JP2005203257A - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP2005203257A
JP2005203257A JP2004009059A JP2004009059A JP2005203257A JP 2005203257 A JP2005203257 A JP 2005203257A JP 2004009059 A JP2004009059 A JP 2004009059A JP 2004009059 A JP2004009059 A JP 2004009059A JP 2005203257 A JP2005203257 A JP 2005203257A
Authority
JP
Japan
Prior art keywords
current collector
fuel
electrode current
fuel electrode
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004009059A
Other languages
Japanese (ja)
Inventor
Norihisa Chitose
範壽 千歳
Kiichi Komada
紀一 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2004009059A priority Critical patent/JP2005203257A/en
Publication of JP2005203257A publication Critical patent/JP2005203257A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid oxide fuel cell in which destruction of power generation cell or deterioration of battery characteristics or the like does not occur, while stable internal reforming generation is made possible. <P>SOLUTION: The fuel cell 5 is constituted of fuel electrode layers 3 and oxidizer electrode layers 4 arranged on both faces of solid electrolyte layers 2, then a fuel electrode current collector 6 and an oxidizer electrode current collector 7 respectively composed of foamed metals are arranged on the outside of the power generation cell 5, while separators 8 are installed outside the fuel electrode current collector 6 and the oxidizer electrode current collector 7. A hydrocarbon reforming catalyst 10 is filled inside the fuel electrode current collector 6. This is arranged so that the filled amount of hydrocarbon reforming catalyst 10 is made more as the position goes toward the peripheral part than from the center area of the current collector. The foamed metal body is formed in the three dimensional skeleton structure, and when the hydrocarbon reforming catalyst is carried on the surface of that skeleton structure, because a superior gas passage can be constantly secured, efficient and stabilized power generation can be carried out. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、平板積層型固体酸化物形燃料電池の内部改質機構に関するものである。   The present invention relates to an internal reforming mechanism of a flat plate type solid oxide fuel cell.

固体酸化物形燃料電池は第三世代の発電用燃料電池として開発が進んでいる。現在、この種の固体酸化物形燃料電池は、円筒型、モノリス型、及び平板積層型の3種類が提案されており、何れも酸化物イオン伝導体から成る固体電解質を両側から空気極(カソード)と燃料極(アノード)で挟み込んだ積層構造を有する。この積層体から成る発電セルを、間に燃料極集電体と空気極集電体を介在してセパレータと交互に複数積層することにより、燃料電池スタックが構成される。   Solid oxide fuel cells are being developed as a third generation fuel cell for power generation. At present, three types of solid oxide fuel cells of this type have been proposed: a cylindrical type, a monolith type, and a flat plate type, each of which has a solid electrolyte composed of an oxide ion conductor as an air electrode (cathode) from both sides. ) And the fuel electrode (anode). A fuel cell stack is configured by stacking a plurality of power generation cells composed of this laminate alternately with separators with a fuel electrode current collector and an air electrode current collector interposed therebetween.

固体酸化物形燃料電池では、反応用のガスとして空気極側に酸化剤ガス(酸素) が、燃料極側に燃料ガス (H2 、CO、CH4 等) が供給される。空気極と燃料極は、ガスが固体電解質との界面に到達することができるよう、何れも多孔質の層とされている。
空気極側に供給された酸素は、空気極層内の気孔を通って固体電解質層との界面近傍に到達し、この部分で空気極から電子を受け取って酸化物イオン(O2-)にイオン化される。この酸化物イオンは、燃料極に向かって固体電解質層内を拡散移動する。燃料極との界面近傍に到達した酸化物イオンは、この部分で、燃料ガスと反応して反応生成物(H2 O、CO2 等)を生じ、燃料極に電子を放出する。この電子を別ルートの外部回路にて起電力として取り出すことができる。
In the solid oxide fuel cell, an oxidant gas (oxygen) is supplied to the air electrode side and a fuel gas (H 2 , CO, CH 4, etc.) is supplied to the fuel electrode side as a reaction gas. The air electrode and the fuel electrode are both porous layers so that the gas can reach the interface with the solid electrolyte.
Oxygen supplied to the air electrode side passes through the pores in the air electrode layer and reaches the vicinity of the interface with the solid electrolyte layer. At this part, electrons are received from the air electrode and ionized to oxide ions (O 2− ). Is done. The oxide ions diffuse and move in the solid electrolyte layer toward the fuel electrode. Oxide ions that have reached the vicinity of the interface with the fuel electrode react with the fuel gas at this portion to generate reaction products (H 2 O, CO 2, etc.), and emit electrons to the fuel electrode. This electron can be taken out as an electromotive force in an external circuit of another route.

ところで、このような固体酸化物形燃料電池に使用される燃料ガスは天然ガス(メタンガス)等の炭化水素化合物(これを原燃料という)であるため、実際はこの原燃料を水素を主成分とする燃料ガスに改質してから使用する必要がある。改質の方法として、原燃料が炭化水素系の気体燃料や液体燃料の場合、通常は水蒸気改質法が用いられている。   By the way, since the fuel gas used in such a solid oxide fuel cell is a hydrocarbon compound (this is called raw fuel) such as natural gas (methane gas), this raw fuel is actually mainly composed of hydrogen. It must be used after reforming to fuel gas. As a reforming method, when the raw fuel is a hydrocarbon-based gas fuel or liquid fuel, a steam reforming method is usually used.

例えば、メタンガスを原燃料とする改質反応は次のようになる。
脱硫されたメタンガスは、改質器で水蒸気を加えられて、水素と一酸化炭素になる。この改質反応は吸熱反応であって、温度は650〜800℃程の高温となる。
CH4 +H2 O→3H2 +CO
この時、生成された一酸化炭素は、さらに水蒸気と反応して水素と二酸化炭素に変わる。
CO+H2 O→H2 +CO2
For example, a reforming reaction using methane gas as a raw fuel is as follows.
The desulfurized methane gas is added with water vapor in the reformer to become hydrogen and carbon monoxide. This reforming reaction is an endothermic reaction, and the temperature is as high as 650 to 800 ° C.
CH 4 + H 2 O → 3H 2 + CO
At this time, the generated carbon monoxide further reacts with water vapor and changes into hydrogen and carbon dioxide.
CO + H 2 O → H 2 + CO 2

また、従来より、固体酸化物形燃料電池の燃料ガス改質として、外部に改質器を設置する外部改質法と、高温のスタックの内部に直接改質機構を組み込んだ内部改質法とが知られている。   Conventionally, as a fuel gas reforming of a solid oxide fuel cell, there are an external reforming method in which a reformer is installed outside, and an internal reforming method in which a reforming mechanism is directly incorporated in a high-temperature stack. It has been known.

外部改質法は、燃料電池外に炭化水素改質触媒を有する改質器を設置して外部にて原燃料の改質を行った後にその改質ガスを電池内に供給する方法であるが、改質反応が吸熱反応であることから、この外部改質器内に改質反応のための熱を供給する必要があるため、発電システムの効率が低下するという問題があった。   The external reforming method is a method in which a reformer having a hydrocarbon reforming catalyst is installed outside the fuel cell, and after reforming the raw fuel outside, the reformed gas is supplied into the cell. Since the reforming reaction is an endothermic reaction, it is necessary to supply heat for the reforming reaction into the external reformer, resulting in a problem that the efficiency of the power generation system is reduced.

一方、内部改質法は、原燃料と水蒸気と燃料極(例えば、ニッケル電極上)で水蒸気改質反応を生じさせ、燃料電池で発生するジュール熱の一部を改質反応の吸熱反応として利用する極めて合理的な方法であり、高効率のシステムを実現できる可能性を持っている。加えて、この吸熱反応により発電時に発生する高温の排熱を吸収するという冷却効果も有するため、固体酸化物形燃料電池の燃料改質法として、近年、この内部改質方式が注目されている。   On the other hand, the internal reforming method generates a steam reforming reaction between raw fuel, water vapor, and a fuel electrode (for example, on a nickel electrode), and uses a part of Joule heat generated in the fuel cell as an endothermic reaction of the reforming reaction. This is an extremely rational method and has the potential to realize a highly efficient system. In addition, because of the cooling effect of absorbing high-temperature exhaust heat generated during power generation due to this endothermic reaction, this internal reforming method has recently attracted attention as a fuel reforming method for solid oxide fuel cells. .

ところが、この内部改質法は改質反応による吸熱反応で発電セルの内部に温度分布が生じ、その際の熱応力で発電セルが劣化・破壊したり、局部的な温度低下により電池性能が低下するといった問題を有していた。   However, in this internal reforming method, a temperature distribution is generated inside the power generation cell due to an endothermic reaction due to the reforming reaction, and the power generation cell deteriorates or breaks due to the thermal stress at that time, or the battery performance decreases due to a local temperature decrease. Had the problem of doing.

このような内部改質法の問題に鑑み、発電セル内部の温度分布を均一化する技術として特許文献1、特許文献2が開示されている。
特開平6−349504号公報 特開平5−325996号公報
In view of such a problem of the internal reforming method, Patent Documents 1 and 2 are disclosed as techniques for making the temperature distribution inside the power generation cell uniform.
JP-A-6-349504 JP-A-5-325996

特許文献1は、燃料極のガス流路側表面に燃料ガスの燃料極への到達を制限するガス拡散層を設け、燃料極での改質反応が均一に起こるようにすることでセル内温度分布の発生を防止したものであり、また、特許文献2は、改質器内部の触媒充填層の上流側に性能の悪い触媒を、下流に性能の良い触媒を充填することにより、改質反応による吸熱のバランスを図り、セル内温度分布の発生を防止したものである。   In Patent Document 1, a gas diffusion layer that restricts the arrival of the fuel gas to the fuel electrode is provided on the gas flow path side surface of the fuel electrode, and the reforming reaction at the fuel electrode occurs uniformly, so that the temperature distribution in the cell In addition, Patent Document 2 describes a reforming reaction by filling a catalyst with poor performance upstream of the catalyst packed bed inside the reformer and a catalyst with good performance downstream. This balances the endotherm and prevents the occurrence of temperature distribution in the cell.

しかしながら、このように様々な内部改質方式が提案されているものの、改質器の機構、或いは、燃料電池の耐久性や発電性能の安定性の面で必ずしも満足のいくものではなく、まだまだ解決すべき課題を有しており、実用の域に達していないのが現状である。   However, although various internal reforming methods have been proposed in this way, they are not always satisfactory in terms of the reformer mechanism or the durability of the fuel cell and the stability of the power generation performance, and are still being solved. Currently, it has problems to be solved and has not yet reached the practical level.

本発明は、上記課題に鑑み、簡単な改質機構であって、改質反応の不均一で生じるセル内温度分布の発生を防止し、発電セルの破壊や電池特性の劣化を生じることのない安定的、且つ、効率的な内部改質発電を可能とする固体酸化物形燃料電池を提供することを目的としている。   In view of the above problems, the present invention is a simple reforming mechanism that prevents the occurrence of an in-cell temperature distribution caused by non-uniform reforming reactions, and does not cause destruction of power generation cells or deterioration of battery characteristics. It is an object of the present invention to provide a solid oxide fuel cell that enables stable and efficient internal reforming power generation.

すなわち、請求項1に記載の本発明は、固体電解質層の両面に燃料極層と酸化剤極層を配置し、当該燃料極層と酸化剤極層の外側にそれぞれ発泡金属より成る燃料極集電体と酸化剤極集電体を配置し、当該燃料極集電体と酸化剤極集電体の外側にセパレータを配置し、当該セパレータから前記燃料極集電体および酸化剤極集電体を介して前記燃料極層および酸化剤極層に燃料ガスおよび酸化剤ガスを供給する固体酸化物形燃料電池において、前記燃料極集電体の内部に炭化水素改質触媒を充填すると共に、当該改質触媒の充填量を前記燃料ガスの上流側より下流側に多くしたことを特徴としている。   That is, according to the present invention, the fuel electrode layer and the oxidant electrode layer are disposed on both sides of the solid electrolyte layer, and the fuel electrode assembly made of a foam metal is provided outside the fuel electrode layer and the oxidant electrode layer, respectively. An electric current collector and an oxidant electrode current collector are disposed, a separator is disposed outside the fuel electrode current collector and the oxidant electrode current collector, and the fuel electrode current collector and the oxidant electrode current collector are disposed from the separator. In the solid oxide fuel cell for supplying fuel gas and oxidant gas to the fuel electrode layer and oxidant electrode layer via the fuel electrode current collector, the inside of the fuel electrode current collector is filled with a hydrocarbon reforming catalyst, and The amount of the reforming catalyst is increased from the upstream side to the downstream side of the fuel gas.

また、請求項2に記載の本発明は、 請求項1に記載の固体酸化物形燃料電池において、前記燃料ガスおよび酸化剤ガスが、前記セパレータの中央部から前記燃料極集電体および酸化剤極集電体を介して前記燃料極層および酸化剤極層に供給される構造を有し、且つ、前記炭化水素改質触媒の充填量を燃料極集電体の中央部より周辺部に多くしたことを特徴としている。   The present invention described in claim 2 is the solid oxide fuel cell according to claim 1, wherein the fuel gas and the oxidant gas are fed from the central part of the separator to the fuel electrode current collector and the oxidant. The fuel electrode layer and the oxidant electrode layer are supplied to the fuel electrode layer and the oxidant electrode layer via an electrode current collector, and the filling amount of the hydrocarbon reforming catalyst is larger in the peripheral part than in the central part of the fuel electrode current collector. It is characterized by that.

また、請求項3に記載の本発明は、請求項1または請求項2の何れかに記載の固体酸化物形燃料電池において、前記発泡金属は三次元骨格構造を有しており、その骨格表面に前記炭化水素改質触媒が担持されていることを特徴としている。   The present invention according to claim 3 is the solid oxide fuel cell according to claim 1 or 2, wherein the foam metal has a three-dimensional skeleton structure, and the skeleton surface thereof. The above-mentioned hydrocarbon reforming catalyst is supported.

ここで、請求項1、請求項2に記載の構成では、発電セル内部の温度分布が均一化され、これにより電流密度分布が平準化されると共に、温度分布による熱応力の発生を防止して発電セル5の劣化や破壊を防止できる。
また、請求項3に記載の構成では、炭化水素改質触媒が発泡金属体の骨格表面に分散・担持された状態であるから、改質触媒によってガス流が滞ることはなく、燃料極集電体内部に常に良好なガス流路が確保されており、効率的で安定した発電が行える。
Here, in the configuration according to claims 1 and 2, the temperature distribution inside the power generation cell is made uniform, thereby leveling the current density distribution and preventing the generation of thermal stress due to the temperature distribution. Deterioration and destruction of the power generation cell 5 can be prevented.
Further, in the configuration according to claim 3, since the hydrocarbon reforming catalyst is dispersed and supported on the surface of the foam metal body, the gas flow does not stagnate by the reforming catalyst, and the fuel electrode current collector A good gas flow path is always secured inside the body, enabling efficient and stable power generation.

以上説明したように、請求項1、請求項2に記載の本発明によれば、燃料極集電体の内部に炭化水素改質触媒を充填すると共に、改質触媒の充填量を燃料ガスの上流側より下流側に多くしたので、発電セル内部の温度分布が均一化でき、これにより電流密度分布が平準化され、且つ、温度分布による熱応力の発生を防止して発電セル5の劣化や破壊を防止できる。   As described above, according to the first and second aspects of the present invention, the fuel electrode current collector is filled with the hydrocarbon reforming catalyst, and the filling amount of the reforming catalyst is reduced to that of the fuel gas. Since the temperature distribution inside the power generation cell is increased from the upstream side to the downstream side, the current distribution inside the power generation cell can be made uniform, and the current density distribution can be leveled. Destruction can be prevented.

また、請求項3に記載の本発明によれば、発泡金属体を三次元骨格構造とし、その骨格表面に炭化水素改質触媒を担持したので、燃料極集電体内に常に良好なガス流路が確保でき、燃料極層に対して常に十分な改質ガスを供給できるため、効率的で安定した発電が行えるようになる。また、改質機構も簡素化される。   According to the third aspect of the present invention, since the foam metal body has a three-dimensional skeleton structure and the hydrocarbon reforming catalyst is supported on the skeleton surface, a good gas flow path is always provided in the anode current collector. Can be ensured, and sufficient reformed gas can always be supplied to the fuel electrode layer, so that efficient and stable power generation can be performed. Also, the reforming mechanism is simplified.

以下、図1〜図3に基づいて本実施形態に係る平板積層型の固体酸化物形燃料電池を説明する。
ここで、図1は燃料電池スタックの構成を示す分解斜視図、図2は単セルの内部構造を示す断面図、図3は、発電セル内の温度分布を示す図である。
Hereinafter, a flat plate type solid oxide fuel cell according to the present embodiment will be described with reference to FIGS.
Here, FIG. 1 is an exploded perspective view showing the configuration of the fuel cell stack, FIG. 2 is a cross-sectional view showing the internal structure of a single cell, and FIG. 3 is a view showing the temperature distribution in the power generation cell.

図1、図2に示すように、燃料電池スタック1は、固体電解質層2の両面に燃料極層3と酸化剤極層4(空気極層4)を配した発電セル5と、燃料極層3の外側に配した燃料極集電体6と、空気極層4の外側に配した酸化剤極集電体7(空気極集電体7)と、各集電体6、7の外側に配したセパレータ8とで単セルを構成すると共に、この単セルを多数積層して構成した筒状体である。   As shown in FIGS. 1 and 2, the fuel cell stack 1 includes a power generation cell 5 in which a fuel electrode layer 3 and an oxidant electrode layer 4 (air electrode layer 4) are disposed on both surfaces of a solid electrolyte layer 2, and a fuel electrode layer. 3, an anode current collector 6 disposed outside the air electrode layer 3, an oxidant electrode current collector 7 (air electrode current collector 7) disposed outside the air electrode layer 4, and outside the current collectors 6, 7. A single cell is formed by the separator 8 disposed, and a cylindrical body is formed by stacking a large number of the single cells.

固体電解質層2はイットリアを添加した安定化ジルコニア(YSZ)等で構成され、燃料極層3はNi、Co等の金属あるいはNi−YSZ、Co−YSZ等のサーメットで構成され、空気極層4はLaMnO3 、LaCoO3 等で構成され、燃料極集電体6はNi基合金等のスポンジ状の多孔質焼結金属板(発泡金属板)で構成され、空気極集電体7はAg基合金等のスポンジ状の多孔質焼結金属板(発泡金属板)で構成され、セパレータ8はステンレス等で構成されている。 The solid electrolyte layer 2 is composed of stabilized zirconia (YSZ) or the like to which yttria is added, and the fuel electrode layer 3 is composed of a metal such as Ni or Co or a cermet such as Ni—YSZ or Co—YSZ. Is made of LaMnO 3 , LaCoO 3 or the like, the fuel electrode current collector 6 is made of a sponge-like porous sintered metal plate (foamed metal plate) such as a Ni-based alloy, and the air electrode current collector 7 is made of an Ag base. It is made of a sponge-like porous sintered metal plate (foamed metal plate) such as an alloy, and the separator 8 is made of stainless steel or the like.

セパレータ8は、発電セル5間を電気接続すると共に、発電セル5に対して反応用ガスを供給する機能を有するもので、燃料ガスをセパレータ8の外周面から導入してセパレータ8の燃料極集電体6に対向する面のほぼ中央部から吐出させる燃料通路11と、酸化剤ガスをセパレータ8の外周面から導入してセパレータ8の空気極集電体7に対向する面から吐出させる酸化剤通路12とをそれぞれ有している。   The separator 8 has a function of electrically connecting the power generation cells 5 and supplying a reaction gas to the power generation cells 5. The fuel gas is introduced from the outer peripheral surface of the separator 8 to collect the fuel electrode of the separator 8. A fuel passage 11 that is discharged from substantially the center of the surface facing the electric body 6 and an oxidant that introduces an oxidant gas from the outer peripheral surface of the separator 8 and discharges it from the surface of the separator 8 facing the air electrode current collector 7. Each has a passage 12.

また 燃料電池スタック1の側方には、各セパレータ8の燃料通路11に接続管13を通して燃料ガスを供給する燃料用マニホールド15と、各セパレータ8の酸化剤通路12に接続管14を通して酸化剤ガス(空気)を供給する酸化剤用マニホールド16とが、発電セル5の積層方向に延在して設けられている。また、各接続管13、14にセラミックス製の継ぎ手17を介在することにより、各セル間の電気的絶縁が確保されている。   Further, on the side of the fuel cell stack 1, a fuel manifold 15 that supplies fuel gas to the fuel passage 11 of each separator 8 through the connection pipe 13, and an oxidant gas through the connection pipe 14 to the oxidant passage 12 of each separator 8. An oxidant manifold 16 for supplying (air) is provided extending in the stacking direction of the power generation cells 5. Further, by interposing the joints 17 made of ceramics in the connection pipes 13 and 14, electrical insulation between the cells is ensured.

ここで、上記した発泡金属体6、7は、次の工程を経ることで作製することができる。工程の順番は、スラリー調製工程→成形工程→発泡工程→乾燥工程→脱脂工程→焼結工程である。
まず、スラリー調製工程において、金属粉末、有機溶剤(n−ヘキサン等)、界面活性剤(ドデシルベンゼンスルホン酸ナトリウム等)、水溶性樹脂結合剤(ヒドロキシプロピルメチルセルロース等)、可塑剤(グリセリン等)、水、を混ぜて発泡スラリーを調製する。これを成形工程において、ドクターブレード法によりキャリヤシート上に薄板状に成形してグリーンシートを得る。次に発泡工程において、このグリーンシートを高温高湿環境下で、揮発性有機溶剤の蒸気圧及び界面活性剤の起泡性を利用してスポンジ状に発泡させた後、乾燥工程、脱脂工程、焼成工程を経て発泡金属板を得る。発泡金属板の厚みは約1.6mm程度である。
この場合、発泡工程において、グリーンシートの内部に発生した気泡は、全方向からほぼ等価な圧力を受けて略球状の形状で成長する。気泡が内部から拡散して大気との界面に近づくと、気泡は、気泡と大気の間のスラリーの薄い部分へと成長していき、やがて気泡は破れ、気泡内部の気体はできた小孔から大気中へ拡散していく。よって、表面に開口した連続する空孔を有する3次元網状骨格構造を有する発泡金属板が得られる。
Here, the metal foam bodies 6 and 7 described above can be manufactured through the following steps. The order of the process is slurry preparation process → molding process → foaming process → drying process → degreasing process → sintering process.
First, in the slurry preparation step, a metal powder, an organic solvent (such as n-hexane), a surfactant (such as sodium dodecylbenzenesulfonate), a water-soluble resin binder (such as hydroxypropylmethylcellulose), a plasticizer (such as glycerin), A foam slurry is prepared by mixing water. This is formed into a thin plate shape on a carrier sheet by a doctor blade method in a forming step to obtain a green sheet. Next, in the foaming process, the green sheet is foamed in a sponge shape using the vapor pressure of the volatile organic solvent and the foaming property of the surfactant in a high-temperature and high-humidity environment, followed by a drying process, a degreasing process, A metal foam plate is obtained through a firing step. The thickness of the metal foam plate is about 1.6 mm.
In this case, in the foaming process, the bubbles generated inside the green sheet receive a substantially equivalent pressure from all directions and grow in a substantially spherical shape. When the bubbles diffuse from the inside and approach the interface with the atmosphere, the bubbles grow into a thin portion of the slurry between the bubbles and the atmosphere, eventually breaking the bubbles, and the gas inside the bubbles from the small holes created It diffuses into the atmosphere. Therefore, a metal foam plate having a three-dimensional network skeleton structure having continuous pores opened on the surface can be obtained.

本発明では、図2に示すように、発泡金属体の内、燃料極集電体6に炭化水素改質触媒10を充填して内部改質機構を構成している。炭化水素改質触媒10としては、通常、アルミナ粉にNi触媒が担持された複合材料が用いられるが、Niの代わりにRu等を用いることもできる。アルミナ担体としては、表面積の大きいγ−アルミナ粉が好ましい。
このNi担持アルミナ粉、若しくはRu担持アルミナ粉をメッシュにて所定の粒径に整粒して用いる。アルミナ粉は発泡金属の各空孔6aの内部(即ち、骨格表面)に分散した状態で付着されている。
In the present invention, as shown in FIG. 2, the internal reforming mechanism is configured by filling the fuel electrode current collector 6 with the hydrocarbon reforming catalyst 10 out of the foam metal body. As the hydrocarbon reforming catalyst 10, a composite material in which an Ni catalyst is supported on alumina powder is usually used, but Ru or the like can be used instead of Ni. As the alumina carrier, γ-alumina powder having a large surface area is preferable.
This Ni-supported alumina powder or Ru-supported alumina powder is used after being sized to a predetermined particle size with a mesh. The alumina powder is adhered in a state of being dispersed inside the pores 6a of the foam metal (that is, the skeleton surface).

ところで、内部改質形の燃料電池では、改質反応による吸熱反応で発電セルの内部に温度分布を生じることは既述した通りであり、温度分布による発電セルの破壊や電池性能の低下が問題となっている。   By the way, in the internal reforming type fuel cell, the temperature distribution is generated inside the power generation cell due to the endothermic reaction due to the reforming reaction. As described above, the destruction of the power generation cell and the deterioration of the battery performance due to the temperature distribution are problems. It has become.

図3(b)は、炭化水素改質触媒10が燃料極集電体6の内部全体に均一に分散されている場合の発電セルの温度分布を示しており、(イ)は炭化水素改質触媒量を示し、(ロ)は温度分布を示している。
燃料ガスの改質反応は、反応初期は活発であって吸熱量も多く、改質反応が進むに連れて吸熱量が指数関数的に減少する傾向を示す。従って、図2のように、セパレータ8の中央部より燃料ガスを供給する場合では、燃料ガスの入口側となる燃料極集電体6の中央部分の吸熱量が多く、燃料ガス出口側に近づくに連れて吸熱量が減少することになる。その結果、温度分布(ロ)に示すように、発電セル中央部分の温度が周辺部分に比べて低くなる。
FIG. 3B shows the temperature distribution of the power generation cell when the hydrocarbon reforming catalyst 10 is uniformly dispersed throughout the anode current collector 6, and FIG. 3B shows the hydrocarbon reforming. The amount of catalyst is shown, and (b) shows the temperature distribution.
The reforming reaction of the fuel gas is active at the beginning of the reaction and has a large endothermic amount, and the endothermic amount tends to decrease exponentially as the reforming reaction proceeds. Therefore, as shown in FIG. 2, when the fuel gas is supplied from the central portion of the separator 8, the amount of heat absorbed at the central portion of the anode current collector 6 on the fuel gas inlet side is large and approaches the fuel gas outlet side. As a result, the amount of heat absorbed decreases. As a result, as shown in the temperature distribution (b), the temperature of the central portion of the power generation cell is lower than that of the peripheral portion.

そこで、本実施形態では、図3(a)に示すように、炭化水素改質触媒10を燃料極集電体6の中央部(上流側)より周辺部(下流側)に向かって多く充填するようにした。
即ち、燃料極集電体6の中央部では温度低下の原因となる水蒸気改質反応が起こり易いので炭化水素改質触媒10の充填量を少なくして改質反応を抑制し、燃料極集電体6の周辺に近づくに連れて炭化水素改質触媒10の充填量を多くして改質反応を活性化することにより、集電体内部での水蒸気改質反応を均一に行わせるようにした。これにより、発電セル5内の温度分布の発生が抑制でき、発電セル内部の温度分布を均一化し、電流密度分布を平準化することができる。
Therefore, in the present embodiment, as shown in FIG. 3A, the hydrocarbon reforming catalyst 10 is filled more from the central portion (upstream side) of the anode current collector 6 toward the peripheral portion (downstream side). I did it.
That is, since the steam reforming reaction that causes a temperature drop is likely to occur at the center of the anode current collector 6, the reforming reaction is suppressed by reducing the filling amount of the hydrocarbon reforming catalyst 10, and the anode current collecting is performed. The steam reforming reaction inside the current collector is uniformly performed by increasing the filling amount of the hydrocarbon reforming catalyst 10 toward the periphery of the body 6 and activating the reforming reaction. . Thereby, generation | occurrence | production of the temperature distribution in the electric power generation cell 5 can be suppressed, the temperature distribution inside an electric power generation cell can be equalize | homogenized, and current density distribution can be equalized.

上記構成の単セルを複数積層して構成したスタック1では、外部から供給された酸化剤ガス(空気)は酸化剤用マニホールド16を介し、複数の接続管14から各セパレータ8の酸化剤通路12に導入され、通路末端部の酸化剤ガスの吐出孔12aより吐出して対面する空気極集電体7に供給され、集電体7内を拡散しながら移動する過程で、発電セル5の空気極層4に達する。   In the stack 1 configured by stacking a plurality of single cells having the above-described configuration, the oxidant gas (air) supplied from the outside passes through the oxidant manifold 16 and is connected to the oxidant passages 12 of the separators 8 from the plurality of connection pipes 14. In the process of moving through the current collector 7 while diffusing, the air in the power generation cell 5 is discharged from the discharge hole 12a of the oxidant gas at the end of the passage and supplied to the facing air electrode current collector 7. The extreme layer 4 is reached.

一方、外部から供給された燃料ガス(CH4 と高温水蒸気の混合ガス)は燃料用マニホールド15を介し、複数の接続管13から各セパレータ8の燃料通路11に導入され、通路末端の燃料ガスの吐出孔11aより吐出して対面する燃料極集電体6に供給される。
ここで、燃料ガスは燃料極集電体6内を拡散移動する過程で、集電体6の空孔6aに担持されている炭化水素改質触媒10と接触し、改質反応が開始される。本実施形態では、図3(a)の(イ)に示すように、燃料ガスの入口部分は炭化水素改質触媒10の充填量が少ないため改質反応は抑制され、吸熱量も減少する。一方、燃料極集電体6の中央部より周辺部に向かって炭化水素改質触媒10の充填量が増加するため、改質反応に与らなかった未反応の燃料ガスは周辺部へ拡散移動する過程で活性化され、徐々に吸熱量も増大する。
この結果、図3(a)の(ロ)に示すように、発電セル内部の温度分布は均一化し、電流密度分布を平準化することができる。加えて、温度分布によりセル内部に生じる熱応力を防止し、発電セル5の劣化や破壊を防止できる。
On the other hand, fuel gas (mixed gas of CH 4 and high-temperature steam) supplied from the outside is introduced into the fuel passages 11 of the separators 8 from the plurality of connecting pipes 13 through the fuel manifold 15, and the fuel gas at the end of the passages is introduced. The fuel is discharged from the discharge hole 11a and supplied to the facing fuel electrode current collector 6.
Here, in the process in which the fuel gas diffuses and moves in the anode current collector 6, it comes into contact with the hydrocarbon reforming catalyst 10 carried in the holes 6 a of the current collector 6, and the reforming reaction is started. . In the present embodiment, as shown in FIG. 3A, the fuel gas inlet portion has a small filling amount of the hydrocarbon reforming catalyst 10, so that the reforming reaction is suppressed and the endothermic amount is also reduced. On the other hand, since the filling amount of the hydrocarbon reforming catalyst 10 increases from the central portion of the anode current collector 6 toward the peripheral portion, unreacted fuel gas that has not been subjected to the reforming reaction diffuses and moves to the peripheral portion. It is activated in the process of gradually increasing the endothermic amount.
As a result, as shown in (b) of FIG. 3A, the temperature distribution inside the power generation cell can be made uniform, and the current density distribution can be leveled. In addition, the thermal stress generated inside the cell due to the temperature distribution can be prevented, and the power generation cell 5 can be prevented from being deteriorated or broken.

尚、燃料極集電体6内部での改質反応は従来の技術の項で述べた通りであり、ここでは説明を省略するが、この改質反応により燃料ガスは水素と一酸化炭素に改質される。この改質ガスは、燃料極集電体6より発電セル5の燃料極層3に達し、燃料極上で再度改質反応が行われる。   Note that the reforming reaction inside the anode current collector 6 is as described in the section of the prior art, and description thereof is omitted here, but the fuel gas is changed to hydrogen and carbon monoxide by this reforming reaction. Quality. The reformed gas reaches the fuel electrode layer 3 of the power generation cell 5 from the fuel electrode current collector 6, and the reforming reaction is performed again on the fuel electrode.

このように、本発明では、炭化水素改質触媒10を燃料極集電体6の空孔6aに担持させる構造として内部改質機構を簡素化し、効率的で安定した内部改質発電を可能としている。   As described above, in the present invention, the internal reforming mechanism is simplified as a structure in which the hydrocarbon reforming catalyst 10 is supported in the holes 6a of the anode current collector 6, thereby enabling efficient and stable internal reforming power generation. Yes.

本発明が適用された燃料電池スタックの構成を示す分解斜視図。The disassembled perspective view which shows the structure of the fuel cell stack to which this invention was applied. 同、単セルの内部構造を示す断面図。Sectional drawing which shows the internal structure of a single cell. 発電セル内部の温度分布を示す図。The figure which shows the temperature distribution inside a power generation cell.

符号の説明Explanation of symbols

2 固体電解質層
3 燃料極層
4 酸化剤極層(空気極層)
6 燃料極集電体
7 酸化剤極集電体(空気極集電体)
8 セパレータ
10 炭化水素改質触媒
2 Solid electrolyte layer 3 Fuel electrode layer 4 Oxidant electrode layer (air electrode layer)
6 Fuel electrode current collector 7 Oxidant electrode current collector (air electrode current collector)
8 Separator 10 Hydrocarbon reforming catalyst

Claims (3)

固体電解質層の両面に燃料極層と酸化剤極層を配置し、当該燃料極層と酸化剤極層の外側にそれぞれ発泡金属より成る燃料極集電体と酸化剤極集電体を配置し、当該燃料極集電体と酸化剤極集電体の外側にセパレータを配置し、当該セパレータから前記燃料極集電体および酸化剤極集電体を介して前記燃料極層および酸化剤極層に燃料ガスおよび酸化剤ガスを供給する固体酸化物形燃料電池において、
前記燃料極集電体の内部に炭化水素改質触媒を充填すると共に、当該改質触媒の充填量を燃料ガスの上流側より下流側に多くしたことを特徴とする固体酸化物形燃料電池。
A fuel electrode layer and an oxidant electrode layer are arranged on both sides of the solid electrolyte layer, and a fuel electrode current collector and an oxidant electrode current collector made of foam metal are arranged outside the fuel electrode layer and the oxidant electrode layer, respectively. A separator is disposed outside the fuel electrode current collector and the oxidant electrode current collector, and the fuel electrode layer and the oxidant electrode layer are passed from the separator through the fuel electrode current collector and the oxidant electrode current collector. In a solid oxide fuel cell that supplies fuel gas and oxidant gas to
A solid oxide fuel cell, wherein the fuel electrode current collector is filled with a hydrocarbon reforming catalyst, and the amount of the reforming catalyst is increased from the upstream side to the downstream side of the fuel gas.
前記燃料ガスおよび酸化剤ガスが、前記セパレータの中央部から前記燃料極集電体および酸化剤極集電体を介して前記燃料極層および酸化剤極層に供給される構造を有し、且つ、前記炭化水素改質触媒の充填量を燃料極集電体の中央部より周辺部に多くしたことを特徴とする請求項1に記載の固体酸化物形燃料電池。 The fuel gas and the oxidant gas are supplied from the central portion of the separator to the fuel electrode layer and the oxidant electrode layer via the fuel electrode current collector and the oxidant electrode current collector; and 2. The solid oxide fuel cell according to claim 1, wherein a filling amount of the hydrocarbon reforming catalyst is increased from a central portion to a peripheral portion of the fuel electrode current collector. 前記発泡金属は三次元骨格構造を有しており、その骨格表面に前記炭化水素改質触媒が担持されていることを特徴とする請求項1または請求項2の何れかに記載の固体酸化物形燃料電池。 3. The solid oxide according to claim 1, wherein the foam metal has a three-dimensional skeleton structure, and the hydrocarbon reforming catalyst is supported on the skeleton surface. Fuel cell.
JP2004009059A 2004-01-16 2004-01-16 Solid oxide fuel cell Pending JP2005203257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004009059A JP2005203257A (en) 2004-01-16 2004-01-16 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009059A JP2005203257A (en) 2004-01-16 2004-01-16 Solid oxide fuel cell

Publications (1)

Publication Number Publication Date
JP2005203257A true JP2005203257A (en) 2005-07-28

Family

ID=34822209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009059A Pending JP2005203257A (en) 2004-01-16 2004-01-16 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2005203257A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008266A1 (en) * 2010-07-15 2012-01-19 コニカミノルタホールディングス株式会社 Fuel cell
JP2016058362A (en) * 2014-09-12 2016-04-21 日産自動車株式会社 Solid oxide fuel cell
JP2016181526A (en) * 2016-07-14 2016-10-13 住友電気工業株式会社 Solid electrolyte laminate, method of manufacturing solid electrolyte laminate and fuel cell
US10084191B2 (en) 2012-05-15 2018-09-25 Sumitomo Electric Industries, Ltd. Solid electrolyte laminate, method for manufacturing solid electrolyte laminate, and fuel cell
JP2021190208A (en) * 2020-05-27 2021-12-13 地方独立行政法人東京都立産業技術研究センター Thread for current collector, current collector consisting of thread for current collector, and fuel cell system using current collector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008266A1 (en) * 2010-07-15 2012-01-19 コニカミノルタホールディングス株式会社 Fuel cell
JPWO2012008266A1 (en) * 2010-07-15 2013-09-09 コニカミノルタ株式会社 Fuel cell
US10084191B2 (en) 2012-05-15 2018-09-25 Sumitomo Electric Industries, Ltd. Solid electrolyte laminate, method for manufacturing solid electrolyte laminate, and fuel cell
JP2016058362A (en) * 2014-09-12 2016-04-21 日産自動車株式会社 Solid oxide fuel cell
JP2016181526A (en) * 2016-07-14 2016-10-13 住友電気工業株式会社 Solid electrolyte laminate, method of manufacturing solid electrolyte laminate and fuel cell
JP2021190208A (en) * 2020-05-27 2021-12-13 地方独立行政法人東京都立産業技術研究センター Thread for current collector, current collector consisting of thread for current collector, and fuel cell system using current collector
JP6994723B2 (en) 2020-05-27 2022-01-14 地方独立行政法人東京都立産業技術研究センター A thread for a current collector, a current collector consisting of a thread for the current collector, and a fuel cell system using the current collector.

Similar Documents

Publication Publication Date Title
US20070015015A1 (en) Solid oxide fuel cell
JP5766401B2 (en) Fuel cell assembly
JP4432384B2 (en) Solid oxide fuel cell
JP4876363B2 (en) Current collector, method for producing the same, and solid oxide fuel cell
JP2005203258A (en) Solid oxide fuel cell
JP2012054224A (en) Solid oxide fuel cell
JP2003263994A (en) Solid electrolyte fuel cell
JP2010103009A (en) Internally modified solid oxide fuel cell, and fuel cell system
JP4300947B2 (en) Solid oxide fuel cell
JP2002358996A (en) Manifold structure of flat laminate fuel cell
JP4512911B2 (en) Solid oxide fuel cell
JP2005203257A (en) Solid oxide fuel cell
JP4329345B2 (en) Internal reforming fuel cell
US11251446B2 (en) Fuel cell system
JP2004200022A (en) Solid oxide fuel cell
JP4304889B2 (en) Solid oxide fuel cell
JP2018200748A (en) Fuel cell unit
JP2005294152A (en) Solid oxide fuel cell
JP4341259B2 (en) Solid oxide fuel cell and separator
JP4706191B2 (en) Solid oxide fuel cell
JP2007200804A (en) Fuel cell
JP2002358980A (en) Solid electrolyte fuel cell
JP2011210568A (en) Fuel electrode collector unit of solid oxide fuel battery
JP2002358989A (en) Gas preheating device for fuel cell
JP4427929B2 (en) Solid oxide fuel cell with sealless structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223