JP2005198625A - Method for culturing microorganism - Google Patents

Method for culturing microorganism Download PDF

Info

Publication number
JP2005198625A
JP2005198625A JP2004011031A JP2004011031A JP2005198625A JP 2005198625 A JP2005198625 A JP 2005198625A JP 2004011031 A JP2004011031 A JP 2004011031A JP 2004011031 A JP2004011031 A JP 2004011031A JP 2005198625 A JP2005198625 A JP 2005198625A
Authority
JP
Japan
Prior art keywords
culture
microorganisms
activity
dephosphorization
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004011031A
Other languages
Japanese (ja)
Inventor
Koichiro Tatsuno
孝一郎 龍野
Aki Miyagi
亜季 宮城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2004011031A priority Critical patent/JP2005198625A/en
Publication of JP2005198625A publication Critical patent/JP2005198625A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for obtaining microorganisms having a dephosphorization activity, efficiently in a short time. <P>SOLUTION: This method for culturing the microorganisms having the dephosphorization activity by using culturing liquid containing a specific carbon source is an excellent method capable of growing the microorganisms having the dephosphorization activity in an extremely rapid rate. In the culture, by maintaining ≥1 mg/L dissolved oxygen in the culturing liquid, it is possible to culture the microorganisms having the dephosphorization activity more efficiently. Further, ≥3.0 (1/day) specific proliferation rate of the microorganisms having the dephosphorization activity is suitable for an industrial production of the microorganisms. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、脱リン活性を有する微生物を短時間で効率的に培養する方法に関する。   The present invention relates to a method for efficiently culturing a microorganism having dephosphorylation activity in a short time.

近年、脱リン活性を有する微生物を利用しようとする動きが盛んになってきている。脱リン活性を有する微生物は、AO法や嫌気・好気循環型排水処理法等のプロセス能力アップや安定性の確保、またはスタートアップの早期実現する微生物として有用である。 In recent years, a movement to use microorganisms having dephosphorization activity has become active. Microorganisms having dephosphorization activity are useful as microorganisms for improving process capability and ensuring stability, such as the A 2 O method and anaerobic / aerobic circulation wastewater treatment methods, or ensuring early start-up.

脱リン活性を有する微生物としては、ミクロコッカス(Micrococcus)様NM−1株[FERM P−9971](特許文献1参照)、ミクロコッカス(Micrococcus)様NM−2株[FERM P−10115](特許文献2参照)が知られている。
また、ミクロコッカス様NM−1株の培養を行う方法として、0.05%グルコースを炭素源に使用する方法が知られているが(非特許文献1参照)、その比増殖速度は1.3(1/day)であり、著しく低い。従って、工業的に短時間で高収量の脱リン活性を有する培養微生物体を得る方法としては実用的でない。
Microorganisms having a dephosphorylation activity include Micrococcus-like NM-1 strain [FERM P-9971] (see Patent Document 1), Micrococcus-like NM-2 strain [FERM P-10115] (patent) Document 2) is known.
Further, as a method for culturing Micrococcus-like NM-1 strain, a method using 0.05% glucose as a carbon source is known (see Non-Patent Document 1), and its specific growth rate is 1.3. (1 / day), which is extremely low. Therefore, it is not practical as a method for obtaining cultured microorganisms having a high yield of dephosphorization activity in an industrially short time.

また、従来、活性汚泥中に存在する脱リン活性を有する微生物は、嫌気条件と好気条件を循環することでポリリン酸態リンの生合成及び増殖をするという知見から、嫌気条件と好気条件が伴った環境でのみ増殖すると考えられていたため、ミクロコッカス様NM−1株及びミクロコッカス様NM−2株も、静置培養等の微好気条件下で培養されている。
特開平1−265883号公報 特開平2−31672号公報 ジャーナル オブ ファーメンティション アンド バイオエンジニアリング(Journal of Fermentation and Bioengineering) Vol.71,No4,258−263.(1991)
In addition, conventionally, microorganisms having a dephosphorization activity present in activated sludge have been analyzed for anaerobic and aerobic conditions based on the biosynthesis and growth of polyphosphoric phosphorus by circulating anaerobic and aerobic conditions. Therefore, the Micrococcus-like NM-1 strain and the Micrococcus-like NM-2 strain are also cultured under microaerobic conditions such as stationary culture.
Japanese Patent Laid-Open No. 1-265883 JP-A-2-31672 Journal of Fermentation and Bioengineering Vol. 71, No. 4, 258-263. (1991)

本発明は、短時間で効率的に脱リン活性を有する微生物を得る方法を提供することを目的とする。   An object of this invention is to provide the method of obtaining the microorganisms which have a dephosphorization activity efficiently in a short time.

すなわち本発明の要旨は、トレハロース、マルトース、ソルビトール、マンニトール、澱粉、N−アセチルグルコサミン、N−アセチルガラクトサミン、D−グルコサミン、D−ガラクトサミンの少なくとも一つを炭素源として含む培養液を用いて培養する、脱リン活性を有する微生物の培養方法、である。   That is, the gist of the present invention is to culture using a culture solution containing at least one of trehalose, maltose, sorbitol, mannitol, starch, N-acetylglucosamine, N-acetylgalactosamine, D-glucosamine, and D-galactosamine as a carbon source. A method for culturing microorganisms having dephosphorization activity.

本発明の培養方法は、特定の炭素源を含む培養液を用いて脱リン活性を有する微生物を培養するので、短時間で効率的に生育させることができる。
また、培養液を溶存酸素濃度1mg/L以上に保持して培養を行うことにより、さらに効率的に、脱リン活性を有する微生物を生育させることができる。
また、脱リン活性を有する微生物の比増殖速度が、3.0(1/day)以上であると、微生物を工業的に生産するにあたって好適である。
In the culturing method of the present invention, microorganisms having dephosphorization activity are cultured using a culture solution containing a specific carbon source, so that they can be efficiently grown in a short time.
In addition, by culturing while maintaining the culture solution at a dissolved oxygen concentration of 1 mg / L or more, microorganisms having dephosphorization activity can be grown more efficiently.
Moreover, when the specific growth rate of the microorganisms having dephosphorization activity is 3.0 (1 / day) or more, it is suitable for industrial production of microorganisms.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明の培養方法でいう微生物の脱リン活性とは、嫌気性条件下でリン酸態リンを放出し、好気性条件下でリン酸態リンを取込む性質を有し、微生物体中にポリリン酸態リンを蓄積する能力をいう。   The dephosphorization activity of the microorganism as used in the culture method of the present invention has the property of releasing phosphate phosphorus under anaerobic conditions and incorporating phosphate phosphorus under aerobic conditions. The ability to accumulate acid phosphorus.

本発明の培養方法を適用する微生物は、脱リン活性を有するものであり、具体的には、前述のミクロコッカス(Micrococcus)様NM−1株[FERM P−9971]、ミクロコッカス様NM−2株[FERM P−10115]等の微生物を好適な例として挙げることができるが、これらに限定されるものではなく、その他脱リン活性を有するものであれば使用することができる。   Microorganisms to which the culture method of the present invention is applied have a dephosphorylation activity. Specifically, the above-mentioned Micrococcus-like NM-1 strain [FERM P-9971], Micrococcus-like NM-2 Although microorganisms, such as a strain [FERM P-10115], can be mentioned as a suitable example, it is not limited to these, If it has other dephosphorization activity, it can be used.

本発明の培養方法は、使用する培養液中に、炭素源としてトレハロース、マルトース、ソルビトール、マンニトール、澱粉、N−アセチルグルコサミン、N−アセチルガラクトサミン、D−グルコサミン、D−ガラクトサミンの少なくとも一つを含むが、他の炭素源を含んでいてもよい。
脱リン活性を有する微生物を効率的に培養するための炭素源濃度の下限は、0.01質量%以上が好ましく、0.1質量%以上がより好ましい。一方、濃度が高すぎると、培養液の粘度が高くなって酸素の溶解効率が低下する等の問題があるため、澱粉濃度の上限は15質量%以下が好ましく、10質量%以下がより好ましい。
The culture method of the present invention contains at least one of trehalose, maltose, sorbitol, mannitol, starch, N-acetylglucosamine, N-acetylgalactosamine, D-glucosamine, and D-galactosamine as a carbon source in the culture medium to be used. However, other carbon sources may be included.
The lower limit of the carbon source concentration for efficiently culturing microorganisms having dephosphorylation activity is preferably 0.01% by mass or more, and more preferably 0.1% by mass or more. On the other hand, if the concentration is too high, there is a problem that the viscosity of the culture broth becomes high and the dissolution efficiency of oxygen decreases, so the upper limit of the starch concentration is preferably 15% by mass or less, more preferably 10% by mass or less.

本発明に使用する培養液は、窒素源として、例えば、アンモニア、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム等を含んでも良い。
また、有機栄養源として、例えば、酵母エキス、肉エキス、麦芽エキス、ペプトン、味液等を含んでも良い。
また、無機塩として、例えば、リン酸塩、マグネシウム塩、カリウム塩、ナトリウム塩、鉄塩、コバルト塩、銅塩、その他微量金属塩等を含んでもよい。
The culture solution used in the present invention may contain, for example, ammonia, ammonium sulfate, ammonium chloride, ammonium nitrate and the like as a nitrogen source.
Moreover, as an organic nutrient source, for example, yeast extract, meat extract, malt extract, peptone, taste liquid, and the like may be included.
Moreover, as an inorganic salt, you may contain a phosphate, magnesium salt, potassium salt, sodium salt, iron salt, cobalt salt, copper salt, other trace metal salts, etc., for example.

また、上記成分は、バッチで調整してもよいし、連続的に添加して培養してもよい。連続的に添加する場合は、全部の成分を添加してもよいし、一部を添加してもよい。   Moreover, the said component may be adjusted with a batch and may be continuously added and culture | cultivated. When adding continuously, all the components may be added or a part may be added.

本発明に使用する培養液のpHは、4〜10の範囲とすることができ、好ましくは6〜9の範囲である。   The pH of the culture solution used in the present invention can be in the range of 4 to 10, preferably in the range of 6 to 9.

本発明に使用する培養液の温度は、20〜50℃の範囲とすることができ、好ましくは25〜40℃である。   The temperature of the culture solution used for this invention can be made into the range of 20-50 degreeC, Preferably it is 25-40 degreeC.

本発明に使用する培養液の溶存酸素濃度は、1mg/L以上に保持することにより、脱リン活性を有する微生物を効率的に培養することができる。その一方で、溶存酸素濃度を高く保持しようとすると、多量の曝気を行ったり、激しく撹拌したりする必要があるため、あまり高い濃度に維持するとエネルギー効率が悪いことから、溶存酸素濃度の上限は8mg/L以下とすることが好ましく、6mg/L以下とすることがより好ましい。   By maintaining the dissolved oxygen concentration of the culture solution used in the present invention at 1 mg / L or more, microorganisms having dephosphorization activity can be efficiently cultured. On the other hand, if the dissolved oxygen concentration is to be kept high, it is necessary to perform a large amount of aeration or vigorous stirring. Therefore, if the concentration is kept too high, the energy efficiency is poor, so the upper limit of the dissolved oxygen concentration is It is preferably 8 mg / L or less, and more preferably 6 mg / L or less.

培養器は、0.5〜1L容量の坂口フラスコ、三角フラスコ、5〜100000Lのファーメンター等が、好適に用いられる。   As the incubator, 0.5 to 1 L capacity Sakaguchi flask, Erlenmeyer flask, 5 to 100,000 L fermenter, etc. are preferably used.

本発明の培養方法による脱リン活性を有する微生物の比増殖速度は、3.0(1/day)以上であると、工業的な見地から見て好ましく、より好ましくは5.0(1/day)である。なお、ここでいう比増殖速度とは、微生物の増殖速度を微生物量で割った値をいい、以下の式で表される。
増殖速度(V)=dX/dt
比増殖速度(μ)=V/X
ここで、Xは微生物量、tは時間である。
The specific growth rate of the microorganism having dephosphorizing activity by the culture method of the present invention is preferably 3.0 (1 / day) or more from an industrial viewpoint, more preferably 5.0 (1 / day). ). The specific growth rate here means a value obtained by dividing the growth rate of microorganisms by the amount of microorganisms, and is represented by the following formula.
Growth rate (V) = dX / dt
Specific growth rate (μ) = V / X
Here, X is the amount of microorganisms, and t is time.

本発明の培養方法によって脱リン活性を有する微生物を培養した後、実際の水処理に微生物を使用するにあたっては、得られた微生物の培養液を処理槽に直接添加することもできる。また、培養液を遠心分離または膜濾過に供することにより濃縮した菌体を使用することもできる。また、濃縮した微生物菌体を凍結乾燥したものを使用することもできる。   After culturing a microorganism having dephosphorization activity by the culture method of the present invention, when the microorganism is used for actual water treatment, the obtained culture solution of the microorganism can be directly added to the treatment tank. In addition, bacterial cells concentrated by subjecting the culture solution to centrifugation or membrane filtration can also be used. Moreover, what freeze-dried the concentrated microbial cell can also be used.

あるいは、培養液や濃縮した菌体を、その生存が維持される状態で適宜処理した菌体処理物として(例えば固定化菌体の形態のもの)使用することができる。固定化菌体の形態としては、培養液や濃縮した菌体をアルギン酸またはアクリルアミドで包括した固定物、米糠または籾殻等に吸着させた固定化物等が挙げられる。   Alternatively, a culture solution or a concentrated microbial cell can be used as a processed microbial cell product (for example, in the form of an immobilized microbial cell) that has been appropriately treated while maintaining its survival. Examples of the form of the immobilized cells include a fixed product in which a culture solution or concentrated cells are encapsulated with alginic acid or acrylamide, an immobilized product in which rice bran or rice husk is adsorbed, or the like.

微生物の菌体、培養液、菌体処理物は、そのまま使用してもよいし、例えば、無機凝集剤、高分子凝集剤等の適当な添加剤と混合した状態で使用してもよい。また、菌体、菌体培養液、菌体処置物をそれぞれ単独で使用しても、混合して使用してもよい。培養液を培養液を緩衝液等で洗浄しながら遠心分離機または膜で微生物を濃縮した後に、処理槽に添加するか、或いは、濃縮した微生物を凍結乾燥後に処理槽に添加することもできる。   The microbial cells, culture solution, and processed microbial cells may be used as they are, or may be used in a state mixed with appropriate additives such as inorganic flocculants and polymer flocculants. In addition, the bacterial cells, the bacterial cell culture solution, and the treated bacterial cells may be used alone or in combination. The microorganism can be concentrated in a centrifuge or a membrane while washing the culture with a buffer solution or the like, and then added to the treatment tank, or the concentrated microorganism can be added to the treatment tank after lyophilization.

以下、実施例及び比較例により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

1.前培養
培養液1は、表1に示す成分濃度に調整し、pHは7.0とした。

Figure 2005198625
1. Preculture The culture solution 1 was adjusted to the component concentrations shown in Table 1, and the pH was 7.0.
Figure 2005198625

124m/m×200m/m試験管に培養液1を10ml分注し、シリコン栓をして、121℃、20分間オートクレーブで滅菌したあと、滅菌した澱粉を0.25%(質量/体積)となるように添加した。
この培養液に、寒天プレートを用いて培養したミクロコッカス様NM−1株のコロニーを接種した。そして、25℃にて4日間振盪しながら前培養を行った。
Dispense 10 ml of culture solution 1 into a 124 m / m × 200 m / m test tube, seal with a silicon stopper, sterilize in an autoclave at 121 ° C. for 20 minutes, and then sterilize starch to 0.25% (mass / volume). It added so that it might become.
This culture solution was inoculated with a colony of Micrococcus-like NM-1 strain cultured using an agar plate. And it precultured, shaking at 25 degreeC for 4 days.

2.本培養
培養液2は、表1に示す成分濃度に調整し、pHを7.0とした。
そして、500ml三角フラスコに培養液2を200ml分注し、綿栓をして、121℃、20分間オートクレーブで滅菌したあと、滅菌した澱粉を2%(質量/体積)となるように添加し、前培養にて得られたミクロコッカス様NM−1株の培養液2mlを接種し、25℃にて3〜10日間振盪しながら本培養を行った。
2. The main culture broth 2 was adjusted to the component concentrations shown in Table 1 to a pH of 7.0.
Then, 200 ml of the culture medium 2 was dispensed into a 500 ml Erlenmeyer flask, capped, sterilized at 121 ° C. for 20 minutes by autoclave, and then sterilized starch was added to 2% (mass / volume), 2 ml of the culture solution of Micrococcus-like NM-1 obtained in the preculture was inoculated, and main culture was performed at 25 ° C. with shaking for 3 to 10 days.

3.生育量の測定
本培養の開始から24時間置きに培養液を無菌的にサンプリングし、微生物濃度に応じて20〜200倍に希釈した希釈液を、吸光度計(島津サイエンス株式会社製、UV−120−02)にて波長630nmの吸光度を測定し、測定値に希釈倍率を掛けて希釈前の吸光度を求め、微生物生育量の指標とした。結果を表2に示した。
3. Measurement of growth amount The culture solution is aseptically sampled every 24 hours from the start of the main culture, and a diluted solution diluted 20 to 200 times according to the microorganism concentration is used as an absorbance meter (Shimadzu Science Co., Ltd., UV-120). -02), the absorbance at a wavelength of 630 nm was measured, and the absorbance before dilution was obtained by multiplying the measured value by the dilution factor, and used as an indicator of the microbial growth. The results are shown in Table 2.

Figure 2005198625
Figure 2005198625

4.脱リン活性の測定
培養液3は、表3に示す成分濃度に調整し、pHを7.0とした。
産業排水処理場から余剰汚泥(MLSS:約10000mg/L)を採取し、500ml三角フラスコに、余剰汚泥180ml、本培養後の培養液20mlを分注し綿栓をした。
4). Measurement of dephosphorization activity The culture solution 3 was adjusted to the component concentrations shown in Table 3 to a pH of 7.0.
Excess sludge (MLSS: about 10000 mg / L) was collected from an industrial wastewater treatment plant, and 180 ml of excess sludge and 20 ml of the culture solution after main culture were dispensed into a 500 ml Erlenmeyer flask and plugged.

Figure 2005198625
Figure 2005198625

次に1日あたり培養液3を5ml分注し、25℃の振盪培養器中で8時間静置してリン酸態リンを放出させ、その後16時間振盪してリン酸態リンを取り込ませた。このサイクルを20日間継続し、汚泥容積1L当たりのリン酸態リン取り込み量の合計、および1サイクルにおける汚泥容積1L当たりのリン酸態リン放出量を求め、脱リン活性を調べた。結果を表4に示した。   Next, 5 ml of the culture solution 3 was dispensed per day, and left in a shaking incubator at 25 ° C. for 8 hours to release phosphate phosphorus, and then shaken for 16 hours to incorporate phosphate phosphorus. . This cycle was continued for 20 days, and the total amount of phosphate-phosphorus uptake per liter of sludge volume and the amount of phosphate-phosphorus released per liter of sludge volume per cycle were determined to examine the dephosphorization activity. The results are shown in Table 4.

Figure 2005198625
Figure 2005198625

<実施例2>
澱粉の代わりにトレハロースを用いたこと以外は、実施例1と同様にして前培養、本培養、生育量の測定、脱リン活性の測定を行った。結果を表2と表4に示した。
<Example 2>
Pre-culture, main culture, measurement of growth amount, and measurement of dephosphorization activity were performed in the same manner as in Example 1 except that trehalose was used instead of starch. The results are shown in Tables 2 and 4.

<実施例3>
澱粉の代わりにマルトースを用いたこと以外は、実施例1と同様にして前培養、本培養、生育量の測定、脱リン活性の測定を行った。結果を表2と表4に示した。
<Example 3>
Pre-culture, main culture, measurement of growth amount, and measurement of dephosphorylation activity were performed in the same manner as in Example 1 except that maltose was used instead of starch. The results are shown in Tables 2 and 4.

<実施例4>
澱粉の代わりにソルビトールを用いたこと以外は、実施例1と同様にして前培養、本培養、生育量の測定、脱リン活性の測定を行った。結果を表2と表4に示した。
<Example 4>
Pre-culture, main culture, measurement of growth amount, and measurement of dephosphorization activity were performed in the same manner as in Example 1 except that sorbitol was used instead of starch. The results are shown in Tables 2 and 4.

<実施例5>
澱粉の代わりにマンニトールを用いたこと以外は、実施例1と同様にして前培養、本培養、生育量の測定、脱リン活性の測定を行った。結果を表2と表4に示した。
<Example 5>
Pre-culture, main culture, measurement of growth amount, and measurement of dephosphorization activity were performed in the same manner as in Example 1 except that mannitol was used instead of starch. The results are shown in Tables 2 and 4.

<実施例6>
澱粉の代わりにN−アセチルグルコサミンを用いたこと以外は、実施例1と同様にして前培養、本培養、生育量の測定、脱リン活性の測定を行った。結果を表2と表4に示した。
<Example 6>
Pre-culture, main culture, measurement of growth amount, and measurement of dephosphorization activity were performed in the same manner as in Example 1 except that N-acetylglucosamine was used instead of starch. The results are shown in Tables 2 and 4.

<実施例7>
澱粉の代わりにD−グルコサミンを用いたこと以外は、実施例1と同様にして前培養、本培養、生育量の測定、脱リン活性の測定を行った。結果を表2と表4に示した。
<Example 7>
Pre-culture, main culture, measurement of growth amount, and measurement of dephosphorization activity were performed in the same manner as in Example 1 except that D-glucosamine was used instead of starch. The results are shown in Tables 2 and 4.

<実施例8>
澱粉の代わりにN−アセチルガラクトサミンを用いたこと以外は、実施例1と同様にして前培養、本培養、生育量の測定、脱リン活性の測定を行った。結果を表2と表4に示した。
<Example 8>
Pre-culture, main culture, measurement of growth amount, and measurement of dephosphorization activity were performed in the same manner as in Example 1 except that N-acetylgalactosamine was used instead of starch. The results are shown in Tables 2 and 4.

<実施例9>
澱粉の代わりにD−ガラクトサミンを用いたこと以外は、実施例1と同様にして前培養、本培養、生育量の測定、脱リン活性の測定を行った。結果を表2と表4に示した。
<Example 9>
Pre-culture, main culture, measurement of growth amount, and measurement of dephosphorization activity were performed in the same manner as in Example 1 except that D-galactosamine was used instead of starch. The results are shown in Tables 2 and 4.

<実施例10>
ミクロコッカス様NM−1株の代わりに、ミクロコッカス様NM−2株を用いたこと以外は、実施例1と同様にして前培養、本培養、生育量の測定、脱リン活性の測定を行った。
尚、生育量の測定にあたって、NM−2株は培養中で一部凝集するので、サンプリングした培養液を試験管に分注して、超音波洗浄器(株式会社井内盛栄堂製、ULTRASONIC CLEANER VS−150)で2分間超音波処理することで凝集した微生物体を分散した後に、生育量の測定を実施した。結果を表2と表4に示した。
<Example 10>
Pre-culture, main culture, measurement of growth, and measurement of dephosphorylation activity were carried out in the same manner as in Example 1 except that the Micrococcus-like NM-2 strain was used instead of the Micrococcus-like NM-1 strain. It was.
In measuring the amount of growth, the NM-2 strain partially aggregates in the culture. Therefore, the sampled culture solution is dispensed into a test tube, and an ultrasonic cleaner (ULTRASONIC CLEANER VS, manufactured by Inoue Seieido Co., Ltd.) is used. -150) was subjected to ultrasonic treatment for 2 minutes to disperse the agglomerated microorganisms, and then the growth amount was measured. The results are shown in Tables 2 and 4.

<実施例11>
澱粉の代わりにマルトースを用いたこと以外は、実施例10と同様にして前培養、本培養、生育量の測定、脱リン活性の測定を行った。結果を表2と表4に示した。
<Example 11>
Pre-culture, main culture, measurement of growth amount, and measurement of dephosphorization activity were performed in the same manner as in Example 10 except that maltose was used instead of starch. The results are shown in Tables 2 and 4.

<比較例1>
前培養及び本培養で澱粉を添加する代わりに、グルコースを添加した以外は、実施例1と同様な方法によって前培養、本培養、生育量の測定を行った。結果を表2に示した。
<Comparative Example 1>
Instead of adding starch in the pre-culture and main culture, pre-culture, main culture, and growth were measured by the same method as in Example 1 except that glucose was added. The results are shown in Table 2.

<比較例2>
ミクロコッカス様NM−1株の代わりに、ミクロコッカス様NM−2株を用い、澱粉の代わりにグルコースを用いたこと以外は、実施例1と同様な方法によって前培養、本培養、生育量の測定を行った。結果を表2に示した。
<Comparative example 2>
The pre-culture, main culture, and growth amount were determined in the same manner as in Example 1 except that the Micrococcus-like NM-2 strain was used instead of the Micrococcus-like NM-1 strain, and glucose was used instead of starch. Measurements were made. The results are shown in Table 2.

<参考例>
ミクロコッカス様NM−1株の培養液を添加せず、余剰汚泥を200ml用いたこと以外は、実施例1と同様にして脱リン活性の測定を行った。結果を表4に示した。
<Reference example>
Dephosphorization activity was measured in the same manner as in Example 1 except that 200 ml of excess sludge was used without adding the culture solution of Micrococcus-like NM-1 strain. The results are shown in Table 4.

以上の実施例及び比較例より、本発明の培養方法は、短時間で効率的に脱リン活性を有する微生物を得ることができることが明らかである。   From the above Examples and Comparative Examples, it is clear that the culture method of the present invention can efficiently obtain a microorganism having dephosphorization activity in a short time.

Claims (3)

トレハロース、マルトース、ソルビトール、マンニトール、澱粉、N−アセチルグルコサミン、N−アセチルガラクトサミン、D−グルコサミン、D−ガラクトサミンの少なくとも一つを炭素源として含む培養液を用いて培養する、脱リン活性を有する微生物の培養方法。   Microorganisms having a dephosphorization activity cultured using a culture solution containing at least one of trehalose, maltose, sorbitol, mannitol, starch, N-acetylglucosamine, N-acetylgalactosamine, D-glucosamine, and D-galactosamine as a carbon source Culture method. 前記培養液の溶存酸素濃度を1mg/L以上に保持する請求項1に記載の微生物の培養方法。   The microorganism cultivation method according to claim 1, wherein the dissolved oxygen concentration of the culture solution is maintained at 1 mg / L or more. 前記微生物の比増殖速度が、3.0(1/day)以上である請求項1又は2に記載の微生物の培養方法。   The microorganism growth method according to claim 1 or 2, wherein the specific growth rate of the microorganism is 3.0 (1 / day) or more.
JP2004011031A 2004-01-19 2004-01-19 Method for culturing microorganism Pending JP2005198625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004011031A JP2005198625A (en) 2004-01-19 2004-01-19 Method for culturing microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004011031A JP2005198625A (en) 2004-01-19 2004-01-19 Method for culturing microorganism

Publications (1)

Publication Number Publication Date
JP2005198625A true JP2005198625A (en) 2005-07-28

Family

ID=34823582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004011031A Pending JP2005198625A (en) 2004-01-19 2004-01-19 Method for culturing microorganism

Country Status (1)

Country Link
JP (1) JP2005198625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020011237A1 (en) * 2018-07-13 2020-01-16 中国科学院天津工业生物技术研究所 Enzymatic preparation of glucosamine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020011237A1 (en) * 2018-07-13 2020-01-16 中国科学院天津工业生物技术研究所 Enzymatic preparation of glucosamine

Similar Documents

Publication Publication Date Title
Xie et al. Biodiesel production with the simultaneous removal of nitrogen, phosphorus and COD in microalgal-bacterial communities for the treatment of anaerobic digestion effluent in photobioreactors
JP6329176B2 (en) Rhodococcus aetherivorans VKMac-2610D strain producing nitrile hydratase, its culture method and method for producing acrylamide
CN109153966A (en) Produce the biological technique method and related new strains of acrylamide
CN101407774A (en) Preparation technique of photosynthetic bacteria preparation
Wang et al. Using low frequency and intensity ultrasound to enhance start-up and operation performance of Anammox process inoculated with the conventional sludge
Liu et al. Characteristics for production of hydrogen and bioflocculant by Bacillus sp. XF-56 from marine intertidal sludge
Kronemberger et al. Fed-batch biosurfactant production in a bioreactor
CN101348772B (en) Comamonas aquatica LNL3 and use thereof in waste water biological denitrification
Ust’ak et al. Experimental verification of various methods for biological hydrogen production
JP5717119B2 (en) Method for producing L-lactic acid
CN109355206A (en) Complex microorganism denitrogenates microbial inoculum
El-Rab et al. Costless and huge hydrogen yield by manipulation of iron concentrations in the new bacterial strain Brevibacillus invocatus SAR grown on algal biomass
JP2009148211A (en) Method for fermentatively producing d-arabitol and microorganism used for performance thereof
CN106544293A (en) A kind of method that use Pichia sp. fermentation bacterium mud produces Clostridium butyricum
CN114107109B (en) Enterococcus casseliflavus and application thereof in producing caproic acid by microbial fermentation
JP2013132248A (en) Method for culturing photosynthetic bacterium and photosynthetic bacterium
CN108911452A (en) A method of improving citric acid wastewater dewatering performance of sludge using penicillium oxalicum
CN116396882A (en) NRK producing strain, method for producing NRK and application
JP2005198625A (en) Method for culturing microorganism
CN104556405B (en) A kind of Biological compound flocculant containing ferric ion and application thereof
CN114162978A (en) Application of cryptococcus oxytetracycline in wastewater treatment
KR101751928B1 (en) Composition for Eliminating Petroleum Hydrocarbons and a Method for Purifying Petroleum Hydrocarbons Using the Same
JPH09308494A (en) Production of lactic acid
CN106754548B (en) Bacterial strain fermentation method of microbial fertilizer and application thereof
JP5219390B2 (en) Microbial culture medium and microorganism preparation