JP2005201325A - Noise reduction device for transmission - Google Patents
Noise reduction device for transmission Download PDFInfo
- Publication number
- JP2005201325A JP2005201325A JP2004006957A JP2004006957A JP2005201325A JP 2005201325 A JP2005201325 A JP 2005201325A JP 2004006957 A JP2004006957 A JP 2004006957A JP 2004006957 A JP2004006957 A JP 2004006957A JP 2005201325 A JP2005201325 A JP 2005201325A
- Authority
- JP
- Japan
- Prior art keywords
- clutch
- stage
- gear
- region
- hysteresis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Structure Of Transmissions (AREA)
Abstract
Description
本発明は、変速機の騒音低減装置に係り、詳しくは、アイドル騒音を低減する技術に関する。 The present invention relates to a transmission noise reduction device, and more particularly to a technique for reducing idle noise.
変速機のアイドル騒音は、エンジンの各気筒における燃焼が不連続であってトルク変動が生じることに起因し、駆動軸歯車と被駆動軸歯車間、被駆動軸歯車と遊転歯車間等の歯車間に歯面分離と歯打ちとが繰り返し生じることによって発生するといわれている。
これより、従来、駆動軸歯車と被駆動軸歯車との間にバックラッシュ除去機構が装着されていない場合には、駆動軸歯車と被駆動軸歯車間の歯面分離と歯打ちを考慮することによってアイドル騒音を計算予測し、クラッチに設けた多段緩衝機構(ばね)の多段特性(ばね定数)を調整することでアイドル騒音の低減を図るようにしていた。
Transmission idle noise is caused by the fact that combustion in each cylinder of the engine is discontinuous and torque fluctuations occur. Gears between the drive shaft gear and the driven shaft gear, between the driven shaft gear and the idle gear, etc. It is said that the tooth surface separation and tooth beat occur repeatedly in the meantime.
Therefore, conventionally, when a backlash removal mechanism is not installed between the drive shaft gear and the driven shaft gear, the tooth surface separation and gearing between the drive shaft gear and the driven shaft gear should be considered. Thus, the idle noise is calculated and predicted, and the idle noise is reduced by adjusting the multistage characteristic (spring constant) of the multistage buffer mechanism (spring) provided in the clutch.
例えば、歯車間の歯打力が大きいほど歯打ちが大きくなりアイドル騒音が増大することから、アイドリング時のクラッチ作動角をばね定数が高く歯打力の大きい2段目に掛からないようばね定数の低い1段目(初段領域内)に抑え込むことによってアイドル騒音を低減する技術が開発されている(特許文献1参照)。
しかしながら、最近の研究により、上記特許文献1に示すようにクラッチ作動角をばね定数の低い1段目に抑え込むようにしても、実際には、潤滑油の油温の上昇に伴いアイドル騒音レベルが増大するという現象があることが確認された。
この現象は、油温の上昇に応じて潤滑油の粘性抵抗が小さくなり、所謂ガタ非線形共振によって歯車間の歯打力が増大するためと考えられる。
However, as a result of recent research, even if the clutch operating angle is suppressed to the first stage having a low spring constant as shown in Patent Document 1, the idle noise level actually increases as the oil temperature of the lubricating oil increases. It has been confirmed that there is a phenomenon that.
This phenomenon is considered to be because the viscous resistance of the lubricating oil decreases as the oil temperature rises, and the tooth striking force between the gears increases due to so-called backlash nonlinear resonance.
そして、この現象は、駆動軸歯車と被駆動軸歯車との間にバックラッシュ除去機構が装着されている場合においても同様に生じ得、好ましいことではない。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、アイドル騒音レベル低減の最適化を図った変速機の騒音低減装置を提供することにある。
This phenomenon can occur in the same manner even when a backlash removing mechanism is mounted between the drive shaft gear and the driven shaft gear, which is not preferable.
The present invention has been made to solve such problems, and an object of the present invention is to provide a transmission noise reduction device that optimizes the reduction of the idle noise level.
上記した目的を達成するために、請求項1の変速機の騒音低減装置では、内燃機関と複数の歯車の噛合状態を切り換えることで変速が達成される変速機の入力軸との間に設けられたクラッチと、前記複数の歯車の一部を構成するよう前記変速機の出力軸回りに回転自在且つ該出力軸と係脱可能に設けられ、前記入力軸を介して伝達される内燃機関の駆動力を前記出力軸との係脱により断接可能な遊転歯車とを備え、前記クラッチに内燃機関のトルク変動を吸収する緩衝機構を有してなる変速機の騒音低減装置において、前記緩衝機構は、前記トルク変動による前記クラッチの捩り角に対し所定捩り角を閾値として弾性定数及び捩りトルクのヒステリシスが異なる少なくとも2段階の捩り特性の領域を有し、該2段階の捩り特性の領域のうち捩り角の小さい側の1段目の領域の弾性定数及びヒステリシスは、それぞれ、捩り角の大きい側の2段目の領域の弾性定数及びヒステリシスよりも小さく設定されるとともに、内燃機関のアイドル回転時、前記遊転歯車が前記出力軸から脱離して遊転状態にあるときに、前記歯車の潤滑油が所定の低温以下の範囲では該潤滑油の粘性抵抗により前記クラッチの実際の捩り角が前記所定捩り角を越えて捩り角の大きい側の2段目の領域に掛かる一方、前記歯車の潤滑油が所定の低温よりも大の範囲では前記クラッチの実際の捩り角が該1段目の領域内に納まるよう設定されていることを特徴としている。 In order to achieve the above-described object, the transmission noise reduction device according to claim 1 is provided between the internal combustion engine and the input shaft of the transmission which can achieve the shift by switching the meshing state of the plurality of gears. A drive of an internal combustion engine which is provided around the output shaft of the transmission so as to constitute a part of the plurality of gears and is detachable from the output shaft, and is transmitted through the input shaft. In a noise reduction device for a transmission, comprising: a freewheeling gear capable of connecting and disconnecting force by engagement / disengagement with the output shaft, wherein the clutch includes a buffering mechanism that absorbs torque fluctuations of the internal combustion engine. Has at least two stages of torsional characteristics with different elastic constants and hysteresis of the torsional torque with a predetermined torsional angle as a threshold with respect to the torsional angle of the clutch due to the torque fluctuation. Twist The elastic constant and hysteresis of the first stage region on the smaller angle side are set smaller than the elastic constant and hysteresis of the second stage region on the larger torsion angle side, respectively, and during idling of the internal combustion engine, When the idler gear is detached from the output shaft and is in an idle state, the actual torsion angle of the clutch is set to the predetermined value due to the viscous resistance of the lubricating oil in a range where the lubricating oil of the gear is below a predetermined low temperature. While the torsion angle is applied to the second stage region on the larger torsion angle side, the actual torsion angle of the clutch is within the first stage region when the lubricating oil of the gear is greater than a predetermined low temperature. It is characterized by being set to fit in.
請求項1の変速機の騒音低減装置によれば、クラッチに設けられた緩衝機構の2段階の捩り特性の領域のうち捩り角の小さい側の1段目の領域の弾性定数及びヒステリシスは、それぞれ、捩り角の大きい側の2段目の領域の弾性定数及びヒステリシスよりも小さく設定されるとともに、内燃機関のアイドル回転時、遊転歯車が出力軸から脱離して遊転状態にあるときに、歯車の潤滑油が所定の低温以下の範囲では該潤滑油の粘性抵抗によりクラッチの実際の捩り角が所定捩り角を越えて捩り角の大きい側の2段目の領域に掛かる一方、歯車の潤滑油が所定の低温よりも大の範囲ではクラッチの実際の捩り角が該1段目の領域内に納まるよう設定されているので、1段目の領域の弾性定数及びヒステリシスは、潤滑油が所定の低温以下であるときにおいて内燃機関のアイドル回転のトルク変動によってクラッチの実際の捩り角が容易に2段目の領域に掛かるほど小さく設定されることになり、潤滑油が所定の低温以下であるときには実際の捩り角が1段目の領域よりも弾性定数及びヒステリシスの大きい2段目の領域に掛かることで変速機の複数の歯車の噛合に伴う騒音が若干増大するものの、潤滑油が所定の低温より大きいときには緩衝機構によって内燃機関のトルク変動が良好に吸収され、複数の歯車間に生じる歯打力が小さく抑えられる。 According to the transmission noise reduction device of claim 1, the elastic constant and hysteresis of the first stage region on the side with the smaller torsion angle among the two-stage torsional characteristics of the buffer mechanism provided in the clutch are respectively The elastic constant and hysteresis of the second stage region on the larger torsion angle side are set smaller than the hysteresis constant, and the idle gear is detached from the output shaft during idle rotation of the internal combustion engine. In the range where the gear lubricant is below a predetermined low temperature, the actual torsional angle of the clutch exceeds the predetermined torsional angle due to the viscous resistance of the lubricant and is applied to the second stage region on the larger torsional angle. Since the actual torsion angle of the clutch is set so as to be within the first stage region when the oil is larger than a predetermined low temperature, the elastic constant and hysteresis of the first stage region are the predetermined values for the lubricating oil. Below the low temperature of Therefore, the actual torsion angle of the clutch is set to be small enough to be applied to the second stage region due to the torque fluctuation of the idling rotation of the internal combustion engine. When the lubricating oil is below a predetermined low temperature, the actual torsion angle is Although the noise associated with the meshing of the plurality of gears of the transmission is slightly increased by being applied to the second stage region having a larger elastic constant and hysteresis than the first stage region, a buffer mechanism is provided when the lubricating oil is higher than a predetermined low temperature. As a result, torque fluctuations of the internal combustion engine are satisfactorily absorbed, and the striking force generated between the plurality of gears can be kept small.
これにより、クラッチの実際の捩り角が1段目の領域内に納まるように1段目の領域の弾性定数及びヒステリシスを設定した場合に比べ、騒音レベルが十分に低く抑えられることになり、潤滑油の油温に依らず全体として内燃機関のアイドル回転時におけるアイドル騒音を低減することができ、アイドル騒音レベル低減の最適化を図ることができる。
好ましくは、前記2段階の捩り特性の領域のうち捩り角の小さい側の1段目の領域の弾性定数及び捩りトルクのヒステリシスは、それぞれ、内燃機関のアイドル回転時、前記遊転歯車が前記出力軸から脱離して遊転状態にあるときに、前記実際の捩り角が前記2段目の領域に掛かった際の前記複数の歯車の噛合に伴う騒音レベルが、前記潤滑油の温度に依らず前記クラッチの実際の捩り角が該1段目の領域内に納まるように該1段目の領域の弾性定数及びヒステリシスを設定した場合における前記潤滑油の常用温度領域での騒音レベルよりも低くなるよう設定されているのがよい。
As a result, compared with the case where the elastic constant and hysteresis of the first step region are set so that the actual torsion angle of the clutch is within the first step region, the noise level can be suppressed sufficiently low. It is possible to reduce idle noise during idling of the internal combustion engine as a whole regardless of the oil temperature of the oil, and optimization of idle noise level reduction can be achieved.
Preferably, the elastic constant and the torsional torque hysteresis of the first stage region on the side with a smaller torsion angle in the two-stage torsional characteristics region, respectively, are obtained when the idler gear outputs the output during idle rotation of the internal combustion engine. The noise level associated with the meshing of the plurality of gears when the actual torsion angle is applied to the second-stage region when detached from the shaft and in the idle state is independent of the temperature of the lubricating oil. When the elastic constant and hysteresis of the first step region are set so that the actual torsion angle of the clutch is within the first step region, the noise level is lower than the noise level in the normal temperature region of the lubricant. It should be set as follows.
これにより、潤滑油が所定の低温以下であるときに実際の捩り角が2段目の領域に掛かったとしても、クラッチの実際の捩り角が1段目の領域内に納まるように1段目の領域の弾性定数及びヒステリシスを設定した場合に比べ、全体として騒音レベルを確実に低く抑えることができる。 As a result, even if the actual torsion angle is applied to the second step region when the lubricating oil is below a predetermined low temperature, the first step is performed so that the actual torsion angle of the clutch is within the first step region. Compared with the case where the elastic constant and hysteresis of the region are set, the noise level as a whole can be surely kept low.
以下、本発明に係る変速機の騒音低減装置の実施形態を添付図面に基づき説明する。
図1を参照すると、車両に搭載された本発明に係る変速機の騒音低減装置の概略構成図が示されている。なお、図1に示す変速機は、実機ではカウンタ軸上の歯車と複数の遊転歯車との噛合状態を切り換えることで変速を達成可能なものであるが、ここでは、便宜上、実機の変速機内部の出力軸上の全部の遊転歯車を取り外し、変速機の3速遊転歯車部に全ての遊転歯車の慣性モーメントを等価集中させた変速機モデルとして構成されている。しかしながら、以下に述べる当該変速機モデルでのアイドル騒音の低減手法は、実機についてそのまま適用できるものである。
Embodiments of a noise reduction device for a transmission according to the present invention will be described below with reference to the accompanying drawings.
Referring to FIG. 1, there is shown a schematic configuration diagram of a noise reduction device for a transmission according to the present invention mounted on a vehicle. The transmission shown in FIG. 1 can achieve shifting by switching the meshing state of the gear on the counter shaft and the plurality of idle gears in the actual machine, but here, for convenience, the transmission of the actual machine is used. It is configured as a transmission model in which all the idle gears on the internal output shaft are removed and the inertia moments of all the idle gears are equivalently concentrated on the third speed idle gear portion of the transmission. However, the idle noise reduction technique in the transmission model described below can be applied to an actual machine as it is.
同図に示すように、変速機(トランスミッション、以下T/Mと略す)1は、ケーシング3に入力軸2、カウンタ軸8及び出力軸14が回転自在に軸支され、これら入力軸2、カウンタ軸8及び出力軸14にはそれぞれ歯車が設けられ、エンジン(図示せず)からの駆動力が入力軸2からカウンタ軸8を経て出力軸14に伝達されるように構成されている。
As shown in the figure, a transmission (transmission, hereinafter abbreviated as T / M) 1 has an
詳しくは、入力軸2の一端にはケーシング3の外側に位置してクラッチ4が、他端には駆動軸歯車6が入力軸2と同期回転可能に設けられている。また、カウンタ軸8には駆動軸歯車6と噛合して被駆動軸歯車10が設けられるとともに被駆動軸歯車12がカウンタ軸8と同期回転可能に設けられている。そして、出力軸14には被駆動軸歯車12と噛合する遊転歯車16が設けられている。
More specifically, a
被駆動軸歯車10には、バックラッシュ除去機構11が設けられており、これにより被駆動軸歯車10のバックラッシュが防止され、駆動軸歯車6と被駆動軸歯車10間の歯打ちに伴う騒音が極力防止されている。
遊転歯車16は、出力軸14回りに回転自在にして出力軸14と係脱可能であり、運転者からの駆動力の断指示や変速指示に従い、手動により或いは自動により係脱するよう構成されている。例えば、エンジンがアイドル運転状態にあり、T/M1の変速セレクト位置がニュートラル段であるような場合には、遊転歯車16は出力軸14から脱離されて出力軸14回りに遊転し、エンジンの出力は出力軸14に伝達されない。なお、遊転歯車16は変速機において従来公知であり、その構成の詳細についてはここでは説明を省略する。
The driven
The
クラッチ4には、緩衝機構5が例えば複数のコイルスプリング及び皿ばね等から構成されて設けられており、この緩衝機構5によりエンジンのトルク変動が吸収されるとともに駆動系の異音等が解消される。即ち、緩衝機構5は多段階の捩り特性、即ちクラッチ特性を有する多段緩衝機構として構成されており、これによりエンジン回転速度Neに拘わらずエンジンの駆動力がフライホイール20からクラッチ4を介してスムーズにT/M1に伝達される。
The
詳しくは、クラッチ特性は2段階に設定されており、図2にクラッチ4の半円部を層状に示すように、緩衝機構5はばね定数(弾性定数)kの異なる2種類のコイルスプリング5a、5bとばね定数kに応じてクラッチトルク(捩りトルク)のヒステリシスHを可変可能なヒステリシス機構5cとから構成されている。
つまり、図3を参照すると、クラッチ特性、即ちクラッチ4の捩り角θCLと緩衝機構5の反力であるクラッチトルクTCLとの関係が示され、クラッチ特性はばね定数kとヒステリシスHで定義されるが、同図に示すように、捩り角θCLがθ1'からθ1(所定捩り角)までと小さい1段目の領域(θ1'<θCL<θ1)では、対応するコイルスプリング5aのばね定数kはk1と小さく且つヒステリシス機構5cのヒステリシスHもH1と小さく設定され、捩り角θCLが大きい2段目の領域(θCL≦θ1',θ1≦θCL)では、対応するコイルスプリング5bのばね定数kはk2と大きく(k1<k2)且つヒステリシス機構5cのヒステリシスHもH2と大きく(H1<H2)設定されている。
Specifically, the clutch characteristics are set in two stages, and as shown in FIG. 2, the
That is, referring to FIG. 3, the clutch characteristic, that is, the relationship between the torsion angle θCL of the
より詳しくは、T/M1内の潤滑油は油温が低いほどクラッチ4に作用する粘性抵抗が大きく、このように粘性抵抗が大きいとクラッチ4の捩り角θCLの中心が図3で見て正(+)方向にシフトすることになるのであるが、1段目の領域のクラッチ特性、即ち1段目のばね定数k1とヒステリシスH1とは、エンジンがアイドル運転状態にあり、遊転歯車16が出力軸14から脱離されて出力軸14回りに遊転している場合において、油温が所定の低温(例えば、25℃)以下であって潤滑油の粘性抵抗が大きいときにエンジンのトルク変動による実際のクラッチ4の捩り角θCLがθ1'、θ1を越えて2段目の領域に掛かる一方、油温が当該所定の低温より大きいときには実際の捩り角θCLが2段目の領域に掛からないよう比較的小さく設定されている。
More specifically, the lubricating oil in T / M1 has a higher viscous resistance acting on the
また、エンジンがアイドル運転状態にあり、遊転歯車16が出力軸14から脱離されて出力軸14回りに遊転していると、クラッチ4の捩り角θCLが1段目の領域にあっても、被駆動軸歯車12と遊転歯車16間では潤滑油の温度が高くなるに従って潤滑油の粘性抵抗が小さくなり、所謂ガタ非線形共振によって歯車間の歯打力が増大し、これと比例関係にある歯面分離と歯打ちによる騒音、即ちアイドル騒音が大きくなる傾向にあるが(自動車技術会論文集Vol.35,No.1等参照)、当該歯打力はばね定数k及びヒステリシスHが大きいほど大きくなることから、さらに、1段目のばね定数k1とヒステリシスH1とは、上記2段目の領域に掛かるという要件を満たし且つ当該歯打力が極力小さくなるように設定されている。
Further, when the engine is in an idle operation state and the
具体的には、ばね定数k1とヒステリシスH1とは、基準ばね定数をk10とし基準ヒステリシスをH10とした場合に、1段目の領域に対応するコイルスプリング5aのばね定数k1とk10との比が例えばk1/k10=0.4であってヒステリシス機構5cのヒステリシスH1とH10との比が例えばH1/H10=1.0となるように設定されている。
以下、このように構成された本発明に係る変速機の騒音低減装置の作用、即ちエンジンがアイドル運転状態にあり、遊転歯車16が出力軸14回りに遊転している場合のクラッチ4のアイドル騒音低減作用について説明する。
Specifically, the spring constant k1 and the hysteresis H1 are the ratios of the spring constants k1 and k10 of the
Hereinafter, the operation of the noise reduction device for a transmission according to the present invention configured as described above, that is, the clutch 4 when the engine is in an idle operation state and the
クラッチ4のクラッチ特性、即ちばね定数kとヒステリシスHとが上記のように1段目の領域ではk1及びH1と小さく、2段目の領域ではk2及びH2と比較的大きく設定されていると、T/M1内の潤滑油の油温が上記所定の低温以下である場合には、上述したように潤滑油の粘性抵抗が大きいためにクラッチ4の捩り角θCLの中心が図3で見て正(+)方向にシフトし、エンジンのトルク変動によるクラッチ4の捩り角θCLが2段目の領域に掛かることとなる。
When the clutch characteristics of the clutch 4, that is, the spring constant k and the hysteresis H are set to be relatively small as k1 and H1 in the first stage region and relatively large as k2 and H2 in the second stage region as described above, When the oil temperature of the lubricating oil in T / M1 is equal to or lower than the predetermined low temperature, the center of the torsion angle θCL of the clutch 4 is positive as seen in FIG. Shifting in the (+) direction, the torsion angle θCL of the
このようにクラッチ4の捩り角θCLが2段目の領域に掛かると、当該2段目の領域ではばね定数kとヒステリシスHとはk2及びH2と比較的大きいため、歯車間の片当たりにより所謂1/2分数調波振動や1/3分数調波振動が生起され、歯車間の歯打力が増大し、歯面分離と歯打ちによる騒音、即ちアイドル騒音が大きくなる傾向にある(自動車技術会論文集Vol.35,No.1等参照)。 Thus, when the torsion angle θCL of the clutch 4 is applied to the second stage region, the spring constant k and hysteresis H are relatively large, k2 and H2, in the second stage region. 1/2 sub-harmonic vibration and 1/3 sub-harmonic vibration are generated, and the tooth striking force between the gears is increased, and noise due to tooth surface separation and tooth striking, that is, idle noise tends to increase (automotive technology). (See Proceedings Vol.35, No.1, etc.)
つまり、図4を参照すると、上記のようにクラッチ特性を設定したクラッチ4におけるT/M1内の潤滑油の油温(T/M油温)と歯打力FGA、ひいてはアイドル騒音レベルとの関係(実線■印)が実験に基づき示されているが、このように油温が所定の低温(例えば、25℃)以下である場合には、歯打力FGAが比較的大きくなり、これに比例してアイドル騒音がある程度大きくなる。 That is, referring to FIG. 4, the relationship between the oil temperature (T / M oil temperature) of the lubricating oil in the T / M1 and the tooth hitting force FGA and the idle noise level in the clutch 4 having the clutch characteristics set as described above. (Solid line ■ mark) is shown based on the experiment, but when the oil temperature is below a predetermined low temperature (for example, 25 ° C.), the tooth striking force FGA is relatively large and proportional to this. As a result, idle noise increases to some extent.
しかしながら、潤滑油の油温が上記所定の低温よりも大きい場合には、上述したように潤滑油の粘性抵抗は小さくなるため、シフトしていたクラッチ4の捩り角θCLの中心は図3で見て負(−)方向に戻され、エンジンのトルク変動によるクラッチ4の捩り角θCLは2段目の領域に掛かることなく1段目の領域内に納まることとなる。
このようにクラッチ4の捩り角θCLが2段目の領域に掛からず、1段目の領域内に納まると、もはや1/2分数調波振動や1/3分数調波振動は生じず、油温が所定の低温(例えば、25℃)よりも大きい領域では、図4に示すように、歯車間の歯打力は小さくなり、アイドル騒音は小さくなる。
However, when the oil temperature of the lubricating oil is higher than the predetermined low temperature, the viscosity resistance of the lubricating oil becomes small as described above, and therefore the center of the twist angle θCL of the clutch 4 that has been shifted is seen in FIG. Thus, the torsion angle θCL of the
Thus, when the torsion angle θCL of the clutch 4 is not applied to the second stage region and falls within the first stage region, 1/2 subharmonic vibration and 1/3 subharmonic vibration no longer occur. In a region where the temperature is higher than a predetermined low temperature (for example, 25 ° C.), as shown in FIG. 4, the tooth striking force between the gears is small, and the idle noise is small.
一方、クラッチ4の捩り角θCLが1段目の領域内にあっても、上述したように、被駆動軸歯車12と遊転歯車16間では潤滑油の温度が高くなるに従って潤滑油の粘性抵抗が小さくなることから、所謂ガタ非線形共振によって歯車間の歯打力が増大し、アイドル騒音が大きくなる傾向にある。
しかしながら、ここでは、クラッチ4のクラッチ特性、即ちばね定数kとヒステリシスHとが上記のように1段目の領域でk1及びH1(例えば、k1/k10=0.4、H1/H10=1.0)と小さく設定されているため、ガタ非線形共振による歯打力は極めて小さくなり、アイドル騒音の増大は最小限に抑えられる。
On the other hand, even when the torsion angle θCL of the clutch 4 is within the first stage region, as described above, the viscosity resistance of the lubricating oil increases as the temperature of the lubricating oil increases between the driven
However, here, the clutch characteristics of the clutch 4, that is, the spring constant k and the hysteresis H are k1 and H1 (for example, k1 / k10 = 0.4, H1 / H10 = 1. 0) is set to a small value, the gear force due to the backlash nonlinear resonance becomes extremely small, and the increase in idle noise can be minimized.
つまり、図4には、1段目の領域のクラッチ特性を例えばk1/k10=0.4及びH1/H10=1.0となるよう設定した場合と比較して、ガタ非線形共振による歯打力FGAを最小に抑えつつアイドル運転時の捩り角θCLが1段目の領域に納まるようにばね定数k1を大きくk1/k10=1.0とした場合(破線▲印)と、やはりアイドル運転時の捩り角θCLが1段目の領域に納まるようにばね定数k1を大きくk1/k10=1.0とし且つヒステリシスH1を大きくH1/H10=1.5とした場合(破線●印)とが併せて示されているが、1段目の領域のばね定数k1とヒステリシスH1とを例えばk1/k10=0.4、H1/H10=1.0となるように小さく設定することにより(実線■印)、油温が所定の低温よりも大きい範囲において、捩り角θCLを1段目の領域に納まるようにした場合(破線▲印、破線●印)よりも歯打力FGA、ひいてはアイドル騒音レベルを遙かに小さく抑えることが可能である。 That is, FIG. 4 shows that the ratcheting force due to the backlash nonlinear resonance is compared with the case where the clutch characteristics in the first stage region are set to be, for example, k1 / k10 = 0.4 and H1 / H10 = 1.0. When the spring constant k1 is large and k1 / k10 = 1.0 (dotted line ▲) so that the torsion angle θCL during idle operation is within the first stage area while minimizing the FGA, it is also during idle operation. Combined with the case where the spring constant k1 is increased to k1 / k10 = 1.0 and the hysteresis H1 is increased to H1 / H10 = 1.5 so that the torsion angle θCL falls within the first stage region (dotted line ●). As shown, by setting the spring constant k1 and hysteresis H1 in the first stage region to be small, for example, k1 / k10 = 0.4, H1 / H10 = 1.0 (solid line ■ mark) In the range where the oil temperature is higher than the predetermined low temperature, the twist angle θCL is It is possible to suppress the tooth striking force FGA, and hence the idle noise level, much smaller than when it falls within the range (broken line ▲ mark, broken line ● mark).
このように、油温が所定の低温以下の範囲でクラッチ4の捩り角θCLが2段目の領域に掛かるように1段目の領域におけるクラッチ特性、即ちばね定数k1とヒステリシスH1とを小さく設定することにより、アイドル運転時の捩り角θCLが1段目の領域に納まるように1段目の領域のクラッチ特性を設定する場合に比べ、歯打力FGA、即ちアイドル騒音レベルを全体的に小さくに抑え、アイドル騒音レベル低減の最適化を図ることが可能である。 As described above, the clutch characteristics in the first stage region, that is, the spring constant k1 and the hysteresis H1 are set small so that the torsion angle θCL of the clutch 4 is applied to the second step region when the oil temperature is below a predetermined low temperature. As a result, compared with the case where the clutch characteristic of the first stage region is set so that the torsion angle θCL during idle operation falls within the first stage region, the gear striking force FGA, that is, the idle noise level is generally reduced. It is possible to optimize the reduction of the idle noise level.
また、図4によれば、例えばk1/k10=0.4及びH1/H10=1.0となるようにクラッチ特性を設定した場合には、上述の如く油温が所定の低温以下の範囲において上記1/2分数調波振動や1/3分数調波振動により歯打力FGAが比較的大きくなり、アイドル運転時においてアイドル騒音がある程度大きくなるのであるが、このときの歯打力FGA、即ちアイドル騒音レベルの最大値は、ガタ非線形共振による歯打力FGAを最小に抑えつつ捩り角θCLが1段目の領域に納まるようにばね定数kを大きくk1/k10=1.0とした場合(破線▲印)のT/M1の常用温度領域(例えば、60℃以上)での歯打力FGA、即ちアイドル騒音レベルよりも小さくなっている。 Further, according to FIG. 4, when the clutch characteristics are set so that, for example, k1 / k10 = 0.4 and H1 / H10 = 1.0, the oil temperature is within a predetermined low temperature range as described above. The tooth force FGA becomes relatively large due to the 1/2 subharmonic vibration and the 1/3 subharmonic vibration, and idle noise increases to some extent during idle operation. The maximum value of the idle noise level is set when the spring constant k is set large and k1 / k10 = 1.0 so that the torsion angle θCL is within the first stage region while minimizing the rattling force FGA due to the non-linear resonance. It is smaller than the tooth striking force FGA, that is, the idle noise level, in the T / M1 normal temperature range (for example, 60 ° C. or more) indicated by the broken line ▲.
換言すれば、ここでは、1段目の領域のばね定数k1とヒステリシスH1とを例えばk1/k10=0.4、H1/H10=1.0となるように設定することで、クラッチ4の捩り角θCLが2段目の領域に掛かったときのアイドル騒音レベルの最大値が、ガタ非線形共振による歯打力FGAを最小に抑えつつ捩り角θCLが1段目の領域に納まるようにばね定数kを大きくk1/k10=1.0とした場合(破線▲印)のT/M1の常用温度領域(例えば、60℃以上)でのアイドル騒音レベルよりも小さくなるようにして当該1段目の領域のばね定数k1とヒステリシスH1とを設定するようにしている。 In other words, the torsion of the clutch 4 is set by setting the spring constant k1 and the hysteresis H1 in the first step region to be, for example, k1 / k10 = 0.4 and H1 / H10 = 1.0. The spring constant k is such that the maximum value of the idle noise level when the angle θCL is applied to the second stage region is such that the torsion angle θCL is within the first stage region while minimizing the tooth striking force FGA due to the backlash nonlinear resonance. Is set to be smaller than the idle noise level in the normal temperature range of T / M1 (for example, 60 ° C. or higher) when k1 / k10 = 1.0 (broken line ▲). The spring constant k1 and the hysteresis H1 are set.
これにより、歯打力FGA、即ちアイドル騒音レベルを全体として確実に低く、例えば許容レベル以下(図4参照)に抑えることが可能である。
特に、車両の走行中或いは走行後においてT/M1の潤滑油の油温は常用温度領域にある場合が多いことを考えると、油温が所定の低温以下の範囲において上記1/2分数調波振動や1/3分数調波振動により歯打力FGAが大きくなり、一時的にアイドル騒音レベルが大きくなったとしても、殆ど気になることはなく、上述のようにして1段目の領域のクラッチ特性を設定することにより、アイドル騒音を極めて効果的に低減することができる。
As a result, the tooth striking force FGA, that is, the idle noise level can be reliably lowered as a whole, for example, can be suppressed to an allowable level or less (see FIG. 4).
In particular, considering that the oil temperature of the T / M1 lubricating oil is often in the normal temperature range during or after the vehicle travels, the 1/2 subharmonic in the range where the oil temperature is below a predetermined low temperature. Even if the tooth striking force FGA increases due to vibration or 1/3 subharmonic vibration, and the idle noise level temporarily increases, there is almost no concern, as described above. By setting the clutch characteristics, idle noise can be reduced extremely effectively.
以上で本発明に係る変速機の騒音低減装置の実施形態についての説明を終えるが、実施形態は上記に限られるものではない。
例えば、上記実施形態では、クラッチ4のクラッチ特性を2段階に構成したが、クラッチ特性は3段階以上であってもよく、この場合、少なくとも1段目の領域のクラッチ特性を上述の如く設定することにより上記同様の効果を得ることができる。
Although the description of the embodiment of the noise reduction device for a transmission according to the present invention is finished above, the embodiment is not limited to the above.
For example, in the above embodiment, the clutch characteristic of the clutch 4 is configured in two stages, but the clutch characteristic may be three or more stages. In this case, the clutch characteristic in at least the first stage region is set as described above. Thus, the same effect as described above can be obtained.
また、上記実施形態では、1段目の領域のばね定数k1とヒステリシスH1とを例えばk1/k10=0.4、H1/H10=1.0となるように設定したが、これらばね定数k1とヒステリシスH1については、本発明の趣旨を逸脱しない範囲で最適値に設定すればよい。
また、上記実施形態では、バックラッシュ除去機構11を設けるようにしたが、バックラッシュ除去機構がなくても本発明を好適に適用可能である。
In the above embodiment, the spring constant k1 and the hysteresis H1 in the first stage region are set to be, for example, k1 / k10 = 0.4 and H1 / H10 = 1.0. The hysteresis H1 may be set to an optimum value without departing from the gist of the present invention.
In the above embodiment, the
1 T/M(変速機)
2 入力軸
4 クラッチ
5 緩衝機構
5a、5b コイルスプリング
5c ヒステリシス機構
8 カウンタ軸
11 バックラッシュ除去機構
12 被駆動軸歯車
14 出力軸
16 遊転歯車
1 T / M (transmission)
2
Claims (1)
前記緩衝機構は、前記トルク変動による前記クラッチの捩り角に対し所定捩り角を閾値として弾性定数及び捩りトルクのヒステリシスが異なる少なくとも2段階の捩り特性の領域を有し、
該2段階の捩り特性の領域のうち捩り角の小さい側の1段目の領域の弾性定数及びヒステリシスは、
それぞれ、捩り角の大きい側の2段目の領域の弾性定数及びヒステリシスよりも小さく設定されるとともに、
内燃機関のアイドル回転時、前記遊転歯車が前記出力軸から脱離して遊転状態にあるときに、前記歯車の潤滑油が所定の低温以下の範囲では該潤滑油の粘性抵抗により前記クラッチの実際の捩り角が前記所定捩り角を越えて捩り角の大きい側の2段目の領域に掛かる一方、前記歯車の潤滑油が所定の低温よりも大の範囲では前記クラッチの実際の捩り角が該1段目の領域内に納まるよう設定されていることを特徴とする変速機の騒音低減装置。 A clutch provided between an internal combustion engine and an input shaft of a transmission that is shifted by switching meshing states of the plurality of gears, and an output shaft of the transmission so as to constitute a part of the plurality of gears An idler gear provided so as to be rotatable around and capable of being engaged with and disengaged from the output shaft, and capable of connecting and disconnecting the driving force of the internal combustion engine transmitted through the input shaft by engagement and disengagement with the output shaft; In a noise reduction device for a transmission having a buffer mechanism for absorbing torque fluctuations of an internal combustion engine in the clutch,
The buffer mechanism has at least two stages of torsion characteristic regions in which the elastic constant and the hysteresis of the torsion torque are different from each other with a predetermined torsion angle as a threshold with respect to the torsion angle of the clutch due to the torque fluctuation,
Among the two-stage torsional characteristic areas, the elastic constant and hysteresis of the first-stage area on the smaller twist angle side are:
Each is set smaller than the elastic constant and hysteresis of the second step region on the larger torsion angle side,
During idle rotation of the internal combustion engine, when the idle gear is detached from the output shaft and is in an idle state, the lubricating oil of the gear is in a range of a predetermined low temperature or less due to the viscous resistance of the lubricant. While the actual torsion angle exceeds the predetermined torsion angle and is applied to the second stage region on the larger torsion angle side, the actual torsion angle of the clutch is within the range where the lubricating oil of the gear is greater than a predetermined low temperature. A noise reduction device for a transmission, wherein the transmission noise reduction device is set to be within the first stage region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004006957A JP2005201325A (en) | 2004-01-14 | 2004-01-14 | Noise reduction device for transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004006957A JP2005201325A (en) | 2004-01-14 | 2004-01-14 | Noise reduction device for transmission |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005201325A true JP2005201325A (en) | 2005-07-28 |
Family
ID=34820776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004006957A Withdrawn JP2005201325A (en) | 2004-01-14 | 2004-01-14 | Noise reduction device for transmission |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005201325A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013122315A (en) * | 2011-12-09 | 2013-06-20 | Hyundai Motor Co Ltd | Damper clutch control method |
-
2004
- 2004-01-14 JP JP2004006957A patent/JP2005201325A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013122315A (en) * | 2011-12-09 | 2013-06-20 | Hyundai Motor Co Ltd | Damper clutch control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6903157B2 (en) | Tortional vibration damper with torque limiter | |
US10393190B2 (en) | Decoupler with concentric clutching members | |
US7261667B2 (en) | System and method for reducing backlash in a planetary gear set | |
US8813932B2 (en) | Isolator decoupler | |
US7625306B2 (en) | CVT having low holding position and overdrive holding position | |
TWI657207B (en) | Torsional vibration damping device | |
CN113795689B (en) | Power transmission device | |
US11149796B2 (en) | Power take off including a torsional vibration damping assembly | |
WO2007116220A1 (en) | Transmission systems | |
JP2005201325A (en) | Noise reduction device for transmission | |
JP2009156338A (en) | Scissors gear | |
WO2004007227A2 (en) | Gear-type continuously variable transmission | |
JP2000257698A (en) | Gear device | |
JP4200355B2 (en) | Noise reduction method for transmission | |
JP2005265164A (en) | Noise reduction unit for transmission | |
JP7299850B2 (en) | power transmission device | |
JP7572550B2 (en) | Power transmission | |
KR102140696B1 (en) | Automatic transmission using hydraulic motor and control method thereof | |
JP2023156661A (en) | Balancer structure of internal combustion engine | |
CN112074428A (en) | Hybrid module with a torque-transmitting gear | |
JPS6311402Y2 (en) | ||
JP2002144897A (en) | Power transmission device for small-sized vehicle | |
JP2005273826A (en) | Gear transmission | |
JPH0694894B2 (en) | Planetary gear transmission for vehicles | |
JP2001330109A (en) | Transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060426 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061227 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090710 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090723 |