2013-12-26 | 2016-10-20 | Furukawa Electric Co., Ltd. | Multilayer insulated wire, coil, and electrical/electronic equipment |
CN106104707A (en) * | 2013-12-26 | 2016-11-09 | 古河电气工业株式会社 | The manufacture method of insulated electric conductor, motor coil, electric/electronic and insulated electric conductor |
WO2015098640A1 (en) * | 2013-12-26 | 2015-07-02 | 古河電気工業株式会社 | Insulated wire, coil, and electronic/electrical device |
JPWO2015098639A1 (en) * | 2013-12-26 | 2017-03-23 | 古河電気工業株式会社 | Multi-layer insulated wires, coils and electrical / electronic equipment |
JPWO2015098640A1 (en) * | 2013-12-26 | 2017-03-23 | 古河電気工業株式会社 | Insulated wires, coils and electronic / electrical equipment |
JPWO2015098637A1 (en) * | 2013-12-26 | 2017-03-23 | 古河電気工業株式会社 | Insulated wire, motor coil, electrical / electronic device, and method of manufacturing insulated wire |
CN106104707B (en) * | 2013-12-26 | 2019-05-10 | 古河电气工业株式会社 | The manufacturing method of insulated electric conductor, motor coil, electric/electronic and insulated electric conductor |
US20160307662A1 (en) * | 2013-12-26 | 2016-10-20 | Furukawa Electric Co., Ltd. | Insulated wire, coil, and electronic/electrical equipment |
US20160307668A1 (en) * | 2013-12-26 | 2016-10-20 | Furukawa Electric Co., Ltd. | Insulated wire, motor coil, electric/electronic equipment and method of producing insulated wire |
EP3089167A4 (en) * | 2013-12-26 | 2017-08-23 | Furukawa Electric Co., Ltd. | Insulating wire, motor coil, electric/electronic device, and method for manufacturing insulating wire |
TWI656538B (en) * | 2013-12-26 | 2019-04-11 | 日商古河電氣工業股份有限公司 | Insulated wire, motor coil, electrical and electronic equipment, and method of manufacturing insulated wire |
US9892819B2 (en) | 2013-12-26 | 2018-02-13 | Furukawa Electric Co., Ltd. | Insulated wire, coil, and electronic/electrical equipment |
US10199139B2 (en) | 2013-12-26 | 2019-02-05 | Furukawa Electric Co., Ltd. | Insulated wire, motor coil, electric/electronic equipment and method of producing insulated wire |
US10032540B2 (en) | 2013-12-26 | 2018-07-24 | Furukawa Electric Co., Ltd. | Multilayer insulated wire, coil, and electrical/electronic equipment |
US10109389B2 (en) | 2014-03-12 | 2018-10-23 | Furukawa Electric Co., Ltd. | Rectangular insulated wire, coil and electrical and electronic device |
WO2015137254A1 (en) * | 2014-03-12 | 2015-09-17 | 古河電気工業株式会社 | Flat-type insulated wire, coil, and electric/electronic equipment |
US20160365164A1 (en) * | 2014-03-12 | 2016-12-15 | Furukawa Electric Co., Ltd. | Rectangular Insulated Wire, Coil And Electrical And Electronic Device |
CN106062894B (en) * | 2014-03-12 | 2018-07-17 | 古河电气工业株式会社 | Flat insulating electric wire, coil and electric/electronic device |
CN106062894A (en) * | 2014-03-12 | 2016-10-26 | 古河电气工业株式会社 | Flat-type insulated wire, coil, and electric/electronic equipment |
JPWO2015137254A1 (en) * | 2014-03-12 | 2017-04-06 | 古河電気工業株式会社 | Flat rectangular insulated wires, coils and electrical / electronic equipment |
WO2017142036A1 (en) * | 2016-02-19 | 2017-08-24 | 古河電気工業株式会社 | Insulated electrical wire, motor coil and electrical/electronic apparatus |
JPWO2017142036A1 (en) * | 2016-02-19 | 2018-12-06 | 古河電気工業株式会社 | Insulated wires, motor coils and electrical / electronic equipment |
US10483818B2 (en) | 2016-02-19 | 2019-11-19 | Furukawa Electric Co., Ltd. | Insulated wire, motor coil, and electrical or electronic equipment |
JP2016165224A (en) * | 2016-06-17 | 2016-09-08 | 株式会社デンソー | Stator for rotary electric machine |
WO2021210668A1 (en) * | 2020-04-16 | 2021-10-21 | 東京特殊電線株式会社 | Heat-resistant insulated electric wire |
JPWO2021210668A1 (en) * | 2020-04-16 | 2021-10-21 | ||
US20230162886A1 (en) * | 2020-04-16 | 2023-05-25 | Totoku Electric Co., Ltd. | Heat-resistant insulated wire |
CN112687433A (en) * | 2020-12-25 | 2021-04-20 | 厦门市能诚电子科技有限公司 | Power line cladding production system |
CN112687433B (en) * | 2020-12-25 | 2022-06-07 | 厦门市能诚电子科技有限公司 | Power line cladding production system |
Also Published As
Publication number | Publication date |
---|---|
JP4177295B2 (en) | 2008-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4177295B2 (en) | Inverter surge resistant wire and method for manufacturing the same | |
JP5391324B1 (en) | Inverter surge insulation wire and method for manufacturing the same | |
CN109074909B (en) | Insulated wire, coil, and electric/electronic device | |
US9224523B2 (en) | Inverter surge-resistant insulated wire | |
KR101748477B1 (en) | Insulating laminated body of enamel resin, and insulated wire and electric appliance using the same | |
JP6325550B2 (en) | Flat electric wire, method for manufacturing the same, and electrical equipment | |
JP6839695B2 (en) | Insulated wires, motor coils and electrical / electronic equipment | |
CN111566759B (en) | Insulated wire, coil, and electric/electronic device | |
KR102572152B1 (en) | Magnet wire with corona resistant polyimide insulation | |
JP4904312B2 (en) | Inverter surge resistant wire and method for manufacturing the same | |
CN108028099B (en) | Insulated wire, method for manufacturing insulated wire, coil, rotating electric machine, and electric/electronic device | |
KR20170099932A (en) | Insulated electric wire and coil | |
JP2015099742A (en) | Inverter surge-resistant insulation wire and method for production thereof | |
JP2023165640A (en) | Magnet wire with corona-resistant polyimide insulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050704 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070129 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080304 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080502 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080716 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080812 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080821 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4177295 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110829 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120829 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130829 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |