JP2005195292A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2005195292A
JP2005195292A JP2004003875A JP2004003875A JP2005195292A JP 2005195292 A JP2005195292 A JP 2005195292A JP 2004003875 A JP2004003875 A JP 2004003875A JP 2004003875 A JP2004003875 A JP 2004003875A JP 2005195292 A JP2005195292 A JP 2005195292A
Authority
JP
Japan
Prior art keywords
compressor
rotation speed
electric element
refrigerator
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004003875A
Other languages
Japanese (ja)
Inventor
Yasushi Kakita
恭史 柿田
Haruyoshi Yamamoto
晴由 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004003875A priority Critical patent/JP2005195292A/en
Publication of JP2005195292A publication Critical patent/JP2005195292A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent resonance sound in the interior of a compressor by varying the rotating speed in starting the compressor. <P>SOLUTION: In starting the compressor, the initial operation frequency F0 of the compressor is set by an initial operation frequency setting means 100 (A1), and the detected temperature T1a of a compressor internal space temperature detecting device 190 is sensed and output to an operation frequency control means 150 (A2), whereby the initial operation frequency is varied to F1 or F2 by the operation frequency control means 150 (A3). The compressor is driven by a compressor driving means 160 (A4), and the compressor stable pressure temperature T2a is sensed by a compressor internal space temperature detecting device 190, whereby the compressor is varied to the initial operation frequency F0 set by the initial operation frequency setting means 100 (A5), and resonance sound of a refrigerant and the compressor body is avoided to reduce noise in starting. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、シェル内が低圧のレシプロタイプで回転数を可変制御するインバータ圧縮機を備えた冷蔵庫に関するものである。   The present invention relates to a refrigerator provided with an inverter compressor in which the inside of a shell is a low pressure reciprocating type and the rotation speed is variably controlled.

近年、冷蔵庫は省エネおよび高負荷時冷却性能の確保のため、圧縮機の回転数を冷蔵庫の負荷状態に応じて可変させるインバータタイプが主流となっている。   In recent years, in order to save energy and to ensure cooling performance under high loads, refrigerators have become the mainstream inverter type in which the rotation speed of the compressor can be varied according to the load state of the refrigerator.

一般に、圧縮機はモータがある回転数になると圧縮機本体とで共振現象が発生して騒音および振動が発生する。特に、インバータ冷蔵庫においては回転数が様々に変化するので、この共振現象も発生しやすい。また、圧縮機は信頼性面よりシェル内が低圧のレシプロタイプが主に使われているが、この場合、シェルとシェル内部空間とで気柱共鳴現象が起こり耳障りな騒音が発生する場合がある。この気柱共鳴現象は、シェルの形状とシェル内部空間の温度・圧力条件のバランスで発生するが、圧縮機の回転数が可変するインバータタイプの場合、シェル内部空間の温度・圧力条件の変化が起こりやすく共鳴発生の可能性も高い。このため、回転数変化時の変化率を意図的に変化させて共振の発生を防止するような制御が設けられていた。(例えば、特許文献1参照)
以下、図面を参照しながら上記従来の冷蔵庫を説明する。
In general, when a motor reaches a certain rotational speed, a resonance phenomenon occurs between the compressor body and noise and vibration. In particular, in an inverter refrigerator, the number of revolutions changes variously, so this resonance phenomenon is also likely to occur. In addition, the compressor mainly uses a reciprocating type with a low pressure inside the shell for reliability reasons. In this case, an air column resonance phenomenon may occur between the shell and the inner space of the shell, which may cause annoying noise. . This air column resonance phenomenon occurs due to the balance between the shape of the shell and the temperature and pressure conditions of the internal space of the shell. However, in the case of the inverter type in which the rotation speed of the compressor is variable, the temperature and pressure conditions of the internal space of the shell change. It is easy to occur and the possibility of resonance is high. For this reason, control has been provided that intentionally changes the rate of change when the rotational speed changes to prevent the occurrence of resonance. (For example, see Patent Document 1)
Hereinafter, the conventional refrigerator will be described with reference to the drawings.

図24は、従来の冷蔵庫の制御装置の構成を示したブロック図である。図24に示すように、従来の冷蔵庫の制御装置は、冷蔵庫内部又は圧縮機の温度を感知して冷蔵庫の負荷状態を感知する負荷検知手段11と、前記負荷検知手段11から感知された負荷により冷蔵庫の状態を判断した後、現在の運転周波数を決定する現在運転周波数決定手段12と、既設定された共振周波数を貯蔵する共振周波数格納手段13と、圧縮機の初期起動時の運転周波数(F0)を設定する初期運転周波数設定手段10と、前記現在運転周波数決定手段12及び初期運転周波数設定手段10からそれぞれ入力された現在の運転周波数(Fc1)と初期起動時の運転周波数(F0)間に前記共振周波数格納手段13から入力された共振周波数帯域(以下、共振帯域共振(Fr1)と称す)が存在するかを判定する共振帯域判定手段14と、該共振帯域判定手段14の判定結果に従い、前記現在運転周波数決定手段12から決定された現在の運転周波数(Fc)を可変して出力する運転周波数制御手段15と、該運転周波数制御手段15から出力された運転周波数により圧縮機を駆動させる圧縮機駆動手段16とを備えて構成されている。   FIG. 24 is a block diagram showing a configuration of a conventional refrigerator control device. As shown in FIG. 24, the conventional refrigerator control device includes a load detection unit 11 that detects the temperature of the refrigerator or the compressor and senses the load state of the refrigerator, and a load detected from the load detection unit 11. After judging the state of the refrigerator, the current operating frequency determining means 12 for determining the current operating frequency, the resonant frequency storing means 13 for storing the set resonance frequency, and the operating frequency (F0) at the initial startup of the compressor ) Between the current operating frequency (Fc1) and the initial starting operating frequency (F0) inputted from the current operating frequency determining means 12 and the initial operating frequency setting means 10, respectively. Resonance band determination means 1 for determining whether a resonance frequency band (hereinafter referred to as resonance band resonance (Fr1)) input from the resonance frequency storage means 13 exists. In accordance with the determination result of the resonance band determination means 14, an operation frequency control means 15 that variably outputs the current operation frequency (Fc) determined from the current operation frequency determination means 12, and the operation frequency control means 15 Compressor driving means 16 for driving the compressor at the operating frequency output from the.

以上のように構成された冷蔵庫について、以下その動作を図25の従来の冷蔵庫の制御装置のフローチャートに従い説明する。   About the refrigerator comprised as mentioned above, the operation | movement is demonstrated according to the flowchart of the control apparatus of the conventional refrigerator of FIG. 25 below.

図25に示したように、冷蔵庫の初期起動時に、前記初期運転周波数設定手段10により圧縮機の初期運転周波数(F0)を設定し、前記共振周波数格納手段13に共振帯域(Fr1)を設定した(S1)後、前記負荷感知手段11から冷蔵庫の内部又は圧縮機の温度(図示せず)(負荷:T1)を感知して出力する(S2)と、前記現在運転周波数決定手段12では前記出力(T1)を受けて冷蔵庫内部の負荷状態により現在周波数(Fc)を決定し(S3)、再び初期起動時の圧縮機の運転周波数(F0:例えば、55Hz)と現在の運転周波数(Fc:例えば、49Hz)間に共振帯域(Fr1)が存在するかを判断し(S4)、該判断結果、共振帯域(Fr1)が前記初期起動時の圧縮機の運転周波数(F0)と現在の周波数(Fc)間に存在すると、運転周波数制御手段15の可変速度設定手段(図示せず)により速度増加率(t)に急激に可変させて(S5)、現在の運転周波数(Fc)を共振帯域から迅速に外れるようにした(例えば、37Hz)後、圧縮機駆動手段16により圧縮機を駆動させ、前記第4段階(S4)の判断結果、共振帯域(Fr1)が前記初期起動時の圧縮機の運転周波数(F0)と現在の周波数(Fc)間に存在しないと、現在の状態に圧縮機を駆動して(S6)共振周波数回避制御を終了する。
特許第3291284号公報
As shown in FIG. 25, at the initial start-up of the refrigerator, the initial operating frequency (F0) of the compressor is set by the initial operating frequency setting means 10, and the resonance band (Fr1) is set in the resonance frequency storage means 13. After (S1), the load sensing means 11 senses and outputs the temperature (not shown) (load: T1) of the inside of the refrigerator or the compressor (load: T1), and the current operating frequency determination means 12 outputs the output. In response to (T1), the current frequency (Fc) is determined according to the load state inside the refrigerator (S3), and the compressor operating frequency (F0: 55 Hz, for example) and the current operating frequency (Fc: 49 Hz) is determined whether a resonance band (Fr1) exists (S4). As a result of the determination, the resonance band (Fr1) is determined to be equal to the operating frequency (F0) of the compressor at the time of initial startup and the current frequency (Fc). ) , The speed increasing rate (t) is rapidly changed by the variable speed setting means (not shown) of the operating frequency control means 15 (S5), and the current operating frequency (Fc) is quickly deviated from the resonance band. After doing so (for example, 37 Hz), the compressor is driven by the compressor driving means 16, and as a result of the determination in the fourth step (S4), the resonance band (Fr1) is the operating frequency of the compressor at the time of initial startup ( If it does not exist between F0) and the current frequency (Fc), the compressor is driven to the current state (S6) and the resonance frequency avoidance control is terminated.
Japanese Patent No. 3291284

しかしながら、上記従来の制御では、圧縮機停止から圧縮機が初期起動時の運転周波数で運転する間、圧縮機内部空間の温度・圧力が急激に変化するため、初期周波数において圧縮機内部空間が安定するまで、圧縮機内部空間共振が起きるという課題がある。   However, in the conventional control described above, since the temperature and pressure of the compressor internal space change abruptly while the compressor is operating at the operating frequency at the time of initial startup after the compressor is stopped, the compressor internal space is stable at the initial frequency. Until then, there is a problem that internal space resonance of the compressor occurs.

本発明は、上記従来の課題を解決するもので、圧縮初期起動時から圧縮機内部空間安定時まで共振帯域を持たなく、初期起動時に静音化できる冷蔵庫を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a refrigerator that does not have a resonance band from the time of initial compression start to the time when the compressor internal space is stable, and can be silenced at the time of initial start.

上記従来の課題を解決するために、本発明の冷蔵庫は、冷媒は炭化水素を主成分とし、電動要素と、電動要素により駆動されガス吸入口を前記密閉容器内に開口した圧縮要素と、前記電動要素および前記圧縮要素を収容した圧縮機と、前記電動要素を駆動制御する制御手段と、あらかじめ設定した一つまたは複数の回転数から前記電動要素の回転数を選択する回転数選択手段とを備え、選択された圧縮機回転数を圧縮機起動開始から一定時間、圧縮機内空間温度検知装置を用いて制御するものである。   In order to solve the above-described conventional problems, the refrigerator of the present invention includes a refrigerant whose main component is a hydrocarbon, an electric element, a compression element that is driven by the electric element and opens a gas inlet into the sealed container, An electric element and a compressor containing the compression element; a control means for driving and controlling the electric element; and a rotation speed selection means for selecting the rotation speed of the electric element from one or more preset rotation speeds. The compressor rotational speed selected is controlled for a certain period of time from the start of the compressor using a compressor internal space temperature detection device.

これにより、圧力変動の大きい圧縮機起動時に、圧縮機内空間温度を検知し、圧縮機内部温度及び冷媒密度を推測することで、一定時間だけ回転数を変化させることで冷媒の状態を制御し、冷媒と圧縮機本体の共鳴音が回避される。   Thereby, at the time of starting the compressor with a large pressure fluctuation, by detecting the space temperature in the compressor and estimating the compressor internal temperature and the refrigerant density, the state of the refrigerant is controlled by changing the rotation speed for a certain time, Resonance noise between the refrigerant and the compressor body is avoided.

本発明の冷蔵庫は、冷媒と圧縮機本体の共鳴音を回避することで起動時の騒音を低減することができる。   The refrigerator of this invention can reduce the noise at the time of starting by avoiding the resonance sound of a refrigerant | coolant and a compressor main body.

請求項1記載の発明は、冷媒は炭化水素を主成分とし、電動要素と、電動要素により駆動されガス吸入口を前記密閉容器内に開口した圧縮要素と、前記電動要素および前記圧縮要素を収容した圧縮機と、前記電動要素を駆動制御する制御手段と、あらかじめ設定した一つまたは複数の回転数から前記電動要素の回転数を選択する回転数選択手段とを備え、選択された圧縮機回転数を圧縮機起動開始から一定時間、圧縮機内空間温度検知装置を用いて制御することにより、圧縮機起動時に圧力変動が大きいので、制御装置から駆動開始の指示が出る際に、圧縮機内空間温度を検知し、圧縮機内部温度及び冷媒密度を精度よく推測することができ、圧力変動の大きい一定時間だけ回転数を変化させることで冷媒の状態を制御し、冷媒と圧縮機本体の共鳴音を回避することができる。   According to the first aspect of the present invention, the refrigerant is mainly composed of hydrocarbon, and includes an electric element, a compression element driven by the electric element and having a gas inlet opening in the sealed container, and the electric element and the compression element. Selected compressor rotation, and a control means for driving and controlling the electric element, and a rotation speed selection means for selecting the rotation speed of the electric element from one or a plurality of rotation speeds set in advance. Because the pressure fluctuation is large at the time of starting the compressor by controlling the number for a certain time from the start of starting the compressor, the space temperature in the compressor is , And accurately estimate the internal temperature and refrigerant density of the compressor, and control the refrigerant state by changing the rotation speed for a certain period of time when the pressure fluctuation is large. It is possible to avoid the resonance.

請求項2記載の発明は、冷媒は炭化水素を主成分とし、電動要素と、電動要素により駆動されガス吸入口を前記密閉容器内に開口した圧縮要素と、前記電動要素および前記圧縮要素を収容した圧縮機と、前記電動要素を駆動制御する制御手段と、あらかじめ設定した一つまたは複数の回転数から前記電動要素の回転数を選択する回転数選択手段とを備え、選択された圧縮機回転数を圧縮機起動開始から一定時間、圧縮機本体温度検知装置を用いて制御するものであり、圧縮機起動時に圧力変動が大きいので、制御装置から駆動開始の指示が出る際に、圧縮機本体温度を検知し、圧縮機内部温度及び冷媒密度を簡単な方法で推測することができ、圧力変動の大きい一定時間だけ回転数を変化させることで冷媒の状態を制御し、冷媒と圧縮機本体の共鳴音を回避することができる。   According to a second aspect of the present invention, the refrigerant is mainly composed of hydrocarbon, and includes an electric element, a compression element driven by the electric element and having a gas inlet opening in the sealed container, and the electric element and the compression element. Selected compressor rotation, and a control means for driving and controlling the electric element, and a rotation speed selection means for selecting the rotation speed of the electric element from one or a plurality of rotation speeds set in advance. The number is controlled using the compressor body temperature detection device for a certain period of time from the start of the compressor start-up, and since the pressure fluctuation is large at the start of the compressor, when the drive start instruction is issued from the control device, the compressor main body The temperature can be detected, the internal temperature of the compressor and the refrigerant density can be estimated by a simple method, and the state of the refrigerant is controlled by changing the rotation speed for a certain period of time when the pressure fluctuation is large. It is possible to avoid the resonance.

請求項3記載の発明は、冷媒は炭化水素を主成分とし、電動要素と、電動要素により駆動されガス吸入口を前記密閉容器内に開口した圧縮要素と、前記電動要素および前記圧縮要素を収容した圧縮機と、前記電動要素を駆動制御する制御手段と、あらかじめ設定した一つまたは複数の回転数から前記電動要素の回転数を選択する回転数選択手段とを備え、選択された圧縮機回転数を圧縮機起動開始から一定時間、圧縮機吐出冷媒温度検知装置を用いて制御するものであり、圧縮機起動時に圧力変動が大きいので、制御装置から駆動開始の指示が出る際に、圧縮機吐出冷媒温度を検知し、圧縮機内部温度及び冷媒密度を簡単な方法で推測することができ、圧力変動の大きい一定時間だけ回転数を変化させることで冷媒の状態を制御し、冷媒と圧縮機本体の共鳴音を回避することができる。   According to a third aspect of the present invention, the refrigerant is mainly composed of hydrocarbon, and includes an electric element, a compression element driven by the electric element and having a gas inlet opening in the sealed container, and the electric element and the compression element. Selected compressor rotation, and a control means for driving and controlling the electric element, and a rotation speed selection means for selecting the rotation speed of the electric element from one or a plurality of rotation speeds set in advance. The number is controlled using the compressor discharge refrigerant temperature detection device for a certain time from the start of the compressor start, and since the pressure fluctuation is large at the start of the compressor, when the drive start instruction is issued from the control device, the compressor The refrigerant temperature can be detected and the compressor internal temperature and refrigerant density can be estimated by a simple method, and the state of the refrigerant is controlled by changing the rotation speed for a certain period of time during which the pressure fluctuation is large. It is possible to avoid the machine body of the resonant sound.

請求項4記載の発明は、冷媒は炭化水素を主成分とし、電動要素と、電動要素により駆動されガス吸入口を前記密閉容器内に開口した圧縮要素と、前記電動要素および前記圧縮要素を収容した圧縮機と、前記電動要素を駆動制御する制御手段と、あらかじめ設定した一つまたは複数の回転数から前記電動要素の回転数を選択する回転数選択手段とを備え、選択された圧縮機回転数を圧縮機起動開始から一定時間、圧縮機運転時間を用いて制御するものであり、圧縮機起動時に圧力変動が大きいので、制御装置から駆動開始の指示が出る際に、圧縮機起動直前の圧縮機起動時間及び、圧縮機停止時間より、圧縮機内部温度及び冷媒密度を推測することができ、圧力変動の大きい一定時間だけ回転数を変化させることで冷媒の状態を制御し、冷媒と圧縮機本体の共鳴音を回避することができる。   According to a fourth aspect of the present invention, the refrigerant is mainly composed of hydrocarbon, and includes an electric element, a compression element driven by the electric element and having a gas inlet opening in the sealed container, and the electric element and the compression element. Selected compressor rotation, and a control means for driving and controlling the electric element, and a rotation speed selection means for selecting the rotation speed of the electric element from one or a plurality of rotation speeds set in advance. The number is controlled using the compressor operation time for a fixed time from the start of the compressor, and the pressure fluctuation is large at the start of the compressor. The compressor internal temperature and refrigerant density can be estimated from the compressor start-up time and compressor stop time, and the state of the refrigerant is controlled by changing the rotation speed for a certain period of time when the pressure fluctuation is large. It is possible to avoid the resonance of the compressor body.

請求項5記載の発明は、請求項1から4のいずれか一項に記載の冷蔵庫において、選択回転数が最小回転数の場合は回転数を高回転側へ変化させるものであり、圧縮機の圧縮要素への給油改善を図ることができる。   The invention according to claim 5 is the refrigerator according to any one of claims 1 to 4, wherein when the selected rotational speed is the minimum rotational speed, the rotational speed is changed to a high rotational speed side. The oil supply to the compression element can be improved.

請求項6記載の発明は、請求項1から4のいずれか一項に記載の冷蔵庫において、選択回転数が最大回転数の場合は回転数を低回転側へ変化させるものであり、圧縮機の耐久性及び信頼性を高めることができる。   The invention according to claim 6 is the refrigerator according to any one of claims 1 to 4, wherein when the selected rotational speed is the maximum rotational speed, the rotational speed is changed to a low rotational side, Durability and reliability can be improved.

請求項7記載の発明は、請求項1から4のいずれか一項に記載の冷蔵庫において、選択回転数を複数回変化させるものであり、冷媒と圧縮機振動を緻密に制御し、共鳴音を回避することができる。   A seventh aspect of the invention is the refrigerator according to any one of the first to fourth aspects, wherein the selected number of revolutions is changed a plurality of times, and the refrigerant and compressor vibrations are precisely controlled to generate a resonance sound. It can be avoided.

請求項8記載の発明は、請求項1から4のいずれか一項に記載の冷蔵庫において、電源投入時または除霜終了後の圧縮機起動時は回転数制御時間を通常の起動時より延長させるものであり、冷媒の圧力変動の少ない時間まで、圧縮機本体との共鳴音を回避することができる。   The invention according to claim 8 is the refrigerator according to any one of claims 1 to 4, wherein the rotation speed control time is extended from the normal start-up time when the compressor is started after turning on the power or after defrosting. Therefore, resonance with the compressor body can be avoided until the time when the pressure fluctuation of the refrigerant is small.

請求項9記載の発明は、請求項1から4のいずれか一項に記載の冷蔵庫において、電源投入時または除霜終了後の圧縮機起動時は回転数制御を複数回行うものであり、冷媒と圧縮機振動を緻密に制御し、共鳴音を回避することができ、また、変動幅の増大による、共鳴点の再一致を防ぐことができる。   A ninth aspect of the invention is the refrigerator according to any one of the first to fourth aspects, wherein the rotation speed control is performed a plurality of times when the power is turned on or when the compressor is started after the defrosting is completed. And the compressor vibration can be precisely controlled to avoid the resonance sound, and the resonance point can be prevented from rematching due to the increase of the fluctuation range.

請求項10記載の発明は、請求項1から4のいずれか一項に記載の冷蔵庫において、電源投入時または除霜終了後の圧縮機起動時にのみ回転数制御を行うものであり、圧力変動が大きく、変動時間が長い、電源投入時または除霜時にのみ圧縮機回転数の変化を行うことで、冷媒と圧縮機本体との共鳴音を回避することができ、また、圧力変動が少量の際に起こる、共鳴点の再一致を防ぐことができる。   The invention according to claim 10 is the refrigerator according to any one of claims 1 to 4, wherein the rotation speed is controlled only when the power is turned on or when the compressor is started after the completion of defrosting. Resonance between the refrigerant and the compressor body can be avoided by changing the compressor speed only when the power is turned on or when defrosting, and the fluctuation time is large. It is possible to prevent rematching of resonance points occurring in

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1による冷蔵庫の制御装置の構成を示したブロック図であり、図2は本発明の実施の形態1による冷蔵庫のフローチャートであり、図3は本発明の実施の形態1による圧縮機回転数のタイムチャートである。以下、本発明の実施の形態について図面に添って説明する。本発明に係るインバータ冷蔵庫の共振周波数制御装置においては、図1に示したように、冷蔵庫内部又は圧縮機の温度を感知して冷蔵庫の負荷状態を感知する負荷感知手段110と、前記負荷感知手段110から感知された負荷により冷蔵庫の状態を判断した後、現在の運転周波数を決定する現在運転周波数決定手段120と、圧縮機の初期起動時の運転周波数F0を設定する初期運転周波数設定手段100と、圧縮機内空間温度検知装置190と、前記現在運転周波数決定手段120及び、圧縮機内空間温度検知装置190の判断結果に従い、前記現在運転周波数決定手段120から決定された初期運転周波数数F0を可変して出力する運転周波数制御手段150と、該運転周波数制御手段150から出力された運転周波数により圧縮機を駆動させる圧縮機駆動手段160とを備えて構成されている。
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration of a refrigerator control apparatus according to Embodiment 1 of the present invention, FIG. 2 is a flowchart of the refrigerator according to Embodiment 1 of the present invention, and FIG. 3 is an implementation of the present invention. It is a time chart of the compressor rotation speed by the form 1 of. Embodiments of the present invention will be described below with reference to the drawings. In the resonance frequency control apparatus for an inverter refrigerator according to the present invention, as shown in FIG. 1, the load sensing means 110 for sensing the temperature inside the refrigerator or the compressor and sensing the load state of the refrigerator, and the load sensing means. 110, after determining the state of the refrigerator based on the load sensed from 110, a current operating frequency determining means 120 for determining the current operating frequency, and an initial operating frequency setting means 100 for setting the operating frequency F0 when the compressor is initially started, The initial operating frequency number F0 determined from the current operating frequency determining means 120 is varied according to the determination results of the compressor internal space temperature detecting device 190, the current operating frequency determining means 120, and the compressor internal space temperature detecting device 190. Operating frequency control means 150 for outputting the compressor, and the compressor by the operating frequency output from the operating frequency control means 150. It is constituted by a compressor drive means 160 for moving.

以下、このように構成された本発明に係るインバータ冷蔵庫の初期運転周波数の可変制御について説明する。図2に示すように、圧縮機の起動時、すなわち、負荷感知手段110又は電源投入検知装置210又は除霜終了検知装置220が圧縮機起動条件を検知した場合において、前記初期運転周波数設定手段100により圧縮機の初期運転周波数F0を設定し(A1)、運転周波数制御手段150に圧縮機内空間温度検知装置190の検知温度(T1a)を感知して出力する(A2a)ことで、運転周波数制御手段150により初期運転周波数をF1もしくはF2に可変させて(A3)、圧縮機駆動手段160により圧縮機を駆動させ(A4)、圧縮機内空間温度検知装置190が圧縮機安定圧力温度(T2a)を感知することで、前記初期運転周波数設定手段100により設定した初期運転周波数F0に圧縮機を可変して(A5)、本発明に係るインバータ冷蔵庫の初期運転周波数を終了する。   Hereinafter, variable control of the initial operating frequency of the inverter refrigerator according to the present invention configured as described above will be described. As shown in FIG. 2, when the compressor is started, that is, when the load sensing means 110, the power-on detection device 210 or the defrosting end detection device 220 detects the compressor activation condition, the initial operation frequency setting means 100 is set. Is used to set the initial operating frequency F0 of the compressor (A1), and the operating frequency control means 150 senses and outputs the detected temperature (T1a) of the compressor space temperature detecting device 190 to the operating frequency control means 150 (A2a). 150, the initial operating frequency is changed to F1 or F2 (A3), the compressor is driven by the compressor driving means 160 (A4), and the compressor internal space temperature detection device 190 senses the compressor stable pressure temperature (T2a). Thus, the compressor is changed to the initial operating frequency F0 set by the initial operating frequency setting means 100 (A5), and the present invention is applied. To end the initial operating frequency of the inverter refrigerator.

したがって、圧縮機起動時に圧力変動が大きいので、制御装置から駆動開始の指示が出る際に、圧縮機内空間温度を検知し、圧縮機内部温度及び冷媒密度を精度よく推測することができ、圧力変動の大きい一定時間だけ回転数を変化させることで冷媒の状態を制御し、冷媒と圧縮機本体の共鳴音を回避することができる。   Therefore, since the pressure fluctuation is large at the time of starting the compressor, it is possible to detect the internal space temperature of the compressor and accurately estimate the internal temperature of the compressor and the refrigerant density when an instruction to start driving is issued from the control device. It is possible to control the state of the refrigerant by changing the rotation speed only for a certain period of time, and to avoid resonance noise between the refrigerant and the compressor body.

但し、前記判断結果が前記初期起動時の圧縮機の運転周波数は共振周波数に存在しないと、判断した時は可変制御を行わない。   However, when it is determined that the operation frequency of the compressor at the time of initial startup does not exist at the resonance frequency, the variable control is not performed.

(実施の形態2)
図4は、本発明の実施の形態2による冷蔵庫の制御装置の構成を示したブロック図であり、図5は本発明の実施の形態2による冷蔵庫のフローチャートであり、図6は本発明の実施の形態2による圧縮機回転数のタイムチャートである。以下、本発明の実施の形態について図面に添って説明する。本発明に係るインバータ冷蔵庫の共振周波数制御装置においては、図4に示したように、冷蔵庫内部又は圧縮機の温度を感知して冷蔵庫の負荷状態を感知する負荷感知手段110と、前記負荷感知手段110から感知された負荷により冷蔵庫の状態を判断した後、現在の運転周波数を決定する現在運転周波数決定手段120と、圧縮機の初期起動時の運転周波数F0を設定する初期運転周波数設定手段100と、圧縮機本体温度検知装置230と、前記現在運転周波数決定手段120及び、圧縮機本体温度検知装置230の判断結果に従い、前記現在運転周波数決定手段120から決定された初期運転周波数数F0を可変して出力する運転周波数制御手段150と、該運転周波数制御手段150から出力された運転周波数により圧縮機を駆動させる圧縮機駆動手段160とを備えて構成されている。
(Embodiment 2)
FIG. 4 is a block diagram showing the configuration of the refrigerator control device according to the second embodiment of the present invention, FIG. 5 is a flowchart of the refrigerator according to the second embodiment of the present invention, and FIG. 6 shows the implementation of the present invention. It is a time chart of the compressor rotation speed by the form 2 of. Embodiments of the present invention will be described below with reference to the drawings. In the resonance frequency control apparatus for an inverter refrigerator according to the present invention, as shown in FIG. 4, the load sensing means 110 for sensing the temperature inside the refrigerator or the compressor and sensing the load state of the refrigerator, and the load sensing means. 110, after determining the state of the refrigerator based on the load sensed from 110, a current operating frequency determining means 120 for determining the current operating frequency, and an initial operating frequency setting means 100 for setting the operating frequency F0 when the compressor is initially started, The initial operating frequency number F0 determined from the current operating frequency determining means 120 is varied according to the determination results of the compressor main body temperature detecting device 230, the current operating frequency determining means 120, and the compressor main body temperature detecting device 230. Operating frequency control means 150 that outputs the compressor, and the compressor is driven by the operating frequency output from the operating frequency control means 150. Is constituted by a compressor drive means 160 for.

以下、このように構成された本発明に係るインバータ冷蔵庫の初期運転周波数の可変制御について説明する。図5に示すように、圧縮機の起動時、すなわち、負荷感知手段110又は電源投入検知装置210又は除霜終了検知装置220が圧縮機起動条件を検知した場合において、前記初期運転周波数設定手段100により圧縮機の初期運転周波数F0を設定し(A1)、運転周波数制御手段150に圧縮機本体温度検知装置230の検知温度(T1b)を感知して出力する(A2b)ことで、運転周波数制御手段150により初期運転周波数をF1もしくはF2に可変させて(A3)、圧縮機駆動手段160により圧縮機を駆動させ(A4)、圧縮機本体温度検知装置230が圧縮機安定圧力温度(T2b)を感知することで、前記初期運転周波数設定手段100により設定した初期運転周波数F0に圧縮機を可変して(A5)、本発明に係るインバータ冷蔵庫の初期運転周波数を終了する。   Hereinafter, variable control of the initial operating frequency of the inverter refrigerator according to the present invention configured as described above will be described. As shown in FIG. 5, when the compressor is started, that is, when the load sensing means 110, the power-on detection device 210 or the defrosting end detection device 220 detects the compressor activation condition, the initial operation frequency setting means 100 is set. Is used to set the initial operating frequency F0 of the compressor (A1), and the operating frequency control means 150 senses and outputs the detected temperature (T1b) of the compressor body temperature detecting device 230 to the operating frequency control means 150 (A2b). 150, the initial operating frequency is changed to F1 or F2 (A3), the compressor is driven by the compressor driving means 160 (A4), and the compressor body temperature detecting device 230 detects the compressor stable pressure temperature (T2b). Thus, the compressor is changed to the initial operation frequency F0 set by the initial operation frequency setting means 100 (A5), and the input according to the present invention is changed. To end the initial operating frequency of over data refrigerator.

したがって、圧縮機起動時に圧力変動が大きいので、制御装置から駆動開始の指示が出る際に、圧縮機本体温度を検知し、圧縮機内部温度及び冷媒密度を簡単な方法で推測することができ、圧力変動の大きい一定時間だけ回転数を変化させることで冷媒の状態を制御し、冷媒と圧縮機本体の共鳴音を回避することができる。   Therefore, since the pressure fluctuation is large at the time of starting the compressor, when an instruction to start driving is issued from the control device, the compressor body temperature can be detected, and the compressor internal temperature and the refrigerant density can be estimated by a simple method. The state of the refrigerant can be controlled by changing the number of revolutions for a certain period of time when the pressure fluctuation is large, and resonance noise between the refrigerant and the compressor body can be avoided.

但し、前記判断結果が前記初期起動時の圧縮機の運転周波数は共振周波数に存在しないと、判断した時は可変制御を行わない。   However, when it is determined that the operation frequency of the compressor at the time of initial startup does not exist at the resonance frequency, the variable control is not performed.

(実施の形態3)
図7は、本発明の実施の形態3による冷蔵庫の制御装置の構成を示したブロック図であり、図8は本発明の実施の形態3による冷蔵庫のフローチャートであり、図9は本発明の実施の形態3による圧縮機回転数のタイムチャートである。以下、本発明の実施の形態について図面に添って説明する。本発明に係るインバータ冷蔵庫の共振周波数制御装置においては、図7に示したように、冷蔵庫内部又は圧縮機の温度を感知して冷蔵庫の負荷状態を感知する負荷感知手段110と、前記負荷感知手段110から感知された負荷により冷蔵庫の状態を判断した後、現在の運転周波数を決定する現在運転周波数決定手段120と、圧縮機の初期起動時の運転周波数F0を設定する初期運転周波数設定手段100と、圧縮機吐出冷媒温度検知装置240と、前記現在運転周波数決定手段120及び、圧縮機吐出冷媒温度検知装置240の判断結果に従い、前記現在運転周波数決定手段120から決定された初期運転周波数数F0を可変して出力する運転周波数制御手段150と、該運転周波数制御手段150から出力された運転周波数により圧縮機を駆動させる圧縮機駆動手段160と、を備えて構成されている。
(Embodiment 3)
FIG. 7 is a block diagram showing a configuration of a refrigerator control device according to Embodiment 3 of the present invention, FIG. 8 is a flowchart of the refrigerator according to Embodiment 3 of the present invention, and FIG. 9 is an implementation of the present invention. It is a time chart of the compressor rotation speed by the form 3. Embodiments of the present invention will be described below with reference to the drawings. In the resonance frequency control apparatus for an inverter refrigerator according to the present invention, as shown in FIG. 7, the load sensing means 110 senses the load state of the refrigerator by sensing the temperature in the refrigerator or the compressor, and the load sensing means. 110, after determining the state of the refrigerator based on the load sensed from 110, a current operating frequency determining means 120 for determining the current operating frequency, and an initial operating frequency setting means 100 for setting the operating frequency F0 when the compressor is initially started, The initial operating frequency number F0 determined from the current operating frequency determining means 120 according to the determination results of the compressor discharged refrigerant temperature detecting device 240, the current operating frequency determining means 120, and the compressor discharged refrigerant temperature detecting device 240 is The operation frequency control means 150 that outputs the variable and the operation frequency output from the operation frequency control means 150 is compressed. It is configured to include a, a compressor driving unit 160 for driving the.

以下、このように構成された本発明に係るインバータ冷蔵庫の初期運転周波数の可変制御について説明する。図8に示すように、圧縮機の起動時、すなわち、負荷感知手段110又は電源投入検知装置210又は除霜終了検知装置220が圧縮機起動条件を検知した場合において、前記初期運転周波数設定手段100により圧縮機の初期運転周波数F0を設定し(A1)、運転周波数制御手段150に圧縮機吐出冷媒温度検知装置240の検知温度(T1c)を感知して出力する(A2c)ことで、運転周波数制御手段150により初期運転周波数をF1もしくはF2に可変させて(A3)、圧縮機駆動手段160により圧縮機を駆動させ(A4)、圧縮機吐出冷媒温度検知装置240が圧縮機安定圧力温度(T2c)を感知することで、前記初期運転周波数設定手段100により設定した初期運転周波数F0に圧縮機を可変して(A5)、本発明に係るインバータ冷蔵庫の初期運転周波数を終了する。   Hereinafter, variable control of the initial operating frequency of the inverter refrigerator according to the present invention configured as described above will be described. As shown in FIG. 8, when the compressor is activated, that is, when the load sensing means 110, the power-on detection device 210, or the defrosting completion detection device 220 detects the compressor activation condition, the initial operation frequency setting means 100 is set. Is used to set the initial operating frequency F0 of the compressor (A1), and the operating frequency control means 150 senses and outputs the detected temperature (T1c) of the compressor discharge refrigerant temperature detecting device 240 (A2c). The initial operating frequency is varied to F1 or F2 by means 150 (A3), the compressor is driven by compressor driving means 160 (A4), and the compressor discharge refrigerant temperature detection device 240 causes the compressor stable pressure temperature (T2c). , The compressor is changed to the initial operating frequency F0 set by the initial operating frequency setting means 100 (A5), and the present invention is applied. To end the initial operating frequency of that inverter refrigerator.

したがって、圧縮機起動時に圧力変動が大きいので、制御装置から駆動開始の指示が出る際に、圧縮機吐出冷媒温度を検知し、圧縮機内部温度及び冷媒密度を簡単な方法で推測することができ、圧力変動の大きい一定時間だけ回転数を変化させることで冷媒の状態を制御し、冷媒と圧縮機本体の共鳴音を回避することができる。   Therefore, since the pressure fluctuation is large at the time of starting the compressor, the compressor discharge refrigerant temperature can be detected and the compressor internal temperature and refrigerant density can be estimated by a simple method when an instruction to start driving is issued from the control device. The state of the refrigerant can be controlled by changing the number of rotations for a certain period of time when the pressure fluctuation is large, and resonance noise between the refrigerant and the compressor body can be avoided.

但し、前記判断結果が前記初期起動時の圧縮機の運転周波数は共振周波数に存在しないと、判断した時は可変制御を行わない。   However, when it is determined that the operation frequency of the compressor at the time of initial startup does not exist at the resonance frequency, the variable control is not performed.

(実施の形態4)
図10は、本発明の実施の形態4による冷蔵庫の制御装置の構成を示したブロック図であり、図11は本発明の実施の形態4による冷蔵庫のフローチャートであり、図12は本発明の実施の形態4による圧縮機回転数のタイムチャートである。以下、本発明の実施の形態について図面に添って説明する。本発明に係るインバータ冷蔵庫の共振周波数制御装置においては、図10に示したように、冷蔵庫内部又は圧縮機の温度を感知して冷蔵庫の負荷状態を感知する負荷感知手段110と、前記負荷感知手段110から感知された負荷により冷蔵庫の状態を判断した後、現在の運転周波数を決定する現在運転周波数決定手段120と、圧縮機の初期起動時の運転周波数F0を設定する初期運転周波数設定手段100と、圧縮機運転時間記憶装置250と、前記現在運転周波数決定手段120及び、圧縮機運転時間記憶装置250 の判断結果に従い、前記現在運転周波数決定手段120から決定された初期運転周波数F0を可変して出力する運転周波数制御手段150と、該運転周波数制御手段150から出力された運転周波数により圧縮機を駆動させる圧縮機駆動手段160とを備えて構成されている。
(Embodiment 4)
FIG. 10 is a block diagram showing the configuration of the refrigerator control device according to the fourth embodiment of the present invention, FIG. 11 is a flowchart of the refrigerator according to the fourth embodiment of the present invention, and FIG. 12 shows the implementation of the present invention. It is a time chart of the compressor rotation speed by the form 4. Embodiments of the present invention will be described below with reference to the drawings. In the inverter refrigerator resonance frequency control apparatus according to the present invention, as shown in FIG. 10, the load sensing means 110 senses the load state of the refrigerator by sensing the temperature in the refrigerator or the compressor, and the load sensing means. 110, after determining the state of the refrigerator based on the load sensed from 110, a current operating frequency determining means 120 for determining the current operating frequency, and an initial operating frequency setting means 100 for setting the operating frequency F0 when the compressor is initially started, The initial operating frequency F0 determined from the current operating frequency determining means 120 is varied according to the determination results of the compressor operating time storing device 250, the current operating frequency determining means 120, and the compressor operating time storing device 250. The operating frequency control means 150 to output, and the compressor is driven by the operating frequency output from the operating frequency control means 150 Compressor driving means 160 to be configured.

以下、このように構成された本発明に係るインバータ冷蔵庫の初期運転周波数の可変制御について説明する。図11に示すように、圧縮機の起動時、すなわち、負荷感知手段110又は電源投入検知装置210又は除霜終了検知装置220が圧縮機起動条件を検知した場合において、前記初期運転周波数設定手段100により圧縮機の初期運転周波数F0を設定し(A1)、運転周波数制御手段150に圧縮機運転時間記憶装置250より圧縮機停止前運転時間を出力する(A6)ことで、運転周波数制御手段150により初期運転周波数をF1もしくはF2に可変させて(A3)、圧縮機駆動手段160により圧縮機を駆動させ(A4)、一定時間(イ)経過後に前記初期運転周波数設定手段100により設定した初期運転周波数F0に圧縮機を可変して(A7)、本発明に係るインバータ冷蔵庫の初期運転周波数を終了する。   Hereinafter, variable control of the initial operating frequency of the inverter refrigerator according to the present invention configured as described above will be described. As shown in FIG. 11, when the compressor is activated, that is, when the load sensing means 110, the power-on detection device 210 or the defrosting completion detection device 220 detects the compressor activation condition, the initial operating frequency setting means 100 is set. To set the initial operating frequency F0 of the compressor (A1), and output the operating time before the compressor stop from the compressor operating time storage device 250 to the operating frequency control means 150 (A6). The initial operating frequency is changed to F1 or F2 (A3), the compressor is driven by the compressor driving means 160 (A4), and the initial operating frequency set by the initial operating frequency setting means 100 after a predetermined time (A) has elapsed. The compressor is changed to F0 (A7), and the initial operating frequency of the inverter refrigerator according to the present invention is terminated.

したがって、圧縮機起動時に圧力変動が大きいので、制御装置から駆動開始の指示が出る際に、圧縮機起動直前の圧縮機起動時間及び、圧縮機停止時間より、圧縮機内部温度及び冷媒密度を推測することができ、圧力変動の大きい一定時間だけ回転数を変化させることで冷媒の状態を制御し、冷媒と圧縮機本体の共鳴音を回避することができる。   Therefore, since the pressure fluctuation is large when the compressor is started, the compressor internal temperature and refrigerant density are estimated from the compressor start time immediately before the compressor start and the compressor stop time when an instruction to start driving is issued from the control device. It is possible to control the state of the refrigerant by changing the rotation speed for a certain period of time when the pressure fluctuation is large, and to avoid the resonance noise between the refrigerant and the compressor body.

但し、前記判断結果が前記初期起動時の圧縮機の運転周波数は共振周波数に存在しないと、判断した時は可変制御を行わない。   However, when it is determined that the operation frequency of the compressor at the time of initial startup does not exist at the resonance frequency, the variable control is not performed.

(実施の形態5)
図13は本発明の実施の形態5による冷蔵庫のフローチャートであり、図14は本発明の実施の形態5による圧縮機回転数のタイムチャートである。なお、実施の形態1から4と同一構成については同一符号を付してその説明を省略し、異なる点についてのみ説明する。
(Embodiment 5)
FIG. 13 is a flowchart of the refrigerator according to the fifth embodiment of the present invention, and FIG. 14 is a time chart of the compressor rotation speed according to the fifth embodiment of the present invention. In addition, about the same structure as Embodiment 1-4, the same code | symbol is attached | subjected, the description is abbreviate | omitted, and only a different point is demonstrated.

図13において(Q1)の判断時、すなわち初期運転周波数設定手段100により圧縮機の初期運転周波数F0を設定するとき(A1)に、圧縮機の最低設定回転数FMINを選んだ場合は、運転周波数制御手段150に圧縮機内空間温度検知装置190および圧縮機本体温度検知装置および圧縮機吐出冷媒温度検知装置240の検知温度又は圧縮機運転時間記憶装置250より圧縮機停止前運転時間を入力する(A2a、A2b,A2c、A6)ことで、運転周波数制御手段150により初期運転周波数を可周波数F1に変化させて(A3MIN)、圧縮機駆動手段160により圧縮機を駆動させる(A4)。この時、可変する周波数F1は初期運転周波数F0より大きい値とする。   In FIG. 13, at the time of determination of (Q1), that is, when the initial operating frequency F0 of the compressor is set by the initial operating frequency setting means 100 (A1), the operating frequency is selected when the minimum set rotational speed FMIN of the compressor is selected. The compressor internal space temperature detection device 190, the compressor body temperature detection device, and the detected temperature of the compressor discharge refrigerant temperature detection device 240 or the compressor operation time storage device 250 is input to the control means 150 (A2a). , A2b, A2c, A6), the operating frequency control means 150 changes the initial operating frequency to a possible frequency F1 (A3MIN), and the compressor driving means 160 drives the compressor (A4). At this time, the variable frequency F1 is larger than the initial operation frequency F0.

したがって、圧縮機の圧縮要素への給油改善を図ることができる。   Therefore, it is possible to improve the oil supply to the compression element of the compressor.

(実施の形態6)
図15は本発明の実施の形態6による冷蔵庫のフローチャートであり、図16は本発明の実施の形態6による圧縮機回転数のタイムチャートである。なお、実施の形態1から4と同一構成については同一符号を付してその説明を省略し、異なる点についてのみ説明する。図15において(Q2)の判断時、すなわち初期運転周波数設定手段100により圧縮機の初期運転周波数F0を設定するとき(A1)に、圧縮機の最高設定回転数FMAXを選んだ場合は、運転周波数制御手段150に圧縮機内空間温度検知装置190および圧縮機本体温度検知装置および圧縮機吐出冷媒温度検知装置240の検知温度又は圧縮機運転時間記憶装置250より圧縮機停止前運転時間を入力する(A2a、A2b,A2c、A6)ことで、運転周波数制御手段150により初期運転周波数を可周波数F1に変化させて(A3MAX)、圧縮機駆動手段160により圧縮機を駆動させる(A4)。この時、可変する周波数F1は初期運転周波数F0より小さい値とする。
(Embodiment 6)
FIG. 15 is a flowchart of the refrigerator according to the sixth embodiment of the present invention, and FIG. 16 is a time chart of the compressor rotation speed according to the sixth embodiment of the present invention. In addition, about the same structure as Embodiment 1-4, the same code | symbol is attached | subjected, the description is abbreviate | omitted, and only a different point is demonstrated. In FIG. 15, at the time of the determination of (Q2), that is, when the initial operating frequency F0 of the compressor is set by the initial operating frequency setting means 100 (A1), the operating frequency is The compressor internal space temperature detection device 190, the compressor body temperature detection device, and the detected temperature of the compressor discharge refrigerant temperature detection device 240 or the compressor operation time storage device 250 is input to the control means 150 (A2a). , A2b, A2c, A6), the operating frequency control means 150 changes the initial operating frequency to a possible frequency F1 (A3MAX), and the compressor driving means 160 drives the compressor (A4). At this time, the variable frequency F1 is set to a value smaller than the initial operation frequency F0.

したがって、圧縮機の耐久性及び信頼性を高めることができる。   Therefore, the durability and reliability of the compressor can be improved.

(実施の形態7)
図17は本発明の実施の形態7による冷蔵庫のフローチャートであり、図18は本発明の実施の形態7による圧縮機回転数のタイムチャートである。なお、実施の形態1から4と同一構成については同一符号を付してその説明を省略し、異なる点についてのみ説明する。図17において、冷蔵庫の初期起動時に、初期運転周波数設定手段100により圧縮機の初期運転周波数F0を設定し(A1)、運転周波数制御手段150に圧縮機内空間温度検知装置190および圧縮機本体温度検知装置および圧縮機吐出冷媒温度検知装置240の検知温度又は圧縮機運転時間記憶装置250より圧縮機停止前運転時間を入力する(A2a、A2b,A2c、A6)ことで、運転周波数制御手段150により初期運転周波数をF1もしくはF2として可変させて(A3)、圧縮機駆動手段160により圧縮機を駆動させ(A4)、圧縮機内空間温度検知装置190および圧縮機本体温度検知装置および圧縮機吐出冷媒温度検知装置240の検知温度が圧縮機安定途中圧力温度(T´1a、T´1b、T´1c)または一定時間(ロ)に達したとき、運転周波数制御手段150により周波数F1もしくはF2を周波数F´1もしくはF´2に可変させて(A8またはA9)、圧縮機内空間温度検知装置190および圧縮機本体温度検知装置および圧縮機吐出冷媒温度検知装置240が圧縮機安定圧力温度(T2a、T2bT2c)を検知する又は一定時間(ハ)を感知することで、前記初期運転周波数設定手段100により設定した初期運転周波数F0に圧縮機を駆動して(A5またはA9)、本発明に係るインバータ冷蔵庫の初期運転周波数を終了する。
(Embodiment 7)
FIG. 17 is a flowchart of the refrigerator according to the seventh embodiment of the present invention, and FIG. 18 is a time chart of the compressor rotation speed according to the seventh embodiment of the present invention. In addition, about the same structure as Embodiment 1-4, the same code | symbol is attached | subjected, the description is abbreviate | omitted, and only a different point is demonstrated. In FIG. 17, at the initial start-up of the refrigerator, the initial operating frequency F0 is set by the initial operating frequency setting means 100 (A1), and the compressor internal space temperature detecting device 190 and the compressor body temperature detection are set in the operating frequency control means 150. The operation frequency control means 150 is initialized by inputting the detected temperature of the apparatus and the compressor discharge refrigerant temperature detection device 240 or the compressor operation time storage device 250 before inputting the compressor stop operation time (A2a, A2b, A2c, A6). The operating frequency is varied as F1 or F2 (A3), the compressor is driven by the compressor driving means 160 (A4), the compressor space temperature detector 190, the compressor body temperature detector, and the compressor discharge refrigerant temperature detection When the temperature detected by the device 240 is the compressor stable pressure temperature (T'1a, T'1b, T'1c) or constant When (b) is reached, the frequency F1 or F2 is changed to the frequency F′1 or F′2 by the operating frequency control means 150 (A8 or A9), and the compressor internal space temperature detector 190 and the compressor body temperature are detected. By detecting the compressor stable pressure temperature (T2a, T2bT2c) or detecting a certain time (C) by the apparatus and compressor discharge refrigerant temperature detection device 240, the initial operation frequency F0 set by the initial operation frequency setting means 100 is detected. The compressor is driven (A5 or A9) to finish the initial operating frequency of the inverter refrigerator according to the present invention.

したがって、冷媒と圧縮機振動を緻密に制御し、共鳴音を回避することができる。   Therefore, the vibration of the refrigerant and the compressor can be precisely controlled, and resonance noise can be avoided.

なお、圧縮機内空間安定途中温度(T´1a、T´1b、T´1c)または一定時間(ロ)に達したときの周波数の可変は複数回行うことを可能とする。   Note that the frequency can be varied a plurality of times when the temperature in the compressor internal space stabilization (T′1a, T′1b, T′1c) or a certain time (B) is reached.

(実施の形態8)
図19は本発明の実施の形態8による冷蔵庫のフローチャートであり、図20は本発明の実施の形態8による圧縮機回転数のタイムチャートである。なお、実施の形態4と同一構成については同一符号を付してその説明を省略し、異なる点についてのみ説明する。前記実施形態1において説明した可変制御について、電源投入検知装置210または除霜終了検知装置220によって圧縮機起動条件が検知された場合(Q3)に限り、一定時間(イ)経過後を一定時間(ニ)に延長するものとする。
(Embodiment 8)
FIG. 19 is a flowchart of the refrigerator according to the eighth embodiment of the present invention, and FIG. 20 is a time chart of the compressor rotation speed according to the eighth embodiment of the present invention. Note that the same components as those in the fourth embodiment are denoted by the same reference numerals, description thereof is omitted, and only different points will be described. In the variable control described in the first embodiment, only when the compressor start condition is detected by the power-on detection device 210 or the defrosting end detection device 220 (Q3), after a predetermined time (A) elapses for a certain time ( It shall be extended to d).

これにより、冷媒の圧力変動の少ない時間まで、圧縮機本体との共鳴音を回避することができる。   Thereby, the resonance sound with the compressor body can be avoided until the time when the refrigerant pressure fluctuation is small.

(実施の形態9)
図21は本発明の実施の形態9による冷蔵庫のフローチャートであり、図22は本発明の実施の形態9による圧縮機回転数のタイムチャートである。なお、実施の形態1から4と同一構成については同一符号を付してその説明を省略し、異なる点についてのみ説明する。
(Embodiment 9)
FIG. 21 is a flowchart of the refrigerator according to the ninth embodiment of the present invention, and FIG. 22 is a time chart of the compressor rotation speed according to the ninth embodiment of the present invention. In addition, about the same structure as Embodiment 1-4, the same code | symbol is attached | subjected, the description is abbreviate | omitted, and only a different point is demonstrated.

前記実施形態1から4において説明した可変制御について、電源投入検知装置210または除霜終了検知装置220によって圧縮機起動条件が検知された場合(Q3)に限り、1度目の圧縮機初期起動時に、運転周波数制御手段150に圧縮機内空間温度検知装置190および圧縮機本体温度検知装置および圧縮機吐出冷媒温度検知装置240の検知温度又は圧縮機運転時間記憶装置250より圧縮機停止前運転時間を入力する(A2a、A2bA2c、A6)ことで、運転周波数制御手段150により初期運転周波数をF1もしくはF2に可変させ(A3)、圧縮機駆動手段160により圧縮機を駆動させ(A4)、圧縮機内空間温度検知装置190および圧縮機本体温度検知装置および圧縮機吐出冷媒温度検知装置240の検知温度が圧縮機安定途中圧力温度(T´1a、T´1b、T´1c)に達したとき、又は一定時間(ロ)経過後に、運転周波数制御手段150により周波数F1もしくはF2を周波数F´1もしくはF´2に可変させて(A8)、圧縮機内空間温度検知装置190および圧縮機本体温度検知装置および圧縮機吐出冷媒温度検知装置240の検知温度が圧縮機安定圧力温度(T2a、T2bT2c)を感知する、又は一定時間(ハ)経過後に、前記初期運転周波数設定手段100により設定した初期運転周波数F0に圧縮機を駆動して(A5又はA10)、本発明に係るインバータ冷蔵庫の初期運転周波数を終了する。なお、圧縮機内空間安定途中温度(T´1a、T´1b、T´1c)に達したとき、または一定時間(ロ)経過後の周波数の可変は複数温度または複数時間でも行うことを可能とする。   For the variable control described in the first to fourth embodiments, only when the compressor activation condition is detected by the power-on detection device 210 or the defrosting completion detection device 220 (Q3), at the first compressor initial activation, The operating temperature control means 150 receives the detected temperature of the compressor internal space temperature detecting device 190, the compressor main body temperature detecting device and the compressor discharge refrigerant temperature detecting device 240 or the operating time before the compressor stop from the compressor operating time storage device 250. (A2a, A2bA2c, A6), the operating frequency control means 150 changes the initial operating frequency to F1 or F2 (A3), the compressor driving means 160 drives the compressor (A4), and the compressor internal temperature is detected. The temperature detected by the apparatus 190, the compressor main body temperature detection apparatus, and the compressor discharge refrigerant temperature detection apparatus 240 is compressed. When the machine stable pressure temperature (T'1a, T'1b, T'1c) is reached or after a certain time (b) has elapsed, the operating frequency control means 150 sets the frequency F1 or F2 to the frequency F'1 or F '. 2 (A8), the detected temperatures of the compressor internal space temperature detection device 190, the compressor body temperature detection device, and the compressor discharge refrigerant temperature detection device 240 detect the compressor stable pressure temperature (T2a, T2bT2c). Alternatively, after a predetermined time (c) has elapsed, the compressor is driven to the initial operating frequency F0 set by the initial operating frequency setting means 100 (A5 or A10), and the initial operating frequency of the inverter refrigerator according to the present invention is terminated. It is possible to change the frequency when the internal space stable temperature (T'1a, T'1b, T'1c) in the compressor is reached or after a certain time (B) has elapsed, even at multiple temperatures or multiple hours. To do.

これにより、冷媒と圧縮機振動を緻密に制御し、共鳴音を回避することができ、また、変動幅の増大による、共鳴点の再一致を防ぐことができる。   Thereby, it is possible to precisely control the refrigerant and compressor vibrations, avoid resonance noise, and prevent resonance points from rematching due to an increase in fluctuation range.

(実施の形態10)
図23は本発明の実施の形態10による冷蔵庫のフローチャートである。なお、実施の形態1から4と同一構成については同一符号を付してその説明を省略し、異なる点についてのみ説明する。
(Embodiment 10)
FIG. 23 is a flowchart of the refrigerator according to the tenth embodiment of the present invention. In addition, about the same structure as Embodiment 1-4, the same code | symbol is attached | subjected, the description is abbreviate | omitted, and only a different point is demonstrated.

前記実施形態1から4において説明した可変制御について、電源投入検知装置210または除霜終了検知装置220によって圧縮機起動条件が検知された場合(Q3)に限り、1度目の圧縮機初期起動時に、運転周波数制御手段150に圧縮機内空間温度検知装置190および圧縮機本体温度検知装置および圧縮機吐出冷媒温度検知装置240の検知温度又は圧縮機運転時間記憶装置250より圧縮機停止前運転時間を入力する(A2a、A2b、A2c、A6)ことで、運転周波数制御手段150により初期運転周波数をF1もしくはF2に可変させるものとする(A3)
これにより、圧力変動が大きく、変動時間が長い、電源投入時または除霜時にのみ圧縮機回転数の変化を行うことで、冷媒と圧縮機本体との共鳴音を回避することができ、また、圧力変動が少量の際に起こる、共鳴点の再一致を防ぐことができる。
For the variable control described in the first to fourth embodiments, only when the compressor activation condition is detected by the power-on detection device 210 or the defrosting completion detection device 220 (Q3), at the first compressor initial activation, The operating temperature control means 150 receives the detected temperature of the compressor internal space temperature detecting device 190, the compressor main body temperature detecting device and the compressor discharge refrigerant temperature detecting device 240 or the operating time before the compressor stop from the compressor operating time storage device 250. (A2a, A2b, A2c, A6), the operating frequency control means 150 changes the initial operating frequency to F1 or F2 (A3)
Thereby, the pressure fluctuation is large, the fluctuation time is long, by changing the compressor rotation speed only at the time of power-on or defrosting, the resonance noise between the refrigerant and the compressor body can be avoided, Re-coincidence of resonance points that occurs when the pressure fluctuation is small can be prevented.

以上のように、本発明にかかる冷蔵庫は、電動要素および圧縮要素を収容した圧縮機の低騒音化を可能としており、圧縮機を有する冷凍、空調機器等の用途にも適用できる。   As described above, the refrigerator according to the present invention can reduce the noise of the compressor that houses the electric element and the compression element, and can be applied to refrigeration and air conditioning equipment having the compressor.

本発明の実施の形態1による冷蔵庫の制御装置の構成を示したブロック図The block diagram which showed the structure of the control apparatus of the refrigerator by Embodiment 1 of this invention 本発明の実施の形態1による冷蔵庫のフローチャートFlowchart of refrigerator according to Embodiment 1 of the present invention 本発明の実施の形態1による圧縮機回転数のタイムチャートTime chart of compressor rotation speed according to Embodiment 1 of the present invention 本発明の実施の形態2による冷蔵庫の制御装置の構成を示したブロック図The block diagram which showed the structure of the control apparatus of the refrigerator by Embodiment 2 of this invention. 本発明の実施の形態2による冷蔵庫のフローチャートFlowchart of the refrigerator according to the second embodiment of the present invention 本発明の実施の形態2による圧縮機回転数のタイムチャートTime chart of compressor rotation speed according to the second embodiment of the present invention 本発明の実施の形態3による冷蔵庫の制御装置の構成を示したブロック図The block diagram which showed the structure of the control apparatus of the refrigerator by Embodiment 3 of this invention 本発明の実施の形態3による冷蔵庫のフローチャートFlowchart of the refrigerator according to the third embodiment of the present invention 本発明の実施の形態3による圧縮機回転数のタイムチャートTime chart of compressor rotation speed according to Embodiment 3 of the present invention 本発明の実施の形態4による冷蔵庫の制御装置の構成を示したブロック図The block diagram which showed the structure of the control apparatus of the refrigerator by Embodiment 4 of this invention 本発明の実施の形態4による冷蔵庫のフローチャートFlowchart of refrigerator according to embodiment 4 of the present invention 本発明の実施の形態4による圧縮機回転数のタイムチャートTime chart of compressor rotation speed according to embodiment 4 of the present invention 本発明の実施の形態5による冷蔵庫のフローチャートFlowchart of refrigerator according to embodiment 5 of the present invention 本発明の実施の形態5による圧縮機回転数のタイムチャートTime chart of compressor rotation speed according to the fifth embodiment of the present invention 本発明の実施の形態6による冷蔵庫のフローチャートFlowchart of refrigerator according to Embodiment 6 of the present invention 本発明の実施の形態6による圧縮機回転数のタイムチャートTime chart of compressor rotation speed according to the sixth embodiment of the present invention 本発明の実施の形態7による冷蔵庫のフローチャートFlowchart of refrigerator according to embodiment 7 of the present invention 本発明の実施の形態7による圧縮機回転数のタイムチャートTime chart of compressor rotation speed according to embodiment 7 of the present invention 本発明の実施の形態8による冷蔵庫のフローチャートFlowchart of refrigerator according to embodiment 8 of the present invention 本発明の実施の形態8による圧縮機回転数のタイムチャートTime chart of compressor rotation speed according to the eighth embodiment of the present invention 本発明の実施の形態9による冷蔵庫のフローチャートFlowchart of refrigerator according to embodiment 9 of the present invention 本発明の実施の形態9による圧縮機回転数のタイムチャートTime chart of compressor rotation speed according to embodiment 9 of the present invention 本発明の実施の形態10による冷蔵庫のフローチャートRefrigerator flowchart according to embodiment 10 of the present invention 従来の冷蔵庫の制御装置の構成を示したブロック図The block diagram which showed the structure of the control apparatus of the conventional refrigerator 従来の冷蔵庫の制御装置のフローチャートFlowchart of a conventional refrigerator control device

符号の説明Explanation of symbols

100 初期周波数設定手段
110 負荷感知手段
120 現在運転周波数決定手段
130 共振周波数格納手段
140 共振帯域判定手段
150 運転周波数制御手段
160 圧縮機駆動手段
190 圧縮機内空間温度検知装置
210 電源投入検知装置
220 除霜終了検知装置
230 圧縮機本体温度検知装置
240 圧縮機吐出冷媒温度検知装置
250 圧縮機運転時間記憶装置
DESCRIPTION OF SYMBOLS 100 Initial frequency setting means 110 Load sensing means 120 Current operation frequency determination means 130 Resonance frequency storage means 140 Resonance band judgment means 150 Operation frequency control means 160 Compressor drive means 190 Compressor space temperature detection device 210 Power-on detection device 220 Defrosting Completion detection device 230 Compressor body temperature detection device 240 Compressor discharge refrigerant temperature detection device 250 Compressor operation time storage device

Claims (10)

冷媒は炭化水素を主成分とし、電動要素と、電動要素により駆動されガス吸入口を前記密閉容器内に開口した圧縮要素と、前記電動要素および前記圧縮要素を収容した圧縮機と、前記電動要素を駆動制御する制御手段と、あらかじめ設定した一つまたは複数の回転数から前記電動要素の回転数を選択する回転数選択手段とを備え、選択された圧縮機回転数を圧縮機起動開始から一定時間、圧縮機内空間温度検知装置を用いて制御する冷蔵庫。 The refrigerant includes hydrocarbon as a main component, an electric element, a compression element driven by the electric element and having a gas inlet opening in the sealed container, a compressor containing the electric element and the compression element, and the electric element Control means for driving and controlling, and a rotation speed selection means for selecting the rotation speed of the electric element from one or a plurality of rotation speeds set in advance, and the selected compressor rotation speed is constant from the start of the compressor start-up Refrigerator controlled using time and space temperature detector in compressor. 冷媒は炭化水素を主成分とし、電動要素と、電動要素により駆動されガス吸入口を前記密閉容器内に開口した圧縮要素と、前記電動要素および前記圧縮要素を収容した圧縮機と、前記電動要素を駆動制御する制御手段と、あらかじめ設定した一つまたは複数の回転数から前記電動要素の回転数を選択する回転数選択手段とを備え、選択された圧縮機回転数を圧縮機起動開始から一定時間、圧縮機本体温度検知装置を用いて制御する冷蔵庫。 The refrigerant includes hydrocarbon as a main component, an electric element, a compression element driven by the electric element and having a gas inlet opening in the sealed container, a compressor containing the electric element and the compression element, and the electric element Control means for driving and controlling, and a rotation speed selection means for selecting the rotation speed of the electric element from one or a plurality of rotation speeds set in advance, and the selected compressor rotation speed is constant from the start of the compressor start-up Refrigerator controlled with time, compressor body temperature detector. 冷媒は炭化水素を主成分とし、電動要素と、電動要素により駆動されガス吸入口を前記密閉容器内に開口した圧縮要素と、前記電動要素および前記圧縮要素を収容した圧縮機と、前記電動要素を駆動制御する制御手段と、あらかじめ設定した一つまたは複数の回転数から前記電動要素の回転数を選択する回転数選択手段とを備え、選択された圧縮機回転数を圧縮機起動開始から一定時間、圧縮機吐出冷媒温度検知装置を用いて制御する冷蔵庫。 The refrigerant includes hydrocarbon as a main component, an electric element, a compression element driven by the electric element and having a gas inlet opening in the sealed container, a compressor containing the electric element and the compression element, and the electric element Control means for driving and controlling, and a rotation speed selection means for selecting the rotation speed of the electric element from one or a plurality of rotation speeds set in advance, and the selected compressor rotation speed is constant from the start of the compressor start-up Refrigerator controlled using time, compressor discharge refrigerant temperature detection device. 冷媒は炭化水素を主成分とし、電動要素と、電動要素により駆動されガス吸入口を前記密閉容器内に開口した圧縮要素と、前記電動要素および前記圧縮要素を収容した圧縮機と、前記電動要素を駆動制御する制御手段と、あらかじめ設定した一つまたは複数の回転数から前記電動要素の回転数を選択する回転数選択手段とを備え、選択された圧縮機回転数を圧縮機起動開始から一定時間、圧縮機運転時間を用いて制御する冷蔵庫。 The refrigerant includes hydrocarbon as a main component, an electric element, a compression element driven by the electric element and having a gas inlet opening in the sealed container, a compressor containing the electric element and the compression element, and the electric element Control means for driving and controlling, and a rotation speed selection means for selecting the rotation speed of the electric element from one or a plurality of rotation speeds set in advance, and the selected compressor rotation speed is constant from the start of the compressor start-up Refrigerator controlled using time and compressor operating time. 選択回転数が最小回転数の場合は回転数を高回転側へ変化させる請求項1から4のいずれか一項に記載の冷蔵庫。 The refrigerator as described in any one of Claim 1 to 4 which changes a rotation speed to the high rotation side when the selection rotation speed is the minimum rotation speed. 選択回転数が最大回転数の場合は回転数を低回転側へ変化させる請求項1から4のいずれか一項に記載の冷蔵庫。 The refrigerator as described in any one of Claim 1 to 4 which changes a rotation speed to the low rotation side when the selection rotation speed is a maximum rotation speed. 選択回転数を複数回変化させる請求項1から4のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 4, wherein the selected number of rotations is changed a plurality of times. 電源投入時または除霜終了後の圧縮機起動時は回転数制御時間を通常の起動時より延長させる請求項1から4のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 4, wherein the rotation speed control time is extended from that at a normal start-up time when the compressor is started after the power is turned on or after the defrosting is completed. 電源投入時または除霜終了後の圧縮機起動時は回転数制御を複数回行う請求項1から4のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 4, wherein the rotational speed control is performed a plurality of times when the power is turned on or when the compressor is started after defrosting. 電源投入時または除霜終了後の圧縮機起動時にのみ回転数制御を行う請求項1から4のいずれか一項に記載の冷蔵庫。 The refrigerator as described in any one of Claim 1 to 4 which performs rotation speed control only at the time of the compressor starting after completion | finish of defrosting at the time of power activation.
JP2004003875A 2004-01-09 2004-01-09 Refrigerator Pending JP2005195292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004003875A JP2005195292A (en) 2004-01-09 2004-01-09 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004003875A JP2005195292A (en) 2004-01-09 2004-01-09 Refrigerator

Publications (1)

Publication Number Publication Date
JP2005195292A true JP2005195292A (en) 2005-07-21

Family

ID=34818650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004003875A Pending JP2005195292A (en) 2004-01-09 2004-01-09 Refrigerator

Country Status (1)

Country Link
JP (1) JP2005195292A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108626935A (en) * 2018-05-18 2018-10-09 青岛海尔股份有限公司 Refrigerator and its compressor frequency control method
CN113513814A (en) * 2021-04-09 2021-10-19 珠海格力电器股份有限公司 Compressor operation control method and device, air conditioning equipment and storage medium
CN115435544A (en) * 2022-09-02 2022-12-06 海信冰箱有限公司 Refrigerator and frequency conversion control method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108626935A (en) * 2018-05-18 2018-10-09 青岛海尔股份有限公司 Refrigerator and its compressor frequency control method
CN108626935B (en) * 2018-05-18 2020-12-22 青岛海尔股份有限公司 Refrigerator and compressor frequency control method thereof
CN113513814A (en) * 2021-04-09 2021-10-19 珠海格力电器股份有限公司 Compressor operation control method and device, air conditioning equipment and storage medium
CN115435544A (en) * 2022-09-02 2022-12-06 海信冰箱有限公司 Refrigerator and frequency conversion control method thereof
CN115435544B (en) * 2022-09-02 2024-02-23 海信冰箱有限公司 Refrigerator and variable frequency control method thereof

Similar Documents

Publication Publication Date Title
JP4916383B2 (en) Start-up control device for electric scroll compressor and start-up control method thereof
JP6217148B2 (en) Centrifuge
JP5147853B2 (en) Control method of counter-rotating axial flow fan
CN102822528B (en) The drived control of screw compressor
JP2005337679A (en) Refrigerator
JP2005195292A (en) Refrigerator
CN108286868B (en) Refrigerator and control method thereof
JP2009225552A (en) Operation method of machine drive system
CN104792077B (en) Refrigeration equipment and starting control method and device for compressor of refrigeration equipment
JP4827416B2 (en) Cooling system
JP2005164188A (en) Refrigerator
KR100719241B1 (en) Method for Controlling Operation of Inverter Refrigerator
JP4698537B2 (en) refrigerator
JP4744331B2 (en) Heat pump equipment
CN110454937B (en) Air conditioner and control method and device thereof
KR100190122B1 (en) Temperature control method and device of a refrigerator
KR20130141976A (en) Method for controlling refrigerator
JP2005164191A (en) Refrigerator
JP2005090808A (en) Refrigerator
JP2005090807A (en) Refrigerator
JP2006234366A (en) Method of controlling rotational frequency of compressor in refrigerator
JP2003039942A (en) Air conditioner for electric vehicle
JP2005147544A (en) Heat pump water heater
WO2024024408A1 (en) Electric compressor and thermal management system
JP2008057942A (en) Refrigerating device