JP2005195397A - Electrophoresis detecting apparatus - Google Patents

Electrophoresis detecting apparatus Download PDF

Info

Publication number
JP2005195397A
JP2005195397A JP2004000294A JP2004000294A JP2005195397A JP 2005195397 A JP2005195397 A JP 2005195397A JP 2004000294 A JP2004000294 A JP 2004000294A JP 2004000294 A JP2004000294 A JP 2004000294A JP 2005195397 A JP2005195397 A JP 2005195397A
Authority
JP
Japan
Prior art keywords
cell
measured
prism
dielectrophoresis
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004000294A
Other languages
Japanese (ja)
Inventor
Takashi Iwamoto
岩本  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004000294A priority Critical patent/JP2005195397A/en
Publication of JP2005195397A publication Critical patent/JP2005195397A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the collection efficiency for attracting various measurement object materials, increase a concentration of the measurement object material in a detection section and improve the measurement sensitivity. <P>SOLUTION: Electrodes 8-1-8-4 are disposed on a bottom face 6 of a sample cell 2 so as to sequentially narrow a space from an upstream to a downstream of a flow of a sample solution. A metal thin film 10 is disposed downstream of the electrode 8-4. When excitation light enters from outside of the bottom face 6 into the metal thin film 10 through a prism 12 on the condition of total reflection, a surface plasmon resonance is generated, and a change of a refraction index is measured from a surface plasmon resonance angle. When an AC voltage is applied to the electrodes 8-1-8-4, the measurement object material 18 is aggregated on the metal thin film 10 by an electrophoresis, and the measurement object material 18 is condensed and sensitively measured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、試料溶液中の被測定物質、例えば微生物、蛋白質、核酸、糖質又はこれらが結合した混合物など、の濃度を求める検出装置に関するものである。   The present invention relates to a detection apparatus for determining the concentration of a substance to be measured in a sample solution, for example, a microorganism, a protein, a nucleic acid, a sugar, or a mixture in which these are bound.

試料溶液中の被測定物質を高感度に測定することを目的として、測定セル中に一対の電極を設け、その電極間に交流電場を印加することにより試料セル中の核酸やタンパク質といった被測定物質を誘電泳動により電極間に集めて濃縮し、その濃縮されて部分に励起光を照射して発生する蛍光を測定する方法が提案されている(特許文献1参照。)。
このような誘電泳動によれば試料セル中の被測定物質の濃度が薄くても濃縮できるため、感度向上を図ることができる。
特開2001−13148号公報
For the purpose of measuring the substance to be measured in the sample solution with high sensitivity, a substance to be measured such as nucleic acid and protein in the sample cell is provided by providing a pair of electrodes in the measurement cell and applying an alternating electric field between the electrodes. Is collected between electrodes by dielectrophoresis and concentrated, and a method for measuring fluorescence generated by irradiating the concentrated portion with excitation light has been proposed (see Patent Document 1).
According to such dielectrophoresis, since the substance to be measured in the sample cell can be concentrated even if it is thin, the sensitivity can be improved.
JP 2001-13148 A

誘電泳動は、電界、正確には電場勾配により被測定物質を引きつける技法である。電極間隔を大きくすると電極から遠い位置まで電場勾配が発生するため、電極から遠い所にある被測定物質まで引きつけることができるが、逆に電極近傍でも電界がさほど強くないため、電極表面近くの被測定物質濃度はそれほど上がらない。一方、電極間隔を小さくすると電極近傍の電界が強くなるため電極表面近くの被測定物質濃度を上げることができるが、電場勾配は電極から遠い所までは及ばないため、電極から遠い所にある被測定物質を引きつけることができない。   Dielectrophoresis is a technique for attracting a substance to be measured by an electric field, more precisely, an electric field gradient. Increasing the electrode spacing generates an electric field gradient far from the electrodes, so that it is possible to attract the substance to be measured far from the electrodes, but conversely, the electric field is not so strong near the electrodes, so The measured substance concentration does not increase so much. On the other hand, if the electrode spacing is reduced, the electric field in the vicinity of the electrode becomes stronger, so that the concentration of the substance to be measured near the electrode surface can be increased. However, the electric field gradient does not reach far from the electrode. Cannot attract the measured substance.

したがって、誘電泳動においては、(1)電極間隔を広くして多くの被測定物質を集められるが、局所的濃度は低くなるモードか、(2)電極間隔を狭くして局所的濃度を上げられるが、蒐集効率は悪いモードかの何れかを選択しなければならない。
そこで、本発明は多くの被測定物質を引きつけて蒐集効率を上げ、かつ検出部で被測定物質濃度を高めて測定感度を向上させることを目的とするものである。
Therefore, in dielectrophoresis, (1) the electrode interval can be widened to collect many substances to be measured, but the local concentration can be reduced, or (2) the electrode interval can be narrowed to increase the local concentration. However, one of the modes with poor collection efficiency must be selected.
Therefore, the object of the present invention is to increase the collection efficiency by attracting a large number of substances to be measured, and to improve the measurement sensitivity by increasing the concentration of the substance to be measured at the detector.

本発明の誘電泳動検出装置は、被測定物質を含む試料溶液が収容又は流されるセルと、前記セルの一内面上で互いに分離され間隔が狭くなっていくように一列に配置された複数の電極と、前記電極配列の間隔が狭くなっていく方向の延長線上の位置で前記被測定物質を検出する検出部と、前記電極に交流電圧を印加する電源装置とを備えている。   The dielectrophoresis detection apparatus of the present invention includes a cell in which a sample solution containing a substance to be measured is stored or flowed, and a plurality of electrodes arranged in a row so as to be separated from each other on the inner surface of the cell and to be narrowed. And a detection unit that detects the substance to be measured at a position on an extended line in a direction in which the interval between the electrode arrays is narrowed, and a power supply device that applies an AC voltage to the electrodes.

検出部の一例は試料溶液の屈折率変化から被測定物質濃度を測定するものであり、前記電極配列の間隔が狭くなっていく方向の延長線上に配置された金属膜と、前記セルの壁面上で前記金属膜の位置に配置されたプリズムと、前記プリズムを介して前記セルに表面プラズモン共鳴を起こす全反射の条件で光を入射させる入射光学系と、前記セルからの反射光を前記プリズムを介して受光し、表面プラズモン共鳴角から屈折率変化を測定する受光光学系とを備えている。   An example of the detection unit is to measure the concentration of a substance to be measured from a change in the refractive index of a sample solution, and a metal film disposed on an extension line in a direction in which the interval between the electrode arrays is narrowed, and on the wall surface of the cell A prism disposed at the position of the metal film, an incident optical system that causes light to be incident on the cell under the condition of total reflection that causes surface plasmon resonance to the cell, and the prism reflects the light reflected from the cell. And a light receiving optical system for measuring a refractive index change from a surface plasmon resonance angle.

表面プラズモン共鳴とは金属表面に光が入射し、表面プラズモンと同じ波数(運動量と振動数(エネルギー))をもったエバネッセント波が重なるとき、金属表面近傍の電子が共鳴状態となる現象を指す。金属中の電子は集団的に振動しており、これはプラズマ振動又はプラズマ波と呼ばれている。表面プラズモンとは表面上のプラズマ波を量子的に述べたものである。また、エバネッセント波とは、物質の表面に沿って進行する波で、そのエネルギーが界面からの距離により指数関数的に減衰する波であって、全反射領域において入射面に沿って進行し、外部には伝播しない波を言う。   Surface plasmon resonance refers to a phenomenon in which when light is incident on a metal surface and evanescent waves having the same wave number (momentum and frequency (energy)) as the surface plasmon overlap, electrons in the vicinity of the metal surface enter a resonance state. Electrons in the metal are collectively oscillated, which is called plasma oscillation or plasma wave. A surface plasmon is a quantum description of a plasma wave on a surface. An evanescent wave is a wave that travels along the surface of a substance, whose energy exponentially decays with distance from the interface, travels along the incident surface in the total reflection region, and Says a wave that does not propagate.

検出部の他の例は試料溶液の吸光度から被測定物質濃度を測定するものであり、前記電極配列の間隔が狭くなっていく方向の延長線上の位置で前記セルの壁面上に配置されたプリズムと、前記プリズムを介して前記セルに全反射の条件で光を入射させる入射光学系と、前記セルからの反射光を前記プリズムを介して受光し、吸光度を測定する受光光学系とを備えている。   Another example of the detection unit is to measure the concentration of the substance to be measured from the absorbance of the sample solution, and a prism disposed on the wall surface of the cell at a position on the extended line in the direction in which the interval between the electrode arrays becomes narrower. And an incident optical system that causes light to enter the cell through the prism under conditions of total reflection, and a light receiving optical system that receives the reflected light from the cell via the prism and measures the absorbance. Yes.

検出部は屈折率変化や吸光度とともに蛍光を測定するものであってもよく、又は屈折率変化や吸光度に替えて蛍光を測定するものであってもよい。蛍光を測定するための検出部は、セル内で被測定物質が励起して発生した蛍光を受光し検出する蛍光受光光学系を備えている。
セルの好ましい一例はフローセルであり、フローセルでは電極配列の間隔が狭くなっていく方向に試料溶液が流されるように構成されている。
電極が配置されている一内面の好ましい一例はセルの底面である。
The detection unit may measure fluorescence together with a change in refractive index and absorbance, or may measure fluorescence instead of a change in refractive index and absorbance. The detection unit for measuring fluorescence includes a fluorescence light receiving optical system that receives and detects fluorescence generated by excitation of a substance to be measured in the cell.
A preferred example of the cell is a flow cell, and the flow cell is configured so that the sample solution flows in a direction in which the interval between the electrode arrays becomes narrower.
A preferred example of the inner surface on which the electrodes are disposed is the bottom surface of the cell.

検出部から遠い位置に配列されている電極はその配列間隔が広いために電極から遠い所にある被測定物質まで蒐集することができるとともに、電極配列の間隔は検出部に近づくにつれて狭くなっているので、検出部に近づくにつれて被測定物質濃度が高くなっていく。さらに、検出部に向かっても電場勾配が形成されるので、被測定物質は検出部に向かって集められるように移動するので、検出部での被測定物質濃度がより高められて検出感度が上がる。   Since the electrodes arranged far from the detection unit have a wide arrangement interval, it is possible to collect substances to be measured far from the electrodes, and the electrode arrangement interval becomes narrower as the detection unit is approached. Therefore, the concentration of the substance to be measured increases as it approaches the detection unit. Furthermore, since an electric field gradient is formed toward the detection unit, the substance to be measured moves so as to be collected toward the detection unit, so that the concentration of the substance to be measured at the detection unit is further increased and the detection sensitivity is increased. .

本発明をフローセルに適用した場合には、フローセルによる試料溶液の流れの方向と電極配列による電場勾配の方向がともに検出部の方向に向かうように作用し、検出部における試料濃度の濃縮効果がさらに高められ、測定感度がさらに向上する。
電極配列をセルの底面に形成することにより、被測定物質を誘電泳動と重力の両方によって底面上に移動させることができ、表面プラズモン共鳴やエバネッセント波の効果をより高めることができる。
When the present invention is applied to a flow cell, the flow direction of the sample solution by the flow cell and the direction of the electric field gradient by the electrode arrangement are both directed toward the detection unit, and the concentration effect of the sample concentration at the detection unit is further increased. The measurement sensitivity is further improved.
By forming the electrode array on the bottom surface of the cell, the substance to be measured can be moved onto the bottom surface by both dielectrophoresis and gravity, and the effects of surface plasmon resonance and evanescent waves can be further enhanced.

図1は本発明の一実施例を概略的に示したものである。2は測定セルであり、その内部を試料溶液4が図で右方向に移動するフローセルである。試料セル2の高さHは例えば10μmである。
試料セル2の底面6は石英ガラスなどの透明な材料で構成されており、底面6の内側上には互いに分離された複数の電極8−1〜8−4が設けられている。これらの電極8−1〜8−4は紙面垂直方向に延びる短冊状のものであり、図で左から右方向(フローセルの上流側から下流側の方向)に一列に配列され、その配列方向に沿って間隔が順次狭くなっていくように配置されている。電極間隔の一例を示すと、電極8−1と8−2の間が10μm、電極8−2と8−3の間が5μm、電極8-3と8-4の間が2μmである。電極8−4の図で右側には表面プラズモン共鳴を起こさせるための金属薄膜10が形成されており、電極8−4と金属薄膜10の間の間隔は例えば1μmである。
FIG. 1 schematically shows an embodiment of the present invention. Reference numeral 2 denotes a measurement cell, which is a flow cell in which the sample solution 4 moves rightward in the figure. The height H of the sample cell 2 is, for example, 10 μm.
The bottom surface 6 of the sample cell 2 is made of a transparent material such as quartz glass, and a plurality of electrodes 8-1 to 8-4 separated from each other are provided on the inside of the bottom surface 6. These electrodes 8-1 to 8-4 are strips extending in the direction perpendicular to the paper surface, and are arranged in a line from left to right (in the direction from the upstream side to the downstream side of the flow cell) in the figure. It arrange | positions so that a space | interval may become narrow sequentially along. An example of the electrode spacing is 10 μm between the electrodes 8-1 and 8-2, 5 μm between the electrodes 8-2 and 8-3, and 2 μm between the electrodes 8-3 and 8-4. A metal thin film 10 for causing surface plasmon resonance is formed on the right side of the electrode 8-4 in the figure, and the distance between the electrode 8-4 and the metal thin film 10 is, for example, 1 μm.

電極8−1〜8−4と金属薄膜10は必ずしも同じ材質である必要はないが、製造工程を考えると同じ材質にすれば同じ工程で同時に製作できる利点がある。そのような電極8−1〜8−4と金属薄膜10の材質としては、表面プラズモン共鳴に適した金属、例えば金、銀、銅又はアルミニウムが適当である。電極8−1〜8−4と金属薄膜10の膜厚は30〜80nmが適当である。   The electrodes 8-1 to 8-4 and the metal thin film 10 do not necessarily have to be made of the same material, but considering the manufacturing process, there is an advantage that the same material can be used to manufacture the electrode 8-1 to 8-4 at the same time. As a material of such electrodes 8-1 to 8-4 and the metal thin film 10, a metal suitable for surface plasmon resonance, for example, gold, silver, copper or aluminum is suitable. The thickness of the electrodes 8-1 to 8-4 and the metal thin film 10 is suitably 30 to 80 nm.

電極8−1〜8−4と金属薄膜10を被うように誘電体薄膜を形成してもよい。その誘電体薄膜は、電極8−1〜8−4と金属薄膜10が酸化しやすいアルミニウムなどの金属である場合の酸化を防ぐとともに、金属薄膜10上に平面型導波路を形成することで共振器となり、さらに試料溶液4の溶剤が電極8−1〜8−4や金属薄膜10と化学反応するのを防止する役割を果たす。そのような誘電体薄膜としては、SiO2、Al23又はTiO2などの無機誘電体材料や有機誘電体材料を用いることができる。 A dielectric thin film may be formed so as to cover the electrodes 8-1 to 8-4 and the metal thin film 10. The dielectric thin film prevents resonance when the electrodes 8-1 to 8-4 and the metal thin film 10 are easily oxidized, such as aluminum, and forms a planar waveguide on the metal thin film 10 to resonate. Further, it serves to prevent the solvent of the sample solution 4 from chemically reacting with the electrodes 8-1 to 8-4 and the metal thin film 10. As such a dielectric thin film, an inorganic dielectric material such as SiO 2 , Al 2 O 3 or TiO 2 or an organic dielectric material can be used.

底面6の外側には金属薄膜10と対向する位置に励起光を全反射の条件で入射させるためのプリズム12が取り付けられている。プリズム12としては半球プリズムが好適であるが、三角プリズムや方形プリズムなども使用可能である。
プリズム12には入射光学系(図示略)から励起光14が入射し、金属薄膜10での反射光16がプリズム12を経て受光光学系(図示略)に導かれる。
A prism 12 for attaching the excitation light to the position facing the metal thin film 10 under the condition of total reflection is attached to the outside of the bottom surface 6. The prism 12 is preferably a hemispherical prism, but a triangular prism, a square prism, or the like can also be used.
Excitation light 14 enters the prism 12 from an incident optical system (not shown), and reflected light 16 from the metal thin film 10 is guided to the light receiving optical system (not shown) via the prism 12.

入射光学系には光源部として例えばUV励起光源を備えている。UV励起光源としては波長を選択できるキセノンランプが好適であるが、波長が固定されていてもよい場合は水銀灯やUVレーザー等でもよい。受光光学系にはプリズム12を経た反射光を受光して検出するために光電子増倍管、PD(フォトダイオード)、APD(アバランシェフォトダイオード)等のUV検出器を備えている。その検出器による検出強度から表面プラズモン共鳴角を求めることができる。   The incident optical system includes, for example, a UV excitation light source as a light source unit. As the UV excitation light source, a xenon lamp capable of selecting a wavelength is suitable, but when the wavelength may be fixed, a mercury lamp, a UV laser, or the like may be used. The light receiving optical system includes a UV detector such as a photomultiplier tube, a PD (photodiode), or an APD (avalanche photodiode) in order to receive and detect the reflected light that has passed through the prism 12. The surface plasmon resonance angle can be obtained from the intensity detected by the detector.

セル2の上面7の外側に、金属薄膜10に対向して被測定物質から発生する蛍光を検出するための蛍光受光光学系を設けていてもよい。そのような蛍光受光光学系は光電子増倍管、、PD、APD、PDA(フォトダイオードアレイ)などの蛍光検出器を備えている。この場合、上面7の材質は蛍光を透過できる石英ガラスなどが適当である。
電極8−1〜8−4にはそれぞれ交流電源15−1〜15−4が接続されており、各電極8−1〜8−4に交流電圧が印加されるようになっている。
A fluorescence light receiving optical system for detecting fluorescence generated from the substance to be measured may be provided outside the upper surface 7 of the cell 2 so as to face the metal thin film 10. Such a fluorescence receiving optical system includes a fluorescence detector such as a photomultiplier tube, PD, APD, PDA (photodiode array). In this case, the material of the upper surface 7 is suitably quartz glass that can transmit fluorescence.
AC power supplies 15-1 to 15-4 are connected to the electrodes 8-1 to 8-4, respectively, and an AC voltage is applied to the electrodes 8-1 to 8-4.

この試料セル2に試料溶液4を流し、電極8−1〜8−4に交流電圧を印加すると、試料溶液4中の被測定物質18が電極8−1〜8−4から発生する電気力線20による電場勾配による誘電泳動による力と、試料溶液の流れによる力の両方の力を受けて図中に破線の矢印で示される方向に移動する。金属薄膜10にプリズム12を介して励起光14を入射させることにより、表面プラズモン共鳴によって領域22では電場が増強される。その表面プラズモン共鳴角を測定することにより、被測定物質濃度に応じた屈折率変化が求められる。
このとき、被測定物質が励起されて蛍光が発生することがあるので、その蛍光を測定することによっても被測定物質濃度を求めることができる。
When the sample solution 4 is caused to flow through the sample cell 2 and an AC voltage is applied to the electrodes 8-1 to 8-4, the electric lines of force that the substance 18 to be measured in the sample solution 4 is generated from the electrodes 8-1 to 8-4. In response to both the force due to the dielectrophoresis due to the electric field gradient by 20 and the force due to the flow of the sample solution, it moves in the direction indicated by the dashed arrow in the figure. By making the excitation light 14 incident on the metal thin film 10 via the prism 12, the electric field is enhanced in the region 22 by surface plasmon resonance. By measuring the surface plasmon resonance angle, the refractive index change according to the concentration of the substance to be measured is obtained.
At this time, since the substance to be measured is excited and fluorescence may be generated, the concentration of the substance to be measured can also be obtained by measuring the fluorescence.

図1の実施例から表面プラズモン共鳴を起こさせるための金属薄膜10を省略することができる。その場合にはプリズム12により入射する光のエバネッセント波により試料溶液中の被測定物質濃度に応じた吸光度を測定することができる。   The metal thin film 10 for causing surface plasmon resonance can be omitted from the embodiment of FIG. In that case, the absorbance corresponding to the concentration of the substance to be measured in the sample solution can be measured by the evanescent wave of the light incident by the prism 12.

以上の実施例はフローセルに本発明を適用したものであるが、溶液を収容する形式のミクロセルにも適用することができる。その場合は溶液の流れによる力は作用しないが、電場勾配が検出部方向に向かって形成されているため、底面から遠くの被測定物質を検出部方向に向かって移動させる力は作用する。
また、ミクロセルに本発明を適用した場合に、電極8−1〜8−4に印加する交流電圧の位相を調整することにより、電場勾配の位相が検出部の方向に向かうようにすることにより、被測定物質を検出部方向に有効に集めることができるようになる。
Although the above embodiment is an application of the present invention to a flow cell, it can also be applied to a microcell of a type containing a solution. In this case, the force due to the flow of the solution does not act, but since the electric field gradient is formed toward the detection unit, the force that moves the substance to be measured far from the bottom surface acts toward the detection unit.
Further, when the present invention is applied to the microcell, by adjusting the phase of the AC voltage applied to the electrodes 8-1 to 8-4, the phase of the electric field gradient is directed toward the detection unit, It becomes possible to effectively collect the substances to be measured in the direction of the detection unit.

本発明の検出装置は、液体クロマトグラフやキャピラリ電気泳動などの分析装置の検出器として利用することができる。   The detection apparatus of the present invention can be used as a detector for an analysis apparatus such as a liquid chromatograph or capillary electrophoresis.

一実施例を示す概略断面図である。It is a schematic sectional drawing which shows one Example.

符号の説明Explanation of symbols

2 測定セル
4 試料溶液
6 測定セルの底面
8−1〜8−4 電極
10 金属薄膜
12 プリズム
15−1〜15−4 交流電源
18 被測定物質
20 電気力線
22 表面プラズモン共鳴による電場増強領域
2 Measurement cell 4 Sample solution 6 Bottom surface of measurement cell 8-1 to 8-4 Electrode 10 Metal thin film 12 Prism 15-1 to 15-4 AC power supply 18 Measured material 20 Electric field line 22 Electric field enhancement region by surface plasmon resonance

Claims (6)

被測定物質を含む試料溶液が収容又は流されるセルと、
前記セルの一内面上で互いに分離され間隔が狭くなっていくように一列に配置された複数の電極と、
前記電極配列の間隔が狭くなっていく方向の延長線上の位置で前記被測定物質を検出する検出部と、
前記電極に交流電圧を印加する電源装置とを備えた誘電泳動検出装置。
A cell in which a sample solution containing a substance to be measured is stored or passed;
A plurality of electrodes arranged in a row so as to be separated from each other on one inner surface of the cell, and
A detection unit for detecting the substance to be measured at a position on an extended line in a direction in which the interval between the electrode arrays is narrowed;
A dielectrophoresis detection device comprising: a power supply device that applies an alternating voltage to the electrode.
前記検出部は、前記電極配列の間隔が狭くなっていく方向の延長線上に配置された金属膜と、前記セルの壁面上で前記金属膜の位置に配置されたプリズムと、前記プリズムを介して前記セルに表面プラズモン共鳴を起こす全反射の条件で光を入射させる入射光学系と、前記セルからの反射光を前記プリズムを介して受光し、表面プラズモン共鳴角から屈折率変化を測定する受光光学系とを備えている請求項1に記載の誘電泳動検出装置。   The detection unit includes a metal film disposed on an extension line in a direction in which the interval between the electrode arrays is narrowed, a prism disposed at the position of the metal film on the wall surface of the cell, and the prism. An incident optical system that allows light to enter under the condition of total reflection that causes surface plasmon resonance to the cell, and light receiving optics that receives reflected light from the cell via the prism and measures a change in refractive index from the surface plasmon resonance angle. The dielectrophoresis detection device according to claim 1, further comprising: a system. 前記検出部は、前記電極配列の間隔が狭くなっていく方向の延長線上の位置で前記セルの壁面上に配置されたプリズムと、前記プリズムを介して前記セルに全反射の条件で光を入射させる入射光学系と、前記セルからの反射光を前記プリズムを介して受光し、吸光度を測定する受光光学系とを備えている請求項1に記載の誘電泳動検出装置。   The detector is configured such that a prism disposed on a wall surface of the cell at a position on an extension line in a direction in which the interval between the electrode arrays is narrowed, and light is incident on the cell under the condition of total reflection through the prism. The dielectrophoresis detection device according to claim 1, further comprising: an incident optical system that receives the reflected light from the cell, and a light receiving optical system that receives the reflected light from the cell and measures the absorbance. 前記検出部は前記セル内で前記被測定物質が励起して発生した蛍光を受光し検出する蛍光受光光学系を備えている請求項1から3のいずれかに記載の誘電泳動検出装置。   4. The dielectrophoresis detection device according to claim 1, wherein the detection unit includes a fluorescence light receiving optical system that receives and detects fluorescence generated by excitation of the substance to be measured in the cell. 5. 前記セルはフローセルであり、前記電極配列の間隔が狭くなっていく方向に試料溶液が流されるものである請求項1から4のいずれかに記載の誘電泳動検出装置。   5. The dielectrophoresis detection device according to claim 1, wherein the cell is a flow cell, and the sample solution is caused to flow in a direction in which an interval between the electrode arrays becomes narrower. 前記電極が配置されている前記一内面は前記セルの底面である請求項1から5のいずれかに記載の誘電泳動検出装置。
The dielectrophoresis detection device according to claim 1, wherein the inner surface on which the electrode is disposed is a bottom surface of the cell.
JP2004000294A 2004-01-05 2004-01-05 Electrophoresis detecting apparatus Pending JP2005195397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004000294A JP2005195397A (en) 2004-01-05 2004-01-05 Electrophoresis detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004000294A JP2005195397A (en) 2004-01-05 2004-01-05 Electrophoresis detecting apparatus

Publications (1)

Publication Number Publication Date
JP2005195397A true JP2005195397A (en) 2005-07-21

Family

ID=34816180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004000294A Pending JP2005195397A (en) 2004-01-05 2004-01-05 Electrophoresis detecting apparatus

Country Status (1)

Country Link
JP (1) JP2005195397A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093055A1 (en) * 2005-03-03 2006-09-08 National Institute For Materials Science Chip for optical analysis, method for manufacturing the same, optical analyzer, and optical analyzing method
CN100419419C (en) * 2006-09-29 2008-09-17 东北电力大学 Capillary tube electrophoresis detector for detecting heavy metal
JP2011012983A (en) * 2009-06-30 2011-01-20 Nippon Steel Corp Method of detecting leakage of specific chemical substance to drainage basin outside system
WO2018078999A1 (en) * 2016-10-27 2018-05-03 シャープ株式会社 Fluorescent testing system, dielectrophoresis device, and molecular testing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093055A1 (en) * 2005-03-03 2006-09-08 National Institute For Materials Science Chip for optical analysis, method for manufacturing the same, optical analyzer, and optical analyzing method
CN100419419C (en) * 2006-09-29 2008-09-17 东北电力大学 Capillary tube electrophoresis detector for detecting heavy metal
JP2011012983A (en) * 2009-06-30 2011-01-20 Nippon Steel Corp Method of detecting leakage of specific chemical substance to drainage basin outside system
WO2018078999A1 (en) * 2016-10-27 2018-05-03 シャープ株式会社 Fluorescent testing system, dielectrophoresis device, and molecular testing method
JPWO2018078999A1 (en) * 2016-10-27 2019-09-12 シャープ株式会社 Fluorescence inspection system, dielectrophoresis device, and molecular inspection method

Similar Documents

Publication Publication Date Title
US20230258862A1 (en) Optical coupler and waveguide system
JP4414953B2 (en) Sample analysis using anti-resonant waveguide sensors
US7248361B2 (en) Fluorescence reader based on anti-resonant waveguide excitation
CN101203743B (en) Luminescence sensors using sub-wavelength apertures or slits
JP3816072B2 (en) Optical waveguide sensor and measuring device using the same
KR100590548B1 (en) Optical detection device
JP4455362B2 (en) Measuring device using total reflection attenuation
EP1489403A1 (en) Micro-chemical system-use chip and mico-chemical system
JPH07311146A (en) Device and method for detecting macroscopic characteristic of medicine in cavity
US20100252751A1 (en) Microelectronic opiacal evanescent field sensor
JP3562912B2 (en) Surface plasmon sensor
US10562503B2 (en) Waveguide sensor with nanoporous surface layer
US20050140971A1 (en) Microchemical system chip and microchemical system
US10816466B2 (en) Analysing apparatus and method
JP2005195397A (en) Electrophoresis detecting apparatus
KR101223762B1 (en) Biosensor using bragg grating waveguide for surface plasmon and detection method for target material using the same
WO2014007134A1 (en) Sensor chip
US20050000812A1 (en) Apparatus for electrophoresis separation on microchannels and for laser-induced fluorescence detection
WO2021131331A1 (en) Biomolecular inspection chip for fluorescence detection
US10638076B2 (en) Sensing apparatus
JP2005070031A (en) Component analyzer using microchip
JP4254560B2 (en) Optical measuring device
CN108872155A (en) A kind of preparation method of magneto-optic optical fiber primary surface Air plasma mass sensor
JP6320768B2 (en) Optical element
KR20060089103A (en) Biochip flatform using a spherical cavity resonator and biochemical sensor having the same