WO2019171763A1 - Linear position sensor - Google Patents

Linear position sensor Download PDF

Info

Publication number
WO2019171763A1
WO2019171763A1 PCT/JP2019/000876 JP2019000876W WO2019171763A1 WO 2019171763 A1 WO2019171763 A1 WO 2019171763A1 JP 2019000876 W JP2019000876 W JP 2019000876W WO 2019171763 A1 WO2019171763 A1 WO 2019171763A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
detection
signal
field detection
magnetic
Prior art date
Application number
PCT/JP2019/000876
Other languages
French (fr)
Japanese (ja)
Inventor
佑樹 松本
靖寛 北浦
篤史 小林
真宏 巻田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019171763A1 publication Critical patent/WO2019171763A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means

Definitions

  • This disclosure relates to a linear position sensor.
  • Patent Document 1 proposes a detection device that detects the position of a detection body.
  • the detection apparatus includes a magnetic field detection element that detects a magnetic field that changes as the detection body moves, and a bias magnet. And a detection body, a magnetic field detection element, and a bias magnet are arrange
  • the magnetic field detection element includes a first element that detects a magnetic field in the movement direction of the detection body, and a second element that detects a magnetic field in a direction opposite to the movement direction of the detection body.
  • the first element and the second element are disposed on the same position of the detection body. That is, the signal of each element is given a phase difference by inverting the magnetic field detection direction of each element. Therefore, the signal amplitude can be maximized by taking the differential signal of each element.
  • the first element and the second element when the first element and the second element are affected by the disturbance magnetic field, the first element and the second element have the magnetic field detection direction reversed, so the second element is the first element.
  • a disturbance magnetic field having a reverse phase is incident.
  • the signal amplitude of the first element increases due to the influence of the disturbance magnetic field
  • the signal amplitude of the second element also increases due to the influence of the disturbance magnetic field.
  • the signal amplitude of the first element becomes small due to the influence of the disturbance magnetic field
  • the signal amplitude of the second element also becomes small due to the influence of the disturbance magnetic field. Therefore, if the signal of each element is taken differentially, the noise contained in each signal cannot be canceled out, and it is difficult to reduce the noise.
  • This disclosure is intended to provide a linear position sensor that can reduce the influence of a disturbance magnetic field when detecting the position of a detection body.
  • the linear position sensor detects the position in the moving direction of the detection body in which the first magnetic pole and the second magnetic pole are alternately provided, and includes the following configuration.
  • the linear position sensor includes a first magnetic field detection element, a second magnetic field detection element, and a signal processing unit.
  • the first magnetic field detection element acquires the magnitude of the magnetic field in the first magnetic field detection direction as the first detection signal based on the change in the magnetic field received from the first magnetic pole and the second magnetic pole as the detection body moves.
  • the second magnetic field detection element is disposed away from the first magnetic field detection element in the movement direction, and the first magnetic field detection direction is based on a change in the magnetic field received from the first magnetic pole and the second magnetic pole as the detection body moves.
  • the signal processing unit receives the first detection signal and the second detection signal, and obtains a sine signal indicating a sine function and a cosine signal indicating a cosine function by calculating a differential between the first detection signal and the second detection signal. To do. In addition, the signal processing unit generates an arctangent signal corresponding to the amount of movement of the detected body, based on the sine signal and the cosine signal, and obtains the arctangent signal as a position signal indicating the position of the detected body. To do.
  • the first magnetic field detection element and the second magnetic field detection element have the same magnetic field detection direction, an in-phase disturbance magnetic field is incident on the first magnetic field detection element and the second magnetic field detection element.
  • the first magnetic field detection element and the second magnetic field detection element are arranged apart from each other in the moving direction, they receive magnetic fields in different directions from the detection body. For this reason, one of the detection signals is advanced and the other is retarded by the disturbance magnetic field. As a result, the influence of the disturbance magnetic field is reduced by calculating the differential between the first detection signal and the second detection signal. Therefore, it is possible to reduce the influence of the disturbance magnetic field on the position signal obtained by the signal processing unit.
  • FIG. 1 is an external view of a linear position sensor according to the first embodiment.
  • FIG. 2 is an exploded perspective view of components constituting a magnetic detection method using a magnetoresistive element
  • FIG. 5 is a diagram showing a detection body, a first magnetic field detection element, and a second magnetic field detection element
  • FIG. 6 is a diagram showing a signal generated as the detection object moves.
  • FIG. 7 is a diagram showing a position signal with respect to the amount of movement of the detection body
  • FIG. 8 is a diagram showing a case where a disturbance magnetic field is incident on each magnetic field detection element.
  • FIG. 13 is a diagram showing the angle error of the sine signal at the A position and the B position.
  • FIG. 14 is a diagram showing the S / N of the sine signal at the A position
  • FIG. 15 is a diagram showing an output error with respect to a phase difference between the A position and the B position.
  • FIG. 16 is a diagram showing a configuration in which each magnetic field detection element is arranged at the same position in the movement direction at the C position and the D position as a comparative example
  • FIG. 19 is a diagram showing the angle error of the sine signal in the comparative example
  • FIG. 20 is a diagram showing a configuration of a comparative example and an output error of a single element
  • FIG. 21 is a schematic view of a shift-by-wire system according to the second embodiment
  • FIG. 22 is a block diagram of a shift-by-wire system
  • FIG. 23 is a plan view showing a detent
  • FIG. 24 is a diagram showing the contents for detecting the position of the detent.
  • FIG. 25 is a perspective view of a manual valve
  • FIG. 26 is a diagram showing the contents for detecting the position of the manual valve.
  • the linear position sensor according to the present embodiment is a sensor that detects a position in a moving direction of a detection body in which a first magnetic pole and a second magnetic pole are alternately provided.
  • the linear position sensor is simply referred to as a sensor.
  • the sensor 100 detects the amount of movement of the detection body that moves in one direction. That is, the sensor 100 detects the current position of the detection body. Specifically, the sensor 100 acquires the position of the detection body by detecting a signal proportional to the amount of movement of the detection body.
  • the sensor 100 includes a case 101 formed by resin molding of a resin material such as PPS.
  • the case 101 has a distal end portion 102 on the detection body side, a flange portion 103 fixed to the peripheral mechanism, and a connector portion 104 to which a harness is connected.
  • a sensing portion is provided inside the tip portion 102.
  • the senor 100 is fixed to the peripheral mechanism via the flange portion 103 so that the tip portion 102 has a predetermined gap with respect to the detection surface of the detection body. Accordingly, the detection body moves relative to the sensor 100.
  • the moving direction of the detection body is not limited to linear movement or reciprocation, but may be rotation, reciprocation within a specific angle, or the like.
  • the sensor 100 can employ a magnetic detection method using a magnetoresistive element or a magnetic detection method using a Hall element.
  • the sensor 100 includes a mold IC unit 105 and a cap unit 106 as shown in FIG.
  • the mold IC unit 105 is inserted into the cap unit 106. These are accommodated in the tip portion 102 of the case 101.
  • the mold IC part 105 and the cap part 106 are integrated.
  • the main part of the mold IC part 105 is located in the hollow part of the cap part 106.
  • the cap unit 106 fixes the position of the mold IC unit 105.
  • the mold IC part 105 has a lead frame, a processing circuit chip, a sensor chip, and a mold resin part.
  • the lead frame has a plurality of leads 107 to 110.
  • the plurality of leads 107 to 110 correspond to a power supply terminal 107 to which a power supply voltage is applied, a ground terminal 108 to which a ground voltage is applied, a first output terminal 109 for outputting a signal, and a second output terminal 110.
  • the leads 107 to 110 are four for power supply, ground, and signal. Terminals are connected to the tips of the leads 107 to 110, respectively.
  • the terminal is located at the connector portion 104 of the case 101.
  • a terminal is connected to the harness.
  • Processing circuit chip and sensor chip are mounted on the lead frame with an adhesive or the like.
  • the processing circuit chip includes a circuit unit that processes the signal of the sensor chip.
  • the sensor chip includes a magnetoresistive element whose resistance value changes when affected by a magnetic field from the outside.
  • the magnetoresistive element is, for example, AMR (Anisotropic Magneto Resistance; AMR), GMR (Giant Magneto Resistance; GMR), or TMR (Tunneling Magneto Resistance; TMR).
  • the mold resin part seals a part of the lead frame, the processing circuit chip, and the sensor chip so that the tip portions of the leads 107 to 110 are exposed.
  • the mold resin portion is molded into a shape that is fixed to the hollow portion of the cap portion 106.
  • the mold IC part 105 has a lead frame, an IC chip, and a mold resin part.
  • the lead frame includes an island portion on which the IC chip is mounted.
  • the island part is arranged so that the plane part is parallel to the moving direction of the detection body.
  • the IC chip is formed with a plurality of Hall elements and a signal processing circuit unit. That is, the magnetic detection system using the Hall element has a one-chip configuration. Note that a plurality of Hall elements may be configured by a plurality of chips. What kind of chip configuration the elements and circuits have may be selected as appropriate.
  • the circuit configuration configured in the sensor chip and the processing circuit chip or the IC chip will be described.
  • the sensor 100 and the ECU 200 are electrically connected via a harness 300.
  • the harness 300 is constituted by four wires.
  • the ECU 200 is an electronic control device that includes a power supply unit 201, a control unit 202, and a ground unit 203.
  • the power supply unit 201 is a circuit unit that supplies a power supply voltage to the sensor 100.
  • the control unit 202 is a circuit unit that performs predetermined control according to the position signal input from the sensor 100. Note that the control unit 202 may be configured as a circuit unit corresponding to each of the output terminals 109 and 110.
  • the ground unit 203 is a circuit unit that sets the ground voltage of the sensor 100.
  • the sensor 100 includes a detection unit 111 and a signal processing unit 112.
  • the detection unit 111 is provided on the sensor chip.
  • the signal processing unit 112 is provided in the processing circuit chip. The detection unit 111 and the signal processing unit 112 operate based on the power supply voltage and the ground voltage supplied from the ECU 200.
  • the detection unit 111 includes a first detection unit 113 and a second detection unit 114.
  • the first detection unit 113 is configured to output a first detection signal corresponding to the position of the detection body.
  • the second detection unit 114 is configured to output a second detection signal corresponding to the position of the detection body.
  • Each detection part 113 and 114 is the same structure, and outputs the same detection signal.
  • each detection unit 113, 114 has two elements, a first magnetic field detection element 115 and a second magnetic field detection element 116.
  • FIG. 4 shows one detection unit.
  • each of the magnetic field detection elements 115 and 116 is a magnetoresistive element whose resistance value changes as the moving body moves.
  • Each of the magnetic field detection elements 115 and 116 includes a magnetic resistance, acquires a change in resistance value when the magnetic resistance is affected by the magnetic field as a voltage value, and generates a plurality of detection signals having different phases from each voltage value. It is configured as follows.
  • the signal processing unit 112 in FIG. 3 is a circuit unit that processes a signal input from the detection unit 111.
  • the signal processing unit 112 includes a first processing unit 117, a second processing unit 118, and a redundancy determining unit 119.
  • the first processing unit 117 receives the first detection signal from the first detection unit 113 and acquires the position of the target based on the first detection signal.
  • the second processing unit 118 receives the second detection signal from the second detection unit 114 and acquires the position of the target based on the second detection signal.
  • the second processing unit 118 inverts and outputs the position signal. Therefore, if there is no abnormality in the detection unit 111 and the signal processing unit 112, the position signal of the first processing unit 117 and the position signal of the second processing unit 118 are added to a constant value.
  • the first detection unit 113 and the first processing unit 117 constitute a first system.
  • the 2nd detection part 114 and the 2nd process part 118 comprise a 2nd system
  • the redundancy determination unit 119 is a circuit unit that determines whether the position acquired by the first processing unit 117 matches the position acquired by the second processing unit 118. When the two signal processing results match, the signal processing unit 112 outputs each position signal as it is. If the signal processing results of the two systems do not match, there is a possibility that an abnormality has occurred in one or both of each system. In this case, the signal processing unit 112 outputs an abnormal signal indicating abnormality to the ECU 200.
  • the signal processing is summarized as shown in FIG. 4, for example.
  • the analog process is a process for generating a plurality of detection signals.
  • the detection unit 111 may have a function of detecting temperature.
  • the temperature information is used for temperature correction Temp.
  • “Sin” and “Cos” are a sine signal and a cosine signal to be described later.
  • the analog signal subjected to analog processing is converted into a digital signal by an A / D converter (ADC) via a multiplexer (MUX).
  • ADC A / D converter
  • MUX multiplexer
  • the digital signal is processed to produce an arctangent signal.
  • adjustment values stored in the memory are used as appropriate.
  • the position signal acquired by the arithmetic processing is output to the ECU 200 according to an output format such as DAC, SENT, or PWM.
  • ADC A / D converter
  • memory a memory provided in the signal processing unit 112.
  • Analog processing may be performed by either the detection unit 111 or the signal processing unit 112.
  • the operation range of the detection body and the arrangement of the magnetic field detection elements 115 and 116 will be described.
  • the first magnetic pole 401 and the second magnetic pole 402 are alternately provided in the moving direction.
  • the first magnetic pole 401 is an N pole.
  • the second magnetic pole 402 is the S pole.
  • the relationship of the magnetic poles may be reversed.
  • the detection body 400 is obtained by magnetizing a first magnetic pole 401 and a second magnetic pole 402 on a part of a rubber magnet provided on a magnetic plate member.
  • one cycle of the arrangement of the first magnetic pole 401 and the second magnetic pole 402 is defined as 360 °.
  • 360 ° is an electrical angle. That is, the moving distance of the detection body 400 is indicated by an electrical angle.
  • the position from the width center of the first magnetic pole 401 to the width center of the adjacent first magnetic pole 401 is 360 °.
  • the detection unit 111 is fixed to the detection body 400 with a gap in the gap direction.
  • the detection body 400 moves in the movement direction with respect to the detection unit 111.
  • the first magnetic field detection element 115 and the second magnetic field detection element 116 are arranged apart from each other with a distance of an electrical angle of 180 ° in the movement direction.
  • the distance ⁇ from the width center 120 of the first magnetic field detection element 115 to the width center 121 of the second magnetic field detection element 116 in the moving direction is set to 180 °.
  • the first magnetic field detection element 115 is disposed at the A position
  • the second magnetic field detection element 116 is disposed at the B position.
  • the distance between the A position and the B position is set to 180 °.
  • the magnetic field detection direction of the first magnetic field detection element 115 and the second magnetic field detection direction of the second magnetic field detection element 116 are set in the same direction.
  • the magnetic field detection direction is a direction in which a magnetic field is most easily detected.
  • the magnetic field detection direction is a direction in which the outputs of the magnetic field detection elements 115 and 116 are maximized. It can be said that the magnetic field detection direction is the magnetic field detection axis.
  • the magnetic field detection direction is the same characteristic as the input magnetic field.
  • each of the magnetic field detection elements 115 and 116 is a magnetoresistive element, the same characteristic, that is, the same magnetoresistance effect is exhibited with respect to the same input magnetic field vector.
  • the magnetic field detection elements 115 and 116 are Hall elements, the same characteristics, that is, the same Hall effect are exhibited with respect to the same input magnetic field intensity.
  • the magnetic field detection directions of the magnetic field detection elements 115 and 116 may be the same at the A position and the B position, and are not necessarily parallel to the magnetic force of the detection body 400.
  • each magnetic field detection direction is a direction parallel to the movement direction. Since each magnetic field detection element 115, 116 is constituted by a magnetoresistive element, each magnetic field detection direction corresponds to an easy magnetization axis.
  • the first magnetic field detection element 115 has a magnetic field in the first magnetic field detection direction based on a change in the magnetic field received from the first magnetic pole 401 and the second magnetic pole 402 as the detector 400 moves. Is acquired as the first detection signal. Similarly, the second magnetic field detection element 116 acquires the magnitude of the magnetic field in the second magnetic field detection direction in the same direction as the first magnetic field detection direction as the second detection signal.
  • each magnetic field detection element 115, 116 acquires a sine signal indicating a sine function and a cosine signal indicating a cosine function as a plurality of detection signals having different phases.
  • the detection unit 111 acquires the sine signal (sin ⁇ ) and the cosine signal (cos ⁇ ) at the position A as the first detection signal by the first magnetic field detection element 115. In addition, the detection unit 111 acquires the sine signal (sin ( ⁇ + 180 °)) and the cosine signal (cos ( ⁇ + 180 °)) at the B position as the second detection signal by the second magnetic field detection element 116. The detection unit 111 outputs these detection signals to the signal processing unit 112.
  • the signal processing unit 112 acquires a plurality of detection signals from the detection unit 111 and acquires a position signal indicating the position of the detection body 400 based on the plurality of detection signals. Specifically, the signal processing unit 112 obtains a differential sine signal and a differential cosine signal by calculating a differential between the first detection signal and the second detection signal.
  • the sine signal after differential is sin ⁇ sin ( ⁇ + 180 °).
  • the differential cosine signal is cos ⁇ cos ( ⁇ + 180 °).
  • the signal processing unit 112 calculates (signal value of the cosine signal after differential) / (signal value of the sine signal after differential). As a result, as shown in the lower part of FIG. 6, an arc tangent signal is obtained that exhibits an arc tangent function and whose signal value increases at a constant increase rate in accordance with the amount of movement of the detector 400. The signal processing unit 112 acquires an arctangent signal as a position signal.
  • the signal processing unit 112 outputs to the ECU 200 a first position signal (O1) and a second position signal (O2) obtained by inverting the first position signal (O1).
  • the disturbance magnetic field is generated from, for example, a motor disposed around the detection unit 111 or a device that generates magnetism.
  • the magnetic field detection directions of the magnetic field detection elements 115 and 116 are the same direction.
  • An in-phase disturbance magnetic field is incident on.
  • the magnetic field detection elements 115 and 116 are separated by a distance of 180 °, a reverse magnetic vector is generated in each magnetic field detection element 115 and 116.
  • the inventors of the present disclosure investigated how the signal amplitude at the A position and the B position changes due to the influence of the disturbance magnetic field. The results are shown in FIGS.
  • the horizontal axis represents the rotation angle
  • the vertical axis represents the signal amplitude of the sine signal.
  • the rotation angle corresponds to the moving distance of the detection body 400.
  • the waveform of the sine signal after the incidence of the disturbance magnetic field has an inverse relationship with the angle error of the sine signal as shown in FIG. Specifically, with respect to the amount of movement of the detection body 400, an advance waveform is obtained at the A position. On the other hand, at the B position, the sine signal has a retarded waveform. In this way, at the A position and the B position, the advance timing and the retard timing of the sine signal are opposite to each other.
  • S of the sine signal after the differential at the A position has a peak waveform that becomes a maximum value at 180 °.
  • N of the sine signal after differential at the A position has two peak waveforms that have a minimum value at 180 ° and a maximum value at around 80 ° and around 280 °. That is, when the phase difference between the A position and the B position is 180 °, S of S / N is maximized and N is minimized.
  • the inventors of the present disclosure investigated the relationship between the phase difference between the A position and the B position and the position output error. As shown in FIG. 15, the output error was minimized when the phase difference between the A position and the B position was 180 °. Also from this result, the accuracy of the position signal can be ensured by setting the phase difference between the A position and the B position to 180 °.
  • the magnetic field detection elements 115 and 116 may be arranged at the C position and the D position in the moving direction.
  • the C position and the D position are the same position in the movement direction.
  • the second magnetic field detection direction of the second magnetic field detection element 116 is rotated by 180 ° with respect to the first magnetic field detection direction of the first magnetic field detection element 115. Therefore, when a disturbance magnetic field along the moving direction is incident on the detection unit 111, a disturbance magnetic field having a reverse phase is incident on each of the magnetic field detection elements 115 and 116.
  • the timing of the advance angle and the timing of the delay angle of the sine signal after incidence of the disturbance magnetic field are the same at the C position and the D position. Accordingly, when the signal amplitude of the sine signal at the C position is increased or decreased, the signal amplitude of the sine signal at the D position is also increased or decreased. For this reason, the signal amplitude of the differential sine signal is doubled, but the noise is also doubled. Therefore, noise cannot be reduced with the configuration of the comparative example.
  • the same result as the configuration of FIG. 16 is obtained when the movement amount is detected by a single element configured by one magnetic field detection element. Therefore, although the configuration of the comparative example includes two elements, the S / N ratio is equivalent to the configuration of detecting the movement of the detection body 400 with a single element. That is, the accuracy of position detection is the same between the configuration of the comparative example and the configuration of the single element.
  • the phase difference between the A position and the B position is 0 ° or 360 °. Otherwise, the position output error is small. Therefore, the distance ⁇ from the width center 120 of the first magnetic field detection element 115 to the width center 121 of the second magnetic field detection element 116 in the movement direction may be set so as to satisfy the condition of 0 ⁇ ⁇ 360 °. .
  • the magnetic field detection direction is set based on the direction of the current flowing through the Hall element. For example, the direction of the magnetic field that maximizes the electromotive force generated in the Hall element is set as the magnetic field detection direction.
  • the detection body 400 is a movable part that moves in conjunction with the operation of the shift position of the vehicle. Specifically, the detection body 400 is applied to the shift-by-wire system 500 of the vehicle shown in FIGS. 21 and 22.
  • the ShBWECU 501 acquires information on the shifter 502 of the vehicle and controls the actuator 503.
  • a fan-shaped detent 504 is fixed to the actuator 503.
  • a manual valve 505 and a parking rod 506 are fixed to the detent 504.
  • Manual valve 505 is connected to transmission 507.
  • the parking rod 506 is connected to the parking mechanism 508.
  • the sensor 100 is used to detect the position of the detent 504 and the position of the manual valve 505, for example.
  • the shift-by-wire system 500 includes a motor / encoder 509, a TCU 510, a solenoid 511, a pump 512, and the like.
  • the ShBWECU 501 acquires range information indicating the position from the sensor 100 and controls the motor encoder 509 and the TCU 510.
  • a TCU 510 is a transmission controller and controls the solenoid 511.
  • the detent 504 When the sensor 100 detects the position of the detent 504, the detent 504 becomes the detection body 400 as shown in FIG. Therefore, a magnet 403 in which the magnetic poles 401 and 402 are laid out is fixed to the detent 504.
  • the detection body 400 may be fixed to the detent 504.
  • the sensor 100 As shown in FIG. 24, the sensor 100 is fixed to the housing 513 so as to face the magnet 403 of the detent 504. Thus, when the detent 504 is rotated by the actuator 503, the sensor 100 detects the rotational position of the detent 504.
  • FIG. 22 shows a configuration for detecting the position of the manual valve 505.
  • the position of the shift position can be detected by detecting the positions of the detent 504 and the manual valve 505 by the sensor 100.
  • the application of the sensor 100 is not limited to a vehicle, and can be widely used for industrial robots, manufacturing facilities, and the like as detecting the position of a movable part. Further, the sensor 100 may not have a redundant function. In this case, there are three leads 107 to 110.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

A linear position sensor including a first magnetic field detection element (115), a second magnetic field detection element (116), and a signal processing unit (112). The first magnetic field detection element obtains, as a first detection signal, the size of the magnetic field in a first magnetic field detection direction, on the basis of change in magnetic field received from a first magnetic pole and a second magnetic pole as a detection body moves. The second magnetic field detection element is arranged separated from the first magnetic field detection element in the travel direction and obtains, as a second detection signal, the size of the magnetic field in the second magnetic field detection direction in the same direction as the first magnetic field detection direction, obtaining same on the basis of change in magnetic field received from the first magnetic pole and the second magnetic pole as the detection body moves. The signal processing unit obtains a sine signal indicating a sine function and a cosine signal indicating a cosine function, by calculating the differential between the first detection signal and the second detection signal. The signal processing unit: generates an arc tangent signal indicating the arc tangent function and corresponding to the travel amount for the detection body, generating same on the basis of the sine signal and the cosine signal; and obtains the arc tangent signal as a position signal indicating the position of the detection body.

Description

リニアポジションセンサLinear position sensor 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年3月7日に出願された日本特許出願2018-41170号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-41170 filed on March 7, 2018, the contents of which are incorporated herein by reference.
 本開示は、リニアポジションセンサに関する。 This disclosure relates to a linear position sensor.
 従来より、検出体の位置を検出する検出装置が、例えば特許文献1で提案されている。検出装置は、検出体の移動に伴って変化する磁界を検出する磁界検出素子、及びバイアス磁石を備えている。そして、一直線上に検出体、磁界検出素子、及びバイアス磁石が配置される。 Conventionally, for example, Patent Document 1 proposes a detection device that detects the position of a detection body. The detection apparatus includes a magnetic field detection element that detects a magnetic field that changes as the detection body moves, and a bias magnet. And a detection body, a magnetic field detection element, and a bias magnet are arrange | positioned on a straight line.
 磁界検出素子は、検出体の移動方向の磁界を検出する第1素子と、検出体の移動方向に対して逆方向の磁界を検出する第2素子と、を備える。第1素子及び第2素子は、検出体の同じ位置上に配置されている。つまり、各素子の磁界検出方向を反転させることで、各素子の信号に位相差を持たせている。よって、各素子の信号の差動を取ることで、信号振幅を最大化できるようになっている。 The magnetic field detection element includes a first element that detects a magnetic field in the movement direction of the detection body, and a second element that detects a magnetic field in a direction opposite to the movement direction of the detection body. The first element and the second element are disposed on the same position of the detection body. That is, the signal of each element is given a phase difference by inverting the magnetic field detection direction of each element. Therefore, the signal amplitude can be maximized by taking the differential signal of each element.
特開2005-257434号公報JP 2005-257434 A
 しかしながら、上記従来の技術では、第1素子及び第2素子が外乱磁界の影響を受けた場合、第1素子及び第2素子は磁界検出方向が逆転しているので、第2素子は第1素子に対して逆相の外乱磁界を入射する。このため、第1素子の信号振幅が外乱磁界の影響で大きくなると、第2素子の信号振幅も外乱磁界の影響で大きくなる。また、第1素子の信号振幅が外乱磁界の影響で小さくなると、第2素子の信号振幅も外乱磁界の影響で小さくなる。したがって、各素子の信号の差動を取ると、各信号に含まれるノイズを相殺できず、ノイズを小さくすることが難しい。 However, in the above-described conventional technology, when the first element and the second element are affected by the disturbance magnetic field, the first element and the second element have the magnetic field detection direction reversed, so the second element is the first element. In contrast, a disturbance magnetic field having a reverse phase is incident. For this reason, when the signal amplitude of the first element increases due to the influence of the disturbance magnetic field, the signal amplitude of the second element also increases due to the influence of the disturbance magnetic field. Further, when the signal amplitude of the first element becomes small due to the influence of the disturbance magnetic field, the signal amplitude of the second element also becomes small due to the influence of the disturbance magnetic field. Therefore, if the signal of each element is taken differentially, the noise contained in each signal cannot be canceled out, and it is difficult to reduce the noise.
 本開示は、検出体の位置を検出するに際し、外乱磁界の影響を低減することができるリニアポジションセンサを提供することを目的とする。 This disclosure is intended to provide a linear position sensor that can reduce the influence of a disturbance magnetic field when detecting the position of a detection body.
 本開示の一態様によると、第1磁極と第2磁極とが交互に設けられた検出体の移動方向における位置を検出するリニアポジションセンサであって、以下の構成を含んでいる。 According to one aspect of the present disclosure, the linear position sensor detects the position in the moving direction of the detection body in which the first magnetic pole and the second magnetic pole are alternately provided, and includes the following configuration.
 リニアポジションセンサは、第1磁界検出素子、第2磁界検出素子、及び信号処理部を含む。 The linear position sensor includes a first magnetic field detection element, a second magnetic field detection element, and a signal processing unit.
 第1磁界検出素子は、検出体の移動に伴って、第1磁極及び第2磁極から受ける磁界の変化に基づいて、第1磁界検出方向の磁界の大きさを第1検出信号として取得する。 The first magnetic field detection element acquires the magnitude of the magnetic field in the first magnetic field detection direction as the first detection signal based on the change in the magnetic field received from the first magnetic pole and the second magnetic pole as the detection body moves.
 第2磁界検出素子は、移動方向において第1磁界検出素子から離れて配置され、検出体の移動に伴って、第1磁極及び第2磁極から受ける磁界の変化に基づいて、第1磁界検出方向と同じ方向の第2磁界検出方向の磁界の大きさを第2検出信号として取得する。 The second magnetic field detection element is disposed away from the first magnetic field detection element in the movement direction, and the first magnetic field detection direction is based on a change in the magnetic field received from the first magnetic pole and the second magnetic pole as the detection body moves. The magnitude of the magnetic field in the second magnetic field detection direction in the same direction as is acquired as the second detection signal.
 信号処理部は、第1検出信号及び第2検出信号を入力し、第1検出信号及び第2検出信号の差動を演算することで正弦関数を示す正弦信号及び余弦関数を示す余弦信号を取得する。また、信号処理部は、正弦信号及び余弦信号に基づいて逆正接関数を示すと共に検出体の移動量に応じた逆正接信号を生成し、逆正接信号を検出体の位置を示す位置信号として取得する。 The signal processing unit receives the first detection signal and the second detection signal, and obtains a sine signal indicating a sine function and a cosine signal indicating a cosine function by calculating a differential between the first detection signal and the second detection signal. To do. In addition, the signal processing unit generates an arctangent signal corresponding to the amount of movement of the detected body, based on the sine signal and the cosine signal, and obtains the arctangent signal as a position signal indicating the position of the detected body. To do.
 これによると、第1磁界検出素子及び第2磁界検出素子は磁界検出方向が同じであるので、第1磁界検出素子及び第2磁界検出素子には同相の外乱磁界が入射する。また、第1磁界検出素子及び第2磁界検出素子は移動方向において離れて配置されているので、検出体から異なる方向の磁界を受ける。このため、外乱磁界によって各検出信号の一方が進角となり、他方が遅角となる。これにより、第1検出信号及び第2検出信号の差動が演算されることで外乱磁界による影響が小さくなる。したがって、信号処理部によって得られる位置信号における外乱磁界の影響を低減することができる。 According to this, since the first magnetic field detection element and the second magnetic field detection element have the same magnetic field detection direction, an in-phase disturbance magnetic field is incident on the first magnetic field detection element and the second magnetic field detection element. In addition, since the first magnetic field detection element and the second magnetic field detection element are arranged apart from each other in the moving direction, they receive magnetic fields in different directions from the detection body. For this reason, one of the detection signals is advanced and the other is retarded by the disturbance magnetic field. As a result, the influence of the disturbance magnetic field is reduced by calculating the differential between the first detection signal and the second detection signal. Therefore, it is possible to reduce the influence of the disturbance magnetic field on the position signal obtained by the signal processing unit.
 本開示についての上記及び他の目的、特徴や利点は、添付図面を参照した下記詳細な説明から、より明確になる。添付図面において、
図1は、第1実施形態に係るリニアポジションセンサの外観図であり、 図2は、磁気抵抗素子を用いた磁気検出方式を構成する部品の分解斜視図であり、 図3は、リニアポジションセンサの回路構成を示した図であり、 図4は、図3に示された回路構成の信号処理の内容を示した図であり、 図5は、検出体、第1磁界検出素子、及び第2磁界検出素子を示した図であり、 図6は、検出体の移動に伴って生成される信号を示した図であり、 図7は、検出体の移動量に対する位置信号を示した図であり、 図8は、外乱磁界が各磁界検出素子に入射する場合を示した図であり、 図9は、距離θ=0°の場合における外乱磁界の入射前後の正弦信号を示した図であり、 図10は、距離θ=45°の場合における外乱磁界の入射前後の正弦信号を示した図であり、 図11は、距離θ=90°の場合における外乱磁界の入射前後の正弦信号を示した図であり、 図12は、距離θ=135°の場合における外乱磁界の入射前後の正弦信号を示した図であり、 図13は、A位置及びB位置における正弦信号の角度誤差を示した図であり、 図14は、A位置における正弦信号のS/Nを示した図であり、 図15は、A位置とB位置との位相差に対する出力誤差を示した図であり、 図16は、比較例として、移動方向において各磁界検出素子が同じ位置であるC位置とD位置とに配置された構成を示した図であり、 図17は、比較例において、距離θ=45°の場合における外乱磁界の入射前後の正弦信号を示した図であり、 図18は、比較例において、距離θ=135°の場合における外乱磁界の入射前後の正弦信号を示した図であり、 図19は、比較例における正弦信号の角度誤差を示した図であり、 図20は、比較例の構成と単素子の出力誤差を示した図であり、 図21は、第2実施形態に係るシフトバイワイヤシステムの概略図であり、 図22は、シフトバイワイヤシステムのブロック図であり、 図23は、ディテントを示した平面図であり、 図24は、ディテントの位置を検出する内容を示した図であり、 図25は、マニュアルバルブの斜視図であり、 図26は、マニュアルバルブの位置を検出する内容を示した図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. In the accompanying drawings,
FIG. 1 is an external view of a linear position sensor according to the first embodiment. FIG. 2 is an exploded perspective view of components constituting a magnetic detection method using a magnetoresistive element, FIG. 3 is a diagram showing a circuit configuration of the linear position sensor. 4 is a diagram showing the contents of signal processing of the circuit configuration shown in FIG. FIG. 5 is a diagram showing a detection body, a first magnetic field detection element, and a second magnetic field detection element, FIG. 6 is a diagram showing a signal generated as the detection object moves. FIG. 7 is a diagram showing a position signal with respect to the amount of movement of the detection body, FIG. 8 is a diagram showing a case where a disturbance magnetic field is incident on each magnetic field detection element. FIG. 9 is a diagram showing sinusoidal signals before and after the incidence of the disturbance magnetic field when the distance θ = 0 °. FIG. 10 is a diagram showing sinusoidal signals before and after the incidence of a disturbance magnetic field when the distance θ = 45 °. FIG. 11 is a diagram showing sinusoidal signals before and after the incidence of a disturbance magnetic field when the distance θ = 90 °. FIG. 12 is a diagram showing a sine signal before and after the incidence of the disturbance magnetic field when the distance θ = 135 °. FIG. 13 is a diagram showing the angle error of the sine signal at the A position and the B position. FIG. 14 is a diagram showing the S / N of the sine signal at the A position, FIG. 15 is a diagram showing an output error with respect to a phase difference between the A position and the B position. FIG. 16 is a diagram showing a configuration in which each magnetic field detection element is arranged at the same position in the movement direction at the C position and the D position as a comparative example, FIG. 17 is a diagram showing a sine signal before and after the incidence of the disturbance magnetic field in the case of the distance θ = 45 ° in the comparative example. FIG. 18 is a diagram showing a sine signal before and after the incidence of a disturbance magnetic field when the distance θ = 135 ° in the comparative example, FIG. 19 is a diagram showing the angle error of the sine signal in the comparative example, FIG. 20 is a diagram showing a configuration of a comparative example and an output error of a single element, FIG. 21 is a schematic view of a shift-by-wire system according to the second embodiment, FIG. 22 is a block diagram of a shift-by-wire system, FIG. 23 is a plan view showing a detent, FIG. 24 is a diagram showing the contents for detecting the position of the detent. FIG. 25 is a perspective view of a manual valve, FIG. 26 is a diagram showing the contents for detecting the position of the manual valve.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, portions corresponding to those described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each embodiment, the other embodiments described above can be applied to other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
 (第1実施形態)
 以下、本開示の第1実施形態について図を参照して説明する。本実施形態に係るリニアポジションセンサは、第1磁極と第2磁極とが交互に設けられた検出体の移動方向における位置を検出するセンサである。以下、リニアポジションセンサを単にセンサと言う。
(First embodiment)
Hereinafter, a first embodiment of the present disclosure will be described with reference to the drawings. The linear position sensor according to the present embodiment is a sensor that detects a position in a moving direction of a detection body in which a first magnetic pole and a second magnetic pole are alternately provided. Hereinafter, the linear position sensor is simply referred to as a sensor.
 図1に示されるように、センサ100は、一方向に移動する検出体の移動量を検出する。すなわち、センサ100は、検出体の現在の位置を検出する。具体的には、センサ100は、検出体の移動量に比例する信号を検出することで、検出体の位置を取得する。 As shown in FIG. 1, the sensor 100 detects the amount of movement of the detection body that moves in one direction. That is, the sensor 100 detects the current position of the detection body. Specifically, the sensor 100 acquires the position of the detection body by detecting a signal proportional to the amount of movement of the detection body.
 センサ100は、PPS等の樹脂材料が樹脂成形されたことによって形成されたケース101を備えている。ケース101は、検出体側の先端部102、周辺機構に固定されるフランジ部103、ハーネスが接続されるコネクタ部104を有している。先端部102の内部にセンシング部分が設けられている。 The sensor 100 includes a case 101 formed by resin molding of a resin material such as PPS. The case 101 has a distal end portion 102 on the detection body side, a flange portion 103 fixed to the peripheral mechanism, and a connector portion 104 to which a harness is connected. A sensing portion is provided inside the tip portion 102.
 また、先端部102が検出体の検出面に対して所定のギャップを持つように、センサ100がフランジ部103を介して周辺機構に固定される。したがって、検出体がセンサ100に対して移動する。なお、検出体の移動方向は直進や往復に限られず、回転や特定の角度内での往復等でも良い。 In addition, the sensor 100 is fixed to the peripheral mechanism via the flange portion 103 so that the tip portion 102 has a predetermined gap with respect to the detection surface of the detection body. Accordingly, the detection body moves relative to the sensor 100. Note that the moving direction of the detection body is not limited to linear movement or reciprocation, but may be rotation, reciprocation within a specific angle, or the like.
 センサ100は、磁気抵抗素子を用いた磁気検出方式、または、ホール素子を用いた磁気検出方式を採用することができる。磁気抵抗素子を用いた磁気検出方式の場合、図2に示されるように、センサ100は、モールドIC部105及びキャップ部106を備えている。モールドIC部105は、キャップ部106に差し込まれる。これらは、ケース101の先端部102に収容される。 The sensor 100 can employ a magnetic detection method using a magnetoresistive element or a magnetic detection method using a Hall element. In the case of a magnetic detection method using a magnetoresistive element, the sensor 100 includes a mold IC unit 105 and a cap unit 106 as shown in FIG. The mold IC unit 105 is inserted into the cap unit 106. These are accommodated in the tip portion 102 of the case 101.
 モールドIC部105及びキャップ部106は一体化される。モールドIC部105の主な部分は、キャップ部106の中空部に位置する。キャップ部106は、モールドIC部105の位置を固定する。 The mold IC part 105 and the cap part 106 are integrated. The main part of the mold IC part 105 is located in the hollow part of the cap part 106. The cap unit 106 fixes the position of the mold IC unit 105.
 モールドIC部105は、リードフレーム、処理回路チップ、センサチップ、及びモールド樹脂部を有している。リードフレームは、複数のリード107~110を有している。複数のリード107~110は、電源電圧が印加される電源端子107、グランド電圧が印加されるグランド端子108、信号を出力するための第1出力端子109及び第2出力端子110に対応している。つまり、各リード107~110は、電源用、グランド用、及び信号用の4本である。各リード107~110の先端にはターミナルがそれぞれ接続されている。ターミナルは、ケース101のコネクタ部104に位置する。また、ターミナルがハーネスに接続される。 The mold IC part 105 has a lead frame, a processing circuit chip, a sensor chip, and a mold resin part. The lead frame has a plurality of leads 107 to 110. The plurality of leads 107 to 110 correspond to a power supply terminal 107 to which a power supply voltage is applied, a ground terminal 108 to which a ground voltage is applied, a first output terminal 109 for outputting a signal, and a second output terminal 110. . That is, the leads 107 to 110 are four for power supply, ground, and signal. Terminals are connected to the tips of the leads 107 to 110, respectively. The terminal is located at the connector portion 104 of the case 101. A terminal is connected to the harness.
 処理回路チップ及びセンサチップは、接着剤等によってリードフレームに実装されている。処理回路チップは、センサチップの信号を処理する回路部が構成されている。センサチップは、外部から磁界の影響を受けたときに抵抗値が変化する磁気抵抗素子を含んでいる。磁気抵抗素子は、例えばAMR(Anisotropic Magneto Resistance;AMR)、GMR(Giant Magneto Resistance;GMR)、TMR(Tunneling Magneto Resistance;TMR)である。 Processing circuit chip and sensor chip are mounted on the lead frame with an adhesive or the like. The processing circuit chip includes a circuit unit that processes the signal of the sensor chip. The sensor chip includes a magnetoresistive element whose resistance value changes when affected by a magnetic field from the outside. The magnetoresistive element is, for example, AMR (Anisotropic Magneto Resistance; AMR), GMR (Giant Magneto Resistance; GMR), or TMR (Tunneling Magneto Resistance; TMR).
 モールド樹脂部は、各リード107~110の先端部分が露出するように、リードフレームの一部、処理回路チップ、及びセンサチップを封止している。モールド樹脂部は、キャップ部106の中空部に固定される形状に成形されている。 The mold resin part seals a part of the lead frame, the processing circuit chip, and the sensor chip so that the tip portions of the leads 107 to 110 are exposed. The mold resin portion is molded into a shape that is fixed to the hollow portion of the cap portion 106.
 ホール素子を用いた磁気検出方式を採用した場合、モールドIC部105は、リードフレーム、ICチップ、及びモールド樹脂部を有している。リードフレームはICチップが実装されるアイランド部を含む。アイランド部は、平面部が検出体の移動方向に対して平行になるように配置される。ICチップは、複数のホール素子と信号処理回路部とが形成されている。つまり、ホール素子を用いた磁気検出方式では1チップ構成になっている。なお、複数のホール素子を複数のチップで構成しても構わない。素子と回路をどのようなチップ構成とするかは適宜選択すれば良い。 When the magnetic detection method using the Hall element is adopted, the mold IC part 105 has a lead frame, an IC chip, and a mold resin part. The lead frame includes an island portion on which the IC chip is mounted. The island part is arranged so that the plane part is parallel to the moving direction of the detection body. The IC chip is formed with a plurality of Hall elements and a signal processing circuit unit. That is, the magnetic detection system using the Hall element has a one-chip configuration. Note that a plurality of Hall elements may be configured by a plurality of chips. What kind of chip configuration the elements and circuits have may be selected as appropriate.
 次に、センサチップ及び処理回路チップあるいはICチップに構成された回路構成について説明する。図3に示されるように、センサ100とECU200とがハーネス300を介して電気的に接続されている。上述のように、モールドIC部105は4本のリード107~110を有しているので、ハーネス300は4本の配線によって構成されている。 Next, the circuit configuration configured in the sensor chip and the processing circuit chip or the IC chip will be described. As shown in FIG. 3, the sensor 100 and the ECU 200 are electrically connected via a harness 300. As described above, since the molded IC portion 105 has the four leads 107 to 110, the harness 300 is constituted by four wires.
 ECU200は、電源部201、制御部202、及びグランド部203を備えた電子制御装置である。電源部201は、センサ100に電源電圧を供給する回路部である。制御部202は、センサ100から入力する位置信号に応じて予め決められた制御を行う回路部である。なお、制御部202は、各出力端子109、110に対応した回路部として構成されていても良い。グランド部203はセンサ100のグランド電圧を設定する回路部である。 The ECU 200 is an electronic control device that includes a power supply unit 201, a control unit 202, and a ground unit 203. The power supply unit 201 is a circuit unit that supplies a power supply voltage to the sensor 100. The control unit 202 is a circuit unit that performs predetermined control according to the position signal input from the sensor 100. Note that the control unit 202 may be configured as a circuit unit corresponding to each of the output terminals 109 and 110. The ground unit 203 is a circuit unit that sets the ground voltage of the sensor 100.
 センサ100は、検出部111及び信号処理部112を備えている。検出部111は、センサチップに設けられている。信号処理部112は、処理回路チップに設けられている。検出部111及び信号処理部112は、ECU200から供給される電源電圧及びグランド電圧に基づいて動作する。 The sensor 100 includes a detection unit 111 and a signal processing unit 112. The detection unit 111 is provided on the sensor chip. The signal processing unit 112 is provided in the processing circuit chip. The detection unit 111 and the signal processing unit 112 operate based on the power supply voltage and the ground voltage supplied from the ECU 200.
 検出部111は、第1検出部113及び第2検出部114を有している。第1検出部113は、検出体の位置に対応した第1検出信号を出力するように構成されている。第2検出部114は、検出体の位置に対応した第2検出信号を出力するように構成されている。各検出部113、114は、同じ構成であり、同じ検出信号を出力する。 The detection unit 111 includes a first detection unit 113 and a second detection unit 114. The first detection unit 113 is configured to output a first detection signal corresponding to the position of the detection body. The second detection unit 114 is configured to output a second detection signal corresponding to the position of the detection body. Each detection part 113 and 114 is the same structure, and outputs the same detection signal.
 図4に示されるように、各検出部113、114は、第1磁界検出素子115及び第2磁界検出素子116の2つの素子を有している。なお、図4では1つの検出部を図示している。本実施形態では、各磁界検出素子115、116は、移動体の移動に伴って抵抗値が変化する磁気抵抗素子である。 As shown in FIG. 4, each detection unit 113, 114 has two elements, a first magnetic field detection element 115 and a second magnetic field detection element 116. FIG. 4 shows one detection unit. In the present embodiment, each of the magnetic field detection elements 115 and 116 is a magnetoresistive element whose resistance value changes as the moving body moves.
 各磁界検出素子115、116は、磁気抵抗を含み、磁気抵抗が磁界の影響を受けたときの抵抗値の変化を電圧値として取得し、各電圧値から位相が異なる複数の検出信号を生成するように構成されている。 Each of the magnetic field detection elements 115 and 116 includes a magnetic resistance, acquires a change in resistance value when the magnetic resistance is affected by the magnetic field as a voltage value, and generates a plurality of detection signals having different phases from each voltage value. It is configured as follows.
 図3の信号処理部112は、検出部111から入力される信号を処理する回路部である。信号処理部112は、第1処理部117、第2処理部118、冗長判定部119を備えている。 The signal processing unit 112 in FIG. 3 is a circuit unit that processes a signal input from the detection unit 111. The signal processing unit 112 includes a first processing unit 117, a second processing unit 118, and a redundancy determining unit 119.
 第1処理部117は、第1検出部113から第1検出信号を入力し、第1検出信号に基づいてターゲットの位置を取得する。第2処理部118は、第2検出部114から第2検出信号を入力し、第2検出信号に基づいてターゲットの位置を取得する。 The first processing unit 117 receives the first detection signal from the first detection unit 113 and acquires the position of the target based on the first detection signal. The second processing unit 118 receives the second detection signal from the second detection unit 114 and acquires the position of the target based on the second detection signal.
 第2処理部118は、位置信号を反転させて出力する。よって、検出部111や信号処理部112に異常が無ければ、第1処理部117の位置信号と第2処理部118の位置信号とを足し合わせると一定値になる。 The second processing unit 118 inverts and outputs the position signal. Therefore, if there is no abnormality in the detection unit 111 and the signal processing unit 112, the position signal of the first processing unit 117 and the position signal of the second processing unit 118 are added to a constant value.
 ここで、第1検出部113及び第1処理部117が第1系統を構成する。また、第2検出部114及び第2処理部118が第2系統を構成する。つまり、各検出部113、114及び各処理部117、118によって2重系が構成されている。 Here, the first detection unit 113 and the first processing unit 117 constitute a first system. Moreover, the 2nd detection part 114 and the 2nd process part 118 comprise a 2nd system | strain. That is, the detection units 113 and 114 and the processing units 117 and 118 constitute a double system.
 冗長判定部119は、第1処理部117によって取得された位置と第2処理部118によって取得された位置とが一致するか否かを判定する回路部である。2系統の信号処理結果が一致する場合、信号処理部112は、各位置信号をそのまま出力する。2系統の信号処理結果が一致しない場合、各系統のいずれか一方または両方に異常が発生している可能性がある。この場合、信号処理部112は、異常を示す異常信号をECU200に出力する。 The redundancy determination unit 119 is a circuit unit that determines whether the position acquired by the first processing unit 117 matches the position acquired by the second processing unit 118. When the two signal processing results match, the signal processing unit 112 outputs each position signal as it is. If the signal processing results of the two systems do not match, there is a possibility that an abnormality has occurred in one or both of each system. In this case, the signal processing unit 112 outputs an abnormal signal indicating abnormality to the ECU 200.
 信号処理をまとめると、例えば図4の内容となる。アナログ処理は、複数の検出信号を生成する処理である。なお、検出部111は温度を検出する機能を有していても良い。温度情報は温度補正Tempに用いられる。また、「Sin」及び「Cos」は後述する正弦信号及び余弦信号である。 The signal processing is summarized as shown in FIG. 4, for example. The analog process is a process for generating a plurality of detection signals. Note that the detection unit 111 may have a function of detecting temperature. The temperature information is used for temperature correction Temp. “Sin” and “Cos” are a sine signal and a cosine signal to be described later.
 アナログ処理されたアナログ信号はマルチプレクサ(MUX)を介してA/Dコンバータ(ADC)でデジタル信号に変換される。デジタル信号は逆正接信号を生成するために演算処理される。アナログ処理及び演算処理では、メモリに記憶された調整値が適宜利用される。演算処理によって取得された位置信号は、DAC、SENT、PWM等の出力形式に従ってECU200に出力される。 The analog signal subjected to analog processing is converted into a digital signal by an A / D converter (ADC) via a multiplexer (MUX). The digital signal is processed to produce an arctangent signal. In analog processing and arithmetic processing, adjustment values stored in the memory are used as appropriate. The position signal acquired by the arithmetic processing is output to the ECU 200 according to an output format such as DAC, SENT, or PWM.
 なお、演算処理は信号処理部112で行われる。よって、A/Dコンバータ(ADC)やメモリは信号処理部112に設けられている。アナログ処理は検出部111及び信号処理部112のどちらで行われても良い。以上が、本実施形態に係るセンサ100の構成である。 Note that the arithmetic processing is performed by the signal processing unit 112. Therefore, an A / D converter (ADC) and a memory are provided in the signal processing unit 112. Analog processing may be performed by either the detection unit 111 or the signal processing unit 112. The above is the configuration of the sensor 100 according to the present embodiment.
 次に、検出体の動作範囲及び各磁界検出素子115、116の配置について説明する。図5に示されるように、検出体400は、第1磁極401と第2磁極402とが移動方向に交互に設けられている。第1磁極401はN極である。第2磁極402はS極である。磁極の関係は逆転していても良い。例えば、検出体400は、磁性体の板部材の上に設けられたゴム磁石の一部に第1磁極401及び第2磁極402が着磁されたものである。 Next, the operation range of the detection body and the arrangement of the magnetic field detection elements 115 and 116 will be described. As shown in FIG. 5, in the detection body 400, the first magnetic pole 401 and the second magnetic pole 402 are alternately provided in the moving direction. The first magnetic pole 401 is an N pole. The second magnetic pole 402 is the S pole. The relationship of the magnetic poles may be reversed. For example, the detection body 400 is obtained by magnetizing a first magnetic pole 401 and a second magnetic pole 402 on a part of a rubber magnet provided on a magnetic plate member.
 ここで、第1磁極401と第2磁極402との配列の1周期を360°と定義する。「360°」は電気角である。つまり、検出体400の移動距離が電気角の角度で示される。本実施形態では、第1磁極401において移動方向の幅中心から隣の第1磁極401の幅中心までの位置を360°とする。 Here, one cycle of the arrangement of the first magnetic pole 401 and the second magnetic pole 402 is defined as 360 °. “360 °” is an electrical angle. That is, the moving distance of the detection body 400 is indicated by an electrical angle. In the present embodiment, the position from the width center of the first magnetic pole 401 to the width center of the adjacent first magnetic pole 401 is 360 °.
 一方、検出部111は検出体400に対してギャップ方向にギャップを持って固定されている。検出体400が検出部111に対して移動方向に移動する。また、第1磁界検出素子115と第2磁界検出素子116とは、移動方向において180°の電気角の距離を持って離れて配置されている。 On the other hand, the detection unit 111 is fixed to the detection body 400 with a gap in the gap direction. The detection body 400 moves in the movement direction with respect to the detection unit 111. Further, the first magnetic field detection element 115 and the second magnetic field detection element 116 are arranged apart from each other with a distance of an electrical angle of 180 ° in the movement direction.
 具体的には、移動方向における第1磁界検出素子115の幅中心120から第2磁界検出素子116の幅中心121までの距離θは、180°に設定されている。移動方向において、第1磁界検出素子115はA位置に配置され、第2磁界検出素子116はB位置に配置される。A位置とB位置との距離が180°に設定されている。 Specifically, the distance θ from the width center 120 of the first magnetic field detection element 115 to the width center 121 of the second magnetic field detection element 116 in the moving direction is set to 180 °. In the moving direction, the first magnetic field detection element 115 is disposed at the A position, and the second magnetic field detection element 116 is disposed at the B position. The distance between the A position and the B position is set to 180 °.
 さらに、第1磁界検出素子115の第1磁界検出方向と、第2磁界検出素子116の第2磁界検出方向とが同じ方向に設定されている。磁界検出方向とは、磁界を最も検出しやすい方向である。磁界検出方向は、各磁界検出素子115、116の出力が最大となる方向である。磁界検出方向は、磁界検出軸であるとも言える。 Furthermore, the first magnetic field detection direction of the first magnetic field detection element 115 and the second magnetic field detection direction of the second magnetic field detection element 116 are set in the same direction. The magnetic field detection direction is a direction in which a magnetic field is most easily detected. The magnetic field detection direction is a direction in which the outputs of the magnetic field detection elements 115 and 116 are maximized. It can be said that the magnetic field detection direction is the magnetic field detection axis.
 磁界検出方向は入力磁界に対して同一特性を示すことである。各磁界検出素子115、116が磁気抵抗素子の場合、同一入力磁界ベクトルに対して、同一特性すなわち同一の磁気抵抗効果を示す。各磁界検出素子115、116がホール素子の場合、同一入力磁界強度に対して、同一特性すなわち同一のホール効果を示す。各磁界検出素子115、116の磁界検出方向は、A位置及びB位置において同じであれば良く、検出体400の磁力に対して必ずしも平行である必要はない。本実施形態では、各磁界検出方向は移動方向に平行な方向である。各磁界検出素子115、116が磁気抵抗素子によって構成されているので、各磁界検出方向は磁化容易軸に対応する。 The magnetic field detection direction is the same characteristic as the input magnetic field. When each of the magnetic field detection elements 115 and 116 is a magnetoresistive element, the same characteristic, that is, the same magnetoresistance effect is exhibited with respect to the same input magnetic field vector. When the magnetic field detection elements 115 and 116 are Hall elements, the same characteristics, that is, the same Hall effect are exhibited with respect to the same input magnetic field intensity. The magnetic field detection directions of the magnetic field detection elements 115 and 116 may be the same at the A position and the B position, and are not necessarily parallel to the magnetic force of the detection body 400. In this embodiment, each magnetic field detection direction is a direction parallel to the movement direction. Since each magnetic field detection element 115, 116 is constituted by a magnetoresistive element, each magnetic field detection direction corresponds to an easy magnetization axis.
 図6に示されるように、第1磁界検出素子115は、検出体400の移動に伴って、第1磁極401及び第2磁極402から受ける磁界の変化に基づいて、第1磁界検出方向の磁界の大きさを第1検出信号として取得する。同様に、第2磁界検出素子116は、第1磁界検出方向と同じ方向の第2磁界検出方向の磁界の大きさを第2検出信号として取得する。 As shown in FIG. 6, the first magnetic field detection element 115 has a magnetic field in the first magnetic field detection direction based on a change in the magnetic field received from the first magnetic pole 401 and the second magnetic pole 402 as the detector 400 moves. Is acquired as the first detection signal. Similarly, the second magnetic field detection element 116 acquires the magnitude of the magnetic field in the second magnetic field detection direction in the same direction as the first magnetic field detection direction as the second detection signal.
 検出体400が移動方向に移動すると、各磁界検出素子115、116の磁気ベクトルは、各磁極401、402から受ける磁界の変化に対応して変化する。すなわち、図6の円形の点線矢印に示されるように、磁気ベクトルが回転する。これにより、各磁界検出素子115、116は、位相が異なる複数の検出信号として、正弦関数を示す正弦信号及び余弦関数を示す余弦信号を取得する。 When the detection body 400 moves in the moving direction, the magnetic vectors of the magnetic field detection elements 115 and 116 change corresponding to changes in the magnetic field received from the magnetic poles 401 and 402, respectively. That is, the magnetic vector rotates as indicated by the circular dotted arrow in FIG. Thereby, each magnetic field detection element 115, 116 acquires a sine signal indicating a sine function and a cosine signal indicating a cosine function as a plurality of detection signals having different phases.
 検出部111は、第1磁界検出素子115によってA位置における正弦信号(sinθ)及び余弦信号(cosθ)を第1検出信号として取得する。また、検出部111は、第2磁界検出素子116によってB位置における正弦信号(sin(θ+180°))及び余弦信号(cos(θ+180°))を第2検出信号として取得する。検出部111はこれらの検出信号を信号処理部112に出力する。 The detection unit 111 acquires the sine signal (sin θ) and the cosine signal (cos θ) at the position A as the first detection signal by the first magnetic field detection element 115. In addition, the detection unit 111 acquires the sine signal (sin (θ + 180 °)) and the cosine signal (cos (θ + 180 °)) at the B position as the second detection signal by the second magnetic field detection element 116. The detection unit 111 outputs these detection signals to the signal processing unit 112.
 信号処理部112は、検出部111から複数の検出信号を取得し、複数の検出信号に基づいて検出体400の位置を示す位置信号を取得する。具体的には、信号処理部112は、第1検出信号及び第2検出信号の差動を演算することで、差動後の正弦信号及び差動後の余弦信号を取得する。差動後の正弦信号は、sinθ-sin(θ+180°)である。差動後の余弦信号は、cosθ-cos(θ+180°)である。 The signal processing unit 112 acquires a plurality of detection signals from the detection unit 111 and acquires a position signal indicating the position of the detection body 400 based on the plurality of detection signals. Specifically, the signal processing unit 112 obtains a differential sine signal and a differential cosine signal by calculating a differential between the first detection signal and the second detection signal. The sine signal after differential is sin θ−sin (θ + 180 °). The differential cosine signal is cos θ−cos (θ + 180 °).
 また、信号処理部112は、(差動後の余弦信号の信号値)/(差動後の正弦信号の信号値)を演算する。これにより、図6の下段に示されるように、逆正接関数を示すと共に検出体400の移動量に応じて信号値が一定の増加率で増加する逆正接信号が得られる。信号処理部112は、逆正接信号を位置信号として取得する。 Further, the signal processing unit 112 calculates (signal value of the cosine signal after differential) / (signal value of the sine signal after differential). As a result, as shown in the lower part of FIG. 6, an arc tangent signal is obtained that exhibits an arc tangent function and whose signal value increases at a constant increase rate in accordance with the amount of movement of the detector 400. The signal processing unit 112 acquires an arctangent signal as a position signal.
 図7に示されるように、信号処理部112は第1位置信号(O1)と、第1位置信号(O1)を反転させた第2位置信号(O2)をECU200に出力する。 As shown in FIG. 7, the signal processing unit 112 outputs to the ECU 200 a first position signal (O1) and a second position signal (O2) obtained by inverting the first position signal (O1).
 次に、外乱磁界が検出部111に入射する場合について説明する。外乱磁界は、例えば、検出部111の周囲に配置されたモータや磁気を発する装置等から発生する。 Next, a case where a disturbance magnetic field enters the detection unit 111 will be described. The disturbance magnetic field is generated from, for example, a motor disposed around the detection unit 111 or a device that generates magnetism.
 図8に示されるように、移動方向に沿った外乱磁界が検出部111に入射した場合、各磁界検出素子115、116の各磁界検出方向は同じ方向であるので、各磁界検出素子115、116には同相の外乱磁界が入射する。しかし、各磁界検出素子115、116は180°の距離だけ離れているので、各磁界検出素子115、116には逆向きの磁気ベクトルが発生する。 As shown in FIG. 8, when a disturbance magnetic field along the moving direction is incident on the detection unit 111, the magnetic field detection directions of the magnetic field detection elements 115 and 116 are the same direction. An in-phase disturbance magnetic field is incident on. However, since the magnetic field detection elements 115 and 116 are separated by a distance of 180 °, a reverse magnetic vector is generated in each magnetic field detection element 115 and 116.
 本開示の発明者らは、A位置及びB位置における信号振幅が外乱磁界の影響によってどのように変化するのかを調べた。結果を図9~図15に示す。 The inventors of the present disclosure investigated how the signal amplitude at the A position and the B position changes due to the influence of the disturbance magnetic field. The results are shown in FIGS.
 図9~図12は、A位置及びB位置における外乱磁界の入射前後の正弦信号を示している。横軸は回転角、縦軸は正弦信号の信号振幅である。回転角は検出体400の移動距離に対応する。 9 to 12 show sinusoidal signals before and after the incidence of the disturbance magnetic field at the A position and the B position. The horizontal axis represents the rotation angle, and the vertical axis represents the signal amplitude of the sine signal. The rotation angle corresponds to the moving distance of the detection body 400.
 図9に示されるように、距離θ=0°の場合、信号振幅が0になるので、正弦信号に差は生じない。図10、図11に示されるように、距離θ=45°、90°の場合、A位置では、外乱入射前よりも外乱入射後の信号振幅が減少している。一方、B位置では、外乱入射前よりも外乱入射後の信号振幅が増加している。 As shown in FIG. 9, when the distance θ = 0 °, the signal amplitude is 0, so there is no difference in the sine signal. As shown in FIGS. 10 and 11, when the distance θ = 45 ° and 90 °, the signal amplitude after the disturbance incidence is decreased at the position A than before the disturbance incidence. On the other hand, at the position B, the signal amplitude after the disturbance incidence is larger than that before the disturbance incidence.
 図12に示されるように、距離θ=135°の場合、A位置では、外乱入射前よりも外乱入射後の信号振幅が増加している。一方、B位置では、外乱入射前よりも外乱入射後の信号振幅が減少している。このように、一方の信号振幅が増加し、一方の信号振幅が減少する関係になっている。この関係は、距離θが180°~360°の範囲についても同じである。 As shown in FIG. 12, when the distance θ = 135 °, the signal amplitude after the disturbance incidence is increased at the position A than before the disturbance incidence. On the other hand, at the position B, the signal amplitude after the incident of the disturbance is smaller than that before the incident of the disturbance. In this way, one signal amplitude increases and one signal amplitude decreases. This relationship is the same for the range where the distance θ is 180 ° to 360 °.
 よって、外乱磁界の入射後の正弦信号が波形は、図13に示されるように、正弦信号の角度誤差が反対の関係になる。具体的には、検出体400の移動量に対して、A位置では、進角の波形となる。一方、B位置では、正弦信号が遅角の波形となる。このように、A位置とB位置とでは、正弦信号の進角のタイミングと遅角のタイミングとが反対の関係になる。 Therefore, the waveform of the sine signal after the incidence of the disturbance magnetic field has an inverse relationship with the angle error of the sine signal as shown in FIG. Specifically, with respect to the amount of movement of the detection body 400, an advance waveform is obtained at the A position. On the other hand, at the B position, the sine signal has a retarded waveform. In this way, at the A position and the B position, the advance timing and the retard timing of the sine signal are opposite to each other.
 そして、図14に示されるように、A位置における差動後の正弦信号のSは、180°で最大値となるピーク波形となった。A位置における差動後の正弦信号のNは、180°で最小値となり、80°前後及び280°前後で最大値となる2つのピーク波形となった。つまり、A位置とB位置との位相差が180°の場合、S/NのSが最大となり、Nが最小となる。 Then, as shown in FIG. 14, S of the sine signal after the differential at the A position has a peak waveform that becomes a maximum value at 180 °. N of the sine signal after differential at the A position has two peak waveforms that have a minimum value at 180 ° and a maximum value at around 80 ° and around 280 °. That is, when the phase difference between the A position and the B position is 180 °, S of S / N is maximized and N is minimized.
 これまで、正弦信号について説明したが、余弦信号についても同じことが言える。また、外乱磁界の入射方向についても、ギャップ方向に沿った外乱磁界が入射する場合等のように他方向からの入射も同じことが言える。 So far, sine signals have been explained, but the same can be said for cosine signals. The same can be said for the incident direction of the disturbance magnetic field, as in the case of the disturbance magnetic field incident along the gap direction.
 また、本開示の発明者らは、A位置とB位置との位相差と位置の出力誤差との関係を調べた。図15に示されるように、A位置とB位置との位相差が180°の場合に出力誤差が最小になった。この結果からも、A位置とB位置との位相差を180°に設定することで位置信号の精度を確保することができる。 Further, the inventors of the present disclosure investigated the relationship between the phase difference between the A position and the B position and the position output error. As shown in FIG. 15, the output error was minimized when the phase difference between the A position and the B position was 180 °. Also from this result, the accuracy of the position signal can be ensured by setting the phase difference between the A position and the B position to 180 °.
 比較例として、図16に示されるように、移動方向において各磁界検出素子115、116がC位置及びD位置に配置される場合がある。C位置及びD位置は移動方向において同じ位置である。この場合、第2磁界検出素子116の第2磁界検出方向は、第1磁界検出素子115の第1磁界検出方向に対して180°回転している。よって、移動方向に沿った外乱磁界が検出部111に入射した場合、各磁界検出素子115、116には逆相の外乱磁界が入射する。 As a comparative example, as shown in FIG. 16, the magnetic field detection elements 115 and 116 may be arranged at the C position and the D position in the moving direction. The C position and the D position are the same position in the movement direction. In this case, the second magnetic field detection direction of the second magnetic field detection element 116 is rotated by 180 ° with respect to the first magnetic field detection direction of the first magnetic field detection element 115. Therefore, when a disturbance magnetic field along the moving direction is incident on the detection unit 111, a disturbance magnetic field having a reverse phase is incident on each of the magnetic field detection elements 115 and 116.
 図17に示されるように、距離θ=45°の場合、C位置では、外乱入射前よりも外乱入射後の信号振幅が減少している。同様に、D位置では、外乱入射前よりも外乱入射後の信号振幅が減少している。 As shown in FIG. 17, when the distance θ = 45 °, the signal amplitude after the disturbance incidence is decreased at the position C than before the disturbance incidence. Similarly, at the position D, the signal amplitude after the disturbance is smaller than that before the disturbance is incident.
 図18に示されるように、距離θ=135°の場合、C位置では、外乱入射前よりも外乱入射後の信号振幅が増加している。同様に、D位置では、外乱入射前よりも外乱入射後の信号振幅が増加している。このように、比較例の構成においては、一方の信号振幅が増加すると、他方の信号振幅も増加する関係になっている。この関係は、距離θが180°~360°の範囲についても同じである。 As shown in FIG. 18, when the distance θ = 135 °, the signal amplitude after the disturbance is increased at the position C than before the disturbance is incident. Similarly, at the position D, the signal amplitude after the disturbance incidence is larger than that before the disturbance incidence. Thus, in the configuration of the comparative example, when one signal amplitude increases, the other signal amplitude also increases. This relationship is the same for the range where the distance θ is 180 ° to 360 °.
 よって、図19に示されるように、C位置とD位置とでは、外乱磁界の入射後の正弦信号の進角のタイミングと遅角のタイミングとが同じになる。これにより、C位置での正弦信号の信号振幅が大きくあるいは小さくなると、D位置での正弦信号の信号振幅も大きくあるいは小さくなる。このため、差動後の正弦信号は、信号振幅は2倍になるが、ノイズも2倍になる。したがって、比較例の構成ではノイズを小さくすることはできない。 Therefore, as shown in FIG. 19, the timing of the advance angle and the timing of the delay angle of the sine signal after incidence of the disturbance magnetic field are the same at the C position and the D position. Accordingly, when the signal amplitude of the sine signal at the C position is increased or decreased, the signal amplitude of the sine signal at the D position is also increased or decreased. For this reason, the signal amplitude of the differential sine signal is doubled, but the noise is also doubled. Therefore, noise cannot be reduced with the configuration of the comparative example.
 図20に示されるように、1つの磁界検出素子で構成された単素子によって移動量を検出する場合も図16の構成と同じ結果となる。したがって、比較例の構成は2素子を備えるが、単素子で検出体400の移動を検出する構成とS/N比が同等である。つまり、比較例の構成と単素子の構成との位置検出の精度が同等である。 As shown in FIG. 20, the same result as the configuration of FIG. 16 is obtained when the movement amount is detected by a single element configured by one magnetic field detection element. Therefore, although the configuration of the comparative example includes two elements, the S / N ratio is equivalent to the configuration of detecting the movement of the detection body 400 with a single element. That is, the accuracy of position detection is the same between the configuration of the comparative example and the configuration of the single element.
 上記の比較例では、180°の位相差を磁界検出方向の回転によって作り出している。このため、外乱磁界がC位置に対してD位置に逆相で入射してしまう。本実施形態ではこの点に着目し、外乱磁界が各磁界検出素子115、116に逆相に入射しないように、180°の位相差を各磁界検出素子115、116の距離でつくることにより、磁界検出方向の向きを変えずに、外乱磁界を各磁界検出素子115、116に同相で入射させる構成になっている。 In the above comparative example, a phase difference of 180 ° is created by rotation in the magnetic field detection direction. For this reason, the disturbance magnetic field is incident on the D position with a reverse phase with respect to the C position. In this embodiment, paying attention to this point, by creating a 180 ° phase difference at the distance between the magnetic field detection elements 115 and 116 so that the disturbance magnetic field does not enter the magnetic field detection elements 115 and 116 in reverse phase, the magnetic field Without changing the direction of the detection direction, the disturbance magnetic field is incident on the magnetic field detection elements 115 and 116 in the same phase.
 これにより、各磁界検出素子115、116の検出信号において進角と遅角とが反対のタイミングとなる関係を構築することができる。よって、A位置の検出信号が外乱磁界により増加あるいは減少しても、B位置の検出信号が減少あるいは増加するので、各検出信号の差動が演算されることにより、ノイズの成分を小さくすることができる。したがって、信号処理部112によって得られる位置信号における外乱磁界の影響を低減することができる。 Thereby, it is possible to construct a relationship in which the advance angle and the retard angle are opposite in the detection signals of the magnetic field detection elements 115 and 116. Therefore, even if the detection signal at the A position increases or decreases due to the disturbance magnetic field, the detection signal at the B position decreases or increases, so that the differential of each detection signal is calculated to reduce the noise component. Can do. Therefore, the influence of the disturbance magnetic field on the position signal obtained by the signal processing unit 112 can be reduced.
 ところで、A位置とB位置との位相差を180°に設定することが最良の配置関係ではあるが、図15に示されるように、A位置とB位置との位相差が0°あるいは360°以外であれば、位置の出力誤差は小さくなる。したがって、移動方向における第1磁界検出素子115の幅中心120から第2磁界検出素子116の幅中心121までの距離θは、0<θ<360°の条件を満たすように設定されていても良い。 Incidentally, although it is best to set the phase difference between the A position and the B position to 180 °, as shown in FIG. 15, the phase difference between the A position and the B position is 0 ° or 360 °. Otherwise, the position output error is small. Therefore, the distance θ from the width center 120 of the first magnetic field detection element 115 to the width center 121 of the second magnetic field detection element 116 in the movement direction may be set so as to satisfy the condition of 0 <θ <360 °. .
 また、各磁界検出素子115、116としてホール素子を採用する場合、磁界検出方向はホール素子に流れる電流の方向を基準に設定される。例えば、ホール素子に発生する起電力が最大となる磁界の方向が磁界検出方向に設定される。 Further, when a Hall element is adopted as each of the magnetic field detection elements 115 and 116, the magnetic field detection direction is set based on the direction of the current flowing through the Hall element. For example, the direction of the magnetic field that maximizes the electromotive force generated in the Hall element is set as the magnetic field detection direction.
 (第2実施形態)
 本実施形態では、第1実施形態と異なる部分について説明する。本実施形態に係る検出体400は、車両のシフトポジションの動作に連動して移動する可動部品である。具体的には、検出体400は、図21及び図22に示された車両のシフトバイワイヤシステム500に適用される。
(Second Embodiment)
In the present embodiment, parts different from the first embodiment will be described. The detection body 400 according to the present embodiment is a movable part that moves in conjunction with the operation of the shift position of the vehicle. Specifically, the detection body 400 is applied to the shift-by-wire system 500 of the vehicle shown in FIGS. 21 and 22.
 シフトバイワイヤシステム500では、ShBWECU501が車両のシフター502の情報を取得してアクチュエータ503を制御する。アクチュエータ503には扇形状のディテント504が固定されている。ディテント504にはマニュアルバルブ505及びパーキングロッド506が固定されている。マニュアルバルブ505はトランスミッション507に接続されている。パーキングロッド506は、パーキング機構部508に接続されている。そして、センサ100は、例えば、ディテント504の位置やマニュアルバルブ505の位置を検出するために用いられる。 In the shift-by-wire system 500, the ShBWECU 501 acquires information on the shifter 502 of the vehicle and controls the actuator 503. A fan-shaped detent 504 is fixed to the actuator 503. A manual valve 505 and a parking rod 506 are fixed to the detent 504. Manual valve 505 is connected to transmission 507. The parking rod 506 is connected to the parking mechanism 508. The sensor 100 is used to detect the position of the detent 504 and the position of the manual valve 505, for example.
 なお、シフトバイワイヤシステム500では、モータ・エンコーダ509、TCU510、ソレノイド511、ポンプ512等が備えられている。ShBWECU501は、センサ100から位置を示すレンジ情報を取得し、モータ・エンコーダ509及びTCU510を制御する。TCU510は、トランスミッションコントローラであり、ソレノイド511を制御する。 The shift-by-wire system 500 includes a motor / encoder 509, a TCU 510, a solenoid 511, a pump 512, and the like. The ShBWECU 501 acquires range information indicating the position from the sensor 100 and controls the motor encoder 509 and the TCU 510. A TCU 510 is a transmission controller and controls the solenoid 511.
 センサ100がディテント504の位置を検出する場合、図23に示されるように、ディテント504が検出体400となる。よって、ディテント504には各磁極401、402がレイアウトされた磁石403が固定されている。検出体400がディテント504に固定されていても良い。図24に示されるように、センサ100はディテント504の磁石403に対向するようにハウジング513に固定されている。これにより、ディテント504がアクチュエータ503によって回転させられた際に、センサ100はディテント504の回転位置を検出する。 When the sensor 100 detects the position of the detent 504, the detent 504 becomes the detection body 400 as shown in FIG. Therefore, a magnet 403 in which the magnetic poles 401 and 402 are laid out is fixed to the detent 504. The detection body 400 may be fixed to the detent 504. As shown in FIG. 24, the sensor 100 is fixed to the housing 513 so as to face the magnet 403 of the detent 504. Thus, when the detent 504 is rotated by the actuator 503, the sensor 100 detects the rotational position of the detent 504.
 センサ100がマニュアルバルブ505の位置を検出する場合、図25に示されるように、検出体400はマニュアルバルブ505に固定される。検出体400には各磁極401、402がレイアウトされた磁石404が固定されている。また、図26に示されるように、センサ100は検出体400の磁石404に対向するようにハウジング513に固定されている。これにより、ディテント504を介してマニュアルバルブ505が移動した際に、センサ100はマニュアルバルブ505の位置を検出する。図22は、マニュアルバルブ505の位置を検出する構成が示されていると言える。 When the sensor 100 detects the position of the manual valve 505, the detection body 400 is fixed to the manual valve 505 as shown in FIG. A magnet 404 in which magnetic poles 401 and 402 are laid out is fixed to the detection body 400. As shown in FIG. 26, the sensor 100 is fixed to the housing 513 so as to face the magnet 404 of the detection body 400. Thereby, when the manual valve 505 moves through the detent 504, the sensor 100 detects the position of the manual valve 505. It can be said that FIG. 22 shows a configuration for detecting the position of the manual valve 505.
 シフトポジションが操作された場合、センサ100によってディテント504やマニュアルバルブ505の位置を検出することで、シフトポジションの位置を検出することができる。 When the shift position is operated, the position of the shift position can be detected by detecting the positions of the detent 504 and the manual valve 505 by the sensor 100.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made as follows without departing from the spirit of the present disclosure.
 例えば、センサ100の用途は車両用に限られず、可動部品の位置を検出するものとして産業用ロボットや製造設備等にも広く利用できる。また、センサ100は冗長機能を備えていなくても良い。この場合、リード107~110は3本である。 For example, the application of the sensor 100 is not limited to a vehicle, and can be widely used for industrial robots, manufacturing facilities, and the like as detecting the position of a movable part. Further, the sensor 100 may not have a redundant function. In this case, there are three leads 107 to 110.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (4)

  1.  第1磁極(401)と第2磁極(402)とが交互に設けられた検出体(400)の移動方向における位置を検出するリニアポジションセンサであって、
     前記検出体の移動に伴って、前記第1磁極及び前記第2磁極から受ける磁界の変化に基づいて、第1磁界検出方向の磁界の大きさを第1検出信号として取得する第1磁界検出素子(115)と、
     前記移動方向において前記第1磁界検出素子から離れて配置され、前記検出体の移動に伴って、前記第1磁極及び前記第2磁極から受ける磁界の変化に基づいて、前記第1磁界検出方向と同じ方向の第2磁界検出方向の磁界の大きさを第2検出信号として取得する第2磁界検出素子(116)と、
     前記第1検出信号及び前記第2検出信号を入力し、前記第1検出信号及び前記第2検出信号の差動を演算することで正弦関数を示す正弦信号及び余弦関数を示す余弦信号を取得し、前記正弦信号及び前記余弦信号に基づいて逆正接関数を示すと共に前記検出体の移動量に応じた逆正接信号を生成し、前記逆正接信号を前記検出体の位置を示す位置信号として取得する信号処理部(112)と、
     を含んでいるリニアポジションセンサ。
    A linear position sensor for detecting a position in a moving direction of a detection body (400) in which a first magnetic pole (401) and a second magnetic pole (402) are alternately provided,
    A first magnetic field detection element that acquires, as a first detection signal, the magnitude of the magnetic field in the first magnetic field detection direction based on a change in the magnetic field received from the first magnetic pole and the second magnetic pole as the detection body moves. (115),
    Based on the change in the magnetic field received from the first magnetic pole and the second magnetic pole with the movement of the detector, the first magnetic field detection direction is A second magnetic field detection element (116) that acquires the magnitude of the magnetic field in the second magnetic field detection direction in the same direction as a second detection signal;
    The first detection signal and the second detection signal are input, and a sine signal indicating a sine function and a cosine signal indicating a cosine function are obtained by calculating a differential between the first detection signal and the second detection signal. Based on the sine signal and the cosine signal, an arc tangent function is generated and an arc tangent signal corresponding to the amount of movement of the detection body is generated, and the arc tangent signal is acquired as a position signal indicating the position of the detection body. A signal processor (112);
    Includes linear position sensor.
  2.  前記第1磁極と前記第2磁極との配列の1周期を360°と定義すると、
     前記移動方向における前記第1磁界検出素子の幅中心(120)から前記第2磁界検出素子の幅中心(121)までの距離θは、0<θ<360°の条件を満たすように設定されている請求項1に記載のリニアポジションセンサ。
    When one period of the arrangement of the first magnetic pole and the second magnetic pole is defined as 360 °,
    A distance θ from the width center (120) of the first magnetic field detection element to the width center (121) of the second magnetic field detection element in the moving direction is set so as to satisfy a condition of 0 <θ <360 °. The linear position sensor according to claim 1.
  3.  前記第1磁極と前記第2磁極との配列の1周期を360°と定義すると、
     前記移動方向における前記第1磁界検出素子の幅中心(120)から前記第2磁界検出素子の幅中心(121)までの距離θは、180°に設定されている請求項1に記載のリニアポジションセンサ。
    When one period of the arrangement of the first magnetic pole and the second magnetic pole is defined as 360 °,
    The linear position according to claim 1, wherein a distance θ from the width center (120) of the first magnetic field detection element to the width center (121) of the second magnetic field detection element in the moving direction is set to 180 °. Sensor.
  4.  前記検出体は、車両のシフトポジションの動作に連動して移動する可動部品である請求項1ないし3のいずれか1つに記載のリニアポジションセンサ。 The linear position sensor according to any one of claims 1 to 3, wherein the detection body is a movable part that moves in conjunction with an operation of a shift position of a vehicle.
PCT/JP2019/000876 2018-03-07 2019-01-15 Linear position sensor WO2019171763A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018041170A JP2019158373A (en) 2018-03-07 2018-03-07 Linear position sensor
JP2018-041170 2018-03-07

Publications (1)

Publication Number Publication Date
WO2019171763A1 true WO2019171763A1 (en) 2019-09-12

Family

ID=67847096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000876 WO2019171763A1 (en) 2018-03-07 2019-01-15 Linear position sensor

Country Status (2)

Country Link
JP (1) JP2019158373A (en)
WO (1) WO2019171763A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114739272A (en) * 2021-01-07 2022-07-12 大银微系统股份有限公司 Position measuring mechanism of linear motion system and measuring method thereof
CN114987423A (en) * 2022-08-08 2022-09-02 中国第一汽车股份有限公司 Redundancy control method and system based on EMB brake-by-wire and vehicle thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096510A (en) * 2008-10-14 2010-04-30 Tokai Rika Co Ltd Operation position calculation device
JP2017203670A (en) * 2016-05-11 2017-11-16 日本電産サンキョー株式会社 Magnetic scale, and magnetic encoder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096510A (en) * 2008-10-14 2010-04-30 Tokai Rika Co Ltd Operation position calculation device
JP2017203670A (en) * 2016-05-11 2017-11-16 日本電産サンキョー株式会社 Magnetic scale, and magnetic encoder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114739272A (en) * 2021-01-07 2022-07-12 大银微系统股份有限公司 Position measuring mechanism of linear motion system and measuring method thereof
CN114987423A (en) * 2022-08-08 2022-09-02 中国第一汽车股份有限公司 Redundancy control method and system based on EMB brake-by-wire and vehicle thereof

Also Published As

Publication number Publication date
JP2019158373A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
CN108627082B (en) Angle sensor system
US9506738B2 (en) Rotation detector
US9429632B2 (en) Magnetic position detection device
JP5110134B2 (en) Rotating magnetic field sensor
JP5590349B2 (en) Magnetic sensor system
US10545032B2 (en) Angle sensor and angle sensor system
US9851221B2 (en) Hall sensor insensitive to external magnetic fields
US10508897B2 (en) Magnet device and position sensing system
US20150211890A1 (en) Sensor Arrangement for Detecting Angles of Rotation on a Rotated Component
US20180095146A1 (en) Angle sensor and angle sensor system
JP2024028873A (en) detection system
WO2019171763A1 (en) Linear position sensor
JP2016050841A (en) Magnetism detection device
JP6798530B2 (en) Linear position sensor
JP5170457B2 (en) Angle detector
JP7435549B2 (en) detection system
WO2019171764A1 (en) Linear position sensor
JP7167739B2 (en) position sensor
JP5158867B2 (en) Rotation angle detector
WO2019167449A1 (en) Linear position sensor
JP4737372B2 (en) Rotation angle detector
WO2019167440A1 (en) Linear position sensor
WO2019244453A1 (en) Linear position sensor
JP5407077B2 (en) Torque sensor and torque detection method
JP2014010033A (en) Angle detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19765029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19765029

Country of ref document: EP

Kind code of ref document: A1