JP2005200707A - Low stress electroless nickel plating - Google Patents

Low stress electroless nickel plating Download PDF

Info

Publication number
JP2005200707A
JP2005200707A JP2004008655A JP2004008655A JP2005200707A JP 2005200707 A JP2005200707 A JP 2005200707A JP 2004008655 A JP2004008655 A JP 2004008655A JP 2004008655 A JP2004008655 A JP 2004008655A JP 2005200707 A JP2005200707 A JP 2005200707A
Authority
JP
Japan
Prior art keywords
wafer
film
electroless nickel
molybdenum
nickel plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004008655A
Other languages
Japanese (ja)
Inventor
Yasushi Umeda
泰 梅田
Kazuhiko Izawa
和彦 伊澤
Kentaro Koiwa
賢太郎 小岩
Hideo Honma
英夫 本間
Jinko Oyamada
仁子 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOGE DENKI KOGYO KK
Japan Science and Technology Agency
Kanto Gakuin University Surface Engineering Research Institute
Noge Electric Industries Co Ltd
Original Assignee
NOGE DENKI KOGYO KK
Japan Science and Technology Agency
Kanto Gakuin University Surface Engineering Research Institute
Noge Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOGE DENKI KOGYO KK, Japan Science and Technology Agency, Kanto Gakuin University Surface Engineering Research Institute, Noge Electric Industries Co Ltd filed Critical NOGE DENKI KOGYO KK
Priority to JP2004008655A priority Critical patent/JP2005200707A/en
Publication of JP2005200707A publication Critical patent/JP2005200707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein it is impossible to convey a wafer by an air suction system and it is difficult to work the wafer in a succeeding process because of that when nickel plating is applied to a wafer, a nickel film shrinks, thus shrinkage stress is applied to an electrode part in a base material tightly stuck thereto to cause the warpage of the wafer. <P>SOLUTION: Molybdenum is added to an electroless nickel bath, and molybdenum is precipitated into a deposited nickel film, thus the generation of internal stress in the film is suppressed, and the warpage of a wafer can be stopped. The stress is large after heat treatment compared with that in plating, but, by incorporating molybdenum into the nickel film, it is effective also on heat treatment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体用ウエハーおよびチップの表面皮膜に関するものである。   The present invention relates to a semiconductor wafer and chip surface coating.

近年、半導体の実装はリードフレームあるいはリードの付いたパッケージにチップを実装した後、基板に実装する表面実装に移行している。   In recent years, semiconductor mounting has shifted to surface mounting in which a chip is mounted on a lead frame or a package with leads and then mounted on a substrate.

従来、ICやトランジスタはリードフレームあるいはリードの付いたパッケージに電気的にチップを導通させる。導通方法にはワイヤボンデイング法が使用されてきた。   Conventionally, an IC or a transistor electrically connects a chip to a lead frame or a package with leads. The wire bonding method has been used as the conduction method.

一方、フリップチップやウエハーレベルパッケージ(WLP)などの表面実装ではチップ電極を実装しやすい金バンプやはんだバンプにより基板への実装が行われてきた。   On the other hand, in surface mounting such as flip chip and wafer level package (WLP), mounting on a substrate has been performed by using gold bumps or solder bumps on which chip electrodes can be easily mounted.

しかし、金バンプやはんだバンプは真空中でのスパッター加工が必要になり、設備的にも大掛かりなものが必要となるため、近年になって湿式成膜法(以下、めっきと言う)処理法が開発されている。   However, since gold bumps and solder bumps need to be sputtered in vacuum and require large-scale equipment, a wet film-forming method (hereinafter referred to as plating) has recently been used. Has been developed.

めっきのなかでも化学的な反応を利用した無電解めっき法の中に無電解ニッケルめっきがある。   Among the electroless plating methods using chemical reactions among electroplating, there is electroless nickel plating.

従来、無電解ニッケルめっきを行うと成膜時及び熱処理後に、応力が発生するため、めっき皮膜の応力によって、めっき処理された母材に変形が起こる。   Conventionally, when electroless nickel plating is performed, stress is generated at the time of film formation and after heat treatment. Therefore, the plated base material is deformed by the stress of the plating film.

特開2002-231970JP2002-231970

特開特開2003-96573JP 2003-96573 A 特開2003-313669JP2003-313669 逢坂哲弥,臼田雅彦,小岩一郎,澤井秀夫;金属表面技術,vol.39,NO11,37〜43p(1990)Tetsuya Osaka, Masahiko Usuda, Ichiro Koiwa, Hideo Sawai; Metal Surface Technology, vol.39, NO11, 37-43p (1990) 逢坂哲弥,増渕長則,新井克矢,奥野泰幸;表面技術,vol.41,NO1,49〜52p(1990)Tetsuya Osaka, Naganori Masume, Katsuya Arai, Yasuyuki Okuno; Surface Technology, vol.41, NO1, 49-52p (1990)

フリップチップやウエハーレベルパッケージ(WLP)におけるアルミ電極ははんだ付性を改善するために、電極上に無電解ニッケルめっきを施し、さらに金めっきを施す。   In order to improve solderability, aluminum electrodes in flip chip and wafer level package (WLP) are subjected to electroless nickel plating and further gold plating.

ウエハーにはチップになるためのものが多量にあり、ウエハーをダイシングにてチップとしている。この各チップには電極となるパッドが多数配置されている。   There are a lot of wafers to become chips, and the wafer is made into chips by dicing. Each chip is provided with a large number of pads serving as electrodes.

ウエハーに存在する多数のパッドに無電解ニッケルめっきを行うと成膜時及び熱処理後に、応力が発生するため、フリップチップやウエハーレベルパッケージ(WLP)の原版であるウエハーに反りが発生する。また、無電解ニッケルめっき後、はんだ付作業時に250℃以上の温度になるため、析出したニッケル内の結晶に変化が起こり、さらにニッケル皮膜に圧縮力がかかる。   When electroless nickel plating is performed on a large number of pads existing on a wafer, stress is generated during film formation and after heat treatment, which causes warping of a wafer that is an original of a flip chip or wafer level package (WLP). Further, after the electroless nickel plating, the temperature becomes 250 ° C. or higher during the soldering operation, so that the crystal in the deposited nickel is changed, and a compressive force is applied to the nickel film.

一方、ウエハーも従来の650μmからより薄いものに移行し、200μmから100μmのウエハーもでているため、めっき時にニッケル皮膜が収縮すると密着している母材の電極部分に収縮応力がかかり、ウエハーが反ってしまう。そのため、後工程において空気吸引方式でウエハーを搬送できないことやウエハーの加工が難しい等の問題点を生じている。   On the other hand, the wafer has shifted from the conventional 650 μm to a thinner one, and 200 μm to 100 μm wafers are also produced. Therefore, if the nickel film contracts during plating, shrinkage stress is applied to the electrode part of the base material that is in close contact, and the wafer is It will warp. For this reason, problems such as the fact that the wafer cannot be transferred by the air suction method in the subsequent process and the processing of the wafer is difficult have occurred.

本発明はウエハーが反らないニッケルめっき方法として、無電解ニッケルめっき液中に添加物として適量のモリブデン(以下、Moと言う)を入れ、この添加物によって成膜時及び熱処理後に発生するニッケル皮膜内部の応力を緩和することが特徴である。   The present invention is a nickel plating method in which a wafer does not warp, and an appropriate amount of molybdenum (hereinafter referred to as Mo) is added as an additive in an electroless nickel plating solution. It is characterized by relieving internal stress.

無電解ニッケルめっきにMoを適量添加すると、ニッケル皮膜内部の応力が下がるため、ウエハーの形状変化が無くなり、ニッケル皮膜処理後のウエハーを加工しやすくなる。特に、最近はウエハーの厚さが薄くなってきているため、本発明によりウエハーをサイジングし、半導体部品、例えば,半導体集積回路、トランジスタやダイオードを製造するコストを大幅に下げることが可能となる。   When an appropriate amount of Mo is added to the electroless nickel plating, the stress inside the nickel film is reduced, so that the change in the shape of the wafer is eliminated and the wafer after the nickel film treatment is easily processed. In particular, since the thickness of the wafer has recently been reduced, the present invention makes it possible to significantly reduce the cost of sizing a wafer and manufacturing semiconductor components such as semiconductor integrated circuits, transistors, and diodes.

無電解ニッケルめっき液にMoを添加し、ニッケル皮膜中にMoを共析し、ニッケル皮膜の応力を緩和できる。   Mo can be added to the electroless nickel plating solution, and Mo can be co-deposited in the nickel film, thereby relieving the stress of the nickel film.

無電解ニッケル及び無電解ニッケルめっき液にMoを添加しためっき液組成を表1に示す。   Table 1 shows the plating solution composition in which Mo is added to electroless nickel and electroless nickel plating solution.

Figure 2005200707
Figure 2005200707

使用したウエハーのサイズは6インチ直径であり、厚さは120μmである。めっき液はPH8から10に調整し、60℃に管理し、めっき時はエアー攪拌をおこない1乃至3μmの厚さで実験を行った。また、モリブデン酸はめっき液に滴下法で補充している。   The size of the wafer used is 6 inches in diameter and the thickness is 120 μm. The plating solution was adjusted from PH8 to 10 and controlled at 60 ° C. During plating, air agitation was performed and experiments were performed at a thickness of 1 to 3 µm. Molybdic acid is replenished to the plating solution by a dropping method.

無電解ニッケルめっきの工程はウエハーの汚れを脱脂工程で取り去り、酸で活性化処理を行う。次に触媒化工程を行ってから無電解ニッケルめっきをし、最後に置換金で表面を覆う。この他にもジンケート処理で無電解ニッケルめっきを行うことも可能である。   In the electroless nickel plating process, the dirt on the wafer is removed by a degreasing process, and an activation process is performed with an acid. Next, after carrying out the catalyzing step, electroless nickel plating is performed, and finally the surface is covered with substitution gold. In addition, electroless nickel plating can be performed by zincate treatment.

無電解ニッケルめっき液及び無電解ニッケルめっき液にMoを添加しためっき液でウエハー上のパッドにニッケルめっきをした後、ストリップ電着応力測定器(米国・エレクトロケミカル社製;以下、応力テスターという)で測定を行った。   After plating the pads on the wafer with an electroless nickel plating solution and a plating solution in which Mo is added to the electroless nickel plating solution, a strip electrodeposition stress measuring instrument (manufactured by Electrochemical, USA; hereinafter referred to as a stress tester) The measurement was performed.

モリブデン酸の添加によってニッケル皮膜中のMoが表2に示すように増加する。また、皮膜内の応力は圧縮応力であり、応力テスターによって表2に示すようにMoの添加に従って、減少する。しかし、Mo量が多すぎると皮膜の耐食性が悪くなる。   As shown in Table 2, Mo in the nickel film is increased by the addition of molybdic acid. Further, the stress in the film is a compressive stress, and decreases with the addition of Mo as shown in Table 2 by a stress tester. However, if the amount of Mo is too large, the corrosion resistance of the film is deteriorated.

Figure 2005200707
Figure 2005200707

また、皮膜を加熱処理すると応力テスターによる値は増加し、圧縮応力が増大している。試験温度は表3に示すように400℃まで行ったが、350℃までは増加し、400℃ではやや減少傾向にある。しかし、実用上では350℃以上ではウエハー上のポリイミドが変質するため使用できない。   Moreover, when the film is heat-treated, the value by the stress tester increases and the compressive stress increases. The test temperature was up to 400 ° C. as shown in Table 3, but increased up to 350 ° C. and slightly decreased at 400 ° C. However, in practical use, it cannot be used at 350 ° C. or higher because the polyimide on the wafer is altered.

Figure 2005200707
Figure 2005200707

適量なMo添加量はウエハーの反りから判断するとニッケル皮膜中にMoが0.90at%以上含まれることが必要である。しかし、Moが5.5 at%以上含まれると耐食性が悪くなり、実用上問題である。   An appropriate amount of added Mo is determined from the warpage of the wafer, and it is necessary that the nickel film contains Mo in an amount of 0.90 at% or more. However, if Mo is contained at 5.5 at% or more, the corrosion resistance is deteriorated, which is a practical problem.

現在はウエハーにニッケル皮膜を成膜すると反りが起こるため、めっきするウエハーを厚くしておく必要があり、不要な厚みはバックグラインド加工で取り除いている。本発明はニッケルめっき皮膜内部の応力が低くなるため、薄いウエハーでも対応が可能となり、工数の削減とめっき密着性の向上が確保される。
Currently, since a warp occurs when a nickel film is formed on a wafer, it is necessary to make the wafer to be plated thick, and unnecessary thickness is removed by back grinding. In the present invention, since the stress inside the nickel plating film is reduced, it is possible to cope with even a thin wafer, and the reduction of man-hours and the improvement of plating adhesion are ensured.

Claims (8)

モリブデンを0.9at%乃至5.5 at%を含むニッケル皮膜を有するウエハー Wafer with nickel coating containing 0.9at% to 5.5at% molybdenum モリブデンを0.9at%乃至5.5 at%を含むニッケル皮膜を有する半導体部品 Semiconductor component with nickel coating containing 0.9at% to 5.5at% molybdenum 無電解ニッケルめっきにより成膜した皮膜中にモリブデンを0.9at%乃至5.5 at%を含む皮膜を有する半導体部品 Semiconductor component having a film containing 0.9at% to 5.5at% molybdenum in a film formed by electroless nickel plating 無電解ニッケルめっきにより1乃至3マイクロメータ厚さ成膜した皮膜中にモリブデンを0.9at%乃至5.5 at%を含む皮膜を有するウエハー Wafer having a film containing 0.9 to 5.5 at% molybdenum in a film formed by electroless nickel plating to a thickness of 1 to 3 micrometers 無電解ニッケルめっきにより1乃至3マイクロメータ厚さ成膜した皮膜中にモリブデンを0.9at%乃至5.5 at%を含む皮膜を有する半導体集積回路 A semiconductor integrated circuit having a film containing 0.9 at% to 5.5 at% of molybdenum in a film formed by electroless nickel plating to a thickness of 1 to 3 micrometers. 無電解ニッケルめっきにより1乃至3マイクロメータ厚さ成膜した皮膜中にモリブデンを0.9at%乃至5.5 at%を含む皮膜を有するトランジスタ及びダイオード Transistors and diodes having a film containing 0.9 at% to 5.5 at% of molybdenum in a film formed by electroless nickel plating to a thickness of 1 to 3 micrometers 100マイクロメータ乃至200マイクロメータ厚さのウエハーに無電解ニッケルめっきを1乃至3マイクロメータ厚さ成膜した皮膜中にモリブデンを0.9at%乃至5.5 at%を含むもの A film in which electroless nickel plating is deposited on a wafer of 100 to 200 micrometers thickness to a thickness of 1 to 3 micrometers, and molybdenum is contained at 0.9 to 5.5 at% 100マイクロメータ乃至200マイクロメータ厚さのウエハーに無電解ニッケルめっきにより1乃至3マイクロメータ厚さ成膜した皮膜中にモリブデンを0.9at%乃至5.5 at%を含む皮膜を150℃乃至350℃で処理したもの
A film containing 0.9at% to 5.5at% of molybdenum in a film of 1 to 3micrometers thick by electroless nickel plating on a wafer of 100 to 200micrometer thickness is treated at 150 ℃ to 350 ℃ What
JP2004008655A 2004-01-16 2004-01-16 Low stress electroless nickel plating Pending JP2005200707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004008655A JP2005200707A (en) 2004-01-16 2004-01-16 Low stress electroless nickel plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004008655A JP2005200707A (en) 2004-01-16 2004-01-16 Low stress electroless nickel plating

Publications (1)

Publication Number Publication Date
JP2005200707A true JP2005200707A (en) 2005-07-28

Family

ID=34821909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004008655A Pending JP2005200707A (en) 2004-01-16 2004-01-16 Low stress electroless nickel plating

Country Status (1)

Country Link
JP (1) JP2005200707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012052832A2 (en) * 2010-10-21 2012-04-26 Toyota Jidosha Kabushiki Kaisha Electroless nickel plating bath and electroless nickel plating method using same
JP2019112674A (en) * 2017-12-22 2019-07-11 上村工業株式会社 Heat resistant power module substrate, heat resistant plating film and plating solution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012052832A2 (en) * 2010-10-21 2012-04-26 Toyota Jidosha Kabushiki Kaisha Electroless nickel plating bath and electroless nickel plating method using same
WO2012052832A3 (en) * 2010-10-21 2012-11-15 Toyota Jidosha Kabushiki Kaisha Electroless nickel plating bath and electroless nickel plating method using same
JP2019112674A (en) * 2017-12-22 2019-07-11 上村工業株式会社 Heat resistant power module substrate, heat resistant plating film and plating solution
JP7048304B2 (en) 2017-12-22 2022-04-05 上村工業株式会社 Heat-resistant power module board and heat-resistant plating film

Similar Documents

Publication Publication Date Title
JP5284314B2 (en) Small electronic device, method of forming the same, and system
JPH012330A (en) Film carrier and its manufacturing method
Hutt et al. Electroless nickel bumping of aluminum bondpads. I. Surface pretreatment and activation
JP2017005240A (en) Bonding wire for semiconductor device
JP2006120943A (en) Chip built-in substrate and its manufacturing method
TWI831944B (en) Lead frame
US11335595B2 (en) Method of manufacturing a semiconductor element front side electrode
JP2003338516A (en) Semiconductor device and method of manufacturing the same
JP2003013249A (en) Gold substitution plating solution
US10672635B2 (en) Semiconductor-manufacturing apparatus and method for manufacturing semiconductor device
JP6753721B2 (en) Metal-ceramic circuit board and its manufacturing method
JPH06232136A (en) Electrode forming method of semiconductor element
KR20100009752A (en) Apparatus for treating electroless plating method using magnetic field of treating electroless plating using magnetic field and apparatus for treating electroless plating
JP2005200707A (en) Low stress electroless nickel plating
JP2022506393A (en) Electroless nickel plating solution
JPH09186161A (en) Formation of solder bump on semiconductor device
TW202143414A (en) Bonding wire for semiconductor device
Arshad et al. The effects of zincation process on aluminum bond pad surfaces for electroless nickel immersion gold (ENIG) deposition
US20230326897A1 (en) Die backside metallization methods and apparatus
JPH05148658A (en) Electroless tin plating method
JP4067643B2 (en) Manufacturing method of semiconductor device and manufacturing apparatus for manufacturing semiconductor device
Chen et al. Electroless nickel bath for wafer bumping: Influence of additives
Yang et al. The impact of zincation on the electroless nickel UBM for low cost flip chip technology
JP2003258161A (en) Printed wiring board for mounting electronic component
KR20240095717A (en) Gold bump plating method and gold bump formed thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715