JP2005201657A - Rotation angle detection device - Google Patents

Rotation angle detection device Download PDF

Info

Publication number
JP2005201657A
JP2005201657A JP2004005405A JP2004005405A JP2005201657A JP 2005201657 A JP2005201657 A JP 2005201657A JP 2004005405 A JP2004005405 A JP 2004005405A JP 2004005405 A JP2004005405 A JP 2004005405A JP 2005201657 A JP2005201657 A JP 2005201657A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetoresistive sensor
rotation angle
main magnetic
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004005405A
Other languages
Japanese (ja)
Other versions
JP4145807B2 (en
Inventor
Tsutomu Nakamura
中村  勉
Kenji Takeda
武田  憲司
Osamu Shimomura
修 下村
Shinji Wakabayashi
伸二 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2004005405A priority Critical patent/JP4145807B2/en
Publication of JP2005201657A publication Critical patent/JP2005201657A/en
Application granted granted Critical
Publication of JP4145807B2 publication Critical patent/JP4145807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive small-sized rotation angle detection device capable of measuring the rotation angle in the range of 360 degrees. <P>SOLUTION: A permanent magnet 2 is mounted on a rotating shaft 3, and generates a main magnetic field MF. A coil 5 generates an auxiliary magnetic field SF. The main magnetic field MF is rotated relative to the auxiliary magnetic field SF following rotation of the rotating shaft 3. Two magnetic resistance sensors are arranged in a sensor unit 4 so as to output electric signals having the phase difference of 45 degrees mutually. The main magnetic field operates both magnetic resistance sensors of the sensor unit 4 in a saturated region regardless of the rotation angle of the rotating shaft 3. Each magnetic resistance sensor outputs an electric signal of a level corresponding to the direction of the magnetic field regardless of the intensity of the magnetic field in the saturated region. A composite magnetic field formed by the main magnetic field and the auxiliary magnetic field forms the saturated region at the angle at which one magnetic resistance sensor outputs the maximum level, and forms an unsaturated region at the opposite angle by 180 degrees. The level of an electric signal outputted from each magnetic resistance sensor in the unsaturated region is lower than the level outputted in the saturated region. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、回転角検出装置に関する。   The present invention relates to a rotation angle detection device.

従来、測定対象の回転軸に配置される磁石と、磁石の磁界(主磁界)に応じた電気信号を出力する2つの磁気抵抗センサと、2つの磁気抵抗センサの出力から測定対象の回転角度を特定する制御手段とを備える回転角検出装置が知られている。しかし、磁気抵抗センサを用いた回転角検出装置は主磁界の向きを判別することができないため、その測定範囲は最大で180度までに限られていた。   Conventionally, a magnet arranged on a rotation axis of a measurement object, two magnetoresistive sensors that output an electric signal corresponding to the magnetic field (main magnetic field) of the magnet, and the rotation angle of the measurement object from the outputs of the two magnetoresistive sensors 2. Description of the Related Art A rotation angle detection device including a control unit that identifies a rotation angle is known. However, since the rotation angle detection device using the magnetoresistive sensor cannot determine the direction of the main magnetic field, the measurement range is limited to 180 degrees at the maximum.

特許文献1には、補助磁界を発生するコイルを備え主磁界の向きを判別することにより、180度以上の回転角度を測定することができる回転角検出装置が開示されている。
特許文献2には、主磁界の向きを判別する測定素子を設けて、180度以上の回転角度を測定することができる回転角検出装置が開示されている。
Patent Document 1 discloses a rotation angle detection device that includes a coil that generates an auxiliary magnetic field and that can measure a rotation angle of 180 degrees or more by determining the direction of the main magnetic field.
Patent Document 2 discloses a rotation angle detection device that can measure a rotation angle of 180 degrees or more by providing a measuring element for determining the direction of the main magnetic field.

特表2002−525588号公報Japanese translation of PCT publication No. 2002-525588 特開平11−94512号公報JP-A-11-94512

しかし、特許文献1に記載の回転角検出装置では、2つの磁気抵抗センサにそれぞれ異なる方向の補助磁界を加える必要があるため、磁気抵抗センサの配置およびコイルの形状が複雑になる。そのため、磁気抵抗センサおよびコイルの実装に大きなスペースが必要となり、回転角検出装置が大型化するという問題がある。
また、特許文献2に記載の回転角検出装置では、主磁界の向きを判別する測定素子が必要なため、製造コストが増大するという問題および回転角度装置が大型化するという問題がある。
本発明は上記問題を解決するためになされたものであり、360度の範囲の回転角度を測定し、小型で安価な回転角検出装置を提供することを目的とする。
However, in the rotation angle detection device described in Patent Document 1, it is necessary to apply auxiliary magnetic fields in different directions to the two magnetoresistive sensors, so that the arrangement of the magnetoresistive sensor and the shape of the coil are complicated. Therefore, a large space is required for mounting the magnetoresistive sensor and the coil, and there is a problem that the rotation angle detection device is enlarged.
Further, the rotation angle detection device described in Patent Document 2 requires a measuring element for determining the direction of the main magnetic field, and thus has a problem that the manufacturing cost increases and a rotation angle device is enlarged.
The present invention has been made to solve the above problems, and an object of the present invention is to provide a small and inexpensive rotation angle detection device by measuring a rotation angle in a range of 360 degrees.

請求項1から9に記載の発明によれば、補助磁界を排除した主磁界だけの状態で動作する第1の磁気抵抗センサおよび第2の磁気抵抗センサが出力する位相差を有する電気信号から、360度の回転角度範囲内において測定対象の回転角度の候補を選定できる。
この選定した回転角度の候補から測定対象の回転角度を特定するためには、測定対象の方向、つまり主磁界の方向が分かればよい。まず、主磁界の方向と補助磁界の方向が平行になる測定対象の回転角度を除き、主磁界の方向は主磁界および補助磁界により形成される合成磁界の方向と異なる。そのため、主磁界だけのときと合成磁界のときとで第1の磁気抵抗センサおよび第2の磁気抵抗センサが出力する電気信号は異なる。この異なる電気信号の差を制御手段が評価することにより、主磁界の向きを判別することができる。
According to the invention described in claims 1 to 9, from the electrical signal having the phase difference output from the first magnetoresistive sensor and the second magnetoresistive sensor that operate only in the main magnetic field excluding the auxiliary magnetic field, Candidate rotation angles to be measured can be selected within a rotation angle range of 360 degrees.
In order to identify the rotation angle of the measurement object from the selected rotation angle candidates, it is only necessary to know the direction of the measurement object, that is, the direction of the main magnetic field. First, the direction of the main magnetic field is different from the direction of the combined magnetic field formed by the main magnetic field and the auxiliary magnetic field, except for the rotation angle of the measurement object in which the direction of the main magnetic field and the direction of the auxiliary magnetic field are parallel. Therefore, the electrical signals output from the first magnetoresistive sensor and the second magnetoresistive sensor differ depending on only the main magnetic field and the combined magnetic field. The direction of the main magnetic field can be determined by the control means evaluating the difference between the different electric signals.

一方、主磁界と補助磁界とが同一方向のとき、第1の磁気抵抗センサおよび第2の磁気抵抗センサは飽和領域の合成磁界で動作し、主磁界と補助磁界が逆方向のとき、第1の磁気抵抗センサおよび第2の磁気抵抗センサは非飽和領域の合成磁界で動作する。飽和領域の合成磁界で動作している第1の磁気抵抗センサおよび第2の磁気抵抗センサは、それぞれ合成磁界の方向に応じた電気信号を出力する。一方、非飽和領域領域の合成磁界で動作している第1の磁気抵抗センサおよび第2の磁気抵抗センサは、同一方向の飽和領域の合成磁界で動作する場合と比較して小さなレベルの電気信号を出力する。そのため、補助磁界を排除した主磁界だけのときの第1の磁気抵抗センサまたは第2の磁気抵抗センサの電気信号と、主磁界と補助磁界とで合成磁界を形成しているときの第1の磁気抵抗センサまたは第2の磁気抵抗センサの電気信号とのレベル差を評価することにより、主磁界と補助磁界の方向が同じか反対かを判別することができる。したがって、360度の範囲において選定した回転角度の候補から測定対象の回転角度を特定することができる。   On the other hand, when the main magnetic field and the auxiliary magnetic field are in the same direction, the first magnetoresistive sensor and the second magnetoresistive sensor operate with the combined magnetic field in the saturation region, and when the main magnetic field and the auxiliary magnetic field are in the opposite direction, The magnetoresistive sensor and the second magnetoresistive sensor operate with a combined magnetic field in a non-saturated region. The first magnetoresistive sensor and the second magnetoresistive sensor operating with the combined magnetic field in the saturation region each output an electrical signal corresponding to the direction of the combined magnetic field. On the other hand, the first magnetoresistive sensor and the second magnetoresistive sensor operating with the combined magnetic field in the non-saturated region region are smaller in electrical signal than when operating with the combined magnetic field in the saturated region in the same direction. Is output. For this reason, the first magnetic field when the combined magnetic field is formed by the electric signal of the first magnetoresistive sensor or the second magnetoresistive sensor when only the main magnetic field excluding the auxiliary magnetic field, and the auxiliary magnetic field is formed. By evaluating the level difference from the electrical signal of the magnetoresistive sensor or the second magnetoresistive sensor, it is possible to determine whether the directions of the main magnetic field and the auxiliary magnetic field are the same or opposite. Therefore, the rotation angle of the measurement target can be specified from the rotation angle candidates selected in the range of 360 degrees.

また、請求項1から9に記載の発明によれば、異なる方向の補助磁界を発生させる複数の補助磁界発生手段を設けたり、主磁界の向きを判別する手段を別に設けたりすることなく、第1の磁気抵抗センサおよび第2の磁気抵抗センサに対して一定方向の補助磁界を制御手段で制御することにより、測定対象の回転角度を特定できる。したがって、補助磁界発生手段の小型化および製造コストの削減をすることができる。
また、請求項1から9に記載の発明によれば、補助磁界発生手段は、主磁界と補助磁界とが逆方向のときに第1の磁気抵抗センサおよび第2の磁気抵抗センサを非飽和領域で動作させる強さの補助磁界を発生すればよい。補助磁界の強さを主磁界と比較して小さくできるため、補助磁界発生手段を小型化することができる。
Further, according to the first to ninth aspects of the present invention, without providing a plurality of auxiliary magnetic field generating means for generating auxiliary magnetic fields in different directions or separately providing means for determining the direction of the main magnetic field, By controlling the auxiliary magnetic field in a certain direction with respect to the one magnetoresistive sensor and the second magnetoresistive sensor by the control means, the rotation angle of the measurement object can be specified. Therefore, the auxiliary magnetic field generating means can be reduced in size and the manufacturing cost can be reduced.
Further, according to the invention described in claims 1 to 9, the auxiliary magnetic field generating means sets the first magnetoresistive sensor and the second magnetoresistive sensor in the non-saturated region when the main magnetic field and the auxiliary magnetic field are in opposite directions. It is only necessary to generate an auxiliary magnetic field with the strength to be operated at. Since the strength of the auxiliary magnetic field can be reduced compared to the main magnetic field, the auxiliary magnetic field generating means can be reduced in size.

請求項2に記載の発明によれば、補助磁界発生手段は、第1の磁気抵抗センサまたは第2の磁気抵抗センサが最大レベルまたは最小レベルの電気信号を出力する磁界の方向と平行な補助磁界を発生することを特徴とする。当該磁界の方向では、非飽和領域で動作する磁気抵抗センサの出力は、磁界の強さの変化に対して比較的大きく変化する。例えば図5に示すように、磁界の向きに対し、磁気抵抗センサを飽和領域で動作させる強さの磁界(P1)に対する電気信号と、磁気抵抗センサを非飽和領域で動作させる強さの磁界(P3)に対する電気信号とのレベル差L1、L2およびL3を比較すると、最大レベルの電気信号を出力する磁界の方向におけるレベル差L1が他の磁界の方向のレベル差L2およびL3よりも大きいことが分かる。つまり、補助磁界の強さが比較的小さくても、第1の磁気抵抗センサまたは第2の磁気抵抗センサは、飽和領域で動作するときと非飽和領域で動作するときとで大きなレベル差のある電気信号を出力する。従って、補助磁界の強さを小さくできるため、補助磁界発生手段を小型化することができる。   According to the second aspect of the present invention, the auxiliary magnetic field generating means includes the auxiliary magnetic field parallel to the direction of the magnetic field at which the first magnetoresistive sensor or the second magnetoresistive sensor outputs the electric signal having the maximum level or the minimum level. It is characterized by generating. In the direction of the magnetic field, the output of the magnetoresistive sensor operating in the non-saturated region changes relatively greatly with changes in the magnetic field strength. For example, as shown in FIG. 5, with respect to the direction of the magnetic field, an electric signal for a magnetic field (P1) having a strength for operating the magnetoresistive sensor in the saturation region and a magnetic field having a strength for operating the magnetoresistive sensor in the non-saturated region ( Comparing the level differences L1, L2, and L3 with respect to the electric signal for P3), the level difference L1 in the direction of the magnetic field that outputs the electric signal of the maximum level is larger than the level differences L2 and L3 in the directions of the other magnetic fields. I understand. That is, even if the strength of the auxiliary magnetic field is relatively small, the first magnetoresistive sensor or the second magnetoresistive sensor has a large level difference between when operating in the saturation region and when operating in the non-saturation region. Outputs electrical signals. Therefore, since the strength of the auxiliary magnetic field can be reduced, the auxiliary magnetic field generating means can be reduced in size.

請求項3から5によると、補助磁界発生手段はコイルであることを特徴とする。補助磁界発生手段を簡単な回路で実現できるため、補助磁界発生手段の小型化および製造コストの削減をすることができる。
また、請求項3から5によると、補助磁界発生手段のコイルは単一方向に巻くことを特徴とする。多方向に巻く場合と比較して巻き数を容易に増やせるため、コイルに供給する電流を小さくすることができる。
さらに、請求項3から5によると、制御手段はコイルに供給する電流を制御する回路を備えることを特徴とする。電流を制御する回路は簡単な回路で実現できるため、制御手段の小型化および製造コストの削減をすることができる。
According to claims 3 to 5, the auxiliary magnetic field generating means is a coil. Since the auxiliary magnetic field generating means can be realized with a simple circuit, the auxiliary magnetic field generating means can be reduced in size and the manufacturing cost can be reduced.
According to claims 3 to 5, the coil of the auxiliary magnetic field generating means is wound in a single direction. Since the number of turns can be easily increased as compared with the case of winding in multiple directions, the current supplied to the coil can be reduced.
Further, according to claims 3 to 5, the control means includes a circuit for controlling a current supplied to the coil. Since the circuit for controlling the current can be realized with a simple circuit, the control means can be reduced in size and the manufacturing cost can be reduced.

請求項4に記載の発明によれば、コイルを第1の磁気抵抗センサおよび第2の磁気抵抗センサを覆うように巻くことより、補助磁界発生手段の実装スペースを削減できる。また、コイルを立体的に巻くことにより、第1の磁気抵抗センサおよび第2の磁気抵抗に対して効率よく補助磁界を影響させることができるため、コイルの巻線数を減らしたり、コイルに流す電流を小さくしたりすることができる。
請求項5に記載の発明によれば、コイルを第1の磁気抵抗センサおよび第2の磁気抵抗センサの上方近傍または下方近傍に積層することにより、補助磁界発生手段の実装スペースを削減できる。また、コイルを半導体の積層技術により形成することができるため、補助磁界発生手段の製造コストを削減できる。
According to the fourth aspect of the invention, the space for mounting the auxiliary magnetic field generating means can be reduced by winding the coil so as to cover the first magnetoresistive sensor and the second magnetoresistive sensor. In addition, since the auxiliary magnetic field can be efficiently influenced on the first magnetoresistive sensor and the second magnetoresistance by winding the coil three-dimensionally, the number of turns of the coil can be reduced or the coil can be passed through the coil. The current can be reduced.
According to the fifth aspect of the present invention, the mounting space of the auxiliary magnetic field generating means can be reduced by stacking the coils in the vicinity of the upper part or the lower part of the first magnetoresistive sensor and the second magnetoresistive sensor. Further, since the coil can be formed by a semiconductor lamination technique, the manufacturing cost of the auxiliary magnetic field generating means can be reduced.

請求項6記載の発明では、第1の磁気抵抗センサと第2の磁気抵抗センサとは、出力する電気信号同士が45度の位相差を有するように配置されているので、補助磁界を排除した主磁界だけの状態における第1の磁気抵抗センサと第2の磁気抵抗センサの出力はそれぞれ回転角度に対して正弦波と余弦波の関係になる。したがって、制御手段は逆正接演算により簡単に回転角度の候補を選定することができる。
請求項7によると、第1の磁気抵抗センサの磁気抵抗素子と第2の磁気抵抗センサの磁気抵抗素子とは同心円上に配置されるので、磁気抵抗素子をコンパクトに配置できる。したがって、第1の磁気抵抗センサおよび前記第2の磁気抵抗センサを小型化することができる。
In the invention according to claim 6, since the first magnetoresistive sensor and the second magnetoresistive sensor are arranged so that the electrical signals to be output have a phase difference of 45 degrees, the auxiliary magnetic field is eliminated. The outputs of the first magnetoresistive sensor and the second magnetoresistive sensor in the state of only the main magnetic field have a relationship between a sine wave and a cosine wave with respect to the rotation angle. Therefore, the control means can easily select the rotation angle candidate by the arctangent calculation.
According to the seventh aspect, since the magnetoresistive element of the first magnetoresistive sensor and the magnetoresistive element of the second magnetoresistive sensor are arranged concentrically, the magnetoresistive elements can be arranged compactly. Therefore, the first magnetoresistive sensor and the second magnetoresistive sensor can be reduced in size.

請求項8記載の発明では、測定対象の回転角度の候補を選定する処理と主磁界の向きを判別する処理とを交互に実施するので、例えば測定対象が高速に回転する場合でも、直前に選定した回転角度の候補に基づいて制御手段が主磁界の向きを判別すれば、回転角度の候補を選定する処理における実際の主磁界の向きと、主磁界の向きを判別する処理において判別される主磁界の向きとを一致させることができる。したがって、正確な回転角度を測定することができる。   In the invention described in claim 8, since the process of selecting the candidate for the rotation angle of the measurement object and the process of determining the direction of the main magnetic field are alternately performed, for example, even when the measurement object rotates at high speed, it is selected immediately before If the control means determines the direction of the main magnetic field based on the rotation angle candidates, the main direction determined in the process of determining the actual main magnetic field direction and the main magnetic field direction in the process of selecting the rotation angle candidates is determined. The direction of the magnetic field can be matched. Therefore, an accurate rotation angle can be measured.

請求項9記載の発明では、主磁界の向きを判別する1回の処理につき、測定対象の回転角度の候補を選定する処理を複数回実行するので、回転角度を特定する処理の回数に対して磁界の向きを判別する処理の回数を減らすことができる。したがって、回転角度を特定する処理の実効的な処理時間を短縮することができる。   According to the ninth aspect of the present invention, the process of selecting the rotation angle candidate to be measured is executed a plurality of times for each process of determining the direction of the main magnetic field. The number of processes for determining the direction of the magnetic field can be reduced. Therefore, it is possible to shorten the effective processing time of the processing for specifying the rotation angle.

以下、本発明の複数の実施形態を図に基づいて説明する。
(第1実施形態)
図1は本発明の第1実施形態による回転角検出装置1を示す模式図である。請求項に記載の主磁界発生手段としての永久磁石2は、ステアリングホイール等の測定対象の回転軸3に取り付けられ、センサユニット4の近傍に主磁界MFを発生する。
請求項に記載の補助磁界発生手段としてのコイル5は、回転角検出用のASIC(Application Specific Integrated Circuit)6より供給される電流により、センサユニット4の近傍に補助磁界SFを発生する。具体的には例えば、コイル5は、センサユニット4が実装されているプリント基板18に積層されている(図2参照)。プリント基板18は回転角検出装置1の本体に固定されている。
Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a schematic diagram showing a rotation angle detection device 1 according to a first embodiment of the present invention. The permanent magnet 2 as the main magnetic field generating means described in the claims is attached to a rotating shaft 3 to be measured such as a steering wheel, and generates a main magnetic field MF in the vicinity of the sensor unit 4.
The coil 5 as the auxiliary magnetic field generating means described in the claims generates an auxiliary magnetic field SF in the vicinity of the sensor unit 4 by a current supplied from an ASIC (Application Specific Integrated Circuit) 6 for detecting the rotation angle. Specifically, for example, the coil 5 is laminated on a printed circuit board 18 on which the sensor unit 4 is mounted (see FIG. 2). The printed circuit board 18 is fixed to the main body of the rotation angle detection device 1.

センサユニット4は、図3に示すように磁気抵抗センサ100および磁気抵抗センサ200を備える。磁気抵抗センサ100および磁気抵抗センサ200はいずれか一方が第1磁気抵抗センサであり、他方が第2磁気抵抗センサである。磁気抵抗センサ100と磁気抵抗センサ200は、それぞれ磁気抵抗素子101から104と磁気抵抗素子201とから204のブリッジ回路である。   The sensor unit 4 includes a magnetoresistive sensor 100 and a magnetoresistive sensor 200 as shown in FIG. One of the magnetoresistive sensor 100 and the magnetoresistive sensor 200 is a first magnetoresistive sensor, and the other is a second magnetoresistive sensor. The magnetoresistive sensor 100 and the magnetoresistive sensor 200 are bridge circuits of the magnetoresistive elements 101 to 104 and the magnetoresistive elements 201 to 204, respectively.

磁気抵抗センサ100は、電源用端子120とGND用端子122間に所定の電圧が供給されると、主磁界MFと補助磁界SFにより形成される合成磁界CFの方向に応じた電圧を出力端子124と出力端子126間に出力する。以下、出力端子124と出力端子126間に出力される電圧を電気信号130と記載する。磁気抵抗センサ200は、磁気抵抗センサ100と同様に電気信号230を出力する。   When a predetermined voltage is supplied between the power supply terminal 120 and the GND terminal 122, the magnetoresistive sensor 100 outputs a voltage corresponding to the direction of the combined magnetic field CF formed by the main magnetic field MF and the auxiliary magnetic field SF to the output terminal 124. And output terminal 126. Hereinafter, the voltage output between the output terminal 124 and the output terminal 126 is referred to as an electric signal 130. The magnetoresistive sensor 200 outputs an electrical signal 230 in the same manner as the magnetoresistive sensor 100.

磁気抵抗センサ100と磁気抵抗センサ200は、同一方向の磁界に対して互いに45度の位相差を有する電気信号130と電気信号230を出力するように配置されている。具体的には、磁気抵抗センサ100が最大レベルの電気信号を出力する磁界の方向(矢印C)と磁気抵抗センサ200が最大レベルの電気信号を出力する磁界の方向(矢印D)のなす角度が45度になるように配置されている。また、磁気抵抗素子101から104および磁気抵抗素子201から204は、互いに交互に同心円上に配置されている。   The magnetoresistive sensor 100 and the magnetoresistive sensor 200 are arranged so as to output an electric signal 130 and an electric signal 230 having a phase difference of 45 degrees with respect to a magnetic field in the same direction. Specifically, the angle formed by the direction of the magnetic field (arrow C) from which the magnetoresistive sensor 100 outputs an electric signal at the maximum level and the direction of the magnetic field (arrow D) from which the magnetoresistive sensor 200 outputs an electric signal at the maximum level is set. It is arranged to be 45 degrees. In addition, the magnetoresistive elements 101 to 104 and the magnetoresistive elements 201 to 204 are alternately arranged on a concentric circle.

図1に示すように、請求項に記載の制御手段としての回転角検出用のASIC6は、CPU8、ROM10、RAM12、A/D変換回路13、演算回路14および電源回路16を備える。CPU8はROM10に記憶されているプログラムに基づき所定の処理を実行する。
A/D変換回路13は、電気信号130および電気信号230をディジタル化する。演算回路14は所定の演算を実施する。例えば演算回路14は、後述する回転角度の候補を選定する処理において逆正接演算を実施する。電源回路16は、CPU8の制御により所定のタイミングで所定の大きさの電流をコイル5に供給する。電源回路16は、請求項に記載のコイルに流れる電流を制御する回路に相当する。RAM12は、演算回路14における計算結果等を一時記憶するメモリである。
As shown in FIG. 1, the rotation angle detection ASIC 6 as a control unit described in the claims includes a CPU 8, a ROM 10, a RAM 12, an A / D conversion circuit 13, an arithmetic circuit 14, and a power supply circuit 16. The CPU 8 executes a predetermined process based on a program stored in the ROM 10.
The A / D conversion circuit 13 digitizes the electrical signal 130 and the electrical signal 230. The arithmetic circuit 14 performs a predetermined calculation. For example, the arithmetic circuit 14 performs an arc tangent calculation in a process of selecting a rotation angle candidate to be described later. The power supply circuit 16 supplies a predetermined current to the coil 5 at a predetermined timing under the control of the CPU 8. The power supply circuit 16 corresponds to a circuit for controlling a current flowing in the coil described in the claims. The RAM 12 is a memory that temporarily stores calculation results and the like in the arithmetic circuit 14.

以下、主磁界MFと補助磁界SFと合成磁界CFの関係について図4に基づいて説明する。
永久磁石2は回転軸3に取り付けられているので、主磁界MFは回転軸3とともに回転する。補助磁界SFの方向は矢印Cと同一方向である。つまり、コイル5はセンサユニット4の近傍で矢印Cと直交するようにプリント基板18に配線されている(図2参照)。
以降、主磁界MFと矢印Cが同一方向のときの回転角度を0度、回転軸3とともに回転する主磁界の方向は反時計回りに増大するものとする。
Hereinafter, the relationship among the main magnetic field MF, the auxiliary magnetic field SF, and the composite magnetic field CF will be described with reference to FIG.
Since the permanent magnet 2 is attached to the rotating shaft 3, the main magnetic field MF rotates with the rotating shaft 3. The direction of the auxiliary magnetic field SF is the same as the arrow C. That is, the coil 5 is wired to the printed circuit board 18 in the vicinity of the sensor unit 4 so as to be orthogonal to the arrow C (see FIG. 2).
Hereinafter, it is assumed that the rotation angle when the main magnetic field MF and the arrow C are in the same direction is 0 degree, and the direction of the main magnetic field that rotates together with the rotary shaft 3 increases counterclockwise.

電源回路16によりコイル5に電流が供給されないとき、補助磁界SFは発生しないため、合成磁界CFと主磁界MFは同一の磁界である(図4(a)参照)。
主磁界MFと補助磁界SFが同一方向のとき、合成磁界CFと主磁界MFは同一方向で、合成磁界CFの強さは主磁界MFよりも大きくなる(図4(b)参照)。
主磁界MFと補助磁界SFが逆方向のとき、補助磁界SFの強さが主磁界MFの強さよりも小さいとすると、合成磁界CFと主磁界MFは同一方向で、合成磁界CFの強さは主磁界MFよりも小さくなる(図4(d)参照)。
主磁界MFと矢印Cのなす角度θが0度より大きく180度より小さい範囲では、合成磁界CFと矢印Cのなす角度φは主磁界MFと矢印Cのなす角度θよりも小さくなる(図4(c)参照)。
主磁界MFと矢印Cのなす角度θが180度より大きく360度より小さい範囲では、合成磁界CFと矢印Cのなす角度φは主磁界MFと矢印Cのなす角度θよりも大きくなる(図4(e)参照)。
When no current is supplied to the coil 5 by the power supply circuit 16, the auxiliary magnetic field SF is not generated, and therefore the composite magnetic field CF and the main magnetic field MF are the same magnetic field (see FIG. 4A).
When the main magnetic field MF and the auxiliary magnetic field SF are in the same direction, the combined magnetic field CF and the main magnetic field MF are in the same direction, and the strength of the combined magnetic field CF is larger than the main magnetic field MF (see FIG. 4B).
When the main magnetic field MF and the auxiliary magnetic field SF are in opposite directions and the strength of the auxiliary magnetic field SF is smaller than the strength of the main magnetic field MF, the combined magnetic field CF and the main magnetic field MF are in the same direction, and the strength of the combined magnetic field CF is It becomes smaller than the main magnetic field MF (see FIG. 4D).
In the range where the angle θ formed by the main magnetic field MF and the arrow C is greater than 0 ° and smaller than 180 °, the angle φ formed by the combined magnetic field CF and the arrow C is smaller than the angle θ formed by the main magnetic field MF and the arrow C (FIG. 4). (See (c)).
In the range where the angle θ formed by the main magnetic field MF and the arrow C is greater than 180 degrees and smaller than 360 degrees, the angle φ formed by the composite magnetic field CF and the arrow C is larger than the angle θ formed by the main magnetic field MF and the arrow C (FIG. 4). (See (e)).

補助磁界SFが発生していない状態において、主磁界MFの強さは、センサユニット4の磁気抵抗センサ100(抵抗磁気抵抗素子101から104)、および磁気抵抗センサ200(磁気抵抗素子201から204)を回転軸3の回転角度に関わらず飽和領域で動作させる大きさ、例えば図5のP1に示す大きさの磁界である。
永久磁石2は測定対象の回転軸3に配置されているため、回転軸3の回転角度は主磁界MFの方向と矢印Cのなす角度から特定することができる。以下、主磁界MFの方向と矢印Cのなす角度θを回転角度と記載する。補助磁界SFの強さは、コイル5に供給される電流の大きさに応じて変化する。
In the state where the auxiliary magnetic field SF is not generated, the strength of the main magnetic field MF is as follows: the magnetoresistive sensor 100 (resistive magnetoresistive elements 101 to 104) and the magnetoresistive sensor 200 (magnetoresistive elements 201 to 204) of the sensor unit 4. Is a magnetic field having a magnitude that causes the axis to operate in the saturation region regardless of the rotation angle of the rotary shaft 3, for example, a magnitude indicated by P1 in FIG.
Since the permanent magnet 2 is disposed on the rotation shaft 3 to be measured, the rotation angle of the rotation shaft 3 can be specified from the angle formed by the direction of the main magnetic field MF and the arrow C. Hereinafter, the angle θ formed by the direction of the main magnetic field MF and the arrow C is referred to as a rotation angle. The strength of the auxiliary magnetic field SF varies depending on the magnitude of the current supplied to the coil 5.

以下、ASIC6のCPU8が電源回路16にコイル5への電流供給を停止させている状態(以下、電流供給停止状態)、回転軸3の回転角度に関わらず磁気抵抗センサ100および磁気抵抗センサ200を飽和領域で動作させる強さの合成磁界CFを発生させる大きさの電流をASIC6がコイル5に供給している状態(以下、飽和電流供給状態)、ならびに回転軸3の回転角度が0度のとき磁気抵抗センサ100および磁気抵抗センサ200を飽和領域で動作させ、回転軸3の回転角度が180度のとき磁気抵抗センサ100および磁気抵抗センサ200を非飽和領域で動作させる強さの合成磁界CFが発生する大きさの電流をASIC6がコイル5に供給している状態(以下、非飽和電流供給状態)における電気信号130および電気信号230について説明する。   Hereinafter, the state in which the CPU 8 of the ASIC 6 stops the power supply circuit 16 from supplying current to the coil 5 (hereinafter referred to as current supply stop state), and the magnetoresistive sensor 100 and the magnetoresistive sensor 200 regardless of the rotation angle of the rotary shaft 3. When the ASIC 6 supplies the coil 5 with a current that is large enough to generate the combined magnetic field CF that operates in the saturation region (hereinafter referred to as a saturation current supply state), and when the rotation angle of the rotary shaft 3 is 0 degree. When the magnetoresistive sensor 100 and the magnetoresistive sensor 200 are operated in the saturation region, and the rotation angle of the rotary shaft 3 is 180 degrees, the combined magnetic field CF having a strength that operates the magnetoresistive sensor 100 and the magnetoresistive sensor 200 in the non-saturated region is obtained. The electric signal 130 and the electric current in a state where the ASIC 6 supplies a current of a magnitude that is generated to the coil 5 (hereinafter, a non-saturated current supply state) Issue 230 will be described.

まず、電流供給停止状態における電気信号130および電気信号230について説明する。
電流供給停止状態では、補助磁界SFが発生していないため、合成磁界CFと主磁界MFは同一方向である。また、磁気抵抗センサ100と磁気抵抗センサ200を互いに45度の位相差を有する電気信号を出力するように配置しているため、電気信号130と電気信号230は、図6(a)に示すように回転角度に対して倍角の余弦波形と正弦波形になる。そのため、電気信号130と電気信号230に基づいて逆正接演算を実施すると、容易に回転角度の候補として2つの回転角度(例えば45度と225度)を選定することができる(図6(b)参照)。
First, the electric signal 130 and the electric signal 230 in the current supply stop state will be described.
In the current supply stop state, since the auxiliary magnetic field SF is not generated, the composite magnetic field CF and the main magnetic field MF are in the same direction. Further, since the magnetoresistive sensor 100 and the magnetoresistive sensor 200 are arranged so as to output electrical signals having a phase difference of 45 degrees, the electrical signal 130 and the electrical signal 230 are as shown in FIG. The cosine waveform and sine waveform are doubled with respect to the rotation angle. Therefore, when the arc tangent calculation is performed based on the electric signal 130 and the electric signal 230, two rotation angles (for example, 45 degrees and 225 degrees) can be easily selected as rotation angle candidates (FIG. 6B). reference).

次に、飽和電流供給状態における電気信号130および電気信号230について説明する。
図7に示すように、飽和電流供給状態では、補助磁界SFの影響により、電流供給停止状態(図6(a)参照)と比較して回転角度が0度より大きく180度より小さい範囲では位相が遅れ、回転角度が180度より大きく360度より小さい範囲では位相が進む。つまり、主磁界MFの方向と補助磁界SFの方向が平行になる0度と180度を除く任意の回転角度において、電流供給停止状態と飽和電流供給状態とで電気信号130および電気信号230のレベルは異なる。
Next, the electric signal 130 and the electric signal 230 in the saturated current supply state will be described.
As shown in FIG. 7, in the saturation current supply state, due to the influence of the auxiliary magnetic field SF, the rotation angle is larger than 0 degree and smaller than 180 degrees compared to the current supply stop state (see FIG. 6A). The phase advances in the range where the rotation angle is larger than 180 degrees and smaller than 360 degrees. That is, the levels of the electric signal 130 and the electric signal 230 in the current supply stop state and the saturation current supply state at an arbitrary rotation angle other than 0 degrees and 180 degrees in which the direction of the main magnetic field MF and the direction of the auxiliary magnetic field SF are parallel. Is different.

図8(a)は、図6(a)と図7に示す電気信号130のレベル差150を0度以上180度より小さい範囲で示したグラフ151と180度以上360度より小さい範囲で示したグラフ152を重ねたグラフである。
図8(b)は、図8(a)と同様に電気信号230のレベル差250を0度以上180度より小さい範囲で示したグラフ251と180度以上360度より小さいの範囲で示したグラフ252を重ねたグラフである。
ここで、主磁界の向きを判別する際に採用する磁気抵抗センサおよび選択された磁気抵抗センサのレベル差を評価する基準を回転角度の候補に応じて決定すれば、例えば図9に示す表に従って処理をすれば、レベル差150またはレベル差250から主磁界MFの方向を判別することができる。
FIG. 8A shows the level difference 150 of the electrical signal 130 shown in FIG. 6A and FIG. 7 in the range 151 and in the range of 180 degrees to less than 360 degrees. It is a graph in which graphs 152 are superimposed.
FIG. 8B shows a graph 251 showing the level difference 250 of the electric signal 230 in the range of 0 degree or more and less than 180 degrees and a graph showing the range of 180 degree or more and less than 360 degree as in FIG. 8A. 252 is a graph in which 252 are superimposed.
Here, if the reference for evaluating the level difference between the magnetoresistive sensor employed when determining the direction of the main magnetic field and the selected magnetoresistive sensor is determined according to the rotation angle candidates, for example, according to the table shown in FIG. If the processing is performed, the direction of the main magnetic field MF can be determined from the level difference 150 or the level difference 250.

例えば、回転角度の候補が45度と225度のとき、回転角度の候補は0度(または、180度)より大きく65度(または、245度)より小さいため、磁気抵抗センサ100が選択される。磁気抵抗センサ100が出力する電気信号130のレベル差150が正の値であれば、主磁界MFの向きは0度より大きく65度より小さい範囲であることが分かるため、回転角度を45度に特定できる。レベル差150が負の値であれば、主磁界MFの向きは180度より大きく245度より小さい範囲にあることが分かるため、回転角度を225度に特定できる。しかし、回転角度の候補が0度と180度のときは、レベル差150が0であるため、回転角度を特定できない。   For example, when the rotation angle candidates are 45 degrees and 225 degrees, the rotation angle candidates are larger than 0 degrees (or 180 degrees) and smaller than 65 degrees (or 245 degrees), so the magnetoresistive sensor 100 is selected. . If the level difference 150 of the electric signal 130 output from the magnetoresistive sensor 100 is a positive value, it can be seen that the direction of the main magnetic field MF is in a range larger than 0 degree and smaller than 65 degrees. Can be identified. If the level difference 150 is a negative value, it can be seen that the direction of the main magnetic field MF is in a range larger than 180 degrees and smaller than 245 degrees, so that the rotation angle can be specified as 225 degrees. However, when the rotation angle candidates are 0 degrees and 180 degrees, the level difference 150 is 0, and thus the rotation angle cannot be specified.

次に、非飽和電流供給状態における電気信号130および電気信号230について説明する。
非飽和電流供給状態では、回転角度が0度の近傍の電気信号130および電気信号230のレベルは飽和領域で動作し、回転角度が180度の近傍の電気信号130および電気信号230のレベルが非飽和領域で動作する。したがって、図10に示すように、回転角度が0度の近傍では電気信号130および電気信号230のレベルは飽和電流供給状態と比較して変化しない。一方、回転角度が180度の近傍の電気信号130および電気信号230のレベルは飽和電流供給状態と比較して小さくなる。
Next, the electric signal 130 and the electric signal 230 in the non-saturated current supply state will be described.
In the non-saturated current supply state, the levels of the electrical signals 130 and 230 near the rotation angle of 0 degrees operate in the saturation region, and the levels of the electrical signals 130 and 230 near the rotation angle of 180 degrees are non-level. Operates in the saturation region. Therefore, as shown in FIG. 10, the levels of the electric signal 130 and the electric signal 230 do not change in the vicinity of the rotation angle of 0 degrees compared to the saturation current supply state. On the other hand, the levels of the electric signal 130 and the electric signal 230 in the vicinity of the rotation angle of 180 degrees are smaller than in the saturated current supply state.

図11(a)は、図6(a)と図10に示す電気信号130のレベル差160を0度以上180度より小さい範囲で示したグラフ161と180度以上360度より小さい範囲で示したグラフ162を重ねたグラフである。図11(b)は、図11(a)と同様に電気信号230のレベル差260を0度以上180度より小さい範囲で示したグラフ261と180度以上360度より小さい範囲で示したグラフ262を重ねたグラフである。   FIG. 11A shows the level difference 160 of the electric signal 130 shown in FIG. 6A and FIG. 10 in the range 161 and less than 180 degrees and the range 161 to less than 360 degrees. It is a graph in which the graph 162 is superimposed. 11B, similarly to FIG. 11A, the graph 261 showing the level difference 260 of the electric signal 230 in a range of 0 degrees or more and less than 180 degrees and the graph 262 showing a range of 180 degrees or more and less than 360 degrees. It is the graph which piled up.

回転角度の候補が0度と180度のとき、レベル差160が0であれば主磁界MFの向きは0度であることが分かり、レベル差160が負の値であれば主磁界MFの向きは180度であることが分かる(図11(a)参照)。また、0度と180度を除く回転角度については飽和電流供給状態と同様の処理により主磁界MFの向きを判別できる。したがって、例えば図12に示す表にしたがって処理をすることにより、主磁界MFの向きを0から360度の範囲で判別できる。   When the rotation angle candidates are 0 degrees and 180 degrees, it can be seen that the direction of the main magnetic field MF is 0 degrees if the level difference 160 is 0, and the direction of the main magnetic field MF if the level difference 160 is a negative value. Is 180 degrees (see FIG. 11A). For the rotation angles other than 0 degrees and 180 degrees, the direction of the main magnetic field MF can be determined by the same processing as in the saturated current supply state. Therefore, for example, by performing processing according to the table shown in FIG. 12, the direction of the main magnetic field MF can be determined in the range of 0 to 360 degrees.

つまり、回転角度の候補が0度と180度でないときは、合成磁界と主磁界の位相差に伴うレベル差160またはレベル差260に基づき主磁界の向きを判別し、合成磁界と主磁界とに位相差が生じない回転角度の候補が0度と180度のときは、飽和磁界と非飽和磁界とにより生じるレベル差160に基づき主磁界の向きを判別することができる。   That is, when the rotation angle candidates are not 0 degrees and 180 degrees, the direction of the main magnetic field is determined based on the level difference 160 or the level difference 260 accompanying the phase difference between the combined magnetic field and the main magnetic field, and the combined magnetic field and the main magnetic field are determined. When the rotation angle candidates that cause no phase difference are 0 degree and 180 degrees, the direction of the main magnetic field can be determined based on the level difference 160 caused by the saturated magnetic field and the unsaturated magnetic field.

図13は、電流供給停止状態において回転角度の候補を選定し、非飽和電流供給状態において主磁界MFの向きを判別し、回転角度を特定する回転角検出装置1の作動を示すフローチャートである。
以下、回転角検出装置1の作動について説明する。
ASIC6のCPU8が回転角検出の開始要求を受け付けると、電源回路16にコイル5への電流供給を停止させ、前述の電流供給停止状態に制御する(S1)。
FIG. 13 is a flowchart showing the operation of the rotation angle detection device 1 that selects a rotation angle candidate in the current supply stop state, determines the direction of the main magnetic field MF in the unsaturated current supply state, and identifies the rotation angle.
Hereinafter, the operation of the rotation angle detection device 1 will be described.
When the CPU 8 of the ASIC 6 receives the rotation angle detection start request, the power supply circuit 16 stops the current supply to the coil 5 and controls the current supply stop state (S1).

次に、ASIC6のCPU8は、A/D変換回路13によりディジタル化された任意の回転角度に対する電気信号130と電気信号230をそれぞれディジタルデータ132とディジタルデータ232としてRAM12に格納する(S2)。
次に、ASIC6のCPU8は、RAM12に格納されているディジタルデータ132およびディジタルデータ232に基づき演算回路14に逆正接演算を実行させ、回転角度の候補として2つの回転角度(例えば45度と225度)を選定する(S3)。ASIC6のCPU8は、選定された回転角度の候補をRAM12に格納する。
Next, the CPU 8 of the ASIC 6 stores the electrical signal 130 and the electrical signal 230 for an arbitrary rotation angle digitized by the A / D conversion circuit 13 in the RAM 12 as digital data 132 and digital data 232, respectively (S2).
Next, the CPU 8 of the ASIC 6 causes the arithmetic circuit 14 to execute an arc tangent calculation based on the digital data 132 and the digital data 232 stored in the RAM 12, and uses two rotation angles (for example, 45 degrees and 225 degrees) as rotation angle candidates. ) Is selected (S3). The CPU 8 of the ASIC 6 stores the selected rotation angle candidate in the RAM 12.

次に、ASIC6のCPU8は、電源回路16にコイル5への電流供給を開始させ、前述の非飽和電流供給状態に制御する(S4)。
次に、ASIC6のCPU8は、A/D変換回路13によりディジタル化された任意の回転角度に対する電気信号130と電気信号230をそれぞれディジタルデータ133とディジタルデータ233としてRAM12に格納する(S5)。
Next, the CPU 8 of the ASIC 6 causes the power supply circuit 16 to start supplying current to the coil 5 and controls it to the aforementioned unsaturated current supply state (S4).
Next, the CPU 8 of the ASIC 6 stores the electrical signal 130 and the electrical signal 230 for an arbitrary rotation angle digitized by the A / D conversion circuit 13 in the RAM 12 as digital data 133 and digital data 233, respectively (S5).

ステップS6においてASIC6のCPU8は、RAM12に格納されている回転角度の候補が65度(または、245度)以上115度(または、295度)より小さい範囲に含まれるか否かを判断し、回転角度の候補が当該範囲に含まれていない場合はステップS7を実行し、含まれている場合はステップS8を実行する。
ステップ7においてASIC6のCPU8は、RAM12に格納されているディジタルデータ132とディジタルデータ133の差分を演算回路14に計算させ、当該差分の正負に基づいて主磁界MFの向きを判別し(図12参照)、判別した主磁界MFの向きをRAM12に格納する。
In step S6, the CPU 8 of the ASIC 6 determines whether or not the rotation angle candidates stored in the RAM 12 are included in the range of 65 degrees (or 245 degrees) or more and less than 115 degrees (or 295 degrees). If the angle candidate is not included in the range, step S7 is executed, and if included, step S8 is executed.
In step 7, the CPU 8 of the ASIC 6 causes the arithmetic circuit 14 to calculate the difference between the digital data 132 stored in the RAM 12 and the digital data 133, and determines the direction of the main magnetic field MF based on the sign of the difference (see FIG. 12). ), The determined orientation of the main magnetic field MF is stored in the RAM 12.

ステップS8においてASIC6のCPU8は、演算回路14にRAM12に格納されているディジタルデータ232とディジタルデータ233の差分を計算させ、当該差分の正負に基づいて主磁界MFの向きを判別し(図12参照)、判別した主磁界MFの向きをRAM12に格納する。
ステップS7またはステップS8の実行後、ASIC6のCPU8はRAM12に格納されている回転角度の候補および主磁界MFの向きとにより回転角度を特定する(S9)。
ASIC6のCPU8は、回転角度検出の終了要求を受け付けるまでステップS1からステップS9までの処理を繰り返し実行する(S10)。
In step S8, the CPU 8 of the ASIC 6 causes the arithmetic circuit 14 to calculate the difference between the digital data 232 stored in the RAM 12 and the digital data 233, and determines the direction of the main magnetic field MF based on the sign of the difference (see FIG. 12). ), The determined orientation of the main magnetic field MF is stored in the RAM 12.
After execution of step S7 or step S8, the CPU 8 of the ASIC 6 specifies the rotation angle based on the rotation angle candidates stored in the RAM 12 and the direction of the main magnetic field MF (S9).
The CPU 8 of the ASIC 6 repeatedly executes the processing from step S1 to step S9 until it receives a rotation angle detection end request (S10).

なお、低速回転する測定対象の回転角度の検出する回転角検出装置においては、主磁界MFの向きを判別する処理の1回の実行につき回転角度の候補を選定する処理の複数回実行してもよい。具体的には例えば、図14に示すように第1の回転角度の候補を選定し(S12)、第2の回転角度の候補を選定し(S14)、主磁界MFの向きを判別し(S18またはS19)、第1の回転角度および第2の回転角度を特定(S20およびS21)してもよい。   In the rotation angle detection device that detects the rotation angle of the measurement object that rotates at a low speed, the process of selecting a rotation angle candidate may be executed a plurality of times for each execution of the process of determining the direction of the main magnetic field MF. Good. Specifically, for example, as shown in FIG. 14, a first rotation angle candidate is selected (S12), a second rotation angle candidate is selected (S14), and the direction of the main magnetic field MF is determined (S18). Alternatively, the first rotation angle and the second rotation angle may be specified (S20 and S21).

(第2実施形態)
本発明の第2実施形態を図15に示す。第2実施形態では、センサユニット4を覆うようにコイル5を巻いている。これ以外の構成は第1実施形態と実質的に同一である。
第2実施形態では、センサユニット4を覆うように立体的にコイル5を巻くことにより、磁気抵抗センサ100および磁気抵抗センサ200に対して効率よく補助磁界を影響させることができるため、コイル5の巻線数を減らしたり、コイル5に流す電流を小さくしたりすることができる。また、センサユニット4に密着してコイル5を巻くことにより、コイル5の実装スペースを削減できる。
(Second Embodiment)
A second embodiment of the present invention is shown in FIG. In the second embodiment, the coil 5 is wound so as to cover the sensor unit 4. Other configurations are substantially the same as those in the first embodiment.
In the second embodiment, since the coil 5 is wound three-dimensionally so as to cover the sensor unit 4, the auxiliary magnetic field can be efficiently influenced on the magnetoresistive sensor 100 and the magnetoresistive sensor 200. The number of windings can be reduced, or the current flowing through the coil 5 can be reduced. Further, by winding the coil 5 in close contact with the sensor unit 4, the mounting space of the coil 5 can be reduced.

以上説明した本発明の上記複数の実施形態によれば、ASIC6のCPU8は電源回路16を制御して、電流供給停止状態と非飽和電流供給状態とに制御し、電流供給停止状態において回転角度の候補を選定し、非飽和電流供給状態において主磁界の向きを判別し、回転角度を特定する。これにより、0度から360度までの回転角度を特定できる。   According to the above-described plurality of embodiments of the present invention, the CPU 8 of the ASIC 6 controls the power supply circuit 16 to control the current supply stop state and the non-saturated current supply state. Candidates are selected, the direction of the main magnetic field is determined in the unsaturated current supply state, and the rotation angle is specified. Thereby, the rotation angle from 0 degree to 360 degrees can be specified.

さらに、磁気抵抗センサ100および磁気抵抗センサ200の出力特性に着目し、0度と180度の回転角度の判別を飽和領域で動作する磁気抵抗センサ100と非飽和領域で動作する磁気抵抗センサ100との電気信号130のレベル差160に基づいて行うため、単一方向に巻かれたコイル5を1つ設ければ0度から360度の回転角度を特定できる。複数のコイルが必要ないため、回転角検出装置1を小型化することができる。また、単一方向に巻けばよいので簡単にコイル5の巻線数を増やせる。つまり、コイル5に流す電流を小さくできるため、回転角検出装置1の消費電力を削減できる。   Further, paying attention to the output characteristics of the magnetoresistive sensor 100 and the magnetoresistive sensor 200, the magnetoresistive sensor 100 that operates in the saturation region and the magnetoresistive sensor 100 that operates in the non-saturation region are used to determine the rotation angle of 0 degrees and 180 degrees Therefore, if one coil 5 wound in a single direction is provided, a rotation angle from 0 degrees to 360 degrees can be specified. Since a plurality of coils are not necessary, the rotation angle detection device 1 can be reduced in size. Further, since the winding may be performed in a single direction, the number of windings of the coil 5 can be easily increased. That is, since the current flowing through the coil 5 can be reduced, the power consumption of the rotation angle detection device 1 can be reduced.

(他の実施形態)
上記複数の実施形態では、永久磁石2を測定対象の回転軸3に配置し、センサユニット4およびコイル5を本体に固定されているプリント基板18に実装したが、永久磁石2を本体に配置し、センサユニット4およびコイル5を回転軸3に配置してもよい。また、測定対象の回転軸3に主磁界発生手段として永久磁石2を配置したが、主磁界発生手段として電磁石を回転軸3に設置してもよい。
(Other embodiments)
In the above embodiments, the permanent magnet 2 is arranged on the rotating shaft 3 to be measured, and the sensor unit 4 and the coil 5 are mounted on the printed circuit board 18 fixed to the main body. However, the permanent magnet 2 is arranged on the main body. The sensor unit 4 and the coil 5 may be disposed on the rotating shaft 3. Further, although the permanent magnet 2 is arranged as the main magnetic field generating means on the rotating shaft 3 to be measured, an electromagnet may be installed on the rotating shaft 3 as the main magnetic field generating means.

上記複数の実施形態では、請求項記載の制御手段としてのASIC6は、コイル5に供給する電流を制御することにより、補助磁界が主磁界と合成磁界を形成する状態と、補助磁界を排除し主磁界だけの状態とに電気的に磁界を制御したが、制御手段が補助磁界発生用の永久磁石をセンサユニット4に近づけたり遠ざけたりすることにより機械的に磁界を制御してもよい。   In the above embodiments, the ASIC 6 as the control means described in the claims controls the current supplied to the coil 5 so that the auxiliary magnetic field forms the main magnetic field and the combined magnetic field, and eliminates the auxiliary magnetic field. Although the magnetic field is electrically controlled so that only the magnetic field is present, the control unit may mechanically control the magnetic field by moving the auxiliary magnetic field generating permanent magnet closer to or away from the sensor unit 4.

また上記複数の実施形態では、磁気抵抗センサ100と磁気抵抗センサ200とは、互いに45度の位相差を有する電気信号130と電気信号230とを出力するように配置したが、電気信号130と電気信号230が同一の波形にならなければ、他の位相差でもよい。また、コイル5をセンサユニット4の近傍で矢印Cと直交するように配線し、矢印Cと同一方向の補助磁界を発生させたが、電気信号130と電気信号230が共に0レベルとなる磁界の方向でなければ、他の方向に補助磁界を発生させてもよい。
また上記複数の実施形態では、、電流供給停止状態における電気信号と非飽和電流供給状態における電気信号130または電気信号230のレベル差160またはレベル差260の正負に基づいて主磁界MFの向きを判別したが、所定の閾値を設定して主磁界MFの向きを判別してもよい。
In the above-described embodiments, the magnetoresistive sensor 100 and the magnetoresistive sensor 200 are arranged so as to output the electrical signal 130 and the electrical signal 230 having a phase difference of 45 degrees from each other. If the signal 230 does not have the same waveform, another phase difference may be used. In addition, the coil 5 is wired in the vicinity of the sensor unit 4 so as to be orthogonal to the arrow C, and an auxiliary magnetic field in the same direction as the arrow C is generated, but the electric signal 130 and the electric signal 230 are both at a zero level. If it is not a direction, an auxiliary magnetic field may be generated in another direction.
In the above embodiments, the direction of the main magnetic field MF is determined based on the positive / negative of the level difference 160 or the level difference 260 between the electric signal 130 in the current supply stop state and the electric signal 130 or the electric signal 230 in the unsaturated current supply state. However, the direction of the main magnetic field MF may be determined by setting a predetermined threshold value.

また上記複数の実施形態では、例えば図12に示すように回転角度の候補を0度(または、180度)以上65度(または、245度)より小さい範囲と、65度(または、245度)以上115度(または、295度)より小さい範囲と、115度(または、295度)以上180度(360度)より小さい範囲とに分け、主磁界の向きを判別する処理において採用する磁気抵抗センサと、選択された磁気抵抗センサが出力する電気信号のレベル差を評価する基準とをそれぞれの範囲に設定したが、主磁界の向きが判別できれば異なる3つの範囲に分けてもよいし、その他複数の範囲に分けてもよい。   In the above embodiments, for example, as shown in FIG. 12, the rotation angle candidates are in the range of 0 degree (or 180 degrees) to less than 65 degrees (or 245 degrees) and 65 degrees (or 245 degrees). The magnetoresistive sensor employed in the process of determining the direction of the main magnetic field, divided into a range smaller than 115 degrees (or 295 degrees) and a range smaller than 115 degrees (or 295 degrees) and smaller than 180 degrees (360 degrees). And the reference for evaluating the level difference of the electrical signal output by the selected magnetoresistive sensor are set in the respective ranges, but may be divided into three different ranges as long as the direction of the main magnetic field can be discriminated. It may be divided into ranges.

上記複数の実施形態では、ASIC6に演算回路14を設けて、CPU8が演算回路14に各種の演算を実行させたが、ASIC6に演算回路14を設けず、CPU8が各種の演算を実行してもよい。
上記第1実施形態では、コイル5をプリント基板18に積層したが、センサユニット4に組み込んでもよい。また第1実施形態では、コイル5をセンサユニット4の下方近傍に配置したが、上方近傍に配置してもよい。
In the above embodiments, the arithmetic circuit 14 is provided in the ASIC 6 and the CPU 8 causes the arithmetic circuit 14 to execute various calculations. However, the arithmetic circuit 14 is not provided in the ASIC 6 and the CPU 8 executes various calculations. Good.
In the first embodiment, the coil 5 is laminated on the printed circuit board 18, but may be incorporated in the sensor unit 4. In the first embodiment, the coil 5 is disposed near the lower part of the sensor unit 4, but may be disposed near the upper part.

本発明の第1実施形態による回転角検出装置を示す模式構成図である。It is a schematic block diagram which shows the rotation angle detection apparatus by 1st Embodiment of this invention. 第1実施形態のASIC、コイルおよびセンサユニットの実装状態を示す模式図である。It is a schematic diagram which shows the mounting state of ASIC of 1st Embodiment, a coil, and a sensor unit. 第1実施形態のセンサユニットを示す模式図である。It is a schematic diagram which shows the sensor unit of 1st Embodiment. 第1実施形態の磁界と補助磁界と合成磁界との関係を示す模式図である。It is a schematic diagram which shows the relationship between the magnetic field of 1st Embodiment, an auxiliary magnetic field, and a synthetic magnetic field. 第1実施形態の磁気抵抗センサの出力特性を示す特性図である。It is a characteristic view which shows the output characteristic of the magnetoresistive sensor of 1st Embodiment. (a)は第1実施形態の電流供給停止状態における回転角度と磁気抵抗センサが出力する電気信号との関係を示すグラフであり、(b)は(a)に示す電気信号に基づく逆正接演算の結果を示すグラフである。(A) is a graph which shows the relationship between the rotation angle in the electric current supply stop state of 1st Embodiment, and the electrical signal which a magnetoresistive sensor outputs, (b) is an arc tangent calculation based on the electrical signal shown to (a). It is a graph which shows the result. 第1実施形態の飽和電流供給状態における回転角度と磁気抵抗センサが出力する電気信号との関係を示すグラフである。It is a graph which shows the relationship between the rotation angle in the saturation current supply state of 1st Embodiment, and the electrical signal which a magnetoresistive sensor outputs. 図6(a)と図7に示す電気信号とのレベル差を示すグラフである。It is a graph which shows the level difference of Fig.6 (a) and the electric signal shown in FIG. 第1実施形態において、回転角度の候補と主磁界の向きを判別する際に採用する磁気抵抗センサと選択された磁気抵抗センサが出力する電気信号のレベル差を評価する基準と主磁界の向きとの関係を示す図である。In the first embodiment, the reference for evaluating the level difference between the magnetoresistive sensor employed when discriminating the rotation angle candidate and the orientation of the main magnetic field and the electrical signal output by the selected magnetoresistive sensor, and the orientation of the main magnetic field It is a figure which shows the relationship. 第1実施形態の非飽和電流供給状態における回転角度と磁気抵抗センサが出力する電気信号との関係を示すグラフである。It is a graph which shows the relationship between the rotation angle in the unsaturated current supply state of 1st Embodiment, and the electrical signal which a magnetoresistive sensor outputs. 図6(a)と図10に示す電気信号のレベル差を示すグラフである。It is a graph which shows the level difference of the electric signal shown to Fig.6 (a) and FIG. 第1実施形態において、回転角度の候補と主磁界の向きを判別する際に採用する磁気抵抗センサと選択された磁気抵抗センサが出力する電気信号のレベル差を評価する基準と主磁界の向きとの関係を示す図である。In the first embodiment, the reference for evaluating the level difference between the magnetoresistive sensor employed when discriminating the rotation angle candidate and the orientation of the main magnetic field and the electrical signal output by the selected magnetoresistive sensor, and the orientation of the main magnetic field It is a figure which shows the relationship. 第1実施形態の回転角度の特定処理を示すフローチャートである。It is a flowchart which shows the specific process of the rotation angle of 1st Embodiment. 他の回転角度の特定処理を示すフローチャートである。It is a flowchart which shows the specific process of another rotation angle. (a)は本発明の第2実施形態に係るコイルの巻き方を示す平面図であり、(b)は(a)のb方向の側面図である。(A) is a top view which shows how to wind the coil which concerns on 2nd Embodiment of this invention, (b) is a side view of the b direction of (a).

符号の説明Explanation of symbols

1 回転角検出装置、2 永久磁石(主磁界発生手段)、5 コイル(補助磁界発生手段)、6 ASIC(制御手段)100 磁気抵抗センサ、200 磁気抵抗センサ、CF 合成磁界、MF 主磁界、SF 補助磁界 DESCRIPTION OF SYMBOLS 1 Rotation angle detection apparatus, 2 Permanent magnet (main magnetic field generating means), 5 Coil (auxiliary magnetic field generating means), 6 ASIC (control means) 100 Magnetoresistive sensor, 200 Magnetoresistive sensor, CF synthetic magnetic field, MF main magnetic field, SF Auxiliary magnetic field

Claims (9)

測定対象の回転角度を検出する回転角検出装置であって、
主磁界を発生する主磁界発生手段と、
補助磁界を発生し、前記主磁界と合成磁界を形成可能な補助磁界発生手段と、
磁気抵抗素子を有し、前記主磁界または前記合成磁界に応じた電気信号を出力する第1の磁気抵抗センサと、
磁気抵抗素子を有し、前記主磁界または前記合成磁界に応じて前記第1の磁気抵抗センサに対し所定の位相差を有する電気信号を出力するように配置されている第2の磁気抵抗センサと、
前記主磁界と前記合成磁界を形成するように前記補助磁界発生手段を制御し、前記第1の磁気抵抗センサおよび前記第2の磁気抵抗センサが出力する電気信号に基づき前記測定対象の回転角度を特定する制御手段とを備え、
前記主磁界発生手段または前記補助磁界発生手段の一方は他方に対し前記測定対象とともに回転し、
前記主磁界の強さは、前記補助磁界を排除した状態で前記第1の磁気抵抗センサおよび前記第2の磁気抵抗センサを飽和領域で動作させる大きさであり、
前記補助磁界は前記第1の磁気抵抗センサおよび前記第2の磁気抵抗センサに対して一定方向の磁界であり、前記補助磁界の強さは前記主磁界と前記補助磁界とが同一方向のとき前記第1の磁気抵抗センサおよび前記第2の磁気抵抗センサを飽和領域で動作させ、前記主磁界と前記補助磁界が逆方向のとき前記第1の磁気抵抗センサおよび前記第2の磁気抵抗センサを非飽和領域で動作させる大きさであり、
前記制御手段は、前記第1の磁気抵抗センサおよび前記第2の磁気抵抗センサに対して前記補助磁界を排除したときの前記第1の磁気抵抗センサおよび前記第2の磁気抵抗センサが出力する電気信号に基づいて前記測定対象の回転角度の候補を選定し、選定した回転角度の候補に基づいて前記第1の磁気抵抗センサまたは前記第2の磁気抵抗センサのいずれか一方の磁気抵抗センサを選択し、前記第1の磁気抵抗センサおよび前記第2の磁気抵抗センサに対して前記補助磁界を排除したときの選択された磁気抵抗センサの電気信号と前記第1の磁気抵抗センサおよび前記第2の磁気抵抗センサに対して前記補助磁界が前記主磁界と前記合成磁界を形成しているときの前記選択された磁気抵抗センサの電気信号との信号レベルの差に基づいて前記主磁界の向きを判別し、判別した前記主磁界の向きと前記選定した回転角度の候補とから前記測定対象の回転角度を特定することを特徴とする回転角検出装置。
A rotation angle detection device for detecting a rotation angle of a measurement object,
A main magnetic field generating means for generating a main magnetic field;
An auxiliary magnetic field generating means capable of generating an auxiliary magnetic field and forming the main magnetic field and a composite magnetic field;
A first magnetoresistive sensor having a magnetoresistive element and outputting an electric signal corresponding to the main magnetic field or the combined magnetic field;
A second magnetoresistive sensor having a magnetoresistive element and arranged to output an electrical signal having a predetermined phase difference to the first magnetoresistive sensor in response to the main magnetic field or the combined magnetic field; ,
The auxiliary magnetic field generation means is controlled so as to form the main magnetic field and the combined magnetic field, and the rotation angle of the measurement object is determined based on the electrical signals output from the first magnetoresistive sensor and the second magnetoresistive sensor. Control means to identify,
One of the main magnetic field generating means or the auxiliary magnetic field generating means rotates with the object to be measured with respect to the other,
The strength of the main magnetic field is a size for operating the first magnetoresistive sensor and the second magnetoresistive sensor in a saturation region in a state where the auxiliary magnetic field is excluded.
The auxiliary magnetic field is a magnetic field in a certain direction with respect to the first magnetoresistive sensor and the second magnetoresistive sensor, and the strength of the auxiliary magnetic field is determined when the main magnetic field and the auxiliary magnetic field are in the same direction. The first magnetoresistive sensor and the second magnetoresistive sensor are operated in a saturation region, and when the main magnetic field and the auxiliary magnetic field are in opposite directions, the first magnetoresistive sensor and the second magnetoresistive sensor are not operated. It is the size to operate in the saturation region,
The control means outputs the electric power output from the first magnetoresistive sensor and the second magnetoresistive sensor when the auxiliary magnetic field is excluded from the first magnetoresistive sensor and the second magnetoresistive sensor. A candidate for the rotation angle of the measurement object is selected based on the signal, and either the first magnetoresistive sensor or the second magnetoresistive sensor is selected based on the selected rotation angle candidate. The electrical signal of the selected magnetoresistive sensor when the auxiliary magnetic field is excluded from the first magnetoresistive sensor and the second magnetoresistive sensor, the first magnetoresistive sensor, and the second magnetoresistive sensor. Based on a signal level difference with respect to the electrical signal of the selected magnetoresistive sensor when the auxiliary magnetic field forms the main magnetic field and the combined magnetic field with respect to the magnetoresistive sensor. Determine the direction of the main magnetic field, the rotation angle detection apparatus characterized by specifying the rotation angle of the measurement target from the discriminated said main magnetic field direction as a candidate of the selected the angle of rotation.
前記補助磁界発生手段は、前記第1の磁気抵抗センサまたは第2の磁気抵抗センサが最大レベルまたは最小レベルの電気信号を出力する磁界の方向と平行な前記補助磁界を発生することを特徴とする請求項1に記載の回転角検出装置。   The auxiliary magnetic field generation means generates the auxiliary magnetic field parallel to the direction of the magnetic field at which the first magnetoresistive sensor or the second magnetoresistive sensor outputs an electric signal having a maximum level or a minimum level. The rotation angle detection device according to claim 1. 前記補助磁界発生手段は、一方向に巻かれたコイルであり、前記制御手段は、前記コイルに流れる電流を制御する回路を有することを特徴とする請求項1または2に記載の回転角検出装置。   3. The rotation angle detection device according to claim 1, wherein the auxiliary magnetic field generation unit is a coil wound in one direction, and the control unit includes a circuit that controls a current flowing through the coil. . 前記コイルは、前記第1の磁気抵抗センサおよび前記第2の磁気抵抗センサを覆うように巻かれていることを特徴とする請求項3に記載の回転角検出装置。   The rotation angle detection device according to claim 3, wherein the coil is wound so as to cover the first magnetoresistive sensor and the second magnetoresistive sensor. 前記コイルは、前記第1の磁気抵抗センサおよび前記第2の磁気抵抗センサの上方近傍または下方近傍に積層されていることを特徴とする請求項3に記載の回転角検出装置。   The rotation angle detecting device according to claim 3, wherein the coil is laminated in the vicinity of the upper or lower portion of the first magnetoresistive sensor and the second magnetoresistive sensor. 前記第1の磁気抵抗センサと前記第2の磁気抵抗センサとは、出力する電気信号同士が45度の位相差を有するように配置されていることを特徴とする請求項1から5のいずれか一項記載の回転角検出装置。   The said 1st magnetoresistive sensor and the said 2nd magnetoresistive sensor are arrange | positioned so that the electrical signals to output may have a phase difference of 45 degree | times, The any one of Claim 1 to 5 characterized by the above-mentioned. The rotation angle detection device according to one item. 前記第1の磁気抵抗センサおよび前記第2の磁気抵抗センサは、それぞれ4つの磁気抵抗素子から構成されるブリッジ回路であり、
前記第1の磁気抵抗センサおよび前記第2の磁気抵抗センサの前記磁気抵抗素子は、同心円上に配置されることを特徴とする請求項1から6のいずれか一項に記載の回転角検出装置。
Each of the first magnetoresistive sensor and the second magnetoresistive sensor is a bridge circuit composed of four magnetoresistive elements,
The rotation angle detection device according to any one of claims 1 to 6, wherein the magnetoresistive elements of the first magnetoresistive sensor and the second magnetoresistive sensor are arranged concentrically. .
前記制御手段は、前記測定対象の回転角度の候補を選定する処理と前記主磁界の向きを判別する処理を交互に実施することを特徴とする請求項1から7のいずれか一項に記載の回転角検出装置。   The said control means implements the process which selects the candidate of the rotation angle candidate of the said measurement object, and the process which discriminate | determines the direction of the said main magnetic field alternately, It is any one of Claim 1 to 7 characterized by the above-mentioned. Rotation angle detector. 前記制御手段は、前記主磁界の向きを判別する1回の処理につき、前記測定対象の回転角度の候補を選定する処理を複数回実行することを特徴とする請求項1から7のいずれか一項に記載の回転角検出装置。   The said control means performs the process which selects the candidate of the rotation angle of the said measuring object in multiple times per process which discriminates the direction of the said main magnetic field, It is any one of Claim 1 to 7 characterized by the above-mentioned. The rotation angle detection device according to item.
JP2004005405A 2004-01-13 2004-01-13 Rotation angle detector Expired - Fee Related JP4145807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004005405A JP4145807B2 (en) 2004-01-13 2004-01-13 Rotation angle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004005405A JP4145807B2 (en) 2004-01-13 2004-01-13 Rotation angle detector

Publications (2)

Publication Number Publication Date
JP2005201657A true JP2005201657A (en) 2005-07-28
JP4145807B2 JP4145807B2 (en) 2008-09-03

Family

ID=34819746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004005405A Expired - Fee Related JP4145807B2 (en) 2004-01-13 2004-01-13 Rotation angle detector

Country Status (1)

Country Link
JP (1) JP4145807B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101932A (en) * 2006-10-17 2008-05-01 Tokai Rika Co Ltd Magnetic position sensor
JP2009537818A (en) * 2006-05-15 2009-10-29 メタケム インコーポレイテッド Bourdon pressure gauge sensing device
WO2011001984A1 (en) * 2009-06-30 2011-01-06 株式会社トーメンエレクトロニクス Rotation angle detecting device
WO2021128419A1 (en) * 2019-12-23 2021-07-01 峰岹科技(深圳)股份有限公司 Magnetic encoder, absolute electrical angle measurement method and system, and readable storage medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537818A (en) * 2006-05-15 2009-10-29 メタケム インコーポレイテッド Bourdon pressure gauge sensing device
JP2008101932A (en) * 2006-10-17 2008-05-01 Tokai Rika Co Ltd Magnetic position sensor
WO2011001984A1 (en) * 2009-06-30 2011-01-06 株式会社トーメンエレクトロニクス Rotation angle detecting device
CN102472639A (en) * 2009-06-30 2012-05-23 株式会社东棉电子 Rotation angle detecting device
WO2021128419A1 (en) * 2019-12-23 2021-07-01 峰岹科技(深圳)股份有限公司 Magnetic encoder, absolute electrical angle measurement method and system, and readable storage medium
US11448527B2 (en) 2019-12-23 2022-09-20 Fortior Technology (Shenzhen) Co., Ltd. Magnetic encoder, method, system for detecting absolute electrical angle, and readable storage medium

Also Published As

Publication number Publication date
JP4145807B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
JP3848670B1 (en) Rotation angle detector
JP4138952B2 (en) Angle sensor, position sensor and automobile
US6498409B1 (en) Tachometer apparatus and method for motor velocity measurement
JP5500785B2 (en) Magnetic sensor
US10508897B2 (en) Magnet device and position sensing system
JP2006300906A (en) Magneto-impedance sensor element
JP2006053146A (en) Terrestrial magnetism sensor for automatically correcting distortion of magnetic field and method thereof
JP4145807B2 (en) Rotation angle detector
JP2008102076A (en) Magnetic rotor and rotation angle detection device
JP2007155399A (en) Current sensor and current value calculation system having the same
JP2003315088A (en) Distance sensor having magnetic electric conversion element
JP2004138558A (en) Magnetic direction measuring apparatus
WO2019171763A1 (en) Linear position sensor
JP5158867B2 (en) Rotation angle detector
JP2005300216A (en) Rotation angle detecting device and manufacturing method of rotation angle detecting device
JP2017215184A (en) Rotation angle detector
JP2007085810A (en) Electrical conversion apparatus
JP2007198905A (en) Current sensor
JP2009288105A (en) Magnetically-detecting encoder
US20190044419A1 (en) Position sensor and motor
JP2005265620A (en) Magnetic sensitive element and magnetic direction measuring apparatus
US20230266149A1 (en) Rotation angle detector, rotation angle detection method, rotation angle detection program, and rotation angle detection system
JP5454390B2 (en) Rotation angle detector
JP4918386B2 (en) Magnetic field generator
JP2022061879A (en) Magnetic sensor and magnetic sensor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees