JP2005203078A - Method for manufacturing substrate for magnetic recording medium, substrate for magnetic recording medium, and magnetic recording medium - Google Patents

Method for manufacturing substrate for magnetic recording medium, substrate for magnetic recording medium, and magnetic recording medium Download PDF

Info

Publication number
JP2005203078A
JP2005203078A JP2004357504A JP2004357504A JP2005203078A JP 2005203078 A JP2005203078 A JP 2005203078A JP 2004357504 A JP2004357504 A JP 2004357504A JP 2004357504 A JP2004357504 A JP 2004357504A JP 2005203078 A JP2005203078 A JP 2005203078A
Authority
JP
Japan
Prior art keywords
plating
substrate
layer
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004357504A
Other languages
Japanese (ja)
Inventor
Yoichi Tei
用一 鄭
Kengo Kainuma
研吾 貝沼
Teruhisa Yokozawa
照久 横澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2004357504A priority Critical patent/JP2005203078A/en
Publication of JP2005203078A publication Critical patent/JP2005203078A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a substrate for a magnetic recording medium, which has a satisfactory plating thickness, adhesion, and uniformity and which can form a plating layer having satisfactory smoothness on a nonmagnetic substrate by an electroless plating method, when a glass substrate is used as the nonmagnetic substrate. <P>SOLUTION: The method includes: a washing step S1 for washing the surface of the nonmagnetic substrate; a Ni adhesion layer forming step S2 for forming a Ni adhesion layer bonded to the surface of the nonmagnetic substrate after the washing; a Pd catalyst layer forming step S3 for forming a Pd catalyst layer bonded to the surface of the Ni adhesion layer; and a plating layer forming step S4 for forming the Ni-P plating layer on the surface of the Pd catalyst layer, as the catalyst, by the electroless plating method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、磁気記録媒体用基板の製造方法並びにその製造方法を用いて製造される磁気記録媒体用基板及び磁気記録媒体に関し、特に、非磁性基板としてガラス基板を用い、その表面に無電解めっき法でNi−P層を形成する際の前後処理方法に関するもので、ハードディスク装置(HDD)に搭載する磁気記録媒体の基板に用いて好適である。   The present invention relates to a method of manufacturing a magnetic recording medium substrate, and a magnetic recording medium substrate and a magnetic recording medium manufactured by using the manufacturing method, and more particularly to a non-magnetic substrate using a glass substrate and electroless plating on the surface thereof. The present invention relates to a pre- and post-processing method when forming a Ni-P layer by the method, and is suitable for use as a substrate of a magnetic recording medium mounted on a hard disk device (HDD).

近年、コンピュータ、デジタル家電などの記憶装置としてハードディスク装置が多く用いられている。ハードディスク装置に搭載される磁気記録媒体としての磁気ディスク(ハードディスク)は、一般に、ディスク状の非磁性基板の表面に無電解めっき法でNi−P層を形成し、そのNi−P層の表面に所要の平滑化処理、テクスチャリング処理などを施すことにより磁気ディスク用の基板を作製し、その基板上に非磁性金属下地層、強磁性合金薄膜の磁気記録層、保護層、液体潤滑剤層を順次形成することにより作製される。
従来、非磁性基板の材料としてはアルミニウム合金が用いられてきた。近年、ハードディスク装置の高容量化、小型化、軽量化が急速に進んでおり、それに対応して磁気ディスクも従来よりも平坦度が高く、小径、薄形のものが要求されてきている。このような市場の要求に対して、従来のアルミニウム合金からなる基板では対応が難しく、基板材料としてガラスが用いられるようになってきている。
In recent years, hard disk devices are often used as storage devices for computers, digital home appliances, and the like. In general, a magnetic disk (hard disk) as a magnetic recording medium mounted on a hard disk device has a Ni-P layer formed on the surface of a disk-like nonmagnetic substrate by electroless plating, and the surface of the Ni-P layer is formed. A substrate for a magnetic disk is manufactured by performing necessary smoothing processing, texturing processing, etc., and a nonmagnetic metal underlayer, a magnetic recording layer of a ferromagnetic alloy thin film, a protective layer, and a liquid lubricant layer are formed on the substrate. It is produced by forming sequentially.
Conventionally, an aluminum alloy has been used as a material for a non-magnetic substrate. In recent years, the increase in capacity, size, and weight of hard disk drives has been rapidly progressing. Correspondingly, magnetic disks have higher flatness than conventional ones, and small-diameter and thin-type ones have been required. Conventional substrates made of aluminum alloys are difficult to respond to such market demands, and glass is being used as a substrate material.

ところで、ガラス基板を用いる場合にも表面にNi−P層を形成してアルミニウム合金基板の場合と同様な表面特性を有するものとすることが、良好な特性の磁気ディスクを得るために望まれているが、ガラス基板に無電解めっき法でNi−P層を密着性良く均一、平滑に形成することは技術的に難しく、その課題を解決するための無電解めっきの前後処理として種々の方法が提案されている。
例えば、塩化パラジウムおよび塩化第一スズを含む水溶液で処理し、次いで炭酸アルカリ水溶液、炭酸水素アルカリ水溶液、または両者の混合水溶液で処理した後、無電解めっきを行う方法(例えば、特許文献1参照)、クロム酸―硫酸混合溶液および硝酸溶液で二段階エッチング処理し、次いで強アルカリ性溶液でエッチングした後、希薄な塩化第一スズで増感処理し、さらに銀塩溶液およびパラジウム塩溶液で活性化処理した後無電解めっきを行う方法(例えば、特許文献2参照)、硫酸と重クロム酸カリウムの温液で清浄化した後、塩酸で酸性にした塩化第一スズで増感、次いで塩化パラジウムの溶液で活性化した後、無電解めっきを行う方法(例えば、特許文献3参照)、アルカリ脱脂し、フッ化水素酸でエッチングした後、塩化第一スズの溶液で増感、次いで塩化パラジウムの溶液で活性化した後、無電解めっきを行う方法などが提案されている。
By the way, even when using a glass substrate, it is desired to form a Ni-P layer on the surface to have the same surface characteristics as in the case of an aluminum alloy substrate in order to obtain a magnetic disk with good characteristics. However, it is technically difficult to form a Ni-P layer uniformly and smoothly on a glass substrate by electroless plating, and various methods are available as pre- and post-electroless plating processes to solve the problem. Proposed.
For example, a method of performing electroless plating after treating with an aqueous solution containing palladium chloride and stannous chloride and then treating with an aqueous alkali carbonate solution, an aqueous alkali hydrogen carbonate solution, or a mixed aqueous solution of both (see, for example, Patent Document 1) , Two-step etching treatment with chromic acid-sulfuric acid mixed solution and nitric acid solution, then etching with strong alkaline solution, sensitization treatment with dilute stannous chloride, and activation treatment with silver salt solution and palladium salt solution After electroless plating (see, for example, Patent Document 2), cleaning with warm solution of sulfuric acid and potassium dichromate, sensitization with stannous chloride acidified with hydrochloric acid, then palladium chloride solution After the activation, the method of performing electroless plating (see, for example, Patent Document 3), alkali degreasing, etching with hydrofluoric acid, Sensitization with a solution of tin, then after activation with a solution of palladium chloride, and a method of performing electroless plating has been proposed.

また、前処理として、ガラス基板をまず十分に脱脂し、続いてエッチングを行ってアンカー効果を高め、エッチング時に生じ基板表面に付着した異物を除去し、表面調整工程を施して基板表面を化学的に均一化し、続いて感受化処理、活性化処理を行った後、無電解Ni−Pめっきを行う方法(例えば、特許文献4参照)が開示されている。エッチング液としてはフッ化水素酸とフッ化水素カリウムを含む水溶液を用い、表面異物除去には塩酸を用い表面調整にはナトリウムメトキシドを含む水溶液を用いると好適とされる。
さらに、ガラス基板表面に前処理として、脱脂処理、エッチング処理、温純水処理、シランカップリング剤処理、アクチベーター処理、アクサレーター処理を順次施した後、無電解Ni−Pめっきを行い、続いて、加熱処理を施す方法(例えば、特許文献5参照)が開示されている。シランカップリング剤としてはアミノシランカップリング剤を用い、アクチベーターとして塩化パラジウム水溶液を用い、さらにアクサレーターとして次亜リン酸ナトリウム水溶液を用いると好適とされる。
特開平1−176079号公報 特開昭53−19932号公報 特開昭48−85614号公報 特開平7−334841号公報 特開2000−163743号公報
In addition, as a pre-treatment, the glass substrate is first thoroughly degreased, and then etched to enhance the anchor effect, remove foreign substances generated during etching and adhere to the substrate surface, and perform a surface conditioning process to chemically modify the substrate surface. A method of performing electroless Ni-P plating after performing sensitizing processing and activation processing subsequently (see, for example, Patent Document 4) is disclosed. As an etchant, it is preferable to use an aqueous solution containing hydrofluoric acid and potassium hydrogen fluoride, to remove hydrochloric acid for surface foreign matter removal, and to use an aqueous solution containing sodium methoxide for surface adjustment.
Further, as a pretreatment on the surface of the glass substrate, degreasing treatment, etching treatment, warm pure water treatment, silane coupling agent treatment, activator treatment, accelerator treatment are sequentially performed, followed by electroless Ni-P plating, A method of performing heat treatment (see, for example, Patent Document 5) is disclosed. It is preferable to use an aminosilane coupling agent as the silane coupling agent, a palladium chloride aqueous solution as the activator, and a sodium hypophosphite aqueous solution as the accelerator.
Japanese Patent Laid-Open No. 1-176079 Japanese Patent Laid-Open No. 53-19932 JP-A-48-85614 Japanese Patent Laid-Open No. 7-334841 JP 2000-163743 A

しかしながら、上述のような既知の方法でガラス基板上に形成されたNi−Pめっき層では、良好な特性の磁気ディスクを得るに必要な、十分な膜厚(1μm以上数μmの膜厚)およびその膜厚での十分な密着性、均一性、平滑性を満足することはできなかった。
そこで、本発明は、上述の点に鑑み、非磁性基板としてガラス基板を用いる場合に、十分な、めっき膜厚、密着性、均一性を有し、かつ、十分な平滑性を有するめっき層を無電解めっき法で非磁性基板上に形成することが可能な磁気記録媒体用基板の製造方法並びにその製造方法を用いて製造される磁気記録媒体用基板及び磁気記録媒体を提供することを目的とする。
However, in the Ni-P plating layer formed on the glass substrate by the known method as described above, a sufficient film thickness (film thickness of 1 μm to several μm) necessary to obtain a magnetic disk with good characteristics and It was not possible to satisfy sufficient adhesion, uniformity and smoothness with the film thickness.
Therefore, in view of the above points, the present invention provides a plating layer having sufficient plating film thickness, adhesion, uniformity and sufficient smoothness when a glass substrate is used as the nonmagnetic substrate. It is an object of the present invention to provide a method of manufacturing a magnetic recording medium substrate that can be formed on a nonmagnetic substrate by electroless plating, a magnetic recording medium substrate and a magnetic recording medium manufactured using the manufacturing method. To do.

上述の目的を達成するため、本発明の磁気記録媒体用基板の製造方法は、非磁性基板の表面を洗浄する洗浄工程と、洗浄後の非磁性基板の表面に結合するNi密着層を形成するNi密着層形成工程と、Ni密着層の表面に結合するPd触媒層を形成するPd触媒層形成工程と、Pd触媒層を触媒としてその表面に無電解めっき法によりめっき層を形成するめっき層形成工程とを備えることを特徴とする。
ここで、非磁性基板はガラス基板からなり、洗浄工程は、ガラス基板の表面に脱脂処理を施す工程と、脱脂処理を施したガラス基板の表面に活性化処理を施す工程とを含み、Ni密着層形成工程は、活性化処理を施したガラス基板の表面にNiキレート剤又はNiセッケン剤を塗布する工程と、塗布されたNiキレート剤又はNiセッケン剤を金属化焼成処理してNi金属膜を形成する工程と、Ni金属膜の表面に活性化処理を施すことによりNi金属膜をNi密着層とする工程とからなり、Pd触媒層形成工程は、活性化処理を施されたNi金属膜の表面にPdを結合させてPd触媒層を形成するPd触媒化処理工程からなり、めっき層形成工程は、Pd触媒層を触媒としてその表面に無電解めっき法によりめっき膜を形成する工程と、めっき膜に加熱処理を施してめっき層とする工程とを含むものとすることができる。
In order to achieve the above-described object, a method for manufacturing a magnetic recording medium substrate according to the present invention forms a cleaning step for cleaning the surface of a nonmagnetic substrate and a Ni adhesion layer bonded to the surface of the nonmagnetic substrate after cleaning. Ni adhesion layer forming step, Pd catalyst layer forming step for forming a Pd catalyst layer bonded to the surface of the Ni adhesion layer, and plating layer formation for forming a plating layer on the surface using the Pd catalyst layer as a catalyst by an electroless plating method And a process.
Here, the non-magnetic substrate is made of a glass substrate, and the cleaning step includes a step of performing a degreasing process on the surface of the glass substrate and a step of performing an activation process on the surface of the degreased glass substrate. In the layer forming step, the Ni chelating agent or Ni soap agent is applied to the surface of the activated glass substrate, and the applied Ni chelating agent or Ni soap agent is metallized and fired to form a Ni metal film. And forming the Ni metal film into the Ni adhesion layer by applying an activation process to the surface of the Ni metal film. The Pd catalyst layer forming process includes the step of forming the Ni metal film subjected to the activation process. It comprises a Pd catalyst treatment step in which Pd is bonded to the surface to form a Pd catalyst layer. The plating layer formation step includes a step of forming a plating film on the surface by an electroless plating method using the Pd catalyst layer as a catalyst. It can be made and a step of the plating layer is subjected to heat treatment to come film.

また、Niキレート剤は、下記一般式(1)で示される構造を有するものとすることができる。
Ni(CiH2i+1COCjH2jCOCkH2k+1) …(1)
(式中、i,j,kは、正の整数)
さらに、Niセッケン剤は、下記一般式(2)又は(3)で示される構造を有するものとすることができる。
Ni(-OOCCH(CmH2m+1)CnH2n+1)2 …(2)
Ni(-OOCCpH2p+1)2 …(3)
(式中、m,n,pは正の整数)
そして、金属化焼成処理は、不活性化ガス雰囲気で、250℃以上400℃以下の焼成温度でなされ、めっき膜はNi−Pめっき膜からなり、めっき膜の加熱処理として、250℃以上300℃以下の温度での1時間以上の加熱処理を施すことが好ましく、Pd触媒化処理工程には塩化パラジウムを用いることができる。
In addition, the Ni chelating agent can have a structure represented by the following general formula (1).
Ni (C i H 2i + 1 COC j H 2j COC k H 2k + 1 ) (1)
(Where i, j and k are positive integers)
Furthermore, the Ni soap agent may have a structure represented by the following general formula (2) or (3).
Ni (-OOCCH (C m H 2m + 1 ) C n H 2n + 1 ) 2 (2)
Ni (-OOCC p H 2p + 1 ) 2 ... (3)
(Where m, n and p are positive integers)
The metallization firing process is performed at a firing temperature of 250 ° C. or more and 400 ° C. or less in an inert gas atmosphere. The plating film is made of a Ni—P plating film, and the heat treatment of the plating film is performed at 250 ° C. or more and 300 ° C. It is preferable to perform a heat treatment for 1 hour or more at the following temperature, and palladium chloride can be used in the Pd catalyst treatment step.

このようにして製造される本発明の磁気記録媒体用基板は、非磁性基板としてのガラス基板と、ガラス基板上のNi密着層と、Ni密着層上のPd触媒層と、Pd触媒層上のNi−Pめっき層とを備え、Ni−Pめっき層は、膜厚が1.0μm以上であって、Ni−Pめっき層の表面において、表面粗さRaが0.5nm以下であり、微小表面うねりWaが0.5nm以下であるものとすることができる。
また、本発明の磁気記録媒体は、本発明の磁気記録媒体用基板上に少なくとも磁気記録層を備えてなり、その磁気記録媒体用基板のNi−Pめっき層は、1.0wt%〜13.0wt%のPを含むNi−P合金からなる軟磁性から非磁性のものとすることができる。
The magnetic recording medium substrate of the present invention thus manufactured includes a glass substrate as a nonmagnetic substrate, a Ni adhesion layer on the glass substrate, a Pd catalyst layer on the Ni adhesion layer, and a Pd catalyst layer. A Ni-P plating layer, and the Ni-P plating layer has a film thickness of 1.0 μm or more and a surface roughness Ra of 0.5 nm or less on the surface of the Ni-P plating layer. The waviness Wa can be 0.5 nm or less.
The magnetic recording medium of the present invention comprises at least a magnetic recording layer on the magnetic recording medium substrate of the present invention, and the Ni—P plating layer of the magnetic recording medium substrate has a thickness of 1.0 wt% to 13. A soft magnetic to non-magnetic material made of a Ni—P alloy containing 0 wt% P can be used.

本発明によれば、非磁性基板とPd触媒層との間にNi密着層を介在させることにより、密着性に優れためっき層を十分な膜厚で均一かつ平滑に非磁性基板上に無電解めっき法で形成することができる。従って、非磁性基板としてガラス基板を用い、その表面上にNi−Pなどのめっき層を形成して良好な特性の磁気記録媒体を提供することができる。   According to the present invention, the Ni adhesion layer is interposed between the nonmagnetic substrate and the Pd catalyst layer, so that a plating layer having excellent adhesion can be electrolessly and uniformly deposited on the nonmagnetic substrate with a sufficient thickness. It can be formed by a plating method. Therefore, it is possible to provide a magnetic recording medium having good characteristics by using a glass substrate as the nonmagnetic substrate and forming a plating layer such as Ni-P on the surface thereof.

以下に図面を参照して本発明の実施の形態を説明する。
図1は、本発明に係る磁気記録媒体用基板の製造方法の実施形態を示す工程図で、図2は、その詳細を示す工程図である。また、図3は、この実施形態の製造方法を用いて製造される磁気記録媒体の実施形態を示す模式断面図である。
図3に示すように、本発明の実施形態の磁気記録媒体100は、非磁性基板としてのディスク状のガラス基板1と、ガラス基板1上に形成されたNi密着層2と、Ni密着層2上に形成されたPd触媒層3と、Pd触媒層3上に形成されたNi−Pめっき層4とを備えてなる磁気記録媒体用基板10上に、少なくとも磁気記録層5を備えてなる。
非磁性基板としては、ガラス基板の他に、シリコン基板、カーボン基板などを用いることができる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a process diagram showing an embodiment of a method for manufacturing a magnetic recording medium substrate according to the present invention, and FIG. 2 is a process diagram showing the details thereof. FIG. 3 is a schematic cross-sectional view showing an embodiment of a magnetic recording medium manufactured using the manufacturing method of this embodiment.
As shown in FIG. 3, a magnetic recording medium 100 according to an embodiment of the present invention includes a disk-shaped glass substrate 1 as a nonmagnetic substrate, a Ni adhesion layer 2 formed on the glass substrate 1, and a Ni adhesion layer 2. At least a magnetic recording layer 5 is provided on a magnetic recording medium substrate 10 including a Pd catalyst layer 3 formed thereon and a Ni—P plating layer 4 formed on the Pd catalyst layer 3.
As the nonmagnetic substrate, a silicon substrate, a carbon substrate, or the like can be used in addition to the glass substrate.

このような実施形態の磁気記録媒体用基板10の製造方法は、図1に示すように、非磁性基板としてガラス基板1を用い、ガラス基板1の表面を洗浄する洗浄工程S1と、洗浄後のガラス基板1の表面に結合するNi密着層2を形成するNi密着層形成工程S2と、このNi密着層2の表面に結合するPd触媒層3を形成するPd触媒層形成工程S3と、このPd触媒層3を触媒としてその表面に無電解めっき法によりNi−Pめっき層4を形成するめっき層形成工程S4とを備える。
これらの各工程S1〜S4は、図2に示す各工程からなるものとすることができる。
すなわち、洗浄工程S1は、ガラス基板1の表面に脱脂処理を施す工程S11,S12と、脱脂処理を施したガラス基板1の表面に活性化処理を施す工程S13とを含む。
Ni密着層形成工程S2は、活性化処理を施したガラス基板1の表面にNiキレート剤又はNiセッケン剤を塗布する工程S14,S15と、塗布されたNiキレート剤又はNiセッケン剤を金属化焼成処理してNi金属膜を形成する工程S16,S17と、Ni金属膜の表面に活性化処理を施すことによりNi金属膜をNi密着層2とする工程S18とからなる。
As shown in FIG. 1, the manufacturing method of the magnetic recording medium substrate 10 of such an embodiment uses a glass substrate 1 as a non-magnetic substrate, and a cleaning step S1 for cleaning the surface of the glass substrate 1; Ni adhesion layer forming step S2 for forming Ni adhesion layer 2 bonded to the surface of glass substrate 1, Pd catalyst layer forming step S3 for forming Pd catalyst layer 3 bonded to the surface of Ni adhesion layer 2, and Pd And a plating layer forming step S4 for forming the Ni-P plating layer 4 on the surface of the catalyst layer 3 as a catalyst by an electroless plating method.
Each of these steps S1 to S4 can be composed of the steps shown in FIG.
That is, the cleaning step S1 includes steps S11 and S12 for performing a degreasing process on the surface of the glass substrate 1, and a step S13 for performing an activation process on the surface of the glass substrate 1 subjected to the degreasing process.
The Ni adhesion layer forming step S2 includes steps S14 and S15 in which a Ni chelating agent or a Ni soap agent is applied to the surface of the glass substrate 1 that has been activated, and the applied Ni chelating agent or Ni soap agent is metallized and fired. The process includes steps S16 and S17 for forming a Ni metal film by processing, and step S18 for making the Ni metal film into the Ni adhesion layer 2 by performing an activation process on the surface of the Ni metal film.

Pd触媒層形成工程S3は、活性化処理を施されたNi金属膜の表面にPdを結合させてPd触媒層3を形成するPd触媒化処理工程S19からなる。
めっき層形成工程S4は、Pd触媒層3を触媒としてその表面に無電解Ni−Pめっきを施す工程S20〜S22と、めっき後に加熱処理を施して加熱処理を施しためっき膜をNi−Pめっき層4とする工程S23とからなる。
このような各工程S1〜S4を経て作製される本発明の実施形態の磁気記録媒体基板10は、ディスク状のガラス基板1上に、膜厚10〜50nmのNi密着層2と、膜厚1〜10nmのPd触媒層3と、膜厚1μm以上のNi−Pめっき層4とが積層されてなるものとすることができる。
本発明の実施形態の磁気記録媒体100は、この実施形態の磁気記録媒体用基板10上に、少なくとも磁気記録層5を形成してなるものである。
The Pd catalyst layer forming step S3 includes a Pd catalyst forming step S19 in which Pd is bonded to the surface of the activated Ni metal film to form the Pd catalyst layer 3.
In the plating layer forming step S4, the surface of the Pd catalyst layer 3 as a catalyst is subjected to electroless Ni-P plating S20 to S22, and the plating film subjected to heat treatment after plating is subjected to Ni-P plating. It consists of process S23 made into layer 4.
A magnetic recording medium substrate 10 according to an embodiment of the present invention manufactured through such steps S1 to S4 is formed on a disk-shaped glass substrate 1 with a Ni adhesion layer 2 having a film thickness of 10 to 50 nm and a film thickness 1. The Pd catalyst layer 3 having a thickness of 10 nm and the Ni—P plating layer 4 having a thickness of 1 μm or more may be laminated.
A magnetic recording medium 100 according to an embodiment of the present invention is obtained by forming at least a magnetic recording layer 5 on a magnetic recording medium substrate 10 according to this embodiment.

この磁気記録媒体100は、以下の手順で作製することができる。
すなわち、上述の磁気記録媒体用基板10のNi−Pめっき層4の表面に、所要の平滑化処理、テクスチャリング処理などを必要に応じて施した後、その表面上に、Crなどからなる非磁性金属下地層、Co合金などからなる強磁性合金薄膜の磁気記録層5、ダイヤモンド状カーボンなどからなる保護層などをスパッタリング法などにより順次成膜し、その上に必要に応じてパーフルオロポリエーテルなどからなる液体潤滑剤層を塗布成膜することによって、磁気記録媒体100が作製される。
このようにして作製された磁気記録媒体100は、ハードディスク装置に搭載される磁気ディスクとして十分な膜厚(1μm以上数μmの膜厚)、その膜厚での十分な密着性、均一性、平滑性を満足できるNi−Pめっき層を備えて良好な特性を有するものとすることができる。
The magnetic recording medium 100 can be manufactured by the following procedure.
That is, the surface of the Ni-P plating layer 4 of the above-described magnetic recording medium substrate 10 is subjected to necessary smoothing processing, texturing processing, and the like as necessary, and then the surface is made of non-metallic material such as Cr. A magnetic metal underlayer, a magnetic recording layer 5 of a ferromagnetic alloy thin film made of a Co alloy, a protective layer made of diamond-like carbon, etc. are sequentially formed by a sputtering method, and a perfluoropolyether is formed thereon as necessary. The magnetic recording medium 100 is manufactured by coating and forming a liquid lubricant layer composed of the above.
The magnetic recording medium 100 thus manufactured has a film thickness sufficient for a magnetic disk mounted on a hard disk device (film thickness of 1 μm to several μm), and sufficient adhesion, uniformity, and smoothness at the film thickness. Ni-P plating layer which can satisfy the properties can be provided and have good characteristics.

以下に図2の各工程について詳細に説明する。
〔洗浄工程S1(S11〜S13)〕
ガラス基板1の表面に脱脂処理S11,S12を施して、有機皮膜やパーティクル類を除去清浄化する。
洗浄後、ガラス基板1の表面の活性化処理S13として、希酸水溶液中浸漬にて、ガラス基板1の表面に存在する不活性な酸化膜を剥離除去すると同時に、ガラス基板1の表面の官能基を反応性に富むシラノール基(Si−OH)に変成させ、ガラス基板1の表面を活性化させる。
〔Ni密着層形成工程S2(S14〜S18)〕
このようにして表面が反応性に富むシラノール基(Si−OH)に覆われたガラス基板1の表面に、ガラス基板1とNi−Pめっき層4との間の密着層材料となるNiキレート剤又はNiセッケン剤の適量の塗布処理S14,S15を施す。
Below, each process of FIG. 2 is demonstrated in detail.
[Washing step S1 (S11 to S13)]
The surface of the glass substrate 1 is subjected to degreasing treatments S11 and S12 to remove and clean the organic film and particles.
After the cleaning, as an activation treatment S13 on the surface of the glass substrate 1, the inactive oxide film present on the surface of the glass substrate 1 is peeled and removed by immersion in a dilute aqueous acid solution, and at the same time, the functional groups on the surface of the glass substrate 1 Is converted to a silanol group (Si—OH) rich in reactivity, and the surface of the glass substrate 1 is activated.
[Ni adhesion layer forming step S2 (S14 to S18)]
Thus, the Ni chelating agent which becomes the adhesion layer material between the glass substrate 1 and the Ni—P plating layer 4 on the surface of the glass substrate 1 covered with silanol groups (Si—OH) whose surface is rich in reactivity. Alternatively, an appropriate amount of Ni soaping agent is applied S14 and S15.

密着層材料であるNiキレート剤は、次の一般式(1)で示される構造のものを用いることができる。
Ni(CiH2i+1COCjH2jCOCkH2k+1) …(1)
(式中、i,j,kは、正の整数)
具体的には、Niキレート剤は、例えば、次の式(4)で示される「アセチルアセトナ―トNi」や、式(5)で示される「プロピオンアセトナートNi」、式(6)で示される「プロピオンエチラートNi」、さらにはこれらの混成体が好ましい。
Ni(CH3COCH2COCH3)2 …(4)
Ni(C2H5COCH2COCH3)2 …(5)
Ni(C2H5COCH2COC2H5)2 …(6)
また、Niセッケン剤は、次の一般式(2)又は(3)で示される構造のものを用いることができる。
As the Ni chelating agent which is the adhesion layer material, a structure represented by the following general formula (1) can be used.
Ni (C i H 2i + 1 COC j H 2j COC k H 2k + 1 ) (1)
(Where i, j and k are positive integers)
Specifically, Ni chelating agents include, for example, “acetylacetonate Ni” represented by the following formula (4), “propionacetonate Ni” represented by formula (5), and formula (6): The “propion ethylate Ni” shown, and also hybrids thereof are preferred.
Ni (CH 3 COCH 2 COCH 3 ) 2 (4)
Ni (C 2 H 5 COCH 2 COCH 3 ) 2 (5)
Ni (C 2 H 5 COCH 2 COC 2 H 5) 2 ... (6)
Moreover, the thing of the structure shown by the following general formula (2) or (3) can be used for Ni soap.

Ni(-OOCCH(CmH2m+1)CnH2n+1)2 …(2)
Ni(-OOCCpH2p+1)2 …(3)
(式中、m,n,pは、正の整数)
具体的には、Niセッケン剤は、例えば、次の式(7)で示される「2−エチルヘキサン酸Ni」や、式(8)で示される「ステアリン酸Ni」が好ましい。
Ni(-OOCCH(C2H5)C4H9)2 …(7)
Ni(-OOCC15H31)2 …(8)
引き続き、不活性ガス雰囲気下で適正な温度にて焼成させる過程S16,S17にて、Niキレート剤又はNiセッケン剤が熱変成し、有機成分は分解揮発され、金属分であるNiはガラス基板1の表面に予め調整生成されているシラノール基と置換反応し、脱水素化されNiシラノキシド(Si−ONi)が形成されてなるNi金属膜を得る。
Ni (-OOCCH (C m H 2m + 1 ) C n H 2n + 1 ) 2 (2)
Ni (-OOCC p H 2p + 1 ) 2 ... (3)
(Where m, n and p are positive integers)
Specifically, the Ni soap agent is preferably, for example, “2-ethylhexanoic acid Ni” represented by the following formula (7) or “Ni stearic acid Ni” represented by the formula (8).
Ni (-OOCCH (C 2 H 5 ) C 4 H 9) 2 ... (7)
Ni (-OOCC 15 H 31 ) 2 (8)
Subsequently, in steps S16 and S17 of firing at an appropriate temperature in an inert gas atmosphere, the Ni chelating agent or Ni soaping agent is thermally transformed, the organic component is decomposed and volatilized, and Ni which is a metal component is the glass substrate 1. A Ni metal film in which Ni silanoxide (Si-ONi) is formed by dehydrogenation and substitution reaction with a silanol group that has been prepared in advance on the surface is obtained.

このNi金属化焼成処理S16,S17において、Niキレ―ト剤の焼成温度は250℃以上350℃以下が望ましく、Niセッケン剤の焼成温度は300℃以上400℃以下の温度で、30分以上行うことが望ましい。
引き続き、Ni金属膜の活性化処理S18として、このNi金属膜の最表面数nmのみに存在するNi酸化膜を酸処理にて剥離除去する。
〔Pd触媒層形成工程S3(S19)〕
その酸化膜の除去されたNi金属膜の表面にPdを結合させてNi−Pめっき析出の触媒層となるPd触媒層を形成すべくPd触媒化処理S19を適正に施す。
〔めっき層形成工程S4(S20〜S23)〕
無電解Ni−Pめっきを所定の条件にて行う。
In the Ni metallization firing processes S16 and S17, the firing temperature of the Ni chelating agent is desirably 250 ° C. or higher and 350 ° C. or lower, and the firing temperature of the Ni soap agent is 300 ° C. or higher and 400 ° C. or lower for 30 minutes or longer. It is desirable.
Subsequently, as an activation process S18 of the Ni metal film, the Ni oxide film existing only on the outermost surface of several nm of the Ni metal film is removed by acid treatment.
[Pd catalyst layer forming step S3 (S19)]
Pd catalyzing treatment S19 is appropriately performed to form a Pd catalyst layer which becomes a catalyst layer for Ni-P plating deposition by bonding Pd to the surface of the Ni metal film from which the oxide film has been removed.
[Plating layer forming step S4 (S20 to S23)]
Electroless Ni-P plating is performed under predetermined conditions.

Ni−Pめっき層4となるめっき液は、所謂、非磁性高P濃度タイプNi−Pめっき液(P濃度11〜13wt%、例えば上村工業(株)製ニムデンHDX)から、非磁性〜軟磁性中P濃度タイプNi−Pめっき液(P濃度6〜8wt%例えばメルテックス(株)製メルプレートNI−867やP濃度3〜6wt%例えばメルテックス(株)製メルプレートNI−802)、さらには、軟磁性低P濃度タイプNi−Pめっき液(P濃度1〜2wt%、例えば上村工業(株)製ニムデンLPYや奥野製薬(株)製トップニコロンLPH)の軟磁性から非磁性を示すP濃度1〜13wt%の全てのNi−Pめっき液においてNi−Pめっき層を形成することができる。
加えて、めっき析出反応がより容易になる市販のP濃度>14wt%のさらなる高P濃度タイプNi−Pめっき液においても、Ni−Pめっき層を形成することができる。
The plating solution for forming the Ni-P plating layer 4 is a so-called nonmagnetic high P concentration type Ni—P plating solution (P concentration of 11 to 13 wt%, for example, Nimden HDX manufactured by Uemura Kogyo Co., Ltd.). Medium P concentration type Ni-P plating solution (P concentration 6-8 wt%, for example Melplate NI-867 manufactured by Meltex Co., Ltd., P concentration 3-6 wt%, for example Melplate NI-802 manufactured by Meltex Corporation), and Is non-magnetic due to soft magnetism of soft magnetic low P concentration type Ni-P plating solution (P concentration of 1 to 2 wt%, for example, Nimden LPY manufactured by Uemura Kogyo Co., Ltd. or Top Nicolon LPH manufactured by Okuno Pharmaceutical Co., Ltd.) A Ni-P plating layer can be formed in all Ni-P plating solutions having a P concentration of 1 to 13 wt%.
In addition, the Ni—P plating layer can be formed even in a commercially available P concentration> 14 wt% further high P concentration type Ni—P plating solution that facilitates the plating deposition reaction.

このような非磁性高P濃度Ni−PめっきS20、非磁性〜軟磁性中P濃度Ni−PめっきS21、軟磁性低P濃度Ni−PめっきS22は、例えば以下の用途で用いられる。
非磁性ガラス基板に非磁性高P濃度Ni−Pめっき膜を形成することで、
(1)高剛性のガラス基板では困難な高密度化のための精密平滑化
(2)レーザゾーンテクスチャ基板やテープテクスチャによる異方性配向媒体の作製
(3)スパッタ成膜時に基板にバイアス電圧を印加することによる磁性膜の高保磁力化
が可能となる。
また、非磁性ガラス基板に軟磁性低P濃度Ni−Pめっき膜を形成することで、垂直磁気記録媒体用の軟磁性裏打ち層としての用途がある。この垂直磁気記録媒体は、情報を記録する役割を担う磁気記録層の下側に磁気ヘッドから発生する磁束を通しやすく、かつ飽和磁束密度の高い軟磁性裏打ち層と呼ばれる軟磁性膜を付与した二層垂直磁気記録媒体であって、高密度記録を可能とするものである。
Such nonmagnetic high P concentration Ni—P plating S20, nonmagnetic to soft magnetic medium P concentration Ni—P plating S21, and soft magnetic low P concentration Ni—P plating S22 are used, for example, in the following applications.
By forming a nonmagnetic high P concentration Ni-P plating film on a nonmagnetic glass substrate,
(1) Precise smoothing for high density, which is difficult with a high-rigidity glass substrate (2) Fabrication of anisotropic alignment medium using laser zone texture substrate or tape texture (3) Bias voltage is applied to the substrate during sputter deposition It is possible to increase the coercive force of the magnetic film by applying it.
Further, by forming a soft magnetic low P concentration Ni—P plating film on a nonmagnetic glass substrate, there is an application as a soft magnetic backing layer for a perpendicular magnetic recording medium. This perpendicular magnetic recording medium is provided with a soft magnetic film called a soft magnetic backing layer that is easy to pass a magnetic flux generated from a magnetic head and has a high saturation magnetic flux density under the magnetic recording layer that plays a role of recording information. A layer perpendicular magnetic recording medium that enables high-density recording.

この垂直磁気記録媒体用の軟磁性裏打ち層としてのめっき膜組成は、上記の低P濃度Ni−Pめっき膜以外に、例えば、Co−Ni−Fe−P、Co−Ni−Fe−B、又はそれらの一部金属の組合せによる合金とした場合においても同様な効果が得られる。
さらに、非磁性ガラス基板に非磁性〜軟磁性中P濃度Ni−Pめっき膜を形成することで、上記高P濃度Ni−Pめっき膜および低P濃度Ni−Pめっき膜の両者の用途の他に、低P濃度Ni−Pめっき膜の非磁性基板への密着層としての下地めっき膜(ストライクめっき)としての用途がある。
続いて、加熱処理(250℃、4時間)S23を施すことにより、密着性に優れた無電解Ni−Pめっき層4を1.0μm以上の厚膜で、均一、かつ平滑に形成することができる。
The plating film composition as the soft magnetic backing layer for the perpendicular magnetic recording medium may be, for example, Co—Ni—Fe—P, Co—Ni—Fe—B, or other than the low P concentration Ni—P plating film described above. The same effect can be obtained even when an alloy is formed by combining some of these metals.
Further, by forming a non-magnetic to soft magnetic medium P-concentration Ni-P plating film on a non-magnetic glass substrate, in addition to the use of both the high P-concentration Ni-P plating film and the low P-concentration Ni-P plating film Furthermore, there is an application as a base plating film (strike plating) as an adhesion layer of a low P concentration Ni—P plating film to a nonmagnetic substrate.
Subsequently, by performing heat treatment (250 ° C., 4 hours) S23, the electroless Ni—P plating layer 4 having excellent adhesion can be formed uniformly and smoothly with a thickness of 1.0 μm or more. it can.

この無電解Ni−Pめっき後の加熱処理は、温度250℃以上300℃以下で1時間以上行うことが望ましく、不活性ガス雰囲気下で加熱することが望ましい。
以上説明したように、ガラス基板1の表面粗さRaの大小は、Ni−Pめっき層4の密着性に対する物理的アンカー効果として作用し得るが、Ni−Pめっき層4の密着性向上をある程度で期待できる、表面粗さRa>0.5nmでは勿論のこと、物理的アンカー効果が殆ど期待できない表面粗さRa<0.5nmの超平滑なガラス基板1においても、本手法によれば、十分なNi−Pめっき層4の密着性を保持することができる。
すなわち、前述のようにガラス基板1の表面のシラノール基(Si−OH)とNi密着層2の材料であるNiキレート剤又はNiセッケン剤間の脱水素化Niシラノキシド(Si−ONi)生成によるガラス基板1の界面におけるガラス基板1とNi密着層2との間の強固な化学結合により、表面粗さRa<0.5nmでのアンカー効果による物理的吸着力のほとんど期待できない超平滑なガラス基板1においても、Ni−Pめっき層4の十分な密着性を保持することができる。
The heat treatment after the electroless Ni—P plating is desirably performed at a temperature of 250 ° C. or higher and 300 ° C. or lower for 1 hour or longer, and is preferably performed in an inert gas atmosphere.
As described above, the magnitude of the surface roughness Ra of the glass substrate 1 can act as a physical anchor effect on the adhesion of the Ni—P plating layer 4, but the adhesion of the Ni—P plating layer 4 is improved to some extent. The surface roughness Ra> 0.5 nm, which can be expected in the above, of course, even in the ultra-smooth glass substrate 1 with the surface roughness Ra <0.5 nm where the physical anchor effect can hardly be expected, The adhesion of the Ni-P plating layer 4 can be maintained.
That is, as described above, the glass is produced by generating dehydrogenated Ni silanoxide (Si-ONi) between the silanol group (Si—OH) on the surface of the glass substrate 1 and the Ni chelating agent or Ni soaping agent that is the material of the Ni adhesion layer 2. Due to the strong chemical bond between the glass substrate 1 and the Ni adhesion layer 2 at the interface of the substrate 1, an ultra-smooth glass substrate 1 in which physical adsorption force due to the anchor effect at a surface roughness Ra <0.5 nm can hardly be expected. In this case, sufficient adhesion of the Ni-P plating layer 4 can be maintained.

さらに本手法で得られたガラス基板1上に形成されたNi−Pめっき層4は、非磁性から軟磁性を示す全てのNi−Pめっき液において、良好な特性を有する磁気ディスクを得るに必要な、十分な膜厚(1μm〜5μmの膜厚)を有するものとして形成することができ、さらにその膜厚領域において十分な密着性、均一性、平滑性を満足することができる。
以上のとおり、本発明の実施形態によれば、ガラス基板1の表面の脱脂処理S11,S12及びガラス活性化処理S13を施し、このガラス基板1の表面にNiキレート剤又はNiセッケン剤の塗布処理S14,S15、Ni金属化焼成処理S16,S17、Ni金属膜活性化処理S18を施してNi密着層2を形成し、このNi密着層2上にPd触媒化処理S19を施してPd触媒層3を形成し、このPd触媒層3上に無電解Ni−PめっきS20〜S22を施し、加熱処理S23を施してNi−Pめっき層4を形成するようにしたので、密着性に優れたNi−Pめっき層を、十分な膜厚で均一かつ平滑に無電解めっき法で形成することができる。
Furthermore, the Ni-P plating layer 4 formed on the glass substrate 1 obtained by this method is necessary for obtaining a magnetic disk having good characteristics in all Ni-P plating solutions showing non-magnetic to soft magnetism. Further, it can be formed with a sufficient film thickness (film thickness of 1 μm to 5 μm), and sufficient adhesion, uniformity, and smoothness can be satisfied in the film thickness region.
As described above, according to the embodiment of the present invention, the surface of the glass substrate 1 is subjected to the degreasing treatments S11 and S12 and the glass activation treatment S13, and the surface of the glass substrate 1 is coated with the Ni chelating agent or the Ni soap agent. S14, S15, Ni metallization firing treatments S16, S17, Ni metal film activation treatment S18 are performed to form the Ni adhesion layer 2, and Pd catalyst formation treatment S19 is performed on the Ni adhesion layer 2 to form the Pd catalyst layer 3 Since the electroless Ni—P plating S20 to S22 is performed on the Pd catalyst layer 3 and the heat treatment S23 is performed to form the Ni—P plating layer 4, Ni— having excellent adhesion is formed. The P plating layer can be formed uniformly and smoothly by an electroless plating method with a sufficient film thickness.

以下に、上述の実施形態を具体化した本発明の実施例を比較例と共に図4,図5に基づいて説明する。なお、上述の実施形態と同一部分については、その説明を省略し、同一符号を付す。
図4に、実施例の各処理工程の各種処理条件を示す。図4中、処理項目は、処理工程30、処理液31、濃度(wt%)32、温度(℃)33、処理時間34、その他35とした。処理工程の(1)〜(9)は、図2のS11〜S23に対応するものである。
〔実施例1〕
ガラス基板1として化学強化ガラス板を用い、その表面に図4の(1)〜(9)に示す処理工程および処理条件の中で、
(1)洗剤脱脂:洗剤濃度1.5wt%、50℃3min処理
(2)アルカリ脱脂:KOH濃度7.5wt%、50℃3min処理
(3)ガラス表面活性化:HF+NHF濃度1.0wt%、20℃3min処理
(4)密着層材料Niキレート剤塗布:アセチルアセトナートNi/トルエン溶液でアセチルアセトナートNi濃度 0.3wt%をディッピング塗布
(5)Ni金属膜化焼成:Nガス雰囲気下300℃1時間焼成処理
(6)Ni金属膜活性化:HNO濃度30wt%、20℃2min処理
(7)Pd触媒層形成:PdCl+NaOH濃度3.0wt%、20℃3min処理
(8)Ni−Pめっき層形成:めっき液「ニムデンHDX(P濃度15〜20wt%)」(上村工業(株)製)、80℃20min処理(Ni−Pめっき層厚3.0μm)
(9)Ni−Pめっき層加熱:Nガス雰囲気下250℃4時間焼成処理
を選択し、この(1)〜(9)の処理工程および処理条件にて、無電解めっき法で図3に示すNi−Pめっき層4を成膜した。
〔実施例2〕
実施例1の(1)〜(9)に示す処理工程および処理条件の中で、処理工程(8)の処理条件を、
(8)Ni−Pめっき層形成:めっき液「メルプレートNI−867(P濃度6〜8wt%)」(メルテックス(株)製)、70℃35min処理(Ni−Pめっき層厚3.0μm)
とした。
Below, the Example of this invention which actualized the above-mentioned embodiment is described based on FIG. 4, FIG. 5 with a comparative example. In addition, about the same part as the above-mentioned embodiment, the description is abbreviate | omitted and the same code | symbol is attached | subjected.
In FIG. 4, the various process conditions of each process process of an Example are shown. In FIG. 4, the processing items are processing step 30, processing liquid 31, concentration (wt%) 32, temperature (° C.) 33, processing time 34, and others 35. The processing steps (1) to (9) correspond to S11 to S23 in FIG.
[Example 1]
A chemically tempered glass plate is used as the glass substrate 1, and the surface thereof is subjected to the processing steps and processing conditions shown in (1) to (9) of FIG.
(1) Detergent degreasing: Detergent concentration 1.5 wt%, treatment at 50 ° C for 3 min
(2) Alkaline degreasing: KOH concentration 7.5 wt%, 50 ° C 3 min treatment
(3) Glass surface activation: HF + NH 3 F concentration 1.0 wt%, treatment at 20 ° C. for 3 min
(4) Adhesion layer material Ni chelating agent coating: Acetylacetonate Ni / toluene solution dip coating acetylacetonate Ni concentration 0.3wt%
(5) Ni metal film calcination: calcination treatment at 300 ° C. for 1 hour in N 2 gas atmosphere
(6) Ni metal film activation: HNO 3 concentration 30 wt%, treatment at 20 ° C. for 2 min
(7) Pd catalyst layer formation: PdCl 2 + NaOH concentration 3.0 wt%, treatment at 20 ° C. for 3 min
(8) Ni-P plating layer formation: plating solution “Nimden HDX (P concentration 15 to 20 wt%)” (manufactured by Uemura Kogyo Co., Ltd.), treatment at 80 ° C. for 20 min (Ni-P plating layer thickness 3.0 μm)
(9) Ni-P plating layer heating: Select a baking process at 250 ° C. for 4 hours in an N 2 gas atmosphere, and in the processing steps and processing conditions of (1) to (9), FIG. The Ni-P plating layer 4 shown was formed.
[Example 2]
Among the processing steps and processing conditions shown in (1) to (9) of Example 1, the processing conditions of the processing step (8) are as follows:
(8) Ni-P plating layer formation: plating solution “Melplate NI-867 (P concentration 6-8 wt%)” (manufactured by Meltex Co., Ltd.), treated at 70 ° C. for 35 min (Ni-P plating layer thickness 3.0 μm) )
It was.

他の処理工程および処理条件は、実施例1の(1)〜(7)及び(9)の処理工程と同一とし、無電解めっき法でNi−Pめっき層4を成膜した。
〔実施例3〕
実施例1の(1)〜(9)に示す処理工程および主要条件の中で、処理工程(8)の処理条件を、
(8)Ni−Pめっき層形成:めっき液「ニムデンLPY(P濃度1〜2wt%)」(上村工業(株)製)、80℃25min処理(Ni−Pめっき層厚3.0μm)
とした。
他の処理工程および処理条件は、実施例1の(1)〜(7)及び(9)の処理工程と同一とし、無電解めっき法でNi−Pめっき層4を成膜した。
〔実施例4〕
実施例1の(1)〜(9)に示す処理工程および主要条件の中で、処理工程(4)(5)(8)の処理条件を、
(4)密着層材料Niセッケン剤塗布:2−エチルヘキサン酸Ni/シクロヘキサン溶液で2−エチルヘキサン酸Ni濃度 0.3wt%をディッピング塗布
(5)Ni金属膜化焼成:Nガス雰囲気下380℃1時間焼成処理
(8)Ni−Pめっき層形成:めっき液「ニムデンHDX(P濃度11〜13wt%)」(上村工業(株)製)、80℃20min処理(Ni−Pめっき層厚3.0μm)
とした。
Other processing steps and processing conditions were the same as those in the processing steps (1) to (7) and (9) of Example 1, and the Ni—P plating layer 4 was formed by electroless plating.
Example 3
Among the processing steps and main conditions shown in (1) to (9) of Example 1, the processing conditions of the processing step (8) are as follows:
(8) Ni—P plating layer formation: plating solution “Nimden LPY (P concentration: 1-2 wt%)” (manufactured by Uemura Kogyo Co., Ltd.), treatment at 80 ° C. for 25 min (Ni—P plating layer thickness: 3.0 μm)
It was.
Other processing steps and processing conditions were the same as those in the processing steps (1) to (7) and (9) of Example 1, and the Ni—P plating layer 4 was formed by electroless plating.
Example 4
Among the processing steps and main conditions shown in (1) to (9) of Example 1, the processing conditions of the processing steps (4), (5) and (8) are as follows:
(4) Adhesion layer material Ni soap agent coating: 2-ethylhexanoic acid Ni concentration 0.3wt% dipping coating with 2-ethylhexanoic acid Ni / cyclohexane solution
(5) Ni metal film calcination: calcination treatment at 380 ° C. for 1 hour in N 2 gas atmosphere
(8) Ni-P plating layer formation: plating solution “Nimden HDX (P concentration 11 to 13 wt%)” (manufactured by Uemura Kogyo Co., Ltd.), treatment at 80 ° C. for 20 min (Ni-P plating layer thickness 3.0 μm)
It was.

他の処理工程および処理条件は、実施例1の(1)〜(3)(6)(7)及び(9)の処理工程と同一とし、無電解めっき法でNi−Pめっき層4を成膜した。
〔実施例5〕
実施例1の(1)〜(9)に示す処理工程および主要条件の中で、処理工程(4)(5)(8)の処理条件を、
(4)密着層材料Niセッケン剤塗布:2−エチルヘキサン酸Ni/シクロヘキサン溶液で2−エチルヘキサン酸Ni濃度 0.3wt%をディッピング塗布
(5)Ni金属膜化焼成:Nガス雰囲気下380℃1時間焼成処理
(8)Ni−Pめっき層形成:めっき液「メルプレートNI−867(P濃度6〜8wt%)」(メルテックス(株)製)、70℃35min処理(Ni−Pめっき層厚3.0μm)
とした。
Other processing steps and processing conditions are the same as the processing steps (1) to (3), (6), (7) and (9) of Example 1, and the Ni-P plating layer 4 is formed by electroless plating. Filmed.
Example 5
Among the processing steps and main conditions shown in (1) to (9) of Example 1, the processing conditions of the processing steps (4), (5) and (8) are as follows:
(4) Adhesion layer material Ni soap agent coating: 2-ethylhexanoic acid Ni concentration 0.3wt% dipping coating with 2-ethylhexanoic acid Ni / cyclohexane solution
(5) Ni metal film calcination: calcination treatment at 380 ° C. for 1 hour in N 2 gas atmosphere
(8) Ni-P plating layer formation: plating solution “Melplate NI-867 (P concentration 6-8 wt%)” (manufactured by Meltex Co., Ltd.), treated at 70 ° C. for 35 min (Ni-P plating layer thickness 3.0 μm) )
It was.

他の処理工程および処理条件は、実施例1の(1)〜(3)(6)(7)及び(9)の処理工程と同一とし、無電解めっき法でNi−Pめっき層4を成膜した。
〔実施例6〕
実施例1の(1)〜(9)に示す処理工程および主要条件の中で、処理工程(4)(5)(8)の処理条件を、
(4)密着層材料Niセッケン剤塗布:2−エチルヘキサン酸Ni/シクロヘキサン溶液で2−エチルヘキサン酸Ni濃度 0.3wt%をディッピング塗布
(5)Ni金属膜化焼成:Nガス雰囲気下380℃1時間焼成処理
(8)Ni−Pめっき層4の形成:めっき液「ニムデンLPY(P濃度1〜2wt%)」(上村工業(株)製))、80℃25min処理(Ni−Pめっき層厚3.0μm)
とした。
Other processing steps and processing conditions are the same as the processing steps (1) to (3), (6), (7) and (9) of Example 1, and the Ni-P plating layer 4 is formed by electroless plating. Filmed.
Example 6
Among the processing steps and main conditions shown in (1) to (9) of Example 1, the processing conditions of the processing steps (4), (5) and (8) are as follows:
(4) Adhesion layer material Ni soap agent coating: 2-ethylhexanoic acid Ni concentration 0.3wt% dipping coating with 2-ethylhexanoic acid Ni / cyclohexane solution
(5) Ni metal film calcination: calcination treatment at 380 ° C. for 1 hour in N 2 gas atmosphere
(8) Formation of Ni—P plating layer 4: Plating solution “Nimden LPY (P concentration: 1 to 2 wt%)” (manufactured by Uemura Kogyo Co., Ltd.)), treatment at 80 ° C. for 25 min (Ni—P plating layer thickness: 3.0 μm) )
It was.

他の処理工程および処理条件は、実施例1の(1)〜(3)(6)(7)及び(9)の処理工程と同一とし、無電解めっき法でNi−Pめっき層4を成膜した。
〔比較例〕
次に、比較例について説明する。
〔比較例1〕
ガラス基板1として化学強化ガラス板を用い、その表面に
(1)洗剤脱脂:洗剤濃度1.5wt%、50℃3min処理
(2)アルカリ脱脂:KOH濃度7.5wt%、50℃3min処理
(3)ガラス表面粗化:クロム酸+硫酸濃度40wt%+40wt%、60℃10min処理
(4)触媒付与キャタリスト処理:PdClを0.3g/L+SnCl・2HOを15g/L+36%HClを200ml/Lの混合水溶液に20℃3min処理
(5)触媒付与アクセレーター処理:HSOを100g/Lの水溶液に50℃5min処理
(6)Ni−Pめっき層形成:めっき液「ニムデンHDX(P濃度15〜20%)」(上村工業(株)製)、80℃3.0min処理(Ni−Pめっき層の膜厚0.4μm、0.4μm超はめっき中で膜剥離発生し、成膜不可)
(7)Ni−Pめっき層4の加熱:Nガス雰囲気下250℃4時間焼成処理
を施し、無電解めっき法でNi−Pめっき層を成膜した。
〔比較例2〕
比較例1の(1)〜(7)に示す処理工程および処理条件の中で、処理工程(6)の処理条件を、
(6)Ni−Pめっき層形成:めっき液「メルプレートNI−867(P濃度6〜8wt%)」(メルテックス(株)製)、80℃9.0min処理(Ni−Pめっき層の膜厚0.7μm、0.7μm超はめっき中で膜剥離発生し、成膜不可)
とした。
Other processing steps and processing conditions are the same as the processing steps (1) to (3), (6), (7) and (9) of Example 1, and the Ni-P plating layer 4 is formed by electroless plating. Filmed.
[Comparative example]
Next, a comparative example will be described.
[Comparative Example 1]
Using a chemically strengthened glass plate as the glass substrate 1,
(1) Detergent degreasing: Detergent concentration 1.5 wt%, treatment at 50 ° C for 3 min
(2) Alkaline degreasing: KOH concentration 7.5 wt%, 50 ° C 3 min treatment
(3) Glass surface roughening: Chromic acid + sulfuric acid concentration 40 wt% + 40 wt%, 60 ° C., 10 min treatment
(4) Catalyst imparting catalyst treatment: PdCl 2 treated with 0.3 g / L + SnCl 2 .2H 2 O 15 g / L + 36% HCl in 200 ml / L mixed aqueous solution at 20 ° C. for 3 minutes
(5) Catalyst imparting accelerator treatment: H 2 SO 4 treated in 100 g / L aqueous solution at 50 ° C. for 5 min
(6) Ni—P plating layer formation: plating solution “Nimden HDX (P concentration 15 to 20%)” (manufactured by Uemura Kogyo Co., Ltd.), treatment at 80 ° C. for 3.0 min (the Ni—P plating layer thickness 0. (4μm and over 0.4μm cause film peeling during plating and cannot be formed)
(7) Heating of the Ni—P plating layer 4: A baking treatment was performed at 250 ° C. for 4 hours in an N 2 gas atmosphere, and a Ni—P plating layer was formed by an electroless plating method.
[Comparative Example 2]
Among the processing steps and processing conditions shown in (1) to (7) of Comparative Example 1, the processing conditions of the processing step (6) are as follows:
(6) Ni-P plating layer formation: Plating solution “Melplate NI-867 (P concentration 6-8 wt%)” (manufactured by Meltex Co., Ltd.), treated at 80 ° C. for 9.0 min (film of Ni—P plating layer) (Thickness of 0.7μm and over 0.7μm will cause film peeling during plating and film formation is not possible)
It was.

他の処理工程および処理条件は、比較例1の(1)〜(5)及び(7)の処理工程と同一とし、無電解めっき法でNi−Pめっき層を成膜した。
〔比較例3〕
比較例1の(1)〜(7)に示す処理工程および処理条件の中で、処理工程(6)の処理条件を、
(6)Ni−Pめっき層形成:めっき液「ニムデンLPY(P濃度1〜2wt%)」(上村工業(株)製)、80℃3.0min処理(Ni−Pめっき層膜厚0.5μm、0.5μm超はめっき中で膜剥離発生し、成膜不可)
とした。
他の処理工程および処理条件は、比較例1の(1)〜(5)及び(7)の処理工程と同一とし、無電解めっき法でNi−Pめっき層を成膜した。
〔評価〕
図5に、上記実施例1〜6及び比較例1〜3の評価結果を示す。図5中、評価項目は、密着層40、めっき層41、めっき膜厚42、密着力43、表面粗さ(Ra)44とした。図中、○は密着力が良好、×は密着力不良を示す。
Other processing steps and processing conditions were the same as those in the processing steps (1) to (5) and (7) of Comparative Example 1, and a Ni—P plating layer was formed by electroless plating.
[Comparative Example 3]
Among the processing steps and processing conditions shown in (1) to (7) of Comparative Example 1, the processing conditions of the processing step (6) are as follows:
(6) Ni—P plating layer formation: plating solution “Nimden LPY (P concentration 1 to 2 wt%)” (manufactured by Uemura Kogyo Co., Ltd.), treatment at 80 ° C. for 3.0 min (Ni—P plating layer thickness 0.5 μm) If over 0.5μm, film peeling occurs during plating, and film formation is not possible)
It was.
Other processing steps and processing conditions were the same as those in the processing steps (1) to (5) and (7) of Comparative Example 1, and a Ni—P plating layer was formed by electroless plating.
[Evaluation]
In FIG. 5, the evaluation result of the said Examples 1-6 and Comparative Examples 1-3 is shown. In FIG. 5, evaluation items were an adhesion layer 40, a plating layer 41, a plating film thickness 42, an adhesion force 43, and a surface roughness (Ra) 44. In the figure, ◯ indicates good adhesion, and x indicates poor adhesion.

具体的には、Ni−Pめっき層の無電解めっきが施された各ガラス基板について、Ni−Pめっき層の密着性をクロスカット剥離試験(JIS K 5400 6.15)により評価した。
また、原子間力顕微鏡(AFM)による表面粗さ測定で、めっき前のガラス基板1の表面平均粗さRaが0.25nmのものに対して、めっき後の平均粗さRaを評価した。
図5から分かるように、図4の処理工程および処理条件で作製された、実施例1〜6で得られたガラス基板1上のNi−Pめっき層4は、3.0μmの厚膜化を達成することができ、しかも、低P〜高P濃度領域のNi−Pめっき層が密着性の優れたものとして形成されることが分かる。
また、めっき後の表面粗さRaは、0.5nm以下であり、微小表面うねりWaは、0.5nm以下であった。これにより、表面粗さ変化も僅かであり、磁気ディスクで求められる表面粗さレベルに十分に保持することができる。
Specifically, for each glass substrate on which the electroless plating of the Ni-P plating layer was performed, the adhesion of the Ni-P plating layer was evaluated by a cross-cut peel test (JIS K 5400 6.15).
In addition, by measuring the surface roughness with an atomic force microscope (AFM), the average roughness Ra after plating was evaluated for a glass substrate 1 having a surface average roughness Ra of 0.25 nm before plating.
As can be seen from FIG. 5, the Ni—P plating layer 4 on the glass substrate 1 obtained in Examples 1 to 6 manufactured in the processing steps and processing conditions of FIG. 4 has a thickness of 3.0 μm. It can be seen that the Ni—P plating layer in the low P to high P concentration region is formed with excellent adhesion.
Moreover, the surface roughness Ra after plating was 0.5 nm or less, and the minute surface waviness Wa was 0.5 nm or less. As a result, the change in surface roughness is slight, and the surface roughness level required for the magnetic disk can be sufficiently maintained.

一方、公知である比較例1〜3で得られたガラス基板上のNi−Pめっき層は、めっき膜厚0.4〜0.7μmとなり、1.0μm以上の厚膜化が不可能であり、かつ、ガラス基板に対する密着性も著しく低下していることが分かる。
以上説明したように、ガラス基板1の表面に脱脂処理S11,S12及びガラス活性化処理S13を施し、このガラス基板1の表面に、Niキレート剤又はNiセッケン剤の塗布処理S14,S15、Ni金属化焼成処理S16,S17、Ni金属膜の活性化処理S18を施してNi密着層2を形成し、このNi密着層2の表面に、Pd触媒化処理S19を施してPd触媒層3を形成し、このPd触媒層3上に、P濃度1〜13wt%領域の無電解Ni−PめっきS20〜S22を施し、加熱処理S23を施してNi−Pめっき層4を形成するようにしたので、密着性に優れたNi−Pめっき層4を1.0μm以上の厚膜で、均一かつ平滑に無電解めっき法で形成することができる。従って、このNi−Pめっき層4が形成されたガラス基板を用いて良好な特性を有する磁気ディスクを作製することができる。
On the other hand, the Ni-P plating layer on the glass substrate obtained in Comparative Examples 1 to 3, which is publicly known, has a plating film thickness of 0.4 to 0.7 μm and cannot be thickened by 1.0 μm or more. And it turns out that the adhesiveness with respect to a glass substrate is also falling remarkably.
As described above, degreasing treatments S11 and S12 and glass activation treatment S13 are performed on the surface of the glass substrate 1, and Ni chelating agent or Ni soaping agent coating treatments S14 and S15 and Ni metal are applied to the surface of the glass substrate 1. The Ni adhesion layer 2 is formed by applying the calcination treatments S16 and S17 and the Ni metal film activation process S18, and the Pd catalyst layer 3 is formed on the surface of the Ni adhesion layer 2 by applying the Pd catalyst formation treatment S19. Since the electroless Ni—P plating S20 to S22 having a P concentration of 1 to 13 wt% is performed on the Pd catalyst layer 3 and the heat treatment S23 is performed, the Ni—P plating layer 4 is formed. The Ni—P plating layer 4 having excellent properties can be formed uniformly and smoothly by an electroless plating method with a thick film of 1.0 μm or more. Therefore, a magnetic disk having good characteristics can be manufactured using the glass substrate on which the Ni-P plating layer 4 is formed.

本発明に係る磁気記録媒体用基板の製造方法の実施形態を示す工程図である。It is process drawing which shows embodiment of the manufacturing method of the board | substrate for magnetic recording media based on this invention. 図1の実施形態の各工程の詳細を示す工程図である。It is process drawing which shows the detail of each process of embodiment of FIG. 本発明の実施形態の製造方法を用いて製造される磁気記録媒体の模式断面図である。It is a schematic cross section of the magnetic recording medium manufactured using the manufacturing method of embodiment of this invention. 本発明の実施例の各処理工程の各種処理条件を示す説明図である。It is explanatory drawing which shows the various process conditions of each process process of the Example of this invention. 本発明の実施例及び比較例の評価結果を示す説明図である。It is explanatory drawing which shows the evaluation result of the Example and comparative example of this invention.

符号の説明Explanation of symbols

1 ガラス基板
2 Ni密着層
3 Pd触媒層
4 Ni−Pめっき層
5 磁気記録層
10 磁気記録媒体用基板
100 磁気記録媒体
S1 洗浄工程
S2 Ni密着層形成工程
S3 Pd触媒層形成工程
S4 めっき層形成工程
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Ni adhesion layer 3 Pd catalyst layer 4 Ni-P plating layer 5 Magnetic recording layer 10 Magnetic recording medium substrate 100 Magnetic recording medium S1 Cleaning step S2 Ni adhesion layer formation step S3 Pd catalyst layer formation step S4 Plating layer formation Process

Claims (10)

非磁性基板上にめっき層を形成する磁気記録媒体用基板の製造方法において、
前記非磁性基板の表面を洗浄する洗浄工程と、
前記洗浄後の非磁性基板の表面に結合するNi密着層を形成するNi密着層形成工程と、
前記Ni密着層の表面に結合するPd触媒層を形成するPd触媒層形成工程と、
前記Pd触媒層を触媒としてその表面に無電解めっき法により前記めっき層を形成するめっき層形成工程とを備えることを特徴とする磁気記録媒体用基板の製造方法。
In the method for manufacturing a magnetic recording medium substrate in which a plating layer is formed on a nonmagnetic substrate,
A cleaning step of cleaning the surface of the non-magnetic substrate;
A Ni adhesion layer forming step of forming a Ni adhesion layer bonded to the surface of the non-magnetic substrate after the cleaning;
A Pd catalyst layer forming step of forming a Pd catalyst layer bonded to the surface of the Ni adhesion layer;
And a plating layer forming step of forming the plating layer on the surface of the Pd catalyst layer as a catalyst by an electroless plating method.
前記非磁性基板はガラス基板からなり、
前記洗浄工程は、前記ガラス基板の表面に脱脂処理を施す工程と、該脱脂処理を施したガラス基板の表面に活性化処理を施す工程とを含み、
前記Ni密着層形成工程は、前記活性化処理を施したガラス基板の表面にNiキレート剤又はNiセッケン剤を塗布する工程と、該塗布されたNiキレート剤又はNiセッケン剤を金属化焼成処理してNi金属膜を形成する工程と、該Ni金属膜の表面に活性化処理を施すことにより当該Ni金属膜を前記Ni密着層とする工程とからなり、
前記Pd触媒層形成工程は、前記活性化処理を施されたNi金属膜の表面にPdを結合させて前記Pd触媒層を形成するPd触媒化処理工程からなり、
前記めっき層形成工程は、前記Pd触媒層を触媒としてその表面に無電解めっき法によりめっき膜を形成する工程と、該めっき膜に加熱処理を施して前記めっき層とする工程とを含むことを特徴とする請求項1に記載の磁気記録媒体用基板の製造方法。
The non-magnetic substrate is a glass substrate,
The cleaning step includes a step of performing a degreasing process on the surface of the glass substrate, and a step of performing an activation process on the surface of the glass substrate subjected to the degreasing process,
The Ni adhesion layer forming step includes a step of applying a Ni chelating agent or a Ni soap agent to the surface of the glass substrate subjected to the activation treatment, and a metallization baking treatment of the applied Ni chelating agent or Ni soap agent. Forming a Ni metal film and a process of making the Ni metal film the Ni adhesion layer by applying an activation treatment to the surface of the Ni metal film,
The Pd catalyst layer forming step comprises a Pd catalyst forming step of forming Pd catalyst layer by bonding Pd to the surface of the Ni metal film subjected to the activation treatment,
The plating layer forming step includes a step of forming a plating film on the surface of the Pd catalyst layer as a catalyst by an electroless plating method, and a step of heating the plating film to form the plating layer. The method for manufacturing a substrate for a magnetic recording medium according to claim 1.
前記Niキレート剤は、下記一般式(1)で示される構造を有することを特徴とする請求項2に記載の磁気記録媒体用基板の製造方法。
Ni(CiH2i+1COCjH2jCOCkH2k+1) …(1)
(式中、i,j,kは、正の整数)
The method for producing a substrate for a magnetic recording medium according to claim 2, wherein the Ni chelating agent has a structure represented by the following general formula (1).
Ni (C i H 2i + 1 COC j H 2j COC k H 2k + 1 ) (1)
(Where i, j and k are positive integers)
前記Niセッケン剤は、下記一般式(2)又は(3)で示される構造を有することを特徴とする請求項2に記載の磁気記録媒体用基板の製造方法。
Ni(-OOCCH(CmH2m+1)CnH2n+1)2 …(2)
Ni(-OOCCpH2p+1)2 …(3)
(式中、m,n,pは、正の整数)
The method for manufacturing a substrate for a magnetic recording medium according to claim 2, wherein the Ni soap agent has a structure represented by the following general formula (2) or (3).
Ni (-OOCCH (C m H 2m + 1 ) C n H 2n + 1 ) 2 (2)
Ni (-OOCC p H 2p + 1 ) 2 ... (3)
(Where m, n and p are positive integers)
前記金属化焼成処理は、不活性化ガス雰囲気で、250℃以上400℃以下の焼成温度でなされることを特徴とする請求項2ないし4のいずれかに記載の磁気記録媒体用基板の製造方法。   5. The method for manufacturing a substrate for a magnetic recording medium according to claim 2, wherein the metallized baking treatment is performed at a baking temperature of 250 ° C. or higher and 400 ° C. or lower in an inert gas atmosphere. . 前記Pd触媒化処理工程に塩化パラジウムを用いることを特徴とする請求項2ないし5のいずれかに記載の磁気記録媒体用基板の製造方法。   6. The method of manufacturing a substrate for a magnetic recording medium according to claim 2, wherein palladium chloride is used in the Pd catalyzing treatment step. 前記めっき膜はNi−Pめっき膜からなり、当該めっき膜の加熱処理として、250℃以上300℃以下の温度での1時間以上の加熱処理を施すことを特徴とする請求項2ないし6のいずれかに記載の磁気記録媒体用基板の製造方法。   7. The plating film according to claim 2, wherein the plating film is a Ni-P plating film, and the heat treatment of the plating film is performed at a temperature of 250 ° C. or higher and 300 ° C. or lower for 1 hour or longer. A method for producing a magnetic recording medium substrate according to claim 1. ガラス基板上にNi−Pめっき層を備える磁気記録媒体用基板において、
前記ガラス基板上に形成されたNi密着層と、
前記Ni密着層上に形成されたPd触媒層と、
前記Pd触媒層上に形成された前記Ni−Pめっき層とを備え、
前記Ni−Pめっき層は、膜厚が1.0μm以上であって、当該Ni−Pめっき層の表面において、表面粗さRaが0.5nm以下であり、微小表面うねりWaが0.5nm以下であることを特徴とする磁気記録媒体用基板。
In a magnetic recording medium substrate comprising a Ni-P plating layer on a glass substrate,
A Ni adhesion layer formed on the glass substrate;
A Pd catalyst layer formed on the Ni adhesion layer;
The Ni-P plating layer formed on the Pd catalyst layer,
The Ni—P plating layer has a film thickness of 1.0 μm or more, and has a surface roughness Ra of 0.5 nm or less and a minute surface waviness Wa of 0.5 nm or less on the surface of the Ni—P plating layer. A substrate for a magnetic recording medium, characterized in that
請求項8に記載の磁気記録媒体用基板上に少なくとも磁気記録層を備えることを特徴とする磁気記録媒体。   A magnetic recording medium comprising at least a magnetic recording layer on the magnetic recording medium substrate according to claim 8. 前記磁気記録媒体用基板のNi−Pめっき層は、1.0wt%〜13.0wt%のPを含むNi−P合金からなることを特徴とする請求項9に記載の磁気記録媒体。   The magnetic recording medium according to claim 9, wherein the Ni—P plating layer of the magnetic recording medium substrate is made of a Ni—P alloy containing 1.0 wt% to 13.0 wt% of P.
JP2004357504A 2003-12-18 2004-12-10 Method for manufacturing substrate for magnetic recording medium, substrate for magnetic recording medium, and magnetic recording medium Withdrawn JP2005203078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004357504A JP2005203078A (en) 2003-12-18 2004-12-10 Method for manufacturing substrate for magnetic recording medium, substrate for magnetic recording medium, and magnetic recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003421604 2003-12-18
JP2004357504A JP2005203078A (en) 2003-12-18 2004-12-10 Method for manufacturing substrate for magnetic recording medium, substrate for magnetic recording medium, and magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2005203078A true JP2005203078A (en) 2005-07-28

Family

ID=34829305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004357504A Withdrawn JP2005203078A (en) 2003-12-18 2004-12-10 Method for manufacturing substrate for magnetic recording medium, substrate for magnetic recording medium, and magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2005203078A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142060A (en) * 2011-01-06 2012-07-26 Fuji Electric Co Ltd Substrate for magnetic recording medium and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142060A (en) * 2011-01-06 2012-07-26 Fuji Electric Co Ltd Substrate for magnetic recording medium and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4479528B2 (en) Method of plating on glass substrate, method of manufacturing disk substrate for magnetic recording medium using the plating method, and method of manufacturing perpendicular magnetic recording medium
JP6267730B2 (en) Hard film-coated member coated with hard film and method for producing the same
EP0237663B1 (en) Electroless deposition magnetic recording media process
JP4479572B2 (en) Method for manufacturing disk substrate for perpendicular magnetic recording medium, disk substrate for perpendicular magnetic recording medium, and perpendicular magnetic recording medium
US6316097B1 (en) Electroless plating process for alternative memory disk substrates
US20060210837A1 (en) Method of plating on a glass base plate, a method of manufacturing a disk substrate for a perpendicular magnetic recording medium, a disk substrate for a perpendicular magnetic recording medium, and a perpendicular magnetic recording medium
JP3172441B2 (en) Nonmetal plating method, substrate, and data storage and retrieval device including the same
JP2006338837A (en) Plating method on glass substrate, method for manufacturing disk substrate for vertical magnetic recording medium, disk substrate for vertical magnetic recording medium, and the vertical magnetic recording medium
JPH0258729A (en) Magnetic disk substrate and its production
JP2000163743A (en) FORMING METHOD OF ELECTROLESS Ni-P PLATING LAYER ON GLASS SUBSTRATE FOR MAGNETIC DISK
US20020061424A1 (en) Method of coating smooth electroless nickel on magnetic memory disks and related memory devices
JP2005203078A (en) Method for manufacturing substrate for magnetic recording medium, substrate for magnetic recording medium, and magnetic recording medium
JP2006169564A (en) Plating method on glass substrate, and magnetic recording medium manufacturing method using the same
JP3206302B2 (en) Electroless Ni-P plating method for glass substrate for magnetic disk
US20050153481A1 (en) Method of pretreating a nonmagnetic substrate and a magnetic recording medium formed thereby
JPS61142525A (en) Magnetic recording medium
JP2001209925A (en) Aluminum substrate for magnetic recording medium and method for producing same
JPH11161933A (en) Plated substrate, magnetic recording medium and their production
JP2009093710A (en) Method of manufacturing magnetic recording medium and magnetic recording medium
JPH11203674A (en) Method for manufacturing substrate for magnetic recording medium
JP2615804B2 (en) Manufacturing method of magnetic recording medium
JP4352398B2 (en) Magnetic recording medium substrate and method for manufacturing the same
JPH0456779B2 (en)
JPH05314471A (en) Substrate for magnetic recording medium and manufacture of the same and magnetic recording medium
JPS61224118A (en) Magnetic disc

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Effective date: 20070914

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20081216

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090713