JP2005199662A - Droplet ejection head driving method and droplet ejector - Google Patents

Droplet ejection head driving method and droplet ejector Download PDF

Info

Publication number
JP2005199662A
JP2005199662A JP2004010874A JP2004010874A JP2005199662A JP 2005199662 A JP2005199662 A JP 2005199662A JP 2004010874 A JP2004010874 A JP 2004010874A JP 2004010874 A JP2004010874 A JP 2004010874A JP 2005199662 A JP2005199662 A JP 2005199662A
Authority
JP
Japan
Prior art keywords
droplet
voltage change
change process
pressure chamber
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004010874A
Other languages
Japanese (ja)
Other versions
JP4492131B2 (en
Inventor
Shinichi Okuda
真一 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2004010874A priority Critical patent/JP4492131B2/en
Publication of JP2005199662A publication Critical patent/JP2005199662A/en
Application granted granted Critical
Publication of JP4492131B2 publication Critical patent/JP4492131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive droplet-ejection-head driving method capable of being adapted to a variety of droplet diameters, and a droplet ejector. <P>SOLUTION: A driving waveform applied to a piezoelectric element 16 is a rectangular wave, and can assume only three voltage values V0-V2. Costs can be kept low because a driving circuit requires only a simple constitution. When a meniscus 20 is drawn through a first voltage change process P1 and a second voltage change process P2, pressure waves generated through both the voltage change processes offset each other because a time interval equivalent to half a natural period Tc is provided between the processes P1 and P2. Thus, the drawing amount of the meniscus 20 is reduced. Thus, the volume of the droplet is prevented from being reduced by excessively drawing the meniscus 20 so that an ink droplet 22 having a sufficient droplet volume can be ejected. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、液滴吐出ヘッド駆動方法および液滴吐出装置に関する。   The present invention relates to a droplet discharge head driving method and a droplet discharge apparatus.

従来から、ピエゾアクチュエータなどの電気機械変換素子を用いた液滴吐出ヘッドにおいて、電気機械変換素子の駆動波形に単純な矩形駆動波形を用いることによって、駆動波形を生成する駆動回路のコストを大幅減少させることができる液滴吐出ヘッドが提案されている(例えば、特許文献1参照)。ここで言う矩形駆動波形とは、駆動波形の電圧変化プロセスにおける電圧変化時間(または駆動回路の時定数)が昇圧、降圧それぞれ一種類であるものを指す。   Conventionally, in a droplet discharge head that uses an electromechanical transducer such as a piezo actuator, the cost of the drive circuit that generates the drive waveform has been significantly reduced by using a simple rectangular drive waveform for the electromechanical transducer drive waveform. There has been proposed a liquid droplet ejection head that can be made (see, for example, Patent Document 1). The rectangular drive waveform referred to here indicates that the voltage change time (or the time constant of the drive circuit) in the voltage change process of the drive waveform is one kind of step-up and step-down.

しかし、単純な矩形駆動波形を使用する場合は駆動波形の設計自由度が低いため、十分な吐出特性を得ることが困難となる。   However, when a simple rectangular drive waveform is used, it is difficult to obtain sufficient discharge characteristics because the design freedom of the drive waveform is low.

例えば矩形駆動波形の問題として、大きな滴体積を得ることが難しい点が挙げられる。吐出直前にメニスカス(ノズル内液面)をノズル内部に引き込む「引き打ち」駆動方式(例えば、特許文献2照)は吐出方向の安定性が得られやすい一方で、メニスカスの引き込み量が大き過ぎると、吐出される滴体積が減少してしまうという弊害が生じる。従来の矩形駆動波形では、吐出直前のメニスカス引きこみ量が大きくなりやすいため、滴体積の大きな液滴を吐出させることが非常に困難であった。   For example, as a problem of the rectangular drive waveform, it is difficult to obtain a large drop volume. The “pulling” driving method (for example, see Patent Document 2) that draws the meniscus (the liquid level in the nozzle) into the nozzle immediately before discharge is easy to obtain stability in the discharge direction, but if the meniscus is pulled too much This causes a negative effect that the volume of the ejected droplets is reduced. In the conventional rectangular drive waveform, the amount of meniscus pulling immediately before discharge tends to be large, so that it is very difficult to discharge a droplet with a large droplet volume.

複数の滴を連射することによって液滴の体積を増加させる方法もある(例えば、特許文献3参照)が、この場合、全体として滴の駆動周波数が減少し、高速記録の実現が困難になるという問題がある。   There is also a method of increasing the volume of a droplet by firing a plurality of droplets (see, for example, Patent Document 3), but in this case, the drive frequency of the droplet as a whole decreases, and it is difficult to realize high-speed recording. There's a problem.

あるいはアナログ波形による大滴吐出用の駆動波形を用いて滴径の大きな液滴を吐出し、残響抑制も同時に行なう方式も提案されている(例えば、特許文献4参照)。しかし、複数の立ち上げ/立ち下げ時間、複数の電圧レベルを使用する複雑な駆動波形となり、前述のように単純な矩形駆動波形を使用する場合に比較してコストが増加する。   Alternatively, a method has also been proposed in which a droplet having a large droplet diameter is ejected using a driving waveform for ejecting a large droplet using an analog waveform, and reverberation is simultaneously suppressed (see, for example, Patent Document 4). However, a complicated drive waveform using a plurality of rise / fall times and a plurality of voltage levels results in an increase in cost as compared with the case where a simple rectangular drive waveform is used as described above.

また、矩形駆動波形では液滴吐出後の残響抑制が困難となる。液滴を高周波で安定に吐出させるためには、液滴吐出後の残響抑制が必須であるが、従来の矩形駆動波形の場合、残響抑制部での電圧変化量や傾きを自由に設定することができないため、適切な残響抑制を実行することが非常に困難であった。矩形駆動波形における残響抑制方法として、非噴射パルスの付加によって残響抑制を実行している吐出ヘッドも提案されているが(例えば、特許文献5参照)、この方法では十分な残響抑制効果を得ることは難しく、特にサテライト(微小液滴)の発生状態を左右する液滴吐出直後の残響強度を制御することは不可能である。   In addition, it is difficult to suppress reverberation after droplet discharge with a rectangular drive waveform. In order to discharge droplets stably at a high frequency, reverberation suppression after droplet discharge is essential, but in the case of the conventional rectangular drive waveform, the voltage change amount and inclination at the reverberation suppression unit can be set freely. Therefore, it is very difficult to perform appropriate reverberation suppression. As a method of suppressing reverberation in a rectangular drive waveform, an ejection head that executes reverberation suppression by adding a non-injection pulse has been proposed (see, for example, Patent Document 5), but this method provides a sufficient reverberation suppressing effect. In particular, it is impossible to control the reverberation intensity immediately after droplet ejection, which affects the generation state of satellites (micro droplets).

上記2点の問題は、駆動波形を切り替えることによって滴径変調、すなわち滴径の異なる液滴を吐出することで液の吐出量を制御する場合に特に問題となる。何故なら滴径変調を行う液滴吐出ヘッドでは、同一の波形発生回路によって大滴吐出波形と小滴吐出波形を発生させる必要があるため、駆動波形設計の自由度は更に減少してしまう。その結果、上記2点の問題がますます顕著となり、大きな滴径変調範囲や高い吐出安定性を得ることが非常に困難となってしまう。   The above two problems are particularly problematic when the droplet discharge is controlled by switching the drive waveform, that is, when the discharge amount of the liquid is controlled by discharging droplets having different droplet diameters. This is because, in a droplet ejection head that performs droplet diameter modulation, it is necessary to generate a large droplet ejection waveform and a small droplet ejection waveform by the same waveform generation circuit, so the degree of freedom in designing the drive waveform is further reduced. As a result, the above two problems become more prominent, and it becomes very difficult to obtain a large droplet size modulation range and high ejection stability.

さらに、複数の電圧レンジを有する矩形駆動波形を用いて残響対策を行なう方式も提案されている(例えば、特許文献6参照)。しかし、同時に滴径変調を行なうことはできない。
特開2002−19104号公報 (図10、第3〜4頁) 特許1469531号公報 (図5、第3〜4頁) 特開2001−18388号公報 (図1、第2〜3頁) 特開2001−334659号公報(図3、第5〜7頁) 特許3249719号公報 (図1、第4〜5頁) 特開昭59−176060号公報 (図4、第2〜5頁)
Furthermore, a method of taking measures against reverberation using a rectangular drive waveform having a plurality of voltage ranges has been proposed (see, for example, Patent Document 6). However, droplet size modulation cannot be performed at the same time.
JP 2002-19104 (FIG. 10, pages 3-4) Japanese Patent No. 1469531 (FIG. 5, pages 3-4) JP 2001-18388 A (FIG. 1, pages 2-3) JP 2001-334659 A (FIG. 3, pages 5-7) Japanese Patent No. 3249719 (FIG. 1, pages 4 to 5) JP 59-176060 (FIG. 4, pages 2-5)

本発明は上記事実を考慮し、安価で幅広い滴径に対応した液滴吐出ヘッド駆動方法および液滴吐出装置を提供することを目的とする。   In consideration of the above-described facts, an object of the present invention is to provide a droplet discharge head driving method and a droplet discharge apparatus that are inexpensive and compatible with a wide range of droplet diameters.

請求項1に記載の液滴吐出ヘッド駆動方法は、電圧レベルが3以上の矩形駆動波形を用いる液滴吐出ヘッドの駆動方法であって、液滴を吐出させるために液を加圧する圧力室と、前記矩形駆動波形で駆動され前記圧力室を膨張または圧縮する圧力発生手段と、を備え、前記矩形駆動波形が、前記圧力室を膨張させる第1電圧変化プロセスと、前記第1電圧変化プロセスの後で前記圧力室内に発生する圧力波の固有周期の略1/2の時間が経過した後に前記圧力室を更に膨張させる第2電圧変化プロセスと、 前記第2電圧変化プロセスの後で前記固有周期の略1/2の時間が経過した後に前記圧力室を圧縮し前記液滴を吐出させる第3電圧変化プロセスと、を有することを特徴とする。   The droplet discharge head drive method according to claim 1 is a droplet discharge head drive method using a rectangular drive waveform having a voltage level of 3 or more, and a pressure chamber for pressurizing liquid to discharge droplets Pressure generating means that is driven by the rectangular driving waveform and expands or compresses the pressure chamber, and the rectangular driving waveform expands the pressure chamber, and a first voltage changing process of the first voltage changing process. A second voltage change process that further expands the pressure chamber after a time of approximately ½ of a natural period of a pressure wave generated later in the pressure chamber; and the natural period after the second voltage change process And a third voltage change process in which the pressure chamber is compressed and the droplet is ejected after about half of the time elapses.

上記構成の発明では、液滴を吐出する前のメニスカス引き込み量を小さく抑えることが可能となるため、、吐出される液滴の体積が過度に減少したり、液滴が長く糸を引く、いわゆる液滴の曳糸化を避けながら安価で単純な構成の液滴吐出ヘッド駆動方法とすることができる。   In the invention with the above configuration, it is possible to suppress the amount of meniscus pull-in before discharging the droplet, so that the volume of the discharged droplet is excessively reduced, or the droplet pulls the thread long, so-called It is possible to provide a droplet discharge head driving method that is inexpensive and has a simple configuration while avoiding droplet stringing.

請求項2に記載の液滴吐出ヘッド駆動方法は、電圧レベルが3以上の矩形駆動波形で体積の異なる複数種類の液滴を吐出させる液滴吐出ヘッドの駆動方法であって、液滴を吐出させるために液を加圧する圧力室と、前記矩形駆動波形で駆動され前記圧力室を膨張または圧縮する圧力発生手段と、を備え、大きな体積の液滴を吐出する際の前記矩形駆動波形が、前記圧力室を膨張させる第1電圧変化プロセスと、前記第1電圧変化プロセスの後で前記圧力室内に発生する圧力波の固有周期の略1/2の時間が経過した後に前記圧力室を更に膨張させる第2電圧変化プロセスと、 前記第2電圧変化プロセスの後で前記固有周期の略1/2の時間が経過した後に前記圧力室を圧縮し前記液滴を吐出させる第3電圧変化プロセスと、を有することを特徴とする。   The droplet discharge head driving method according to claim 2 is a droplet discharge head driving method for discharging a plurality of types of droplets having different volumes with a rectangular drive waveform having a voltage level of 3 or more. A pressure chamber for pressurizing the liquid and pressure generating means driven by the rectangular drive waveform to expand or compress the pressure chamber, and the rectangular drive waveform when ejecting a large volume droplet is A first voltage change process for expanding the pressure chamber, and a further expansion of the pressure chamber after a time of approximately half of the natural period of the pressure wave generated in the pressure chamber after the first voltage change process. A second voltage change process that causes the pressure chamber to be compressed and the droplets ejected after a time of approximately half of the natural period has elapsed after the second voltage change process; Special features It is a sign.

上記構成の発明では、液滴の体積を変えることによって着弾によるドット径を可変とする滴径変調方式において、大きな体積の液滴を吐出する際には吐出前にメニスカスの引き込み量を小さく抑えることが可能となるため、吐出される液滴の体積が小さくなる事態を避けながら安価で単純な構成の液滴吐出ヘッド駆動方法とすることができる。   In the invention of the above configuration, in the droplet diameter modulation method in which the dot diameter by landing is variable by changing the volume of the droplet, when discharging a large volume of droplet, the amount of meniscus pull-in is suppressed before discharging. Therefore, it is possible to provide a droplet discharge head driving method that is inexpensive and has a simple configuration while avoiding a situation in which the volume of the discharged droplet is reduced.

請求項3に記載の液滴吐出ヘッド駆動方法は、前記第3電圧変化プロセスに替えて、前記第2電圧変化プロセスの後で前記固有周期の略1/2の時間が経過した後に前記圧力室を圧縮圧縮し前記液滴を吐出させる第3電圧変化プロセスと、前記第3電圧変化プロセスの後で前記固有周期の略1/2の時間が経過した後に前記圧力室を更に圧縮する第4電圧変化プロセスと、を有することを特徴とする。   4. The method of driving a droplet discharge head according to claim 3, wherein the pressure chamber is replaced after the second voltage change process and a time of approximately ½ of the natural period has elapsed after the second voltage change process. And a fourth voltage for further compressing the pressure chamber after approximately half the time of the natural period has elapsed after the third voltage change process. And a change process.

上記構成の発明では、液滴を吐出する第3電圧変化プロセスの後で逆位相の波形を加えることで、液滴の吐出に伴う残響を打ち消すことができ、効果的な残響制御が可能となる。   In the invention with the above configuration, by adding an antiphase waveform after the third voltage change process for ejecting droplets, the reverberation associated with droplet ejection can be canceled and effective reverberation control becomes possible. .

請求項4に記載の液滴吐出ヘッド駆動方法は、電圧レベルが3であることを特徴とする。   The droplet discharge head driving method according to claim 4 is characterized in that the voltage level is 3.

上記構成の発明では、電圧レベルを3とすることで、電圧レベルが4以上の場合に比較して駆動回路のコストを低減することができる。   In the invention with the above configuration, by setting the voltage level to 3, the cost of the drive circuit can be reduced as compared with the case where the voltage level is 4 or more.

請求項5に記載の液滴吐出ヘッド駆動方法は、電圧変化に要する時間が前記固有周期の1/5以下であることを特徴とする。   The droplet discharge head driving method according to claim 5 is characterized in that the time required for voltage change is 1/5 or less of the natural period.

上記構成の発明では、駆動波形の立ち上げ/立ち下げ時間を固有周期の1/5以下にすることで、小径の液滴を吐出するために用いる立ち上げ/立ち下げの急峻な駆動波形と共存が可能となり、広範な滴径変調が可能となる。   In the invention with the above configuration, the rise / fall time of the drive waveform is set to 1/5 or less of the natural period, thereby coexisting with the drive waveform having a steep rise / fall used for discharging small-diameter droplets. And a wide range of droplet size modulation is possible.

請求項6に記載の液滴吐出ヘッド駆動方法は、前記固有周期が5から20μsの間であることを特徴とする。   The droplet discharge head driving method according to claim 6 is characterized in that the natural period is between 5 and 20 μs.

上記構成の発明では、圧電式インクジェット記録ヘッドに好適な固有周期とすることができる。   In the invention configured as described above, the natural period suitable for the piezoelectric ink jet recording head can be obtained.

請求項7に記載の液滴吐出装置は、請求項1乃至請求項6に記載の駆動方法を用いたことを特徴とする。   According to a seventh aspect of the present invention, the liquid droplet ejection apparatus uses the driving method according to the first to sixth aspects.

上記構成の発明では、安価で幅広い滴径に対応した液滴吐出装置を提供することができる。   In the invention with the above-described configuration, it is possible to provide a droplet discharge device that is inexpensive and compatible with a wide range of droplet diameters.

本発明は上記構成としたので、安価で幅広い滴径に対応した液滴吐出ヘッド駆動方法および液滴吐出装置とすることができた。   Since the present invention has the above-described configuration, a droplet discharge head driving method and a droplet discharge device that are inexpensive and compatible with a wide range of droplet diameters can be obtained.

図1には、本発明の第1実施形態に係る液滴吐出ヘッドの構造と駆動波形が示されている。   FIG. 1 shows the structure and driving waveform of a droplet discharge head according to the first embodiment of the present invention.

図1(a)は駆動波形を表し、縦軸は電圧、横軸は時間、またTcは圧力室の固有周期、trは駆動波形の立ち上げ/立ち下げ時間である。なお、本実施形態では、立ち上げ時間と立ち下げ時間を同一に設定したが、それぞれ異なる時間に設定してもかまわない。   FIG. 1A shows a drive waveform, where the vertical axis represents voltage, the horizontal axis represents time, Tc represents the natural period of the pressure chamber, and tr represents the rise / fall time of the drive waveform. In the present embodiment, the rise time and the fall time are set to be the same, but may be set to different times.

図1(b)のように、ヘッド10には圧力室12が設けられ、圧力室12の壁を形成する振動板14が圧力室12を膨張/圧縮すると、圧力室12内部のインク18がノズル24からインク滴22となって吐出される。振動板14に設けられた圧力発生手段としての圧電素子16は図1(a)のような印加電圧パターン(駆動波形)によって変形し、図1(b)〜図1(e)のように振動板14を動かし、圧力室12を圧縮/膨張させる。   As shown in FIG. 1B, the head 10 is provided with a pressure chamber 12, and when the vibration plate 14 forming the wall of the pressure chamber 12 expands / compresses the pressure chamber 12, the ink 18 inside the pressure chamber 12 is ejected from the nozzle. 24 is ejected as ink droplets 22. The piezoelectric element 16 as pressure generating means provided on the vibration plate 14 is deformed by an applied voltage pattern (drive waveform) as shown in FIG. 1A, and vibrates as shown in FIGS. 1B to 1E. The plate 14 is moved to compress / expand the pressure chamber 12.

図1(a)は圧電素子16に印加されるパルスの例であり、縦軸は電圧、横軸は時間を表す。この場合、パルスは矩形波であり電圧はV0〜V2の3つの値しかとらず、駆動回路も単純な構成でよいのでコストも安く抑えることができる。なお、本実施形態ではV0=0Vに設定しているが、使用する電圧レベルが必ずしも0Vを含む必要はない。また、本実施形態ではV0〜V2の全てを正の電圧に設定しているが、負の電圧を含んでいてもかまわない。   FIG. 1A shows an example of a pulse applied to the piezoelectric element 16, where the vertical axis represents voltage and the horizontal axis represents time. In this case, the pulse is a rectangular wave, the voltage has only three values of V0 to V2, and the drive circuit may have a simple configuration, so that the cost can be reduced. In this embodiment, V0 = 0V is set, but the voltage level to be used does not necessarily include 0V. Further, in the present embodiment, all of V0 to V2 are set to positive voltages, but negative voltages may be included.

まず図1(a)の駆動波形において、図1(c)→図1(d)に示すようにメニスカス20の引き込みが第1電圧変化プロセスP1と第2電圧変化プロセスP2によって行われる。   First, in the drive waveform of FIG. 1A, the meniscus 20 is pulled in by the first voltage change process P1 and the second voltage change process P2 as shown in FIG. 1C → FIG. 1D.

このとき、P1とP2の間には固有周期Tcの1/2の時間間隔が設けられているため、両電圧変化プロセスで発生した圧力波が互いに相殺し合うことにより、メニスカス20の引き込み量は図1(d)のように減少する。これによって、過剰なメニスカス20の引き込みに起因する滴体積減少が防止され、十分な滴体積をもつインク滴22を吐出することが可能となる。   At this time, since a time interval of ½ of the natural period Tc is provided between P1 and P2, the pressure waves generated in both voltage change processes cancel each other, so that the amount of the meniscus 20 drawn is It decreases as shown in FIG. This prevents the drop volume from being reduced due to the excessive pulling of the meniscus 20 and enables the ink drop 22 having a sufficient drop volume to be ejected.

図1(e)に示すインク滴22の吐出は、第3電圧変化プロセスP3によって行われる。この時、第2電圧変化プロセスP2と第3電圧変化プロセスP3の間には固有周期Tcの1/2の時間間隔が設けられているため、両電圧変化プロセスで発生した圧力波が重なり合い、メニスカス20の引き込み時とは逆に、吐出時に十分な強度の圧力波を発生させることができる。   The ejection of the ink droplet 22 shown in FIG. 1E is performed by the third voltage change process P3. At this time, since a time interval of ½ of the natural period Tc is provided between the second voltage change process P2 and the third voltage change process P3, the pressure waves generated in both voltage change processes overlap, and the meniscus Contrary to the pull-in of 20, it is possible to generate a pressure wave having a sufficient strength during discharge.

このとき、固有周期Tcは5〜20μs程度であり、立ち上げ/立ち下げ時間trをTcの1/5以下に設定することにより、小滴吐出用波形との共存が可能となり、広範な滴径変調を実現することが可能となる。   At this time, the natural period Tc is about 5 to 20 μs, and by setting the rise / fall time tr to 1/5 or less of Tc, it is possible to coexist with the waveform for small droplet discharge, and a wide range of droplet diameters. Modulation can be realized.

図2には、本発明の第2実施形態に係る液滴吐出ヘッドの構造と駆動波形が示されている。   FIG. 2 shows the structure and driving waveform of a droplet discharge head according to the second embodiment of the present invention.

図2(a)は駆動波形を表し、縦軸は電圧、横軸は時間、またTcは圧力室の固有周期、trは駆動波形の立ち上げ/立ち下げ時間である。   FIG. 2A shows a drive waveform, where the vertical axis represents voltage, the horizontal axis represents time, Tc represents the natural period of the pressure chamber, and tr represents the rise / fall time of the drive waveform.

図2(a)の駆動波形においても、図2(c)→図2(d)に示すように、メニスカス20の引き込みが第1電圧変化プロセスP1と第2電圧変化プロセスP2によって行われる。   Also in the drive waveform of FIG. 2A, the meniscus 20 is pulled in by the first voltage change process P1 and the second voltage change process P2 as shown in FIG. 2C → FIG. 2D.

このとき、P1とP2の間には固有周期Tcの1/2の時間間隔が設けられているため、両電圧変化プロセスで発生した圧力波が互いに相殺し合うことにより、メニスカス20の引き込み量は図2(d)のように減少する。これによって、過剰なメニスカス20の引き込みに起因する滴体積減少が防止され、十分な滴体積をもつインク滴22を吐出することが可能となる点は第1実施形態と同様である。   At this time, since a time interval of ½ of the natural period Tc is provided between P1 and P2, the pressure waves generated in both voltage change processes cancel each other, so that the amount of the meniscus 20 drawn is It decreases as shown in FIG. This is the same as in the first embodiment in that the drop volume reduction caused by excessive drawing of the meniscus 20 is prevented, and the ink drop 22 having a sufficient drop volume can be ejected.

図2(e)に示すインク滴22の吐出は、第3電圧変化プロセスP3によって行われる。この時、第2電圧変化プロセスP2と第3電圧変化プロセスP3の間には固有周期Tcの1/2の時間間隔が設けられているため、両電圧変化プロセスで発生した圧力波が重なり合い、メニスカス20の引き込み時とは逆に、吐出時に十分な強度の圧力波を発生させることができる。   The ejection of the ink droplet 22 shown in FIG. 2E is performed by the third voltage change process P3. At this time, since a time interval of ½ of the natural period Tc is provided between the second voltage change process P2 and the third voltage change process P3, the pressure waves generated in both voltage change processes overlap, and the meniscus Contrary to the pull-in of 20, it is possible to generate a pressure wave having a sufficient strength during discharge.

この後、第3電圧変化プロセスP3からTc/2の時間が経過した後に、第4電圧変化プロセスP4を設けることにより、両電圧変化プロセスで発生した圧力波が互いに相殺し合うことで吐出後に残存する残響を図2(f)に示すように有効に抑制することが可能となる。すなわち、メニスカス20の引き込みを抑制した際と同様、P3とP4に固有周期Tcの1/2の時間間隔が設けられているため、両プロセスで発生する圧力波が互いに相殺しあうため残響も効果的に抑制できる。   Thereafter, after the time Tc / 2 has elapsed from the third voltage change process P3, by providing the fourth voltage change process P4, pressure waves generated in both voltage change processes cancel each other, thereby remaining after discharge. As shown in FIG. 2F, it is possible to effectively suppress reverberation. That is, as in the case where the pull-in of the meniscus 20 is suppressed, since a time interval of 1/2 of the natural period Tc is provided in P3 and P4, reverberation is also effective because pressure waves generated in both processes cancel each other. Can be suppressed.

このとき、固有周期Tcは5〜20μs程度であり、立ち上げ/立ち下げ時間trをTcの1/5以下に設定することにより、小滴吐出用波形との共存が可能となり、広範な滴径変調を実現することが可能となる、第1実施形態の特徴は本実施形態においても同様である。   At this time, the natural period Tc is about 5 to 20 μs, and by setting the rise / fall time tr to 1/5 or less of Tc, it is possible to coexist with the waveform for small droplet discharge, and a wide range of droplet diameters. The characteristics of the first embodiment that can realize the modulation are the same in this embodiment.

図3、図4には、本発明の第2実施形態に係る液滴吐出ヘッドの滴径ごとの駆動波形とメニスカスの振動速度変化が示されている。   FIGS. 3 and 4 show a driving waveform and a meniscus vibration speed change for each droplet diameter of the droplet discharge head according to the second embodiment of the present invention.

図3(a)左は大滴吐出用の駆動波形を表し、縦軸は電圧、横軸は時間を表す。また右はメニスカス20近傍の液の速度の時間変化である。   The left side of FIG. 3A represents a driving waveform for large droplet ejection, the vertical axis represents voltage, and the horizontal axis represents time. On the right is the time variation of the liquid velocity in the vicinity of the meniscus 20.

同様に図3(b)は中滴吐出用の駆動波形、図3(c)は小滴吐出用の駆動波形、図3(d)はノズル内のインクを攪拌し、メニスカス部におけるインクの増粘現象を低減するためにノズルから液滴を吐出させないときに印加する予備波形である。   Similarly, FIG. 3 (b) shows a drive waveform for medium droplet ejection, FIG. 3 (c) shows a drive waveform for small droplet ejection, and FIG. 3 (d) shows stirring of the ink in the nozzle to increase the ink at the meniscus portion. It is a preliminary waveform applied when a droplet is not ejected from a nozzle in order to reduce the viscosity phenomenon.

図4には大滴、中滴、小滴、予備波形における電圧の時間変化が示されている。   FIG. 4 shows voltage changes with time in large drops, medium drops, small drops, and preliminary waveforms.

網掛けで表示したセルがインク滴22を吐出するタイミングであり、図3右側ではグラフの山に相当する。   A cell indicated by shading is a timing at which the ink droplet 22 is ejected, and corresponds to a peak of the graph on the right side of FIG.

図5、図6には、従来の2値矩形波を用いた液滴吐出ヘッドの滴径ごとの駆動波形とメニスカスの振動速度変化が示されている。   5 and 6 show a driving waveform for each droplet diameter of a droplet discharge head using a conventional binary rectangular wave and a meniscus vibration speed change.

図5(a)左は大滴の駆動波形を表し、縦軸は電圧、横軸は時間を表す。また右はメニスカス近傍の液の速度の時間変化である。   The left side of FIG. 5A represents a driving waveform of a large droplet, the vertical axis represents voltage, and the horizontal axis represents time. On the right is the time change of the liquid velocity in the vicinity of the meniscus.

同様に図5(b)は中滴吐出用の駆動波形、図3(c)は小滴吐出用の駆動波形、図3(d)は予備波形である。   Similarly, FIG. 5B shows a driving waveform for discharging a medium droplet, FIG. 3C shows a driving waveform for discharging a small droplet, and FIG. 3D shows a preliminary waveform.

図6には大滴、中滴、小滴、予備波形における電圧の時間変化が示されている。   FIG. 6 shows voltage changes with time in large drops, medium drops, small drops, and preliminary waveforms.

網掛けで表示したセルがインク滴を吐出するタイミングであり、図5右側ではグラフの山に相当する。   The cells indicated by shading are the timing at which ink droplets are ejected, and correspond to the peaks in the graph on the right side of FIG.

特に図3と図5の比較において顕著であるように、本発明第2実施形態では大滴および中滴を吐出した後の残響の抑制効果が明らかである。   As is particularly noticeable in the comparison between FIG. 3 and FIG. 5, the second embodiment of the present invention clearly shows the effect of suppressing reverberation after ejecting large drops and medium drops.

例えば図3(b)では、吐出(14.5μs)から35μs程度で残響がおさまっているのに比較して図5(b)では、吐出(7μs)から60μs後でもまだ残響はおさまっていない。これは、本発明の矩形駆動波形が従来の矩形波に比べて、残響抑制部の波形設計自由度が高く、適切な残響抑制を実現することが可能であるためである。このことから、従来の矩形波を用いた駆動波形に比較して本発明では吐出の間隔を短くし、高周波駆動によって印字速度をより速くすることが可能となる。   For example, in FIG. 3B, the reverberation is reduced after about 35 μs from the discharge (14.5 μs), whereas in FIG. 5B, the reverberation is not yet stopped even after 60 μs from the discharge (7 μs). This is because the rectangular drive waveform of the present invention has a higher degree of freedom in waveform design of the reverberation suppressing unit than that of the conventional rectangular wave, and appropriate reverberation suppression can be realized. For this reason, compared with a driving waveform using a conventional rectangular wave, in the present invention, it is possible to shorten the discharge interval and increase the printing speed by high-frequency driving.

このとき、固有周期Tcは5〜20μs程度であり、駆動波形の立ち上げ/立ち下げ時間をTcの1/5以下に設定することにより、小滴吐出用波形との共存が可能となり、広範な滴径変調を実現することが可能となる。   At this time, the natural period Tc is about 5 to 20 μs, and the rise / fall time of the drive waveform is set to 1/5 or less of Tc, so that it can coexist with the droplet ejection waveform, and a wide range. It is possible to realize droplet diameter modulation.

すなわち、大滴吐出時の駆動波形では前述のように第1の立ち下げプロセスと第2の立ち下げプロセスの間には固有周期Tcの1/2の時間間隔が設けられているため、両電圧変化プロセスで発生した圧力波が互いに相殺し合うことにより、メニスカスの引き込み量は図2(d)のように減少する。これによって、過剰なメニスカスの引き込みに起因する滴体積減少が防止され、十分な滴体積をもつインク滴を吐出することが可能となる。   That is, in the drive waveform at the time of discharging a large droplet, as described above, a time interval of 1/2 of the natural period Tc is provided between the first falling process and the second falling process. As the pressure waves generated in the changing process cancel each other, the meniscus pull-in amount decreases as shown in FIG. This prevents the drop volume from being reduced due to excessive meniscus pull-in, and allows ink drops having a sufficient drop volume to be ejected.

つまり本発明では電圧レベルが3以上あるため、上記のように立ち下げプロセスを2段階に設定し、圧力室を2段階に分けて膨張させることが可能となる。これによりメニスカスの引き込み量が減少し、大滴吐出が可能となる。   That is, in the present invention, since the voltage level is 3 or more, the fall process can be set in two stages as described above, and the pressure chamber can be expanded in two stages. As a result, the amount of meniscus drawing is reduced, and large droplets can be ejected.

これに対して図3(c)のように、立ち下げプロセス(圧力室の膨張)を2段階に分けずに行なうことで敢えて液体積を減少させ、小さな液滴を吐出させることもできる。   On the other hand, as shown in FIG. 3C, by performing the falling process (expansion of the pressure chamber) without dividing it into two stages, the liquid volume can be reduced and small droplets can be ejected.

また大滴吐出波形におけるインク滴の吐出時(立ち上げプロセス)には、立ち下げプロセスとの間に固有周期Tcの1/2の時間間隔が設けられているため、両電圧変化プロセスで発生した圧力波が重なり合い、メニスカスの引き込み時とは逆に、吐出時に十分な強度の圧力波を発生させることができる。これにより更に大きな滴体積をもつインク滴を吐出することが可能となる。   In addition, when an ink droplet is ejected in the large droplet ejection waveform (rising process), a time interval of 1/2 of the natural period Tc is provided between the ejecting process and the voltage dropping process. Pressure waves overlap, and a pressure wave with sufficient strength can be generated at the time of ejection, contrary to when the meniscus is drawn. This makes it possible to eject ink droplets having a larger droplet volume.

これに対して図3(b)、(c)のように立ち上げプロセス終了(圧力室の圧縮)と略同時に立ち下げプロセス(圧力室の膨張)を開始することで「引き打ち」を行ない、液体積の小さな液滴を吐出させることもできる。   On the other hand, as shown in FIGS. 3 (b) and 3 (c), the "pulling" is performed by starting the falling process (expansion of the pressure chamber) almost simultaneously with the end of the starting process (compression of the pressure chamber), Droplets having a small liquid volume can also be ejected.

この場合でも、立ち上げプロセス終了(圧力室の圧縮)からTc/2の時間が経過した後に、第2の立ち上げプロセスを設けることにより、両電圧変化プロセスで発生した圧力波が互いに相殺し合うことで吐出後に残存する残響を有効に抑制することが可能となる。   Even in this case, after the time Tc / 2 has elapsed from the end of the start-up process (compression of the pressure chamber), by providing the second start-up process, the pressure waves generated in both voltage change processes cancel each other out. This makes it possible to effectively suppress reverberation remaining after ejection.

すなわち、メニスカスの引き込みを抑制した際と同様、両プロセスで発生する圧力波が互いに相殺しあうため残響も効果的に抑制できる。   That is, the reverberation can be effectively suppressed because the pressure waves generated in both processes cancel each other, as in the case where the meniscus pull-in is suppressed.

上記のように、本発明で用いる電圧レベルが3以上の矩形駆動波形によって広範な滴径変調範囲を実現できる。   As described above, a wide droplet diameter modulation range can be realized by a rectangular driving waveform having a voltage level of 3 or more used in the present invention.

さらに、発明者が特開2003−165220で開示しているように、小滴吐出のための駆動波形においては立ち上げ/立ち下げ時間をなるべく小さく設定することが望ましい。すなわち、圧力室を急激な速度で圧縮、膨張させる電圧変化プロセスによってメニスカスが一旦圧力室側に引き込まれ、その後ノズル中央部に細い液柱が形成され、更に液柱を早期に分断することにより、ノズル径よりも小さな液滴を吐出させることが可能だからである。本発明においては、上記の電圧レベルが3以上の矩形駆動波形と併用することで更に広範な滴径変調範囲を実現できる。   Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 2003-165220, it is desirable to set the rise / fall time as small as possible in the drive waveform for droplet ejection. That is, the meniscus is once drawn to the pressure chamber side by a voltage change process that compresses and expands the pressure chamber at a rapid speed, and then a thin liquid column is formed in the center of the nozzle, and further, the liquid column is divided early, This is because droplets smaller than the nozzle diameter can be discharged. In the present invention, a wider range of droplet diameter modulation can be realized by using a rectangular driving waveform having the voltage level of 3 or more.

図7、図8には、従来のアナログ形波を用いた液滴吐出ヘッドの滴径ごとの駆動波形とメニスカスの振動速度変化が示されている。   FIG. 7 and FIG. 8 show a driving waveform for each droplet diameter of a droplet discharge head using a conventional analog waveform and changes in meniscus vibration speed.

図7(a)左は大滴の駆動波形を表し、縦軸は電圧、横軸は時間を表す。また右はメニスカス近傍の液の速度の時間変化である。   The left side of FIG. 7A represents a driving waveform of a large droplet, the vertical axis represents voltage, and the horizontal axis represents time. On the right is the time change of the liquid velocity in the vicinity of the meniscus.

同様に図7(b)は中滴吐出用の駆動波形、図3(c)は小滴吐出用の駆動波形、図3(d)は予備波形である。   Similarly, FIG. 7B shows a driving waveform for discharging a medium droplet, FIG. 3C shows a driving waveform for discharging a small droplet, and FIG. 3D shows a preliminary waveform.

図8には大滴、中滴、小滴、予備波形における電圧の時間変化が示されている。   FIG. 8 shows voltage changes with time in large drops, medium drops, small drops, and preliminary waveforms.

網掛けで表示したセルがインク滴を吐出するタイミングであり、図7右側ではグラフの山に相当する。   The cells indicated by shading are timings at which ink droplets are ejected, and correspond to the peaks in the graph on the right side of FIG.

図7、図8に示した従来のアナログ波形による駆動は、複雑な駆動波形を用いるために駆動回路のコストが本発明よりも高くなる欠点を持っている。   The conventional driving with analog waveforms shown in FIGS. 7 and 8 has a drawback that the cost of the driving circuit is higher than that of the present invention due to the use of complicated driving waveforms.

なお、本発明の第1および第2実施形態においてはインク滴を吐出する、いわゆるインクジェット記録ヘッドを例にとって説明したが、本発明はこれに限定されず、例えば基板製造等のように液滴を吐出/記録する様々な用途に応用可能である。   In the first and second embodiments of the present invention, the ink jet recording head that discharges ink droplets has been described as an example. However, the present invention is not limited to this. The present invention can be applied to various uses for discharging / recording.

また、前記圧力発生手段については圧電素子を例として挙げたが、本発明は特にこれに限定されず、形状記憶合金アクチュエータ等を用いてもよい。   Moreover, although the piezoelectric element was mentioned as an example about the said pressure generation means, this invention is not specifically limited to this, You may use a shape memory alloy actuator etc.

さらにヘッドの構造なども例として挙げた実施形態に限定されず、例えばサイドシューター方式のヘッドとしてもよい。   Further, the structure of the head and the like are not limited to the embodiment described as an example, and for example, a side shooter type head may be used.

本発明の第1形態に係る液滴吐出ヘッドの構造と駆動波形を示す図である。It is a figure which shows the structure and drive waveform of the droplet discharge head which concern on the 1st form of this invention. 本発明の第2形態に係る液滴吐出ヘッドの構造と駆動波形を示す図である。It is a figure which shows the structure and drive waveform of the droplet discharge head which concern on the 2nd form of this invention. 本発明の第2形態に係る液滴吐出ヘッドの駆動波形と残響を示す図である。It is a figure which shows the drive waveform and reverberation of the droplet discharge head which concern on the 2nd form of this invention. 本発明の第2形態に係る液滴吐出ヘッドの駆動波形を表す表である。It is a table | surface showing the drive waveform of the droplet discharge head which concerns on the 2nd form of this invention. 従来の矩形波による液滴吐出ヘッドの駆動波形と残響を示す図である。It is a figure which shows the drive waveform and reverberation of the droplet discharge head by the conventional rectangular wave. 従来の矩形波による液滴吐出ヘッドの駆動波形を表す表である。It is a table | surface showing the drive waveform of the droplet discharge head by the conventional rectangular wave. 従来のアナログ波形による液滴吐出ヘッドの駆動波形と残響を示す図である。It is a figure which shows the drive waveform and reverberation of the droplet discharge head by the conventional analog waveform. 従来のアナログ波形による液滴吐出ヘッドの駆動波形を表す表である。It is a table | surface showing the drive waveform of the droplet discharge head by the conventional analog waveform.

符号の説明Explanation of symbols

10 ヘッド
12 圧力室
14 振動板
16 圧電素子
18 インク
20 メニスカス
22 インク滴
24 ノズル
DESCRIPTION OF SYMBOLS 10 Head 12 Pressure chamber 14 Diaphragm 16 Piezoelectric element 18 Ink 20 Meniscus 22 Ink droplet 24 Nozzle

Claims (7)

電圧レベルが3以上の矩形駆動波形を用いる液滴吐出ヘッドの駆動方法であって、
液滴を吐出させるために液を加圧する圧力室と、
前記矩形駆動波形で駆動され前記圧力室を膨張または圧縮する圧力発生手段と、
を備え、
前記矩形駆動波形が、
前記圧力室を膨張させる第1電圧変化プロセスと、
前記第1電圧変化プロセスの後で前記圧力室内に発生する圧力波の固有周期の略1/2の時間が経過した後に前記圧力室を更に膨張させる第2電圧変化プロセスと、
前記第2電圧変化プロセスの後で前記固有周期の略1/2の時間が経過した後に前記圧力室を圧縮し前記液滴を吐出させる第3電圧変化プロセスと、
を有することを特徴とする駆動方法。
A method of driving a droplet discharge head using a rectangular drive waveform having a voltage level of 3 or more,
A pressure chamber for pressurizing the liquid in order to eject droplets;
Pressure generating means driven by the rectangular drive waveform to expand or compress the pressure chamber;
With
The rectangular drive waveform is
A first voltage change process for expanding the pressure chamber;
A second voltage change process for further expanding the pressure chamber after a time of approximately ½ of a natural period of a pressure wave generated in the pressure chamber after the first voltage change process;
A third voltage change process for compressing the pressure chamber and discharging the droplets after a time of approximately half of the natural period has elapsed after the second voltage change process;
A driving method characterized by comprising:
電圧レベルが3以上の矩形駆動波形で体積の異なる複数種類の液滴を吐出させる液滴吐出ヘッドの駆動方法であって、
液滴を吐出させるために液を加圧する圧力室と、
前記矩形駆動波形で駆動され前記圧力室を膨張または圧縮する圧力発生手段と、
を備え、
大きな体積の液滴を吐出する際の前記矩形駆動波形が、
前記圧力室を膨張させる第1電圧変化プロセスと、
前記第1電圧変化プロセスの後で前記圧力室内に発生する圧力波の固有周期の略1/2の時間が経過した後に前記圧力室を更に膨張させる第2電圧変化プロセスと、
前記第2電圧変化プロセスの後で前記固有周期の略1/2の時間が経過した後に前記圧力室を圧縮し前記液滴を吐出させる第3電圧変化プロセスと、
を有することを特徴とする駆動方法。
A method of driving a droplet discharge head for discharging a plurality of types of droplets having different volumes with a rectangular drive waveform having a voltage level of 3 or more,
A pressure chamber for pressurizing the liquid in order to eject droplets;
Pressure generating means driven by the rectangular drive waveform to expand or compress the pressure chamber;
With
The rectangular driving waveform when ejecting a large volume droplet is
A first voltage change process for expanding the pressure chamber;
A second voltage change process for further expanding the pressure chamber after a time of approximately ½ of a natural period of a pressure wave generated in the pressure chamber after the first voltage change process;
A third voltage change process for compressing the pressure chamber and discharging the droplets after a time of approximately half of the natural period has elapsed after the second voltage change process;
A driving method characterized by comprising:
前記第3電圧変化プロセスに替えて、
前記第2電圧変化プロセスの後で前記固有周期の略1/2の時間が経過した後に前記圧力室を圧縮し前記液滴を吐出させる第3電圧変化プロセスと、
前記第3電圧変化プロセスの後で前記固有周期の略1/2の時間が経過した後に前記圧力室を更に圧縮させる第4電圧変化プロセスと、
を有することを特徴とする請求項1または請求項2に記載の液滴吐出ヘッドの駆動方法。
Instead of the third voltage change process,
A third voltage change process for compressing the pressure chamber and discharging the droplets after a time of approximately half of the natural period has elapsed after the second voltage change process;
A fourth voltage change process for further compressing the pressure chamber after a time of approximately half of the natural period has elapsed after the third voltage change process;
The method for driving a droplet discharge head according to claim 1, wherein:
電圧レベルが3であることを特徴とする請求項1乃至請求項3に記載の液滴吐出ヘッドの駆動方法。
4. The method of driving a droplet discharge head according to claim 1, wherein the voltage level is 3.
電圧変化に要する時間が前記固有周期の1/5以下であることを特徴とする請求項1乃至請求項4に記載の液滴吐出ヘッドの駆動方法。
5. The method for driving a droplet discharge head according to claim 1, wherein a time required for voltage change is 1/5 or less of the natural period.
前記固有周期が5から20μsの間であることを特徴とする請求項1乃至請求項5に記載の液滴吐出ヘッドの駆動方法。
6. The method for driving a droplet discharge head according to claim 1, wherein the natural period is between 5 and 20 [mu] s.
請求項1乃至請求項6に記載の駆動方法を用いたことを特徴とする液滴吐出装置。 A liquid droplet ejection apparatus using the driving method according to claim 1.
JP2004010874A 2004-01-19 2004-01-19 Droplet discharge head driving method and droplet discharge apparatus Expired - Fee Related JP4492131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004010874A JP4492131B2 (en) 2004-01-19 2004-01-19 Droplet discharge head driving method and droplet discharge apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004010874A JP4492131B2 (en) 2004-01-19 2004-01-19 Droplet discharge head driving method and droplet discharge apparatus

Publications (2)

Publication Number Publication Date
JP2005199662A true JP2005199662A (en) 2005-07-28
JP4492131B2 JP4492131B2 (en) 2010-06-30

Family

ID=34823474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004010874A Expired - Fee Related JP4492131B2 (en) 2004-01-19 2004-01-19 Droplet discharge head driving method and droplet discharge apparatus

Country Status (1)

Country Link
JP (1) JP4492131B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063010A (en) * 2009-08-21 2011-03-31 Seiko Epson Corp Liquid ejecting apparatus and control method for the same
JP2011062821A (en) * 2009-09-15 2011-03-31 Ricoh Co Ltd Image forming apparatus
JP2015047859A (en) * 2013-09-05 2015-03-16 株式会社リコー Image formation device and head drive controlling method
JP2015174404A (en) * 2014-03-17 2015-10-05 株式会社リコー Droplet discharge device, image forming device, and method for controlling droplet discharge device
JP2019018519A (en) * 2017-07-21 2019-02-07 株式会社ピーエムティー Ink jet printer and ink jet discharge control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158651A (en) * 1998-11-25 2000-06-13 Nec Corp Ink jet recorder and method for ink jet recording
JP2000255062A (en) * 1999-03-11 2000-09-19 Nec Corp Method for driving ink-jet recording head and ink-jet recording apparatus
JP2001328259A (en) * 2000-05-18 2001-11-27 Nec Corp Method for driving ink jet recording head and ink jet recording apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158651A (en) * 1998-11-25 2000-06-13 Nec Corp Ink jet recorder and method for ink jet recording
JP2000255062A (en) * 1999-03-11 2000-09-19 Nec Corp Method for driving ink-jet recording head and ink-jet recording apparatus
JP2001328259A (en) * 2000-05-18 2001-11-27 Nec Corp Method for driving ink jet recording head and ink jet recording apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063010A (en) * 2009-08-21 2011-03-31 Seiko Epson Corp Liquid ejecting apparatus and control method for the same
JP2011062821A (en) * 2009-09-15 2011-03-31 Ricoh Co Ltd Image forming apparatus
JP2015047859A (en) * 2013-09-05 2015-03-16 株式会社リコー Image formation device and head drive controlling method
JP2015174404A (en) * 2014-03-17 2015-10-05 株式会社リコー Droplet discharge device, image forming device, and method for controlling droplet discharge device
JP2019018519A (en) * 2017-07-21 2019-02-07 株式会社ピーエムティー Ink jet printer and ink jet discharge control method

Also Published As

Publication number Publication date
JP4492131B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
US6312077B1 (en) Ink jet printer and ink jet printing method
JP4636103B2 (en) Liquid ejecting apparatus and control apparatus for liquid ejecting apparatus
JP5458808B2 (en) Inkjet recording apparatus and inkjet recording method
US8403452B2 (en) Separation of drive pulses for fluid ejector
JP2008049590A (en) Control method of liquid ejection device and liquid ejection device
JP5861405B2 (en) Inkjet recording device
JP2004262237A (en) Liquid droplet discharging device and driving method for liquid droplet discharging head
JP4492131B2 (en) Droplet discharge head driving method and droplet discharge apparatus
JP4000749B2 (en) Ink droplet ejection device
JP2008093950A (en) Ink-jet recording device driving method and driving device
JP4474987B2 (en) Driving method of droplet discharge head
US7862135B2 (en) Method of driving liquid ejecting head and liquid ejecting apparatus
JP4474988B2 (en) Driving method of droplet discharge head
JP2000094669A (en) Ink-jet type recording apparatus
JP2005096293A (en) Driving method for droplet ejection head
JP2002254632A (en) Driving method for ink jet recording head
JP2004142448A (en) Liquid jet device and controller thereof
JP4474986B2 (en) Driving method of droplet discharge head
JP5296756B2 (en) Inkjet head driving apparatus and driving method
JP2001310461A (en) Ink drop ejection device
JP4432426B2 (en) Driving method of droplet discharge head
JP2006027036A (en) Driving method for inkjet print head
JP7188551B2 (en) Method for driving droplet ejection head
JP2001315330A (en) Ink drop projector
JP2004188932A (en) Driving method for inkjet head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

R150 Certificate of patent or registration of utility model

Ref document number: 4492131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees