JP2005016870A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2005016870A
JP2005016870A JP2003184184A JP2003184184A JP2005016870A JP 2005016870 A JP2005016870 A JP 2005016870A JP 2003184184 A JP2003184184 A JP 2003184184A JP 2003184184 A JP2003184184 A JP 2003184184A JP 2005016870 A JP2005016870 A JP 2005016870A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
refrigerator
oil
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003184184A
Other languages
Japanese (ja)
Inventor
Takeshi Shimizu
武 清水
Haruyoshi Yamamoto
晴由 山本
Katsuyuki Kuwajima
勝之 桑島
Yoshimasa Horio
好正 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003184184A priority Critical patent/JP2005016870A/en
Publication of JP2005016870A publication Critical patent/JP2005016870A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator for preventing a delay of cooling while suppressing the foaming of refrigerant when starting a refrigerator using hydrocarbon refrigerant. <P>SOLUTION: The refrigerator having oil stored in an enclose container 24 comprises an electric element 25, a compression element 26 to be driven by the electric element and having a suction port 27 opened into the enclosed container, a compressor 21 storing the electric element 25 and the compression element 26, a control means 28 for controlling the drive of the electric element, and a starting determining means 32 for determining whether it is the first time or not for starting after power-on. The refrigerant contains hydrocarbon as a main component. The compressor 21 is operated at a rotating speed lower than a normal rotating speed only at the first starting after power-on determined by the starting determining means 32 to suppress abrupt pressure drop in the enclosed container 24 and allow gentle liberation of the refrigerant from the oil 22, thereby avoiding a refrigerant foaming phenomenon. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、圧縮機の起動時の液圧縮を防止する冷蔵庫に関するものである。
【0002】
【従来の技術】
近年、地球環境への意識が高まり、地球温暖化抑制のため冷蔵庫に用いられる冷媒も代替フロンから炭化水素を主成分にした可燃性冷媒への移行が進められている。
【0003】
冷媒を炭化水素を主成分にした可燃性冷媒にすることで、圧縮機内のオイルに溶け込む冷媒量は従来の代替フロンに比べて多く(以下冷媒が多量にオイルに溶け込んでいる状態を寝込みと表現する)、特に電源投入時一回目の起動時において圧縮機内オイルに溶け込んだ液冷媒が気泡状になって溶出することによりフォーミング現象が発生したり、或は、液冷媒を圧縮機が直接吸い込むことにより液圧縮が発生し、圧縮機の故障の原因になることになる。
【0004】
一般に、圧縮機に室内及び室外側熱交換器を冷媒配管で接続したヒートポンプ式冷凍装置においては、電動要素を予め設定された設定時間内だけ欠相通電して油溜め空間等を加熱し、かつ、この欠相通電を行った後に圧縮機を起動するような制御が設けられている(例えば、特許文献1参照。)。
【0005】
以下、図面を参照しながら上記従来のヒートポンプ式冷凍装置を説明する。
【0006】
図9は、従来のヒートポンプ式冷凍装置の配管系統図である。図に示すように、ヒートポンプ式冷凍装置は、圧縮機1、四方弁2、ファン6が付設された室内熱交換器3、同じくファン7が付設された室外熱交換器4をそれぞれ冷媒配管で接続して構成されている。
【0007】
また、圧縮機1は底部に油溜め空間10を有する密閉容器11に、圧縮要素12と、圧縮要素12を駆動する電動要素を構成する三相電動機13とを内装している。また、膨張弁5は各熱交換器3、4間の冷媒配管に介装されたものであり、ヒートポンプ式冷凍装置の電源ブレーカ15、ヒートポンプ式冷凍装置の運転用スイッチ16がある。
【0008】
そして、上記のように構成されたヒートポンプ式冷凍装置により冷房運転を行う場合には、四方弁2を同図破線で示すように切換えて、圧縮機1からの吐出冷媒を室外側熱交換器4から室内側熱交換器3に送って室内冷房を行う。また、暖房運転を行うときには、四方弁2を同図実線のように切換えて、圧縮機1からの吐出冷媒を室内側熱交換器3から室外側熱交換器4に送って室内暖房を行う。
【0009】
以上のような暖房運転を行った後に、運転用スイッチ16をオフして停止し放置した時、または、ヒートポンプ式冷凍装置の電源ブレーカ15をオフして停止し、ヒートポンプ式冷凍装置が通電されないまま放置された時に、密閉容器11に設けた油溜め空間10の油中に液冷媒が寝込む。この寝込んだ液冷媒を排出するための液冷媒排出機構を以下に説明する構成とした。
【0010】
即ち、この液冷媒排出機構は、ヒートポンプ式冷凍装置の運転用スイッチ16をオンにした時のみ、予め設定する時間内だけ圧縮機1の三相電動機13に設ける各コイル巻線のうち二相の巻線に単相通電し、かつ、その後に圧縮機1に三相通電を行うよう制御するための制御装置17を設けたものであり、次にその動作を説明する。
【0011】
ヒートポンプ式冷凍装置の運転用スイッチ16をオンにして電源が投入されると、制御回路17の制御により、予め設定した時間(欠相通電による液冷媒排出実験等により決定した時間、即ち、密閉容器11内が液冷媒で満液の状態から、圧縮機が問題なく起動できる液面高さになるまでに必要な液冷媒排出のための時間)だけ、欠相通電用リレー18(通常運転用リレー19に対し並列接続されている)がオンし、圧縮機1の三相電動機13に設けた各コイル巻線のうち二相の巻線に単相通電される。
【0012】
この状態では三相電動機13は回転せず、単相通電によるコイル巻線の発熱のみが生じ、油溜め空間10内に寝込んだ液冷媒を加熱する。加熱された液冷媒は、圧縮機1内から蒸発し、温度の低いアキュムレータ20や室内、室外熱交換器3、4等に移動する。予め設定した時間後に、圧縮機1内には、圧縮機1が起動時に支障が無い量の液冷媒しか残らない。この時、制御回路17により、欠相通電用リレー18はオフし、通常運転用リレー19がオンして、圧縮機1は、液冷媒の寝込み量が極めて少ない状態で起動する。
【0013】
【特許文献1】
特開2000−292017号公報
【0014】
【発明が解決しようとする課題】
しかしながら上記従来のヒートポンプ式冷凍装置方法を冷蔵庫に適応した場合は、圧縮機を欠相通電によるコイル巻線の発熱で油溜め空間10内に寝込んだ液冷媒を加熱しており、電源投入後すぐに圧縮機を起動することができないことで冷蔵庫を所定の温度まで冷却する時間が長くなるという課題がある。また、消費電力量が増大してしまうという課題がある。
【0015】
本発明は上記従来の課題を解決するもので、炭化水素系冷媒を用いた圧縮機において、起動時の液圧縮を防止し、消費電力量の増大がなく電源投入時直後から圧縮機を起動させ速やかに所定の温度まで冷却できる冷蔵庫を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明の請求項1に記載の冷蔵庫の発明は、密閉容器内にオイルを貯留するとともに、電動要素と、電動要素により駆動され、ガス吸入口を密閉容器内に開口した圧縮要素と、電動要素および圧縮要素を収容した圧縮機と、電動要素を駆動制御する制御手段と、電源投入後1回目の起動かどうかを判定する起動判定手段とを備え、冷媒は炭化水素を主成分とし、前記圧縮機を前記起動判定手段により電源投入後1回目の起動時のみを、通常回転数より低回転数で運転させるものであり、消費電力量の増大がなく圧縮機起動時の寝込み冷媒発泡を抑え、発泡オイルの液圧縮を防止することができ、電源投入時直後から圧縮機を起動させ冷蔵庫を速やかに所定の温度まで冷却できる。
【0017】
請求項2に記載の発明は、請求項1に記載の発明において、冷蔵庫の周囲温度を検知する温度検知手段を備え、前記温度検知手段により任意の周囲温度以下の時に、圧縮機を起動判定手段により電源投入後1回目の起動時のみを、通常回転数より低回転数で運転させるものであり、圧縮機内オイルに溶け込む冷媒量が多い冷蔵庫周囲温度が任意の周囲温度より低い場合に急激な発泡現象を防止し、圧縮機内オイルに溶け込む冷媒量が少ない冷蔵庫周囲温度が任意の周囲温度より高い場合は、電源投入後1回目の起動時でも通常回転数で圧縮機を運転し冷蔵庫を所定の温度まで冷却できる。
【0018】
請求項3に記載の発明は、請求項1または請求項2に記載の発明において、圧縮機を電源投入後1回目の起動時のみを、一定時間通常回転数より低回転数で運転させ、一定時間後給油保護回転数まで回転数を変化させるものであり、圧縮要素に十分な給油ができ信頼性の向上が図れる。
【0019】
請求項4に記載の発明は、請求項1から3のいずれか一項記載の発明において、冷媒の純度は80%以上であるものであり、不純物の発泡助長要因が排除でき、さらなる圧縮機起動時の寝込み冷媒発泡の抑制ができる。
【0020】
請求項5に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明において、オイルは鉱油であるものであり、圧縮機内に必要なオイルを貯めることができ信頼性の向上が図れる。
【0021】
請求項6に記載の発明は、請求項1から請求項5のいずれか一項に記載の発明において、封入冷媒量は50g以上であるものであり、どのような条件下においても圧縮機内に必要なオイルを貯めることができ信頼性の向上が図れる。
【0022】
請求項7に記載の発明は、請求項1から請求項6のいずれか一項に記載の発明において、低速回転数は40Hz以下であるものであり、寝込み冷媒発泡現象はさらに緩和される。
【0023】
請求項8に記載の発明は、請求項1から請求項7のいずれか一項に記載の発明において、低速回転を行う時間は2秒以上、30秒以内であるものであり、低速回転時間を少なくでき、冷蔵庫をさらに速やかに所定の温度まで冷却できる。
【0024】
【発明の実施の形態】
以下、本発明による冷蔵庫の一実施の形態について、図面を参照しながら説明する。なお、従来と同一構成には、同一符号を付して詳細な説明を省略する。
【0025】
(実施の形態1)
本発明による実施の形態1について、図面を参照しながら説明する。
【0026】
図1は本発明の実施の形態1による冷蔵庫を説明する冷凍サイクル構成図である。図2は冷蔵庫の実施の形態1による冷蔵庫を説明する圧縮機断面図である。図3は本発明の実施の形態1による冷蔵庫の運転制御のフローチャートである。
【0027】
図1から図3において、冷蔵庫23は、圧縮機21、凝縮器29、キャピラリーチューブ30、蒸発器31を順次接続した冷凍サイクルを備え、制御手段28で運転制御される。
【0028】
圧縮機21は、密閉容器24内に電動要素25、圧縮要素26を有し、密閉容器24の底部にはオイル22が貯留されている。冷凍サイクルを循環する冷媒は、炭化水素を主成分とした、たとえばイソブタンなどの可燃性自然冷媒であり、圧縮機21に戻る吸入口27は密閉容器24の空間に開口している。また、オイル22は鉱油を用いている。また、炭化水素を主成分とした冷媒は、純度が80%以上のものを用いている。ここで冷媒の純度とはJIS−K0114で示すようなガスクロマトグラフでの定量分析による成分比率を言う。前記冷凍サイクルの冷媒封入量は50〜100gとしている。
【0029】
また、前記制御手段28により、圧縮機21起動時の一定時間、前記圧縮機21を電源周波数より低い周波数、たとえば40Hz以下で運転制御するようにしている。
【0030】
また、起動判定手段32は、圧縮機21の起動が電源投入後1回目の起動かどうかを判定する。
【0031】
このような構成において次に作用を説明する。
【0032】
制御手段28は冷蔵庫23の貯蔵室(図示せず)の温度が所定の温度より高い際に、電動要素25に運転開始の指示をだす。電動要素25の回転により圧縮要素26は駆動される。冷媒ガスは密閉容器24の空間内に開口した吸入口27から圧縮要素26に吸い込まれ、圧縮された後、凝縮器29、キャピラリーチューブ30、蒸発器31の順に冷凍サイクルを循環する。オイル22は密閉容器24内に貯留されているため、圧縮要素26の駆動により密閉容器24内に飛散し、ごく微量であるが、冷媒とともに吸入口27より吸い込まれ、冷凍サイクルの中を循環する。従い、吐出されたオイル22を確実に圧縮機21に戻らせるために、オイル22は冷媒ガスに相溶性のよいものを選択している。この結果、密閉容器24に貯留されているオイル22にも多量の冷媒が溶け込むことになる。なお、炭化水素系冷媒と鉱油との相溶性(オイルに対する冷媒の溶け込み量)は、フロン系冷媒HFC134aとエステル油との相溶性に比べ2〜3割り良い特性を持っている。
【0033】
次に冷媒サイクルの動作を説明する。寝込み状態から、制御手段28から駆動開始の指示が出ると上記作用により圧縮機21が圧縮を開始する(ステップS1)。起動判定手段32は、圧縮機21の起動が電源投入後1回目の起動かどうかを判定し(ステップS2)、圧縮機21の起動が電源投入後1回目の起動時のみ電動要素25は40Hz回転で運転する(ステップS3)。密閉容器24内は圧縮要素26により冷媒が吸入されることで、圧力が下がってゆく。この時、電動要素25は40Hz回転により運転されるため、吸い込み冷媒の単位時間内の量が制限され、密閉容器24内の圧力降下は緩やかになる。圧力降下が緩やかなため、オイル22に溶け込んでいる冷媒は徐々にオイル22より遊離し、急激な発泡現象は回避される。従い、急激な発泡により発生する泡がないことにより、重なりあったオイル22の泡が吸入口27に達することがなく、オイル圧縮は起こらない。
【0034】
従って、オイル圧縮による異音の発生も生じず、また圧縮機21の信頼性も高まる。また、圧縮機21は駆動の必要があると、従来のような起動までに所定時間を要することもなく、すぐに運転を開始することができるので、速やかに冷却することができる。また、従来のように冷媒遊離のためだけに使う余分な電力を消費せず、省エネ効果を得ることができる。また、低速回転運転は圧縮機の騒音レベルも低く、圧縮機が回り始めるときの起動音を小さく抑えることができる。特に、本実施の形態で説明したように、炭化水素系冷媒と鉱油との組み合わせにおいて、上記作用効果を得やすい。これは、炭化水素系冷媒と鉱油との相溶性は、フロン系冷媒HFC134aとエステル油との相溶性に比べ2〜3割り良い特性を持っていることによるものである。
【0035】
また、寝込み状態でない電源投入後2回目以降の起動時には、起動時から圧縮機21は通常回転数で運転することで、速やかに貯蔵室を設定温度まで冷却できる。
【0036】
なお、本実施例では冷媒膨張器としてキャピラリーチューブ30を採用しているが、減圧機であれば作用は変わらない。また、本実施例では、冷凍システムの構成要素が各1個ずつの基本的な構成であるが、構成要素が複数となるものでも同様の作用となる。
【0037】
また、冷媒純度は80%以上としたため、不純物の発泡助長要因が排除でき、よりいっそう発泡現象の抑制ができる。
【0038】
また、炭化水素冷媒は鉱油との相溶性が極めて良好であり、オイル22を鉱油としたため、吐出されたオイル22はよりいっそう、戻りやすくなる。
【0039】
また、冷却器を複数設けたり、冷却負荷が比較的大きい冷凍サイクルを有する冷蔵庫では封入冷媒量を50g〜100gとするが、封入冷媒量が多くなっても上記作用効果により、液圧縮が起こらず、低騒音化、高信頼性を得ることができる。
【0040】
また、低速回転数を、40Hz以下としたため、商用電源周波数50/60Hzに比較して80%あるいは66%の低い回転数でであり、圧力降下はいっそう緩やかになり、発泡現象はよりいっそう緩和される。
【0041】
(実施の形態2)
本発明による実施の形態2について、図面を参照しながら説明する。なお、実施の形態1と同一構成については、同一符号を付して詳細な説明を省略する。
【0042】
図4は冷蔵庫の実施の形態2による冷蔵庫を説明する冷凍サイクル構成図である。図5は冷蔵庫の実施の形態2による冷蔵庫を説明するフローチャートである。
【0043】
図4、5において、温度検知手段33は冷蔵庫の周囲温度を検知し、制御手段28に信号を出力する。
【0044】
次に冷媒サイクルの動作を説明する。寝込み状態から、制御手段28から駆動開始の指示が出ると上記作用により圧縮機21が圧縮を開始する(ステップS4)。起動判定手段32は、圧縮機21の起動が電源投入後1回目の起動時(ステップS5)で、さらに温度検知手段33が任意の設定温度以下である20℃以下を検知した時(ステップS6)のみ電動要素25は40Hz回転で運転する(ステップS7)。これにより圧縮機21内オイルに溶け込む冷媒量が少ない冷蔵庫周囲温度が任意の周囲温度より高い場合は、電源投入後1回目の起動時でも通常回転数で圧縮機21を運転できるので、速やかに貯蔵室を設定温度まで冷却できる。
【0045】
また、寝込み状態でない電源投入後2回目以降の起動時には、起動時から圧縮機21は通常回転数で運転することで、速やかに貯蔵室を設定温度まで冷却できる。
【0046】
(実施の形態3)
本発明による実施の形態3について、図面を参照しながら説明する。なお、実施の形態1から2と同一構成については、同一符号を付して詳細な説明を省略する。
【0047】
図6は冷蔵庫の実施の形態3による冷蔵庫を説明する冷凍サイクル構成図である。図7は冷蔵庫の実施の形態3による冷蔵庫を説明するフローチャートである。図8は冷蔵庫の実施の形態3による冷蔵庫を説明する圧縮機の運転回転数が高回転へ移行する場合を示すタイムチャートである。
【0048】
タイマー手段34は圧縮機21が起動してから時間を積算し、設定時間まで積算すると制御手段28に信号を出力する。
【0049】
次に冷媒サイクルの動作を説明する。制御手段28から駆動開始の指示が出ると上記作用により圧縮機21が圧縮を開始する(ステップS8)。起動判定手段32は、圧縮機21の起動が電源投入後1回目の起動時(ステップS9)に、タイマー手段34が時間積算を開始(ステップS10)し、タイマー手段34が任意の設定時間である12秒間までは、電動要素25は低回転である40Hz回転で運転する(ステップS11)。そして制御手段28はタイマー手段34が12秒間を積算した時点で、圧縮機21を給油可能回転数まで変化させる(ステップS12)これにより圧縮要素に十分な給油ができ信頼性の向上が図れる。
【0050】
この後、例えば貯蔵室(図示せず)の温度が高いときは、圧縮機21の回転数を高回転に移行し、速やかに貯蔵室の温度を下げていくことにより貯蔵室の冷え遅れを防止することができる。あるいは、貯蔵室の温度が比較的低いときは圧縮機21の回転数をさらに下げ、冷凍サイクル効率の高い運転を実施でき、無駄な消費電力量の消費を防止し、騒音も抑えることができる。
【0051】
通常、本発明を実施しない冷凍サイクルでは、発泡現象は圧縮機の駆動開始より2秒から30秒の間に見られる。すなわち、本発明では低速運転時間を2秒以上としたことにより、低速運転中の冷媒循環量の少ない時間が短くなり、貯蔵室(図示せず)の冷え遅れが防止できる。また、30秒以下としたことで、確実に発泡現象を抑えることができる。
【0052】
【発明の効果】
以上説明したように本発明の請求項1に記載の発明は、密閉容器内にオイルを貯留するとともに、電動要素と、電動要素により駆動され、ガス吸入口を密閉容器内に開口した圧縮要素と、電動要素および圧縮要素を収容した圧縮機と、電動要素を駆動制御する制御手段と、電源投入後1回目の起動かどうかを判定する起動判定手段とを備え、冷媒は炭化水素を主成分とし、前記圧縮機を前記起動判定手段により電源投入後1回目の起動時のみを、通常回転数より低回転数で運転させるものであり、泡状オイルの圧縮要素への吸い込みが防止できることより、圧縮機耐久性に悪影響するオイル圧縮を防止することができるとともに、圧縮機駆動必要時にすぐ運転を開始することができ、貯蔵室の冷え遅れも抑えることができる。
【0053】
さらに、冷媒遊離のためだけに使う余分な電力を消費する必要もない。また、低速回転運転は圧縮機の騒音レベルも低く、圧縮機が回り始めるときの起動音を小さく抑えることができる。
【0054】
また、請求項2に記載の発明は、請求項1に記載の発明において、冷蔵庫の周囲温度を検知する温度検知手段を備え、前記温度検知手段により任意の周囲温度以下の時に、圧縮機を起動判定手段により電源投入後1回目の起動時のみを、通常回転数より低回転数で運転させるものであり、圧縮機内オイルに溶け込む冷媒量が少ない冷蔵庫周囲温度が任意の周囲温度より高い場合は、電源投入後1回目の起動時でも通常回転数で圧縮機を運転し冷蔵庫を所定の温度まで冷却できる。
【0055】
また、請求項3に記載の発明は、請求項1または請求項2に記載の発明において、圧縮機を電源投入後1回目の起動時のみを、一定時間通常回転数より低回転数で運転させ、一定時間後給油保護回転数まで回転数を変化させるものであり、圧縮要素に十分な給油ができ信頼性の向上が図れる。
【0056】
また、請求項4に記載の発明は、請求項1から3のいずれか一項記載の発明において、冷媒の純度は80%以上であるものであり、さらなる圧縮機起動時の寝込み冷媒発泡の抑制ができる。
【0057】
また、請求項5に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明において、オイルは鉱油であるものであり、圧縮機内に必要なオイルを貯めることができ信頼性の向上が図れる。
【0058】
また、請求項6に記載の発明は、請求項1から請求項5のいずれか一項に記載の発明において、封入冷媒量は50g以上であるものであり、どのような条件下においても圧縮機内に必要なオイルを貯めることができ信頼性の向上が図れる。
【0059】
また、請求項7に記載の発明は、請求項1から請求項6のいずれか一項に記載の発明において、低速回転数は40Hz以下であるものであり、寝込み冷媒発泡現象はさらに緩和される。
【0060】
また、請求項8に記載の発明は、請求項1から請求項7のいずれか一項に記載の発明において、低速回転を行う時間は2秒以上、30秒以内であるものであり、低速運転時間を2秒以上としたことにより、低速運転中の冷媒循環量の少ない時間が短くなり、貯蔵室(図示せず)の冷え遅れがさらに防止でき、30秒以下としたことで、確実に発泡現象を抑えることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1による冷蔵庫を説明する冷凍サイクル構成図
【図2】本発明の実施の形態1による冷蔵庫を説明する圧縮機断面図
【図3】本発明の実施の形態1による冷蔵庫の運転制御のフローチャート
【図4】本発明の実施の形態2による冷蔵庫を説明する冷凍サイクル構成図
【図5】本発明の実施の形態2による冷蔵庫を説明するフローチャート
【図6】本発明の実施の形態3による冷蔵庫を説明する冷凍サイクル構成図
【図7】本発明の実施の形態3による冷蔵庫を説明するフローチャート
【図8】本発明の実施の形態3による冷蔵庫を説明する圧縮機の運転回転数が高回転へ移行する場合を示すタイムチャート
【図9】従来の冷凍装置の配管系統図
【符号の説明】
21 圧縮機
22 オイル
23 冷蔵庫
24 密閉容器
25 電動要素
26 圧縮要素
27 吸入口
28 制御手段
32 起動判定手段
33 温度検知手段
34 タイマー手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator that prevents liquid compression when a compressor is started.
[0002]
[Prior art]
In recent years, the awareness of the global environment has increased, and the refrigerant used in refrigerators to suppress global warming has been shifting from alternative chlorofluorocarbons to combustible refrigerants mainly composed of hydrocarbons.
[0003]
By making the refrigerant a combustible refrigerant mainly composed of hydrocarbons, the amount of refrigerant that dissolves in the oil in the compressor is larger than that of conventional alternative chlorofluorocarbons (hereinafter, a state in which a large amount of refrigerant is dissolved in oil is expressed as stagnation). In particular, when the power is turned on for the first time when the power is turned on, the liquid refrigerant dissolved in the oil in the compressor is bubbled and eluted, or the forming phenomenon occurs, or the liquid refrigerant is directly sucked by the compressor. As a result, liquid compression occurs, causing a compressor failure.
[0004]
In general, in a heat pump refrigeration system in which indoor and outdoor heat exchangers are connected to a compressor by refrigerant piping, an electric element is energized for a predetermined period of time within a preset time period to heat an oil sump space and the like, and A control for starting the compressor after performing this phase loss energization is provided (for example, refer to Patent Document 1).
[0005]
The conventional heat pump refrigeration apparatus will be described below with reference to the drawings.
[0006]
FIG. 9 is a piping diagram of a conventional heat pump refrigeration apparatus. As shown in the figure, the heat pump type refrigeration apparatus is connected to a compressor 1, a four-way valve 2, an indoor heat exchanger 3 provided with a fan 6, and an outdoor heat exchanger 4 provided with a fan 7 by refrigerant pipes, respectively. Configured.
[0007]
The compressor 1 includes a compression element 12 and a three-phase electric motor 13 constituting an electric element for driving the compression element 12 in a sealed container 11 having an oil sump space 10 at the bottom. The expansion valve 5 is interposed in a refrigerant pipe between the heat exchangers 3 and 4, and includes a power breaker 15 for a heat pump refrigeration apparatus and an operation switch 16 for the heat pump refrigeration apparatus.
[0008]
When the cooling operation is performed by the heat pump type refrigeration apparatus configured as described above, the four-way valve 2 is switched as indicated by the broken line in FIG. 1 to discharge refrigerant discharged from the compressor 1 to the outdoor heat exchanger 4. To the indoor heat exchanger 3 to cool the room. Further, when performing the heating operation, the four-way valve 2 is switched as indicated by the solid line in the figure, and the refrigerant discharged from the compressor 1 is sent from the indoor heat exchanger 3 to the outdoor heat exchanger 4 to perform indoor heating.
[0009]
After performing the heating operation as described above, when the operation switch 16 is turned off and stopped and left, or when the power breaker 15 of the heat pump refrigeration device is turned off and stopped, the heat pump refrigeration device is not energized. When left unattended, the liquid refrigerant stagnates in the oil in the oil sump space 10 provided in the sealed container 11. The liquid refrigerant discharge mechanism for discharging the stagnation liquid refrigerant is configured as described below.
[0010]
In other words, this liquid refrigerant discharge mechanism is a two-phase of the coil windings provided in the three-phase motor 13 of the compressor 1 for a preset time only when the operation switch 16 of the heat pump refrigeration apparatus is turned on. A control device 17 is provided for performing control so that the winding is single-phase energized and then the compressor 1 is three-phase energized, and the operation thereof will be described next.
[0011]
When the operation switch 16 of the heat pump refrigeration apparatus is turned on and the power is turned on, the control circuit 17 controls to set a preset time (a time determined by a liquid refrigerant discharge experiment or the like by phase loss energization, that is, a sealed container). 11 is a phase-opening energization relay 18 (normal operation relay) for a period of time required for the liquid refrigerant to be discharged from a liquid refrigerant full state to a liquid level level at which the compressor can be started without problems. 19 is connected in parallel), and two-phase windings of the coil windings provided in the three-phase motor 13 of the compressor 1 are energized in a single phase.
[0012]
In this state, the three-phase motor 13 does not rotate, only the coil winding generates heat due to single-phase conduction, and heats the liquid refrigerant that has fallen into the oil sump space 10. The heated liquid refrigerant evaporates from the compressor 1 and moves to the accumulator 20 having a low temperature, the indoor and outdoor heat exchangers 3 and 4 and the like. After a preset time, only an amount of liquid refrigerant that does not hinder the compressor 1 from starting up remains in the compressor 1. At this time, the phase loss relay 18 is turned off by the control circuit 17, the normal operation relay 19 is turned on, and the compressor 1 is started in a state where the amount of stagnation of the liquid refrigerant is extremely small.
[0013]
[Patent Document 1]
JP 2000-292017 A [0014]
[Problems to be solved by the invention]
However, when the above conventional heat pump refrigeration apparatus method is applied to a refrigerator, the compressor heats the liquid refrigerant sleeping in the oil sump space 10 due to the heat generated by the coil winding due to the phase loss energization. There is a problem that it takes a long time to cool the refrigerator to a predetermined temperature because the compressor cannot be started. There is also a problem that the amount of power consumption increases.
[0015]
The present invention solves the above-described conventional problems. In a compressor using a hydrocarbon-based refrigerant, liquid compression at the time of start-up is prevented, and the compressor is started immediately after power-on without increasing power consumption. It aims at providing the refrigerator which can be rapidly cooled to predetermined temperature.
[0016]
[Means for Solving the Problems]
The refrigerator invention according to claim 1 of the present invention stores oil in an airtight container, an electric element, a compression element driven by the electric element, and having a gas inlet opening in the airtight container, and an electric element And a compressor containing the compression element, a control means for driving and controlling the electric element, and an activation determination means for determining whether or not the first activation is performed after the power is turned on. The machine is operated only at the first startup after the power is turned on by the startup determination means at a lower rotational speed than the normal rotational speed, and there is no increase in power consumption and suppresses the stagnant refrigerant foaming at the start of the compressor, Liquid compression of foamed oil can be prevented, and the refrigerator can be quickly cooled to a predetermined temperature by starting the compressor immediately after the power is turned on.
[0017]
The invention according to claim 2 is the invention according to claim 1, further comprising temperature detection means for detecting the ambient temperature of the refrigerator, and when the temperature detection means is below an arbitrary ambient temperature, the start determination means for starting the compressor. Only when the power is turned on for the first time after the power is turned on, the engine is operated at a lower rotational speed than the normal rotational speed. When the refrigerator ambient temperature is much lower than the ambient temperature, If the ambient temperature of the refrigerator is less than the desired ambient temperature to prevent the phenomenon and the amount of refrigerant that dissolves in the oil in the compressor is higher than the desired ambient temperature, the compressor is operated at the normal rotation speed even at the first startup after turning on the power. Can cool down to.
[0018]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the compressor is operated at a lower rotational speed than the normal rotational speed for a certain period of time only when the compressor is turned on for the first time after the power is turned on. The rotational speed is changed up to the oil supply protection rotational speed after the time, and sufficient oil can be supplied to the compression element to improve the reliability.
[0019]
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the purity of the refrigerant is 80% or more, and the factor for promoting foaming of impurities can be eliminated, and further compressor start-up is performed. Slow refrigerant foaming at the time can be suppressed.
[0020]
The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the oil is a mineral oil, and the required oil can be stored in the compressor, so that the reliability is high. Improvement can be achieved.
[0021]
The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the amount of the enclosed refrigerant is 50 g or more, and is necessary in the compressor under any conditions. Oil can be stored and reliability can be improved.
[0022]
The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the low-speed rotation speed is 40 Hz or less, and the sleeping refrigerant foaming phenomenon is further alleviated.
[0023]
The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the low-speed rotation time is 2 seconds or more and within 30 seconds, and the low-speed rotation time is The refrigerator can be reduced to a predetermined temperature more quickly.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a refrigerator according to the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same structure as the past, and detailed description is abbreviate | omitted.
[0025]
(Embodiment 1)
Embodiment 1 according to the present invention will be described with reference to the drawings.
[0026]
FIG. 1 is a refrigeration cycle configuration diagram illustrating a refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a compressor cross-sectional view illustrating the refrigerator according to Embodiment 1 of the refrigerator. FIG. 3 is a flowchart of the operation control of the refrigerator according to the first embodiment of the present invention.
[0027]
1 to 3, the refrigerator 23 includes a refrigeration cycle in which a compressor 21, a condenser 29, a capillary tube 30, and an evaporator 31 are sequentially connected, and the operation is controlled by the control means 28.
[0028]
The compressor 21 has an electric element 25 and a compression element 26 in a sealed container 24, and oil 22 is stored at the bottom of the sealed container 24. The refrigerant circulating in the refrigeration cycle is a combustible natural refrigerant such as isobutane having hydrocarbon as a main component, and an inlet 27 that returns to the compressor 21 opens into the space of the sealed container 24. The oil 22 uses mineral oil. Moreover, the refrigerant | coolant which has a hydrocarbon as a main component uses a thing with a purity of 80% or more. Here, the purity of the refrigerant means a component ratio by quantitative analysis with a gas chromatograph as shown in JIS-K0114. The refrigerant filling amount of the refrigeration cycle is 50 to 100 g.
[0029]
Further, the control means 28 controls the operation of the compressor 21 at a frequency lower than the power supply frequency, for example, 40 Hz or less, for a certain period of time when the compressor 21 is activated.
[0030]
The activation determination unit 32 determines whether the compressor 21 is activated for the first time after the power is turned on.
[0031]
Next, the operation of this configuration will be described.
[0032]
When the temperature of the storage chamber (not shown) of the refrigerator 23 is higher than a predetermined temperature, the control unit 28 instructs the electric element 25 to start operation. The compression element 26 is driven by the rotation of the electric element 25. The refrigerant gas is sucked into the compression element 26 through the suction port 27 opened in the space of the sealed container 24 and compressed, and then circulates in the refrigeration cycle in the order of the condenser 29, the capillary tube 30, and the evaporator 31. Since the oil 22 is stored in the sealed container 24, it is scattered in the sealed container 24 by the drive of the compression element 26, and is very small amount, but is sucked from the suction port 27 together with the refrigerant and circulates in the refrigeration cycle. . Therefore, in order to reliably return the discharged oil 22 to the compressor 21, the oil 22 having a good compatibility with the refrigerant gas is selected. As a result, a large amount of refrigerant also dissolves in the oil 22 stored in the sealed container 24. The compatibility between the hydrocarbon-based refrigerant and the mineral oil (the amount of the refrigerant dissolved in the oil) is 20 to 30% better than the compatibility between the CFC-based refrigerant HFC134a and the ester oil.
[0033]
Next, the operation of the refrigerant cycle will be described. When an instruction to start driving is issued from the control means 28 from the sleeping state, the compressor 21 starts compression by the above action (step S1). The start determination means 32 determines whether the start of the compressor 21 is the first start after the power is turned on (step S2), and the electric element 25 rotates 40 Hz only when the compressor 21 is started for the first time after the power is turned on. (Step S3). As the refrigerant is sucked into the sealed container 24 by the compression element 26, the pressure is lowered. At this time, since the electric element 25 is operated by 40 Hz rotation, the amount of the sucked refrigerant in the unit time is limited, and the pressure drop in the sealed container 24 becomes gentle. Since the pressure drop is gradual, the refrigerant dissolved in the oil 22 is gradually released from the oil 22 and a sudden foaming phenomenon is avoided. Accordingly, since there are no bubbles generated due to rapid foaming, the overlapping bubbles of the oil 22 do not reach the suction port 27, and oil compression does not occur.
[0034]
Therefore, no abnormal noise is generated due to oil compression, and the reliability of the compressor 21 is improved. Further, when the compressor 21 needs to be driven, it does not take a predetermined time until the start-up as in the prior art, and the operation can be started immediately, so that the compressor 21 can be quickly cooled. In addition, it is possible to obtain an energy saving effect without consuming extra power used only for releasing the refrigerant as in the prior art. Further, the low-speed rotation operation has a low noise level of the compressor, and the startup sound when the compressor starts to rotate can be suppressed to a low level. In particular, as described in the present embodiment, the above-described effects can be easily obtained in a combination of a hydrocarbon-based refrigerant and mineral oil. This is because the compatibility between the hydrocarbon-based refrigerant and the mineral oil has characteristics that are 20 to 30% better than the compatibility between the CFC-based refrigerant HFC134a and the ester oil.
[0035]
In addition, at the time of the second and subsequent start-ups after power-on that is not in the sleep state, the compressor 21 can be operated at the normal rotation speed from the start-up so that the storage room can be quickly cooled to the set temperature.
[0036]
In this embodiment, the capillary tube 30 is used as the refrigerant expander, but the operation is not changed if it is a decompressor. Further, in this embodiment, the refrigeration system has a basic configuration of one component each, but the same effect is obtained even when there are a plurality of components.
[0037]
Further, since the purity of the refrigerant is 80% or more, the factor for promoting foaming of impurities can be eliminated, and the foaming phenomenon can be further suppressed.
[0038]
In addition, the hydrocarbon refrigerant has extremely good compatibility with mineral oil, and since the oil 22 is mineral oil, the discharged oil 22 is more easily returned.
[0039]
Further, in a refrigerator having a plurality of coolers or having a refrigeration cycle with a relatively large cooling load, the amount of enclosed refrigerant is 50 g to 100 g. However, even if the amount of enclosed refrigerant increases, liquid compression does not occur due to the above effects. Low noise and high reliability can be obtained.
[0040]
In addition, since the low-speed rotation speed is 40 Hz or less, the rotation speed is 80% or 66% lower than the commercial power supply frequency 50/60 Hz, the pressure drop becomes more gradual, and the foaming phenomenon is further alleviated. The
[0041]
(Embodiment 2)
Embodiment 2 according to the present invention will be described with reference to the drawings. In addition, about the same structure as Embodiment 1, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
[0042]
FIG. 4 is a refrigeration cycle configuration diagram illustrating the refrigerator according to the second embodiment of the refrigerator. FIG. 5 is a flowchart illustrating the refrigerator according to the second embodiment of the refrigerator.
[0043]
4 and 5, the temperature detection means 33 detects the ambient temperature of the refrigerator and outputs a signal to the control means 28.
[0044]
Next, the operation of the refrigerant cycle will be described. When an instruction to start driving is issued from the control means 28 from the sleeping state, the compressor 21 starts compression by the above action (step S4). The start determination means 32 is when the compressor 21 is started for the first time after the power is turned on (step S5), and when the temperature detection means 33 further detects 20 ° C. or lower which is lower than an arbitrary set temperature (step S6). Only the electric element 25 is operated at a rotation of 40 Hz (step S7). As a result, when the refrigerator ambient temperature with a small amount of refrigerant dissolved in the oil in the compressor 21 is higher than an arbitrary ambient temperature, the compressor 21 can be operated at the normal rotation speed even at the first startup after the power is turned on. The chamber can be cooled to the set temperature.
[0045]
In addition, at the time of the second and subsequent start-ups after power-on that is not in the sleep state, the compressor 21 can be operated at the normal rotation speed from the start-up so that the storage room can be quickly cooled to the set temperature.
[0046]
(Embodiment 3)
Embodiment 3 according to the present invention will be described with reference to the drawings. In addition, about the same structure as Embodiment 1-2, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
[0047]
FIG. 6 is a refrigeration cycle configuration diagram illustrating the refrigerator according to the third embodiment of the refrigerator. FIG. 7 is a flowchart illustrating the refrigerator according to the third embodiment of the refrigerator. FIG. 8 is a time chart showing a case where the operating rotational speed of the compressor for explaining the refrigerator according to the third embodiment of the refrigerator shifts to a high speed.
[0048]
The timer means 34 accumulates the time after the compressor 21 is activated, and outputs a signal to the control means 28 when the time is accumulated until the set time.
[0049]
Next, the operation of the refrigerant cycle will be described. When an instruction to start driving is issued from the control means 28, the compressor 21 starts compression by the above action (step S8). In the start determination unit 32, when the compressor 21 is started for the first time after the power is turned on (step S9), the timer unit 34 starts time integration (step S10), and the timer unit 34 has an arbitrary set time. Up to 12 seconds, the electric element 25 operates at a low rotation of 40 Hz (step S11). Then, when the timer means 34 accumulates 12 seconds, the control means 28 changes the compressor 21 to a refuelable rotation speed (step S12), whereby sufficient oil can be supplied to the compression element, and reliability can be improved.
[0050]
After this, for example, when the temperature of the storage room (not shown) is high, the rotation speed of the compressor 21 is shifted to a high speed, and the storage room temperature is quickly lowered to prevent the storage room from being delayed. can do. Alternatively, when the temperature of the storage room is relatively low, the rotation speed of the compressor 21 can be further lowered, operation with high refrigeration cycle efficiency can be performed, wasteful power consumption can be prevented, and noise can be suppressed.
[0051]
Usually, in the refrigeration cycle in which the present invention is not carried out, the foaming phenomenon is observed within 2 to 30 seconds from the start of driving of the compressor. That is, in the present invention, by setting the low speed operation time to 2 seconds or more, the time during which the refrigerant circulation amount during low speed operation is small is shortened, and the cooling delay of the storage chamber (not shown) can be prevented. Moreover, the foaming phenomenon can be reliably suppressed by setting it to 30 seconds or less.
[0052]
【The invention's effect】
As described above, the invention according to the first aspect of the present invention stores the oil in the sealed container, the electric element, and the compression element that is driven by the electric element and that has the gas inlet port opened in the sealed container. A compressor containing the electric element and the compression element, a control means for driving and controlling the electric element, and an activation determination means for determining whether or not the first activation is performed after the power is turned on, and the refrigerant is mainly composed of hydrocarbons. The compressor is operated only at the first start-up after the power is turned on by the start-up judging means at a speed lower than the normal speed, and the compression of the foam oil to the compression element can be prevented. Oil compression that adversely affects machine durability can be prevented, operation can be started immediately when the compressor needs to be driven, and the cooling delay of the storage chamber can be suppressed.
[0053]
Furthermore, it is not necessary to consume extra power used only for releasing the refrigerant. Further, the low-speed rotation operation has a low noise level of the compressor, and the startup sound when the compressor starts to rotate can be suppressed to a low level.
[0054]
The invention according to claim 2 is the invention according to claim 1, further comprising temperature detection means for detecting the ambient temperature of the refrigerator, and the compressor is activated when the temperature detection means is below an arbitrary ambient temperature. Only when the power is turned on by the judging means at the first start-up, the engine is operated at a lower rotational speed than the normal rotational speed, and the refrigerator ambient temperature with a small amount of refrigerant dissolved in the oil in the compressor is higher than an arbitrary ambient temperature. Even at the first start-up after the power is turned on, the compressor can be operated at a normal rotation speed to cool the refrigerator to a predetermined temperature.
[0055]
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the compressor is operated at a lower rotational speed than the normal rotational speed for a certain time only at the first startup after the compressor is turned on. The rotation speed is changed to the oil supply protection rotation speed after a certain period of time, and sufficient oil can be supplied to the compression element to improve the reliability.
[0056]
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the refrigerant has a purity of 80% or more, and further suppresses the stagnant refrigerant foaming at the time of starting the compressor. Can do.
[0057]
The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the oil is mineral oil, and the required oil can be stored in the compressor. Can improve the performance.
[0058]
Further, the invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the amount of the enclosed refrigerant is 50 g or more, and the compressor is not subjected to any conditions. The necessary oil can be stored and the reliability can be improved.
[0059]
The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the low-speed rotation speed is 40 Hz or less, and the sleeping refrigerant foaming phenomenon is further alleviated. .
[0060]
The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the low speed rotation time is 2 seconds or more and within 30 seconds, and the low speed operation is performed. By setting the time to 2 seconds or more, the time during which the refrigerant circulation amount during low-speed operation is small is shortened, and the cooling delay of the storage room (not shown) can be further prevented. The phenomenon can be suppressed.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a refrigeration cycle illustrating a refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of a compressor illustrating a refrigerator according to Embodiment 1 of the present invention. FIG. 4 is a refrigeration cycle configuration diagram illustrating a refrigerator according to a second embodiment of the present invention. FIG. 5 is a flowchart illustrating a refrigerator according to a second embodiment of the present invention. FIG. 7 is a refrigeration cycle configuration diagram illustrating a refrigerator according to a third embodiment of the invention. FIG. 7 is a flowchart illustrating a refrigerator according to a third embodiment of the present invention. FIG. 8 is a compressor illustrating a refrigerator according to the third embodiment of the present invention. [Figure 9] Time chart showing the case where the number of operating revolutions shifts to high speed [Fig. 9] Piping system diagram of conventional refrigeration system [Explanation of symbols]
DESCRIPTION OF SYMBOLS 21 Compressor 22 Oil 23 Refrigerator 24 Sealed container 25 Electric element 26 Compression element 27 Suction port 28 Control means 32 Start determination means 33 Temperature detection means 34 Timer means

Claims (8)

密閉容器内にオイルを貯留するとともに、電動要素と、電動要素により駆動され、ガス吸入口を密閉容器内に開口した圧縮要素と、電動要素および圧縮要素を収容した圧縮機と、電動要素を駆動制御する制御手段と、電源投入後1回目の起動かどうかを判定する起動判定手段とを備え、冷媒は炭化水素を主成分とし、前記圧縮機を前記起動判定手段により電源投入後1回目の起動時のみを、通常回転数より低回転数で運転させることを特徴とする冷蔵庫。The oil is stored in the sealed container, and the electric element, the compression element driven by the electric element, the gas inlet opening in the sealed container, the compressor containing the electric element and the compression element, and the electric element are driven. A control means for controlling, and a start determination means for determining whether or not the first start after power-on, wherein the refrigerant is mainly composed of hydrocarbons, and the compressor is started for the first time after the power is turned on by the start-up determination means. A refrigerator characterized in that only the hour is operated at a lower rotational speed than the normal rotational speed. 冷蔵庫の周囲温度を検知する温度検知手段を備え、前記温度検知手段により任意の周囲温度以下の時に、圧縮機を起動判定手段により電源投入後1回目の起動時のみを、通常回転数より低回転数で運転させることを特徴とする請求項1記載の冷蔵庫。Provided with temperature detection means for detecting the ambient temperature of the refrigerator, when the temperature detection means is below an arbitrary ambient temperature, the compressor is started by the start determination means and only when the power is turned on for the first time, the rotation speed is lower than the normal rotation speed. The refrigerator according to claim 1, wherein the refrigerator is operated by a number. 圧縮機を電源投入後1回目の起動時のみを、一定時間通常回転数より低回転数で運転させ、一定時間後給油保護回転数まで回転数を変化させることを特徴とする請求項1または2記載の冷蔵庫。3. The compressor according to claim 1, wherein the compressor is operated at a lower rotational speed than a normal rotational speed for a certain period of time only after the compressor is turned on, and the rotational speed is changed to a refueling rotational speed after a certain period of time. The refrigerator described. 冷媒の純度は80%以上であることを特徴とする請求項1から3のいずれか一項記載の冷蔵庫。The refrigerator according to any one of claims 1 to 3, wherein the purity of the refrigerant is 80% or more. オイルは鉱油であることを特徴とする請求項1から4のいずれか一項記載の冷蔵庫。The refrigerator according to any one of claims 1 to 4, wherein the oil is mineral oil. 封入冷媒量は50g以上であることを特徴とする請求項1から5のいずれか一項記載の冷蔵庫。The refrigerator according to any one of claims 1 to 5, wherein an amount of the enclosed refrigerant is 50 g or more. 低速回転数は40Hz以下であることを特徴とする請求項1から6のいずれか一項記載の冷蔵庫。A low-speed rotation speed is 40 Hz or less, The refrigerator as described in any one of Claim 1 to 6 characterized by the above-mentioned. 低速回転を行う時間は2秒以上、30秒以内であることを特徴とする請求項1から7のいずれか一項記載の冷蔵庫。The refrigerator according to any one of claims 1 to 7, wherein the time for performing the low-speed rotation is 2 seconds or more and 30 seconds or less.
JP2003184184A 2003-06-27 2003-06-27 Refrigerator Pending JP2005016870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184184A JP2005016870A (en) 2003-06-27 2003-06-27 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184184A JP2005016870A (en) 2003-06-27 2003-06-27 Refrigerator

Publications (1)

Publication Number Publication Date
JP2005016870A true JP2005016870A (en) 2005-01-20

Family

ID=34184035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184184A Pending JP2005016870A (en) 2003-06-27 2003-06-27 Refrigerator

Country Status (1)

Country Link
JP (1) JP2005016870A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075926A (en) * 2006-09-20 2008-04-03 Denso Corp Ejector type refrigerating cycle
CN111076493A (en) * 2019-12-03 2020-04-28 海信(山东)冰箱有限公司 Refrigerator operation mode control method and refrigerator
CN112665239A (en) * 2020-12-08 2021-04-16 珠海格力电器股份有限公司 Water chilling unit starting method and device and water chilling unit
CN114719554A (en) * 2021-01-06 2022-07-08 青岛海尔电冰箱有限公司 Refrigerator control method and refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075926A (en) * 2006-09-20 2008-04-03 Denso Corp Ejector type refrigerating cycle
CN111076493A (en) * 2019-12-03 2020-04-28 海信(山东)冰箱有限公司 Refrigerator operation mode control method and refrigerator
CN112665239A (en) * 2020-12-08 2021-04-16 珠海格力电器股份有限公司 Water chilling unit starting method and device and water chilling unit
CN114719554A (en) * 2021-01-06 2022-07-08 青岛海尔电冰箱有限公司 Refrigerator control method and refrigerator

Similar Documents

Publication Publication Date Title
JP4179927B2 (en) Method for setting refrigerant filling amount of cooling device
JP2009014298A (en) Refrigerator and chiller using the same
JP3919736B2 (en) Start-up control device and start-up control method for heat pump water heater
JP4104900B2 (en) refrigerator
JP2007093081A (en) Cooling system and vending machine using the same
JP2009085463A (en) Air conditioner
JP2000292017A (en) Heat pump type refrigerating machine
JP2005016870A (en) Refrigerator
JP4665736B2 (en) Control method for refrigeration cycle apparatus and refrigeration cycle apparatus using the same
JP2006214614A (en) Refrigerator and its control method
JP2005016774A (en) Refrigerator
JP5381749B2 (en) Refrigeration cycle equipment
JP2005016773A (en) Refrigerator
JP2005016770A (en) Refrigerator
JP2003287333A (en) Refrigerator
JP3530043B2 (en) Freezer refrigerator
JP2005201532A (en) Freezing-refrigerating unit and refrigerator
JPH1183274A (en) Freezer/refrigerator
JP2002071233A (en) Refrigerator and its controlling method
JP2008215770A (en) Air conditioner
JP2000097479A (en) Air conditioner
JP2001280714A (en) Refrigerating system
JP2557656B2 (en) Refrigerator capacity control method
JP2000234828A (en) Automated ice making machine
JP2008057835A (en) Refrigerating apparatus